bbl双歧杆菌培养基

bbl双歧杆菌培养基
bbl双歧杆菌培养基

BBL琼脂培养基

BBL Agar Medium

BBL琼脂培养基产品价格用途:用于双岐杆菌分离培养(GB标准)

枯草芽孢杆菌发酵培养基的优化

枯草芽孢杆菌发酵培养基优化 作者姓名 专业 指导教师姓名 专业技术职务

目录 摘要 (1) ABSTRACT (2) 第一章绪论 (3) 1.1枯草芽孢杆菌简介 (3) 1.2枯草芽孢杆菌的应用 (3) 1.2.1枯草芽孢杆菌在工业酶生产中的应用 (3) 1.2.2枯草芽孢杆菌在生物防治领域中的应用 (3) 1.2.3枯草芽孢杆菌在微生物添加剂领域中的应用 (4) 1.2.4 枯草芽孢杆菌在医药方面的应用 (4) 1.2.5 枯草芽孢杆菌在水产中的应用 (4) 1.2.6枯草芽孢杆菌是微生物学与分子生物学研究的良好试验材 料 (5) 1.2.7枯草芽孢杆菌在环境保护方面的应用 (5) 1.3 国内外的研究现状与发展趋势 (6) 1.4研究的思路、目的及意义 (7) 第二章材料与方法 (7) 2.1实验材料 (7) 2.1.1 菌株鉴定 (7) 2.1.2 培养基 (7)

2.1.3 主要设备 (8) 2.2 培养基的优化 (9) 2.2.1 培养方法 (9) 2.2.2实验流程 (9) 2.2.3实验方法 (10) 2.2.4正交试验 (11) 第三章结果和分析 (11) 3.1 鉴定结果如下 (11) 3.2 枯草芽孢杆菌最优化培养基正交实验结果 (16) 3.3 pH变化曲线(以G18为例) (19) 3.4 实验总结 (25) 致谢 (27)

摘要 枯草芽孢杆菌是主要的饲用益生菌菌株,本论文以两株枯草芽孢杆菌G18和G21培养的延滞期和倍增时间为评价指标,通过三角瓶摇床培养,进行了两因素三水平的正交试验,对发酵培养基主要组分进行了优化,豆粕处理的蛋白酶加量2u/g 豆粕、5u/g豆粕、10u/g豆粕和玉米浆添加量0.5%、1.0% 、1.5% 做两个因素三水平的正交实验,研究表明:G18最佳培养基是:葡萄糖0.5%,淀粉3%,豆粕3%,玉米浆1.0%,破壁酵母0.5%,磷酸氢二钠0.2%,硫酸镁0.1%,硫酸锰0.01%,普通a淀粉酶2u/g淀粉,蛋白酶添加量10u/g豆粕。G21的最佳培养基是:葡萄糖0.5%,淀粉3%,豆粕3%,玉米浆1.5%,破壁酵母0.5%,磷酸氢二钠0.2%,硫酸镁0.1%,硫酸锰0.01%,普通a淀粉酶2u/g淀粉,蛋白酶添加量5u/g豆粕。[关键词] 枯草芽孢杆菌培养基优化正交试验

高密度培养

高密度培养 应用领域为生物制药,其代表为人生长激素。现代高密度培养技术主要是在用基因工程菌生产多肽类药物的实践中逐步发展起来的。基本信息 中文名高密度培养 发展基础基因工程菌生产多肽类药物 应用领域生物制药 代表人生长激素 技术介绍 现代高密度培养技术主要是在用基因工程菌(尤其是 E.coli)生产多肽类药物的实践中逐步发展起来的。例如,人生长激素、胰岛素、白细胞介素类和人干扰素等。 具体方法 (1)选取最佳培养基成分和各成分含量。 (2)补料,这是工程菌高密度培养的重要手段之一。 (3)提高溶解氧的浓度,提高好氧菌和兼性厌氧菌培养时的溶氧量也是高密度培养的重要手段之一。 (4)防止有害代谢产物的生成。 高密度培养过程中培养基成份及作用: 根据微生物对营养的要求,培养基包括水分、碳源、氮源、无机元素和生长素等五大类物质,此外还应有一定的酸碱度和渗透压。一般来讲,不同种类的微生物对培养基的要求是不同的,甚至同一种类的微生物在不同的生长阶段及使用目的时,对培养基的要求也不完全相同。有三种类型的培养基:合成培养基、复合培养基和半合成培养基。当营养物浓度可知并且在培养过程中可控制,合成培养基通常用于获得高细胞密度。在复合培养基中的营养物,比如蛋白胨和酵母粗提物,可以在成分和质量上有所变化,这使得用复合培养基的发酵可重复性低。然而。半合成或复合培养基有时对于促进产物形成是必需的,即在合成培养基中加入少量酵母粉、蛋白胨等,以及少量无机盐和氨基酸有助于菌体的生长及产物的形成。 碳源 Escherichiacoli可以利用葡萄糖、乙醇、甘油、乳糖、麦芽糖、阿拉伯糖等作为碳源,当培养基中含有葡萄糖和乳糖时,细菌优先使用葡萄糖,当葡萄糖耗尽,细菌停止生长,经过短时间适应,就能利用乳糖作为碳源。还原型的碳化合物常用于构建细胞和形成产物。除了葡萄糖,也可采用一些其他天然有机化合物做为碳源,用于生长和生产。培养基中的碳源浓度相当重要。如培养基中碳源含量超过5%,细菌的生长因细胞脱水而开始下降。使用不同的碳源对菌体生长及外源基因表达有影响。葡萄糖和甘油相比,它们所导致的菌体比生长速率及呼吸强度相差不大,但甘油的菌体得率较小,而葡萄糖所产生的副产物较多。用甘露

