纳米材料的生物安全性

纳米材料的生物安全性
纳米材料的生物安全性

纳米材料的生物安全性研究

田蜜

(湖北的二师范学院化学与生命科学学院,武汉,430205)

摘要

综述了包括富勒烯(C60)、氧化铁、氧化铝、氧化锌、二氧化钛、二氧化硅等在内的多种典型的碳基纳米材料、金属及其氧化物纳米材料和半导体(绝缘体)纳米材料的生物安全性研究进展。

关键词:纳米材料;纳米生物安全;纳米毒理学:毒性

Abstract

Including of fullerenes (C60) are reviewed in this paper, ferric oxide, aluminum oxide, zinc oxide, titanium dioxide, silica, such as a variety of typical carbon nano material and semiconductor, metal and oxide nanomaterials (insulator) biological safety of nanomaterials were reviewed.

Key words: nano materials; Nano biological safety; Nanotoxicology: toxicity

引言

纳米粒子尺寸小、比表面积大、表面态丰富、化学活性高,具有许多块体及通粉末所没有的特殊性质,许多在普通条件没有生物毒性的物质,在纳米尺寸下却表现出很强的生物毒性[1]。与此同时,纳米材料可能产生的负面效应特别是对环境和健康的潜在影响,也引起了人们的关注。2003 年4 月,Science 首先发表文章讨论纳米材料可能产生的生物安全性问题[2]。随后,许多学者相继开展了纳米材料的毒理学研究。本文将一些学者的研究进行了综合,希望对各位有所帮助。

一、纳米安全性问题的提出

纳米科技预计也将给人类生活带来巨大的变化,因而成为发展最快的研究和技术开发领域之人们在逐渐认识纳米科学技术的优点和其潜在的巨大市场的同时,一个新的科学问题及社会问题—一纳米效应与安全性,引起人们广泛关注。首先,2003年的美国化学会年会上报告了纳米颗粒对生物可能的危害。2003年4月Science[2]引、7月Nature[3]相继发表编者文章,开始讨论纳米尺度物质的生物效应以及对环境和健康的影响问题。

2004年3月在布鲁塞尔举行的有17位专家组成的欧盟纳米科技风险会议则标志纳米科技的风险与危害已经引起了科技界的关注。2004年4月,中国科学院副院长白春礼院士对高能所提出的《关于加强纳米物质生物环境毒理学(安全性)研究的报告》做了重要书面批示:“纳米钧质生物环境毒理学.或纳米物质的安全性问题必须十分再视”。

2005年5月,殴盟支持成立欧洲理论光谱中心旨在推动整个欧洲大陆在纳米技术领域的合作,尤其是在纳米制药领域,加强纳米药物安全性的研究。9月,第二届欧洲纳米论坛和展览中聚焦“纳米技术和2020年欧盟公民的健康”。

二、碳基纳米粒子的毒性

富勒烯(C60)在1985年由Kroto等发现,是单质碳的第3种同素异形体,具有独特的笼形结构。纳米富勒烯颗粒可以使细胞在几小时内迅速坏死[4];C60可以显著抑制大肠杆菌、枯草芽抱杆菌和根癌农杆菌的生长[1];汪畅[5]的研究表明C60可通过结合到DNA上,降低DNA构象稳定性,诱导活性氧产生,造成DNA损伤[1]等。同时,体外细胞毒性研究表明表面化学修饰可降低C60的毒性[1],因此在这块领域深入研究将有不错的前景。

三、金属氧化物纳米粒子的毒性

在医疗卫生领域,超顺磁性氧化铁纳米颗粒可以作为磁共振成像诊断对比剂,经表面修饰后可以作为磁靶向药物载体用于肿瘤靶向定位治疗及药物缓释体系。在这些磁性粒子广泛使用的同时,其安全性也引起了人们的关注。

Gupta等[6]的研究发现,超顺磁铁氧化物纳米粒子的细胞毒性依赖于剂量的大小。超顺磁铁氧化物纳米粒子即使在最低浓度0.05 mg/mL时,仍然导致了细胞生物活性的20%降低。

氧化铝对80 nin紫外光的吸收效果好,可作紫外屏蔽材料和化妆品添加剂[7]。目前关于纳米氧化铝生物效应的文献非常有限,但是由于纳米氧化铝已经成为商用的纳米材料,因此其生物效应也应该得到关注。