微生物发酵培养基的优化方法

工业发酵进展

微生物发酵培养基的优化方法 对于微生物的生长及发酵,其培养基成份非常复杂,特别是有关微生物发酵的培养基,各营养物质和生长因子之间的配比,以及它们之间的相互作用是非常微妙的。面对特定的微生物,人们希望找到一种最适合其生长及发酵的培养基,在原来的基础上提高发酵产物的产量,以期达到生产最大发酵产物的目的。发酵培养基的优化在微生物产业化生产中举足轻重,是从实验室到工业生产的必要环节。能否设计出一个好的发酵培养基,是一个发酵产品工业化成功中非常重要的一步。以工业微生物为例,选育或构建一株优良菌株仅仅是一个开始,要使优良菌株的潜力充分发挥出来,还必须优化其发酵过程,以获得较高的产物浓度(便于下游处理),较高的底物转化率(降低原料成本)和较高的生产强度(缩短发酵周期)。设计发酵培养基时还应时刻把工 实验室最常用的优化方法是单次单因子法,这种方法是在假设因素间不存在交互作用的前提下,通过一次改变一个因素的水平而其他因素保持恒定水平,然后逐个因素进行考察的优化方法。但是由于考察的因素间经常存在交互作用,使得该方法并非总能获得最佳的优化条件。另外,当考察的因素较多时,需要太多的实验次数和较长的实验周期[3]。所以现在的培养基优化实验中一般不采用或不单独采用这种方法,而采用多因子试验。 2.多因子试验 多因子试验需要解决的两个问题: (1)哪些因子对响应具有最大(或最小)的效应,哪些因子间具有交互作用。 (2)感兴趣区域的因子组合情况,并对独立变量进行优化。

3.正交实验设计 正交实验设计是安排多因子的一种常用方法,通过合理的实验设计,可用少量的具有代表性的试验来代替全面试验,较快地取得实验结果。正交实验的实质就是选择适当的正交表,合理安排实验的分析实验结果的一种实验方法。具体可以分为下面四步: (1)根据问题的要求和客观的条件确定因子和水平,列出因子水平表; (2)根据因子和水平数选用合适的正交表,设计正交表头,并安排实验; (3)根据正交表给出的实验方案,进行实验; (4)对实验结果进行分析,选出较优的“试验”条件以及对结果有显著影响的因子。 正交试验设计注重如何科学合理地安排试验,可同时考虑几种因素,寻找最佳因 次 报道。CastroPML报道用此法设计20种培养基,做24次试验,把gamma干扰素的产量提高了45%。 6.部分因子设计法 部分因子设计法与P1ackett-Burman设计法一样是一种两水平的实验优化方法,能够用比全因子实验次数少得多的实验,从大量影响因子中筛选出重要的因子。根据实验数据拟合出一次多项式,并以此利用最陡爬坡法确定最大响应区域,以便利用响应面法进一步优化。部分因子设计法与Plaekett-Burman设计法相比实验次数稍多,如6因子的26-2部分因子设法需要进行20次实验,而Plackett-Burman设计法只需要7次实验。 7.响应面分析法

双歧杆菌与乳酸菌筛选培养基

BBL培养基 双歧杆菌选择性培养基成份 蛋白胨15.0g 酵母粉2.0g 葡萄糖20.0g 可溶性淀粉0.5g 氯化钠5.0g 5%半胱氨酸10.0mL 西红柿浸出液400.0mL 吐温80 1.0mL 肝提取液80.0mL 琼脂20.0g 蒸馏水520.0mL pH7.0 MRS培养基 乳酸细菌培养基(MRS) 蛋白胨10.0 g 牛肉膏10.0 g 酵母膏 5.0 g 柠檬酸氢二铵[(NH4)2HC6H5O7] 2.0 g 葡萄糖(C6H12O6·H2O) 20.0 g 吐温80 1.0 mL 乙酸钠(CH3COONa·3H2O) 5.0 g 磷酸氢二钾(K2HPO4·3H2O) 2.0 g 硫酸镁(MgSO4·7H2O)0.58 g 硫酸锰(MnSO4·H2O)0.25 g 琼脂18.0 g 蒸馏水 1 000 mL pH 6.2~6.6 当乳酸菌生长代谢出乳酸后,会使pH下降而使颜色由绿变为黄绿,也由于pH 值降低再加上抗生素及厌氧培养的作用,所以一般的微生物不容易在此培养基上生长,因此十分容易鉴别乳酸菌。 2005-03-10 08:08 消息引用收藏分享 奉上一篇实验,以供参考! 厌氧菌的分离和培养 目前培养厌氧微生物的简便而又有效的技术包括有:厌氧箱培养技术;厌氧罐培养技术;厌氧袋培养技术;亨盖特厌氧滚管技术。这里介绍的是亨盖特厌氧滚管技术。

亨盖特厌氧滚管技术是美国微生物学家亨盖特(Hungate)于1950年首次提出并应用于瘤胃厌氧微生物研究的一种厌氧培养技术。以后这项技术又经历了几十年的不断改进,从而使亨盖特厌氧技术日趣完善,并逐渐发展成为研究厌氧微生物的一整套完整技术。而且多年来的实践已经证明它是研究严格、专性厌氧菌的一种极为有效的技术。 亨盖特厌样滚管培养技术不仅可用于有益厌氧菌如双歧杆菌等的分离、与活菌培养计数,还可以用于有害***菌(如酪酸菌)或病原菌(如肉毒梭状芽孢杆菌)的分离与鉴定。 1材料 1.1 样品 双歧酸奶(液体)、双歧杆菌制剂(固体)。 1.2 培养基 改良MRS培养基,PTYG培养基。 1.3 仪器和器具 亨盖特厌氧滚管装置一套,厌氧管,厌氧瓶,滚管机,定量加样器。 2 流程 铜柱除氧→预还原培养基→稀释用液制备→稀释样品→滚管→培养→计数 3方法 3.1铜柱系统除氧 铜柱是一个内部装有铜丝或铜屑的硬质玻璃管。此管的大小为40—400mm,两段被加工成漏斗装,外壁绕有加热带,并与变压器相连来控制电压和稳定铜柱的温度。铜柱两端连接胶管,一端连接气钢瓶,一端连接出气管口。由于从气钢瓶出来的气体如N2、CO2和H2等通常都含有O2,故当这些气体通过温度约360℃的铜柱时,铜和气体中的微量O2化合生成CuO,铜柱则由明亮的黄色变为黑色。当向氧化状的铜柱通入H2时,H2与CuO中的氧就结合形成H2O,而CuO又被还原成了铜,铜柱则又呈现明亮的黄色。此铜柱可以反复使用,并不断起到除氧的目的。当然H2源也可以由氢气发生器产生。 3.2 预还原培养基及稀释液的制备

基因工程菌的大规模培养及高密度发酵技术

生物工程下游技术实验模块实验一:基因工程菌的大规模培养及高密度发酵技术 创建人:时间:2013-04-17 【点击数: 482】 实验一:基因工程菌的大规模培养及高密度发酵技术 1.实验目的 (1)掌握工程菌大规模培养及高密度发酵技术的原理。 (2)学习工程菌高密度发酵的技术方法。 2.实验原理 重组大肠杆菌的高密度培养是增加重组蛋白产率的最有效的方法,高密度发酵在增加菌密度的同时提高蛋白的表达量,从而有利于简化下游的纯化操作。重组大肠杆菌高密度培养受表达系统、培养基、培养方式、发酵条件控制等多种因素的影响,在实际操作中需要对各种因素进行优化,建立最佳的发酵工艺。发酵工艺优化的研究可通过每次改变一个因素或同时改变几个参数来进行,然后运用统计学分析寻找它们之间的相互作用。 工程菌提高分裂速度的基本条件是必须满足其生长所需的营养物质,因此,培养基成分和浓度的选择就成为首要解决的问题,在成分选择上,要尽量选取容易被工程菌利用的营养物质,例如,普通培养基中一般是以葡萄糖为碳源,而葡萄糖需经过氧化和磷酸化作用,生成1,3-二磷酸甘油醛,才能被微生物利用,即用甘油作为培养基的碳源可缩短工程菌的利用时间,增加分裂增殖的速度。目前,普遍采用6g/L的甘油作为高密度发酵培养基的碳源。另外,高密度发酵培养基中各组分的浓度也要比普通培养基高2~3倍,才能满足高密度发酵中工程菌对营养物质的需求。当然,培养基浓度也不可过高,因为过高会使渗透压增高,反而不利于工程菌的生长。 补料的流加方式直接影响着发酵的效果。分批补料培养的特点是,在培养过程中不断补充培养基,使菌体在较长时间里保持稳定的生长速率,从而达到高密度生长。但是在补料流加过程中既不能加入得过快,也不能加入得过慢。过慢则无法满足逐渐增加的菌体生长需要,同时也使培养过程中产生的抑制性副产物大量积累;而过快则使携带目的蛋白的质粒没有充裕的时间复制,降低目的蛋白的表达量;而且快速的细菌生长还易引发质粒的不稳定性。 高密度发酵是工程菌剧烈生长繁殖的过程,这期间对氧气的需求量也大大提高,这就需要及时调整通风量和搅拌速度,一般的高密度发酵通风速度达18L/min(20L发酵罐),搅拌速度达500r/min以上,需保持60%以上的溶氧饱和度。此外,还需要考虑通风速度和搅

实验方案(双歧杆菌的分离)

1 双歧杆菌的分离 1.1 样品 取出生后20天母乳喂养健康婴儿粪便。 1.2 培养基 根据目前的双歧杆菌选择性培养基,以及X-Gal在这方面的应用。选择使用NPNL培养基,在其基础上添加X-Gal。 1.2.1 缓冲蛋白胨水溶液(BP) 成份:蛋白胨10g 磷酸氢二钠2g 葡萄糖5g 磷酸二氢钾2g 氯化钠5g 蒸馏水1000ml 制法:精确称取各种试剂,加人到1000ml的蒸馏水中,加热溶化后分装于250ml的三角瓶中,每瓶90ml,121℃,杀菌15min后置4℃的冰箱中备用。 1.2.2 选择性改良NPNL培养基(苏世彦) 成份:酵母膏5g 淀粉0.5g 蛋白胨10g L-半胱氨酸0.5g 胰蛋白胨5g 溶液A 10ml 大豆蛋白胨5g 溶液B 5ml 葡萄糖10g 溶液C 50ml 乳糖3g 琼脂 15g 吐温80 1g pH 7.2 牛肝提取液150ml 制法:将各成分准确量取后,分别加热溶化,混合摇匀后分装,121℃杀菌10min,备用。 溶液A:K2HPO4 10g、KH2PO4 10g溶于蒸馏水100ml。 溶液B:FeSO4·7H2O 0.2g、MgSO4·7H2O 4g、MnSO4·4H2O 0.135g、NaCl 0.2g溶于蒸馏水100ml。 溶液C:丙酸钠30g、硫酸巴龙霉素400mg、硫酸新霉素200mg、NaCl 6g溶于蒸馏水1000ml。 1.2.3 NPNL培养基(孙雪) 培养基成分及用量:牛肉浸汁粉(oxoid)3g,蛋白胨10g,胰蛋白酶5g,

植胨3g,酵母浸出汁5g,肝浸出汁150ml,葡萄糖10g,可溶性淀粉0.5g,溶液A 10ml,溶液B 5ml,吐温80 1g,盐酸半胱氨酸0.5g,琼脂15g,蒸馏水815ml,X-Gal(5-溴-4-氯-3-吲哚-β-D- 半乳糖苷)60mg。pH 7.2,121℃,15min 高压灭菌。 溶液A:K2HPO425g,KH2PO425g,蒸馏水250ml。 溶液B:MgSO4·7H2O 0.5g,FeSO4·7H2O 0.5g,NaCl 0.5g,MnSO40.337g,蒸馏水250ml,硫酸新霉素100μg/ml,硫酸巴龙霉素200μg/ml,萘啶酮酸15μg/ml,氯化锂3mg/ml。 1.3 分离方法 取成年人的粪便1g,放人含有9ml缓冲蛋白胨水溶液中,用液枪充分混匀,制成1:10的稀释液,摇匀后取1ml注人含有9ml缓冲蛋白胨溶液中制成1:100的稀释液,在此基础上作10-3~10-9与的稀释,由于肠道中双歧杆菌的菌数一般在109左右,所以取10-4~10-9稀释液用倾注法倒平板,每个稀释液都各取1ml分别注人到两只无菌平皿中,每个稀释度重复3个平板。待培养基凝固后倒置,将温度调至37℃进行厌氧培养48h。用缓冲蛋白胨水溶液做稀释液可以有效地保护双歧杆菌的存活,避免受外界环境因素的影响。 1.4 分离培养 在加人样品稀释液的平皿中,分别注人适量冷却至50℃左右的选择性改良NPNL培养基,然后放人37℃的恒温培养箱中厌氧培养1.4.1 培养特性与镜检特性 双歧杆菌在改良NPNL培养基上,经过厌氧培养以后,菌落直径1-2cm,圆形、凸起,表面光滑,边缘整齐,乳白色,粘稠湿润。经革兰氏染色后镜检,双歧杆菌为革兰氏阳性无芽抱杆菌,呈多形性、典型的双歧杆菌为V字型或Y型;也有直、弯、棒状、匙形等多种形态,排列成单、双、短链、X、Y、V 或栅状;其大小为2-8×0.4-0.6μm,不具英膜和鞭毛,无运动性。 培养48h 后,平板上菌落呈现深蓝色、白色、浅蓝色三种颜色。