Wang等[8]嗍研究了纳米和体材的灿203对以大肠杆菌为食物的线虫的毒性。所有的纳米粒子和体材料都有毒性,表现在抑制生长尤其是降低线虫的生殖能力。李晓波等[9]的研究表明纳米氧化铝引起大鼠海马组织中小胶质细胞活化以及抗氧化酶活力的升高,可能损伤脑组织。

四、半导体纳米粒子的毒性

纳米氧化锌是一种面向21世纪的新型高功能精细无机材料,也是一种重要的宽禁带半导体材料。

刘子宏等[10]向小鼠气管滴注20 pg,10 pg,5 pg粒径为48 nin的ZnO,结果发现各剂量染毒小鼠肺部都有明显的炎症反应和增生改变,染毒剂量从10 pg增加到20 pg,小鼠死亡率由30%增加到90%,可见纳米ZnO的毒作用带相对比较窄。

纳米Ti02是一种重要的氧化物半导体材料,通常Ti02为n型半导体,具有很强的吸收和散射紫外线的能力。

纳米Ti02的吸入毒性与其组成颗粒的粒径(表面积)大小有密切关系,纳米材料粒径越小,表面积越大,其毒性越强[11];纳米Ti02对细胞的损伤首先体现在破坏细胞膜[12];纳米Ti02能损伤心脏、肝脏和肾脏等[13]。

总结与展望

本文综述了典型的碳基纳米粒子、金属及金属氧化物纳米粒子和半导体(绝缘体)纳米粒子的生物安全性研究进展。

当前纳米生物安全性研究中存在的主要困难和问题是,一方面,纳米材料本身的表征还缺乏科学的、系统的、公认的方法和标准,不同研究小组所用的纳米材料,由于制备、分离的方法不同,其性质会存在一定的差异(比如在制备过程中可能会残留不同的催化剂或反应物成分),甚至用同一种方法制备的纳米材料,在尺寸、形貌等方面也存在差异,这就导致不同研究结果之间的比较十分困难,也导致一些互相矛盾的结果出现。早期的实验研究便很少考虑到如何把纳米粒子自身的毒性与残留或析出的金属离子的毒性分离开来。另一方面,在纳米材料的生物安全性评价方面,尚没有系统的、公认的、具有普遍性的评价指标体系,这也严重影响了纳米材料生物安全性研究的深入开展。这两方面在未来的研究中必须给以高度的重视。

参考文献

[1] 任德香。纳米材料的生物安全性研究进展[D]。东北师范大学,2020

[2] Service RF. NanomateriaIs show signs of toxicity[ J]. Science,

2003,300(11):243.

[3]Brumfiel G.A little knowledge[J].Nature,2003.424(17):246.

[4]于荣丽,孙铁珩,胡晓钧。纳米材料的生物负效应研究。安全与环境学报[J].2009,9(2):121-124

[5] 汪畅.富勒烯的DNA损伤机制及毒性效应研究[D].武汉:华中农业大学,2008。

[6]Gupta AK Gupta M.Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles[J].Biomaterials,2005,26(1 3):1 565-1573.[7] 李慧韫,张天胜,杨南.纳米氧化铝的制备方法及应用[J].天津轻工业学院学报,2003,18(4):34-37.

[8]Wang Huanhua,Wick R L,Xing Baoshan.Toxicity of nanoparticulate and bulk ZnO,A1203 andTi02 to the nematode caenorhabditis elegans[J].Environmental Pollution,2009,1 57(4):1 1 7 1-1 1 77.

[8]李晓波,李淼,黄志勇,等.纳米氧化铝染毒对大鼠海马小胶质细胞活化及抗氧化酶活力的影响[J].毒理学杂志,2009,23(4):257-260.

[9]刘子宏,王翔,王海芳,等.气管滴注纳米氧化锌对小鼠的急性毒性作用[J].环境与职业医学,2008,25(4):360.364.