高密度住宅大有可为

引言 追溯高层高密度住宅的起源不难发现住宅建筑的高密度化已经成为一个重要问题和今后建设的趋势。高层高密度住宅的出现是人类美好愿望、社会需求、科技进步和经济发展的完美结合。高层高密度住宅的设计及应用必将大有作为。 一、高密度住宅的现实背景 由于城市化速度的不断提升,大量人口不断地流入城市,使城市规模不断扩大,城市空间不得不持续增加,以容纳新增加的居民和提供他们需要的活动场所。扩大城市空间容量,如果让城市向它周围无限制伸展,把原来的近郊地区城市化,就会侵占宝贵的农田。因此,高密度发展的模式是处于高速城市化进程中城市空间现实的、理智的选择。发挥有限的城市土地资源的潜能,作最高效率的利用,是实践科学发展观,建设节约型城市的关键。然而对于任何选择,高密度发展的城市都必须采取一些措施,以实现美好环境和城市景观,最大限度地避免其不利影响。 二、高层高密度住宅的发展历程 (一)国外高层高密度住宅发展历程 19世纪末~20世纪初,西欧工业革命蓬勃兴起,科学技术日新月异。在此大背景下,建筑技术和建筑材料发展迅速,为高层高密度建筑的出现奠定了基础:西方的工业革命不仅促进了科学技术的发展,更推动了近现代社会城市化的进程,乡村人口向城市的迁移,对城市的经济社会发展起到了巨大的推动作用,同时城市人口的大量聚集又加剧了城市住房紧张,并带来一系列城市问题,诸如用地紧张、卫生条件恶化、城市绿地缺乏等。城市居民住房需求日益增大,城市用地日渐匮乏,城市面貌要求改善更新,必然导致城市住宅向高空发展或向郊外扩展。20世纪初叶,欧美国家正处于城市化初期,由于交通不便,大量的产业工人居住在工厂附近以及市区低层高密度的住宅区内,通风较差、卫生条件恶劣、绿化空间稀少,损害了城市的公共安全和城市形象。为了应对这种情况,高层高密度住宅有效提高单位面积土地上的居住人口,成为西方国家解决城市发展矛盾的一种普遍选择。 (二)中国高层高密度住宅发展历程 我国高层高密度住宅的发展同样也遵循城市发展的规律,经历了一个渐进式发展的过程,并与我国社会、经济、科技的发展密切相关。早在20世纪30年代,上海作为远东最繁华的城市之一,率先接触到西方建筑思潮,并在城市建设中有所反映。当时一些外国资本家和民族资本家兴建了中国最早的一批高层高密度住宅.20世纪90年代随着城市土地资源的紧张,地价迅速上升,为了在有限的土地上降低单位住宅面积的综合开发成本,建设高层高密度住宅的需求也不断增大。近年来随着国内的经济飞速的发展,城市人口急骤增长,致使城市不断扩大,城市的土地资源有限,从而令建筑的空间更加密集,以来满足新增的人口居住和正常的活动。使高层高密度住宅的迅速发展起来。高密度住宅作为一种特定的建筑形态,为解决我国城市人口居住问题起了积极作用,同时也满足了居民居住空间多样性的需求。 三、高层高密度住宅的特点 (一)发展高层高密度住宅面临的问题 高层住宅是多层住宅建筑向上层空间的变化延伸,其中最主要的特点就是高,并由此对居民生活、城市环境产生了深刻的影响,在发展过程中也面临一系列的问题,有些属于住宅建设的共有问

微生物的高密度培养

微生物的高密度培养 定义一[1] 高密度培养指应用一定的培养技术和装置提高菌体的发酵密度,使菌体密度较普通培养有显著的提高,最终提高特定产物的比生产率。单位:细胞干重/升(DCW/L)。凡是细胞密度比较高,以至接近其理论值的培养均可称为高密度培养,,一般认为其上限值为150~200g (DWC/L),下限值为20~30g(DCW/L)。 定义二[2] 细胞高密度培养(high cell density culture,HC-DC)是指在人工条件下模拟体内生长环境,使细胞在细胞生物反应器中高密度生长,使液体培养中的细胞密度超过常规培养10倍以上,最终达到提高特定代谢产物的比生产率(单位体积单位时间内产物的产量) 的目的,用于发酵生产生物制品的技术。 用途[1] 各种微生物(乳酸杆菌、芽孢杆菌、大肠杆菌等)的生产中,改进发酵工艺,提升其现代化发酵进程,增加单位体积培养液中菌体的数量,提高生产效率,加速微生物制剂的商品化进程。 发展状况[2] 细胞高密度培养不仅是生产高质量的浓缩型细胞和代谢产物的重要环节,是工程菌和非工程菌能否以低成本实现规模生产的关键性因素,也是细胞和代谢产物工业化生产过程中必需达到的重要目标与方向。随着市场需求的日益扩大,高密度培养技术广泛地应用于各种细胞( 植物、动物、微生物) 的生产中,它不仅可以改进发酵工艺,提升其现代化发酵进程,而且对于增加单位体积培养液中菌体数量,提高生产率,加速微生物制剂的商品化进程,更好地满足市场需求,具有重要而深远的意义。但是目前细胞高密度培养仍然是我国生物制品难以攻下的课题,只有对细胞高密度培养关键技术进行不断的研究、改进,科学系统地运用,才能对我国传统的生物制品生产技术进行升级和科技创新。 谷胱甘肽(GSH)的生产[3] 谷胱甘肽(GSH)是一种重要的生化药物,具有独特的抗氧化、抗衰老特性,近年来作为食品添加剂,其需求渐增。迄今国内尚未有工业化生产GSH的报道,为了打破进口品的垄断地位,迫切需要加大开发GSH的力度。本研究室[4~6]近来深入研究了影响面包酵母(Saccharomyces cerevisiae)生产GSH的各种重要因素,目前仍在进行有关高菌种选育、发酵过程优化和产物提取的研究工作。构建具有高GSH合成活性的重组E.coli是近十年来GSH 生物合成研究中的一个新方向,其关键在于将分别编码GSHⅠ和GSHⅡ的基因gshⅠ和gshⅡ在宿主菌中高效表达。重组或非重组的S.cerevisiae相比,重组E.coli具有生长速度更快、产物提取更容易等优点。 Murata等[7,8]通过在细胞中扩增gshⅠ和gshⅡ成功地获得了具有较强GSH合成能力的重组E.coli,但没有深入研究高细胞密度培养技术。实际上,与其它胞内重组蛋白一样,GSH的体积生产率通常随着发酵液中的细胞密度增大而增加,故研究生产菌株的高密度培养方法,在保证GSH合成活性的前提下使反应器中工程菌的细胞密度尽可能高,不仅有利于提高生产率,也有利于后提取与纯化的进行。本文报道高密度培养重组大肠杆菌生产GSH的研究结果。 1 材料与方法 1.1 试剂 谷胱甘肽还原酶(glutathione reductase)、还原型辅酶Ⅱ (NADPH)、5′-三磷酸腺苷( ATP)和DTNB (5, 5′-dithiobis (2-nitrobenzoic acid))均为Sigma公司产品。 GSH 和GSSG购自华美生物工程公司。酵母膏为Oxoid产品。葡萄糖购自无锡润生淀粉油脂公司。

双歧杆菌的培养

双歧杆菌的培养和分离 双歧杆菌是专性厌氧菌,对氧气非常敏感,因此,双歧杆菌的分离、培养及活菌计数的关键是提供无氧和低氧化还原电势的培养环境。 双歧杆菌的最适生长温度37℃~41℃,最低生长温度25℃~28℃,最高43℃~45℃。初始最适pH 6.5~7.0,在pH4.5~5.0或pH 8.0~8.5不生长。其细胞呈现多样形态,有短杆较规则形、纤细杆状具有尖细末端形、球形、长杆弯曲形、分枝或分叉形、棍棒状或匙形。单个或链状、V形、栅栏状排列,或聚集成星状。革兰氏阳性,不抗酸,不形成芽孢,不运动。双歧杆菌的菌落光滑、凸圆、边缘完整、乳脂至白色、闪光并具有柔软的质地。双歧杆菌是人体内的正常生理性细菌,定殖于肠道内,是肠道的优势菌群,占婴儿消化道菌丛的92%。该菌与人体终生相伴,其数量的多少与人体健康密切相关,是目前公认的一类对机体健康有促进作用的代表性有益菌。该菌可以在肠粘膜表面形成一个生理性屏障,从而抵御伤寒沙门氏菌、致泻性大肠杆菌,痢疾致贺氏菌等病原菌的侵袭,保持机体肠道内正常的微生态平衡;能激活巨噬细胞的活性,增强机体细胞的免疫力;能合成B族维生素、烟酸和叶酸等多种维生素;能控制内毒素血症和防治便秘,预防贫血和佝偻病;可降低亚硝胺等致癌物前体的形成,有防癌和抗癌作用;能拮抗自由基、羟自由基及脂质过氧化,具有抗衰老功能。 双歧杆菌的培养方法很多,如厌氧箱法、厌氧袋法、厌氧罐法。本实验介绍的是一种简便的试管培养法——亨盖特厌氧滚管技术该技术的优点是:预还原培养基制好后,可随时取用进行试验;任何时间观察或检查试管内的菌都不会干扰厌氧条件。 近年来兴起的一种新的RAPD等分子生物学技术对双歧杆菌进行基因指纹图谱的构建,分析不同双歧杆菌种间存在的同源性和多态性;RAPD技术也可用于双歧杆菌菌种鉴定及分型。一般来讲,我们都应用适合鉴定所有厌氧菌的方法,主要包括双歧杆菌特定酶的检测、乙酸、乳酸等有机酸的测定、糖发酵试验和其他相关指标等。 一、实验方法 1、铜柱系统除氧 2、预还原培养基及稀释液的制备 制作预还原培养基及稀释液时,先将配置好的培养基和稀释液煮沸驱氧,而后用半定量加样器趁热分装到螺口厌氧试管中,一般琼脂培养基装4.5~5.0mL,稀释液装9mL,并插入通N2气的长针头以排除O2。此时可以清楚的看到培养基内加入的氧化还原指示剂—刃天青由蓝到红最后变成无色,说明试管内已成为无氧状态,然后盖上螺口的丁烯胶塞及螺盖,灭菌备用。 3、分离 (1)编号 取五支无菌水试管,分别用记号笔标明10-1、10-2……10-5。 (2)稀释 在无菌条件下,用无菌注射器吸取1mL混合均匀的液体样品,加入装有预还原生理盐水的厌氧试管中,用震荡器将其混合均匀,制成10-1稀释液。用无菌注

实验方案-益生菌生产中益生菌培养工艺的优化

工业生产中益生菌培养工艺的优化 一、实验目的 在实验室条件下,对益生菌的培养及胶囊的制备进行模拟和优化,以达到改 善益生菌的生产条件,降低工业生产成本,提高益生菌在胶囊中的活度,提高益 生菌胶囊品质的目的。 二、实验材料 1.菌种:YO-MIX 300 LYO 250 DCU(维维),含有保加利亚乳杆菌,嗜热链球菌,双歧杆菌。 2.培养基成分 2.1 TPY培养基:大豆蛋白胨1.67%, 酪蛋白胨(酪蛋白?)0.83%,乳糖0.5%, 酵母浸出粉O.5%,低聚糖(菊粉)0.7%,胡萝卜汁15%琼脂粉2%~1.5% 水. 115°C高压蒸汽灭菌15-20min.该培养基尽量配的比较透明。 2.2脱脂乳培养基:脱脂奶粉10% 菊粉4% 水。115°C高压蒸汽灭菌15-20min. 3.主要仪器: 无菌操作台三角瓶培养箱真空冷冻干燥机离心机高压蒸汽灭菌锅 超净工作台恒温箱PH计 三、实验过程: 1、益生菌混合菌株的形态学研究 1.1菌种的分离 1.2菌种的性质实验 2、益生菌生长特性以及相互影响(查文献得到) 2.1单一菌种发酵实验 2.2混合菌种发酵实验 2.3培养基配方的优化(益生因子) 3、对离心上清液的成分及性质探究 3.1抑菌性质实验 3.2促益生菌生长性质实验 3.3成分测定实验?怎么测? 3.4环境因素对其性质影响实验 4、对冻干粉存储条件的探究及优化 4.1存储温度对冻干粉活度影响实验 4.2存储时间对冻干粉活度影响实验 4.3冻干粉耐氧实验 四、实验方法 1.菌种的活化 将菌种接种在装有TPY(或脱脂乳)培养基的试管中,将试管用塞子塞好,在厌 氧操作台中厌氧培养48小时,37℃。 2.扩大培养 2.1将菌种5%接种于脱脂乳液体培养基,于恒温培养箱中37℃培养48h。每4 小时测一次菌液pH值和滴定酸度和活菌数。测活菌数采用10倍稀释后平板计数法。 2.2将菌种5%接种于TPY培养基,37℃恒温培养,在0~48h内每间隔4h测定 600nm下菌液的吸光值和pH值和滴定酸度,并相应测定菌种的活菌数,绘制生 长曲线(首先,菌悬看成是溶液,其中的菌体理想化成球状,而且是均一的。这