[10] 杨辉,刘超. 纳米材料毒理学研究进展.军事医学科学院院刊.2007,31(3):282-286

[12]李福林,宁月辉,王佳祥.纳米材料的生物效应.化学工程师.2011,(7):48-51

[13]田志环.纳米材料的毒理学研究进展.现代预防医学[J].2008,35(18):3608-3609,3612

碳纳米管的生物相容性_齐宁宁

碳纳米管的生物相容性 齐宁宁,杜丽娜,金义光 (军事医学科学院放射与辐射医学研究所,北京 100850) 摘要:碳纳米管(CNT )是一种非常有序、高纵横比的碳同素异形体,包括单壁碳纳米管(S WCNT ) 和多壁碳纳米管(MWCNT )。它的特性使其在生物医学领域得到广泛应用,包括生物传感器、药物和疫苗传递,以及特殊生物材料的制备。本文总结了现有碳生物材料性能,概述了纳米毒理学研究内容,探讨了CNT 细胞毒性和生物相容性。关键词:碳纳米管;生物相互作用;细胞毒性中图分类号:R94 文献标识码:A 文章编号:100120971(2007)022******* 收稿日期:2006210220  作者简介:齐宁宁,女,在读硕士研究生,研究方向:药物新剂型与新技术。Tel:010*********,E 2mail:ningning_qi@1631com 1 引言 碳纳米管(carbon nanotubes,CNT )是一种独特的一维大分子。单壁碳纳米管(S WCNT )由单层石墨(直径014~2n m )构成,而多壁碳纳米管(MWCNT )由直径2~100n m 的多个同心石墨圆柱体组成。它们抗张强度高,质量极轻,热和化学稳定性很高,并有金属导体和半导体电学性质。 生物医学材料和设备是CNT 研究的一个主要领域,包括生物传感器、药物和疫苗运输载体,以及新型生物材料。CNT 作为现有聚合物材料的纳米填充剂,可显著提高机械性能,并能形成高度各向异性纳米复合物。 CNT 用于现有和新型生物医学设备前,应全面 考察其毒性和生物相容性。生物相容性是指材料在发挥作用时只引起宿主的适度反应。热解碳用于生物医学移植和涂层材料已几十年,特别是在心瓣膜修复术方面。早期研究表明热解碳心瓣膜血液相容性良好,可很好粘附于内皮细胞,对血小板的粘附和活化作用很小。然而一项有420名患者参与的临床研究发现,热解碳涂层支架的效果并不比传统高级不锈钢支架好。类钻石碳(DLC )早期体外生物相容性研究表明对巨噬细胞无炎性反应,也未观察到对成纤维细胞和成骨细胞的毒性。几项有关DLC 涂层的体内实验表明,DLC 涂布的不锈钢金属植入棒对绵羊骨和肌肉组织无副作用。 微粒毒理学研究组织(肺、消化道或皮肤)暴露 于微粒环境中的不良反应。纳米毒理学产生于对纳 米粒子和纤维毒理学评价的迫切需要,可定义为研究工程纳米机械和纳米结构与活生物体相互作用的科学。 普遍认为有3个因素决定粒子是否造成伤害,包括(1)粒子表面积/质量比:表面积大使粒子与细胞膜接触面大,吸收和转运毒性物质可能性大;(2)粒子滞留时间:与细胞膜接触时间越长,损伤概率越大;(3)粒子所含化学物质的反应性及固有毒性。 纤维材料与粒子的病理学表现不同,特别是呼吸道暴露远比其他摄入方式更易致病。3个主要特点决定吸入性纤维致病,包括(1)纤维尺寸:决定可吸入性(穿透进入肺中心腺泡区的能力);(2)生物滞留性:是特长纤维毒理的关键因素,它们通常不易被巨噬细胞吞噬;(3)反应性或固有毒性:同粒子一样,纤维毒性也主要取决于其化学成分毒性。2 碳纳米管的毒性 围绕CNT 材料应用的热点问题之一是对参与其生产和处理的工人的未知影响。本节将详细介绍肺毒性、皮肤刺激和细胞毒性方面的研究。211 肺毒性 尽管CNT 没有肺毒性前兆,但最近组织学研究发现有肺部炎症和肉芽肿形成。2001年Huczko 等最早考察了未纯化CNT 对豚鼠肺功能的影响。将25mg CNT 的015mL 盐溶液给豚鼠气管滴注,对照组接受25mg 不含CNT 的炭黑。滴注4周后用非侵入法考察肺功能。非侵入法和支气管肺泡灌洗测试均显示受试组与对照组无差别。结论是在含有CNT 的炭黑环境中工作,可能不存在任何健康