培养基优化方法

方法一: LB培养基、平板保存的工程菌HB101/pJJ-rhIFNα2B、Amp、酵母提取物、蛋白胨、 10×SAE、100×MgCl2、100×TES、Tris、HCl 10×SAE配方(1L): KH2PO410g、K2HPO4·3H2O52.4g、NH4Cl10g、K2SO426g 100L 【步骤】 种子制备: 1、取100mLLB培养基加入到一无菌的500ml三角形中,同时加入100μl100mg/ml的Amp。 2、接种甘油管保存的工程菌HB101/pJJ/rhIFNα-2b100μl,使工程菌分散于培养液中。 3、盖好试管,在摇床上以220rpm的速度,于37℃培养至对数中期(约5小时) 上罐准备: 1、配置500ml10×SAE 2、配置发酵培养基(3L)

称取胰蛋白胨30g,酵母提取物90g,加入2.64L去离子水,搅拌溶解后加入300ml 10×SAE、30ml100×MgCl2、30ml100×TES。 3、将培养基加入到5L发酵罐,插入pH、溶氧电极和温度探头,装上空气过滤膜,包扎好后放入灭菌锅中,同时放入一瓶250ml30%磷酸(调pH用),于1.05kg/cm2高压下蒸汽灭菌30min。 4、待灭菌结束后,将发酵罐放在冷却底座上,开启发酵罐控制系统,联接好冷凝水、空气线路。 5、控制pH=7.4,在转速650r/m、通气量3L/min 定D.O.为100%于自动控制发酵罐上37℃发酵22小时。 6、当培养基温度冷却到37℃后,接入制备好的种子 7、从接种完时刻起,每两小时取适当量样品,其中取1ml用于测菌体浓度(A600nm);另取1ml加入到一称过重ep管中,12000rpm离心,小心取出900μl上清用作测菌体浓度的空白,甩干后再次称重,计算菌体湿重,按每8.3mg菌体湿重加入300μL水重悬菌体,冻于-20℃备用。并记录发酵罐上溶氧、pH、温度等参数以了解工程菌的生长状态。 8、SDS-PAGE检测不同时间rhIFNα2B的表达情况。 9、发酵终了,收集发酵液,8000rpm离心10min,回收菌体。 10、用1.2L去离子水重悬菌体,8000rpm离心10min,弃上清 11、再用600mlTE重悬菌体,8000rpm离心10min,弃上清,得到菌体-20℃保存 方法二: 2.1种子培养基的配制 LBA:(Tryptone蛋白胨10g +Yeast Extr+acts酵母粉5g +NaCl 5g +双蒸水1L)∕L (NaOH调节PH至7.0)高压蒸气灭菌,压力:0.14Mpa 温度121℃时间:20min,用前加卡那霉素至50μg/ml。 LBA平板:加入2%琼脂粉,其余同上。 2.2生产菌种的制备 2.2.1琼脂培养基菌种的制备 从-80℃的冰箱中取出甘油种子管,在超净工作台中划LBA平板,37℃培养箱中培养过夜。2.2.2一级种子液制备 从LBA平板中挑取单菌落,在超净工作台上接种于约60ml LBA培养液中,与摇床上37℃,180rpm,生长16h,OD600值约为3.0。 2.2.3二级种子液制备 将60ml一级种子液接种于3L LBA 培养液中,于摇床上37℃,180rpm,生长12h,OD600值约为3.0。 3.发酵

乳酸菌发酵剂高密度培养的研究

文章编号:1000-9973(2004)05-0017-05 乳酸菌发酵剂高密度培养的研究 熊晓辉,于修 ,熊强,陆利霞 (南京工业大学制药与生命科学学院,江苏南京 210009) 摘要:研究了乳酸菌生长繁殖的环境条件(温度、接种量、起始pH 等)和培养基组成(氮源、碳源、缓冲盐等),优化确定了乳酸菌发酵剂的适宜培养条件为:起始pH 值为6.5,培养温度为37 ,培养基配比为麦芽糖 乳糖(1 1)2%、牛肉膏1.0%、缓冲盐A0.5%、NaCl0.25%、M gSO 40.1%,接种量4%,进一步探索了半连续法进行高密度培养,结合优化的培养条件,可使乳酸菌的液体发酵活菌密度至1.1 1012CFU/mL 。 关键词:乳酸菌;发酵剂;高密度培养中图分类号:TS201.5 文献标识码:A High cell density culture of lactic acid bacteria starter XIONG Xiao hui,Y U Xiu jian,XIO NG Qiang,LU Li Xia (College of Life Science and Pharmaceutical Engineering,Nanjing University of Technology,Nanjing 210009,China) Abstract:This paper studied on the high cell density culture of L actobacillus sp p .,and discussed the effects of cultural condition (temperature,inoculation capacity and initial pH)and media composition.The optimal culturing conditions were developed ,follow ing:1%maltose,1%lactose,1.0%beef ex tract,0.5%buffer salt A,0.25%sodium chloride,0.1%m agnesium sulfate,pH6.5,4%inoculation capacity.T hen high cell density culture w as explored w ith one semi-continuous w ay and obtained the cells population over 1.1 1012CFU/mL for 16hours based on the optimal condition.Key words:Lactic acid bacteria;starter;hig h cell density culture 乳酸菌是生产发酵乳制品、泡菜、干酪、发酵香肠等传统发酵食品,赋予其特殊质地、风味和口感的重要微生物菌群,而这些传统食品的专用发酵剂的生产和研制将对实现其工业化生产、缩短产品成熟期、使产品特征标准化和安全化起重要作用,也是传统食品的发展方向[1,2]。浓缩发酵剂[1,3,4](特别是冻 干发酵剂)具有活力高、体积小、携带使用方便的特点,可直接用于发酵制品生产,省去扩大培养的复杂操作过程,从而简化产品生产工艺,有利于保持产品质量的稳定,防止菌种的退化和污染。 乳酸菌浓缩发酵剂制备的关键是要实现对其进行高活性、高密度的培养[1,4]。高密 收稿日期:2004-02-25 基金项目:国家862自然科学基金资助项目(2002AA8041) 第5期2004年5月 中国调味品 CHINA CONDIMENT No.5M ay.2004

双歧杆菌的培养方法

双歧杆菌的培养方法 一、厌氧菌的分离和培养 目前培养厌氧微生物的简便而又有效的技术包括有:厌氧箱培养技术;厌氧罐培养技术;厌氧袋培养技术;亨盖特厌氧滚管技术。这里介绍的是亨盖特厌氧滚管技术。 亨盖特厌氧滚管技术是美国微生物学家亨盖特(Hungate)于1950年首次提出并应用于瘤胃厌氧微生物研究的一种厌氧培养技术。以后这项技术又经历了几十年的不断改进,从而使亨盖特厌氧技术日趣完善,并逐渐发展成为研究厌氧微生物的一整套完整技术。而且多年来的实践已经证明它是研究严格、专性厌氧菌的一种极为有效的技术。亨盖特厌样滚管培养技术不仅可用于有益厌氧菌如双歧杆菌等的分离、与活菌培养计数,还可以用于有害***菌(如酪酸菌)或病原菌(如肉毒梭状芽孢杆菌)的分离与鉴定。 1材料 1.1 样品 双歧酸奶(液体)、双歧杆菌制剂(固体)。 1.2 培养基 改良MRS培养基,PTYG培养基。 1.3 仪器和器具 亨盖特厌氧滚管装置一套,厌氧管,厌氧瓶,滚管机,定量加样器。 2 流程

铜柱除氧→预还原培养基→稀释用液制备→稀释样品→滚管→培养→计数 3方法 3.1铜柱系统除氧 铜柱是一个内部装有铜丝或铜屑的硬质玻璃管。此管的大小为40—400mm,两段被加工成漏斗装,外壁绕有加热带,并与变压器相连来控制电压和稳定铜柱的温度。铜柱两端连接胶管,一端连接气钢瓶,一端连接出气管口。由于从气钢瓶出来的气体如N2、CO2和H2等通常都含有O2,故当这些气体通过温度约360℃的铜柱时,铜和气体中的微量O2化合生成CuO,铜柱则由明亮的黄色变为黑色。当向氧化状的铜柱通入H2时,H2与CuO中的氧就结合形成H2O,而CuO又被还原成了铜,铜柱则又呈现明亮的黄色。此铜柱可以反复使用,并不断起到除氧的目的。当然H2源也可以由氢气发生器产生。 3.2 预还原培养基及稀释液的制备 制作预还原培养基及稀释液时,先将配制好的培养基和稀释液煮沸驱氧,而后用半定量加样器趁热分装到螺口厌氧试管中,一般琼脂培养基装4.5-5ml,稀释液装9ml,并插入通N2气的长针头以排除O2。此时可以清楚地看到培养基内加入的氧化还原指示剂—刃天青由蓝到红最后变成无色,说明试管内已成为无氧状态,然后盖上螺口的丁烯胶塞及螺盖,灭菌备用。 3.3 双歧杆菌样品不同稀释度的制备 在无菌条件下准确称取1g固体或用无菌注射器吸取1ml混合均匀的

一种乳酸菌增菌培养基的优化

一种乳酸菌增菌培养基的优化 摘要:备直投式乳酸发酵剂,通过综合运用复合生长培养基、缓冲盐法及化学中和法,利用正交实验的设计方法,对乳酸菌的增菌培养进行了研究。试验结果表明,以1%的胡萝卜汁作为生长促进剂,加0.5%K:HPO。作为缓冲盐,接种量为3%,培养温度37。C,培养过程用30%Na:CO,溶液作中和剂,将pH值控制在6.3,培养7—8 h后,可使乳酸菌的活菌数达到109的数量极。与普通的液体发酵剂相比,获得了显著的浓缩效果。 关键字:乳酸菌;增菌培养基 引言:发酵乳制品在乳制品中占有重要地位。随着我国人民消费水平的提高,对发酵乳制品中的酸奶有了新的认识,使得酸奶的产量以年平均25%的速度增长。这对乳酸菌发酵剂品质、种类提出了新的要求。目前酸奶生产厂家所采用的菌种发酵剂有2种,直投式粉末菌种发酵剂和继代式菌种发酵剂。由于继代式发酵剂存在着种种弊端,所以直投式发酵剂使用普遍。由于目前国内直投式发酵剂尚未 产业化,尚需进口,所以直投式发酵剂的国产化越来越受到重视。 1、乳酸菌的简介与作用机理 1.1乳酸菌的简介 乳酸菌指发酵糖类主要产物为乳酸的一类无芽孢、革兰氏染色阳性细菌的总称。凡是能从葡萄糖或乳糖的发酵过程中产生乳酸菌的细菌统称为乳酸菌。这是一群相当庞杂的细菌,目前至少可分为18个属,共有200多种。除极少数外,其中绝大部分都是人体内必不可少的且具有重要生理功能的菌群,其广泛存在于人体的肠道中。目前已被国内外生物学家所证实,肠内乳酸菌与健康长寿有着非常密切的直接关系。 1.2乳酸菌的作用机理 乳酸菌在动物体内能发挥许多的生理功能。大量研究资料表明,乳酸菌能促进动物生长,调节胃畅道正常菌群、维持微生态平衡,从向改善胃肠道功能;提高食物消化率和生物效价;降低血清胆固醇,控制内毒素;抑制肠道内腐败菌生长:提高机体免疫力等。 ⑴提供营养物质,促进机体生长乳酸菌如果能在体内正常发挥代谢活性,就能直接为宿主提供可利用的必需氨基酸和各种维生素(维生素B族和K等),还可提高矿物元素的生物活性,进而达到为宿主提必需营养物质、增强动物的营养代谢、直接促其生长的作用。Dalmin等(2001)研究报道乳酸菌可以改良水质,提高斑节对虾的存活率、生长速率和健康状况。Hamad(1979)试验证明,小麦、稻米等谷物进行乳酸发酵后,营养价值大大提高。此外,乳酸菌产生的酸性代谢产物使肠道环境偏酸性,而一般消化酶的最适PH值为偏酸性(淀粉酶6.5、糖化酶4.4),这样就有利于营养素的