纳米材料的毒理学和生物安全性研究进展

生堡亟随匿堂盘壶!Q塑生!月筮塑鲞星!翅£!!!』堕!丛型:&坠磐盟!Q塑:!些塑,盟些兰 纳米材料的毒理学和生物安全性研究进展 刘建军何浩伟龚春梅庄志雄 纳米材料是指物质结构在三维空间内至少有一维处于 纳米尺度…(0.1—100llm,1am=10一m),或由纳米单元构 成的材料,被誉为“21世纪的新材料”,这一概念首先是由美 国国家纳米计划(NNI)提出来的。这些具有独特物理化学 性质的纳米材料,对人体健康以及环境将带来的潜在影响, 目前已经引起公众、科学界以及政府部门的广泛关注。随着 纳米技术的完善和应用规模的扩大,纳米材料将被迅速普及 和广泛应用旧o。 据报道,目前世界范围内市场上有超过400种消费品建 立在纳米材料的基础之上p1,预计到2014年全球市场的纳 米科技产品价值将达2.6兆亿美元MJ。为了了解应用于这 些产品中的纳米材料的潜在影响,就要熟悉和掌握其潜在暴 露风险、材料性质、产品生命周期及其在每一点性质和周期 上的潜在危险”J。自2000以来,国内外对于纳米材料的生 物安全性和毒理学问题展开了日益深入的讨论和研究净“。 一、纳米材料的特殊效应和应用 纳米材料具有传统材料所不具备的奇异或反常的物理、 化学特性”],如原本导电的铜到某一纳米级界限就不导电, 原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导 电。这是由于纳米材料特有的4大特殊效应所致¨1:即小尺 寸效应(8maLlsizeeffect)、表面效应(¥urfaceeffect)、量子尺 寸效应(quantumsizeeffect)和量子隧道效应(quantum tunneling effect);上述效应可导致纳米材料具有异常的吸附 能力、化学反应能力、分散与团聚能力,上述特性在赋予纳米 材料广泛应用的同时也带来一系列的负面效应。这些已被 证实,以及有待被证实的负面效应给当前迅猛发展的纳米科 技带来了一定的隐患。现将纳米材料理化特性涉及的应用 研究领域归纳如表1[9-103。 二、纳米材料的毒理学研究现状 Donaldson等011]2004年首先提出了“纳米毒理学” (naonotoxicology)这一概念,次年Oberd/Srster等¨21发表文章 支持这一概念并称之为“从超细颗粒物的研究中演变而来 的新学科”。自从Donaldson等发表论文之后,纳米毒理学 的发展步人了新轨道,在世界范围内召开的关于纳米材料毒 理学的会议越来越多,在各大学术网站上搜索到相关文章也 逐年增多。 DOI:10.3760/craa.j.issn.0253-9624.2009.02.016 基金项目:深圳市科技计划(200702159) 作者单位:518020深圳市疾病预防控制中心毒理研究室 通信作者:庄志雄,Enu61:junii8@126.咖 ?159?.综述. 表1纳米材料理化特性涉及的应用研究领域‘9‘10]研究应用领域材料和应用举例 电子学 磁学 光学 生物医药能源化工环保化工建筑、机械电极(纳米碳管)、超导体、导电及绝缘浆料、量子器件、量子计算机等 纳米磁性材料、磁靶向制剂、固定化酶、生物分离提纯、磁记录、纳米微品软磁材料等化妆品(TiO:)、隐身材料、发光材料、光通讯、光储存、光电脑等 纳米,E物医用材料(纳米羟基磷灰石)、生物薄膜、药物载体、蕈冈传送载体、药物输送、控释系统、纳米牛物传感器等 纳米催化、储能(碳纳米管储氢)、蓄热及能源转换、保温节能(纳米Si02)等 抗生素材料(纳米Ag,Ti02)、功能涂料(纳米Zn02,Fe203)有害气体治理、废水处理、阻声降噪等 超硬、高强、岛韧、超塑性材料等 已有研究表明,纳米材料经吸人、皮肤、消化道及注射等 途径与机体接触后能迅速进入体内,并容易通过血脑、睾丸、 胚胎等生物屏障分布到全身各组织。纳米颗粒往往比相同 剂量、相同组分的微米级颗粒物更容易导致肺部炎症和氧化 损伤。现有的细胞水平、动物实验和一些零星的人群研究结 果显示,人造纳米材料可以引起氧化应激、炎症反应、DNA 损伤、细胞凋亡、细胞周期改变、基因表达异常,蛋白质差异 表达,并可引起肺、心血管系统及其他组织器官的损害。我 们从纳米毒理学研究的不同层次分类阐述纳米材料毒理学 研究的概况,并对研究较多的材料(纳米碳管、TiO:等)举例 说明。 (一)纳米材料毒理学分子水平的研究 基因组学、后基因组学、毒物基因组学和蛋白质组学的 研究,都属于分子水平的范畴。迄今为止,国内外对纳米材 料毒性研究,主要还是采用形态学和酶活性等细胞毒性检测 和整体动物水平实验的方法,从分子水平进行机制方面的研 究并不普遍,目前已见纳米碳材料的蛋白质组学研究。 Witzmann和Monteiro-Riviere¨纠研究了多壁纳米碳管 (MWNCT)对角质化细胞蛋白质组表达的影响。用0.4ms/ lTll的MWNCT处理角质化表皮细胞(HEK)24和48h,抽提 蛋白进行双向电泳,并检测IL-1B、IL-6、IL-8、IL-10和TNF.a 等细胞因子的变化。通过PDQuesOD软件分析发现有 152个蛋白发生了显著的差异表达,细胞炎性因子IL-8浓度 在MWNCT处理HEK细胞24和48h后显著增加,IL.1B在 48h时间点浓度显著上升,IL-6浓度则有所降低,TNF-a的 浓度变得极低(<0.01pg/m1)。这螳细胞因子的变化说明 HEK暴露于MWNCT后产生了炎症反应,而蛋白的差异表 达则说明纳米碳材料本身具有损伤性,对HEK细胞蛋白质万方数据