塑造高品质城市公共空间 提升城市魅力

塑造高品质城市公共空间提升城市魅力 【摘要】城市公共空间的活力要素包括“空间与尺度”、“可达性与易达性”、“混合使用与密度”、“环境质量”、“公共设施”、“街道家具”和“公共文化活动”。在规划设计中将各要素合理安排,处理好各要素之间的关系,来最大限度的满足使用者的需求,从而提高城市魅力。 【关键词】城市公共空间的活力要素城市魅力 城市公共空间是体现城市风貌与特色的重要场所,是城市的魅力所在。它不但为城市居民日常生活和社会活动提供了开放的空间环境,而且在城市的演变发展过程中扮演着重要的角色,记录着城市历史与文脉的积淀。本文就以城市公共空间的活力要素为切入点,通过几个典型案例来分析和研究高品质的城市公共空间如何提升城市魅力。 成功的公共空间是以富有活力为特点,并处于不断自我完善和强化的进程中的。要使空间变得富有活力,就必须在一个具有吸引力和安全的环境中提供人们需要的东西,即如何在公共空间中营建和应用“空间与尺度”、“可达性与易达性”、“混合使用与密度”、“环境质量”、“公共设施”、“街道家具”和“公共文化活动”等要素。 1.空间与尺度 公共空间首先是一个“空间”的概念。空间是物质存在的客观形式,由长、宽、高等量度和范围表现出来,是物质存在广延性和扩张性的表现。但形成具有实质意义的公共空间应该是具有地域文化和内涵的,并赋予空间涵构意义的“场所”。 “场所”概念常强调“归属感”和与场地的情感联系。荷兰建筑师奥尔多?范?伊克(Aldo Van Eyck)在他著名的场所描述中强调:“不管空间和时间的意义是什么,场所的事件只会有更多意义。这是因为在人的意念中,空间表现为场所,时间表现为事件。”然而在当前营建场所感的规划设计中,场所的形态意义常常被过分渲染,甚至超越了更为重要的人之活动及空间的功能意义。

布拉酵母高密度发酵培养基及发酵工艺优化

56 2019, V ol.40, No.08食品科学※生物工程 布拉酵母高密度发酵培养基及发酵工艺优化 刘开放,席志文,黄林娜,惠丰立* (南阳师范学院生命科学与技术学院,河南南阳 473061) 摘?要:为实现布拉酵母高密度培养,对其高密度发酵培养基和发酵工艺进行优化。采用Plackett-Burman试验筛选培养基中的显著因素,并进行中心组合设计。通过人工神经网络(artificial neural network,ANN)和响应面试验建立菌体布拉酵母产量与培养基之间的关系模型,利用遗传算法(genetic algorithm,GA)进行全局寻优。结果表明,ANN模型有较好的数据拟合能力和预测能力,更适合处理复杂的非线性问题。GA优化获得最佳培养基组合:葡萄糖40.52 g/L、蛋白胨36.8 g/L、玉米浆17.32 g/L、硝酸钾14 g/L、酵母营养盐1.5 g/L、磷酸二氢钾0.6 g/L、硫酸镁0.8 g/L。利用该培养基进行摇瓶培养,菌体布拉酵母产量可达到8.21 g/L,比优化前提高1.39 倍。在此基础上利用1 L发酵罐培养确定最佳发酵工艺:温度30 ℃、接种量10%、pH 5.0、溶氧40%。利用50 L发酵罐进行扩大培养,流加葡萄糖和蛋白胨控制发酵液中葡萄糖3 g/L、氨氮0.06 g/L,菌体布拉酵母产量达到51.21 g/L。 关键词:布拉酵母;神经网络;遗传算法;增殖培养基;高密度培养 Optimization of High Cell Density Fermentation of Saccharomyces boulardii for Enhanced Biomass Production LIU Kaifang, XI Zhiwen, HUANG Linna, HUI Fengli* (College of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China) Abstract: For high cell density cultivation of Saccharomyces boulardii, we attempted to optimize medium composition and culture conditions. Plackett-Burman design was used to recognize the signi?cant medium components. Subsequently, response surface methodology and arti?cial neural network (ANN) based on central composite design (CCD) were applied to model the relationship between dry biomass production and medium composition. The optimization of medium composition was carried out using genetic algorithm (GA). The results showed that the ANN model, more suitable for complex and nonlinear modeling, had better goodness of ?t and prediction performance. The optimal medium composition was obtained as follows (g/L): glucose 40.52, peptone 36.8, corn steep liquor 17.32, KNO3 14, yeast nutrients 1.5, KH2PO4 0.6 and MgSO4 0.8 shake ?ask cultivation using the optimized medium gave a dry biomass yield of 8.21 g/L, which was 2.39 folds higher than that obtained from the original medium. Based on these results, we determined the optimal high cell density culture conditions for S. boulardii cultivated in a 1-L fermentor as follows: temperature 30 ℃, 10% inoculum, pH 5.0 and 40% dissolved oxygen. Furthermore, we scaled up the culture process in a 50-L fermentor with the addition of glucose and peptone to maintain the glucose concentration at 3 g/L and the ammonia nitrogen concentration at 0.06 g/L. The dry biomass yield of S. boulardii reached 51.21 g/L in the large scale experiment. Keywords: Saccharomyces boulardii; neural network; genetic algorithm; enrichment medium; high cell density fermentation DOI:10.7506/spkx1002-6630-20180424-323 中图分类号:Q815 文献标志码:A 文章编号:1002-6630(2019)08-0056-07引文格式: 刘开放, 席志文, 黄林娜, 等. 布拉酵母高密度发酵培养基及发酵工艺优化[J]. 食品科学, 2019, 40(8): 56-62. DOI:10.7506/spkx1002-6630-20180424-323. https://www.360docs.net/doc/8014290115.html, LIU Kaifang, XI Zhiwen, HUANG Linna, et al. Optimization of high cell density fermentation of Saccharomyces boulardii for enhanced biomass production[J]. Food Science, 2019, 40(8): 56-62. (in Chinese with English abstract) DOI:10.7506/ spkx1002-6630-20180424-323. https://www.360docs.net/doc/8014290115.html, 收稿日期:2018-04-24 基金项目:国家自然科学基金面上项目(31570021) 第一作者简介:刘开放(1993—)(ORCID: 0000-0002-2575-893X),男,硕士,研究方向为发酵工程。 E-mail: liukaifang126@https://www.360docs.net/doc/8014290115.html, *通信作者简介:惠丰立(1965—)(ORCID: 0000-0001-6542-1525),男,教授,硕士,研究方向为食品微生物与发酵工程。 E-mail: hui?@https://www.360docs.net/doc/8014290115.html,

相关文档
最新文档