纳米材料的生物安全性

纳米材料的生物安全性 随着纳米技术的飞速发展,各种纳米材料大量涌现,其优良特性及新奇功能使其具有广泛的应用前景,人们接触纳米材料的机会也随之迅速增多。然而,现有的环境与职业卫生接触标准及安全性评价标准及方法能否直接适用于纳米材料还未能确定,纳米材料生物安全性评价体系的建立还处在探索阶段。 由于纳米材料种类繁多,理化性质各不相同,即使同一种纳米材料不同粒径也会出现不同的生物效应。因此,对每年不断涌现的新型纳米材料进行生物安全性评价就显得尤为紧迫和必要,对合适的研究模型和高通量筛选的方法以及系统的人群流行病学调查将成为纳米材料生物安全性评价体系建立的下一步研究重点。 纳米技术已迅速成为全世界关注的热点前沿科技领域,它能使人们能够在原子、分子水平上制造材料和器件。纳米技术与信息、环境、能源、生物、空间等高新技术相结合将形成以纳米技术为主旋律的纳米产业及产业链,成为21世纪新的经济增长点。但由于其独特的理化性质,且不能用常规的方法和手段进行检测,可能会对人体及生态环境造成污染,从而危及人类健康。同时,纳米材料的生物安全性研究还牵涉到环境保护、社会安全、伦理道德等许多方面。因此,科学家们逐渐认识和重视纳米材料可能带来的生物安全性方面的影响以及相关研究。纳米材料生物安全性研究产生背景纳米级颗粒本身和由它构成的纳米固体主要具有4个方面的效应,即小尺寸效应、表面效应、量子尺寸效应、宏观量子隧道效应,当人们将物体细分成超微颗粒( 纳米级) 后, 它将显示出许多奇异的特性,即它的光学、热学、磁学、力学以及化学方面的性质与大块固体时相比将会有显著的不同。 一、纳米材料的应用现状 1.在工业生产方面的应用 纳米材料的应用在工业生产中显示了独特的魅力。一些纳米材料如纳米二氧化硅用作橡胶、塑料、有机玻璃等材料的填充剂,可以改善材料的强度、韧性等

纳米药物的有效性与安全性评价

第14章纳米药物的有效性与安全性评价 14.1概述 大量的研究已证明,纳米粒具有特殊的生物学特性。纳米载药系统能使许多药物的药效学和安全性特征发生较大或根本性变化,从而使其临床使用价值大大提高[1]。近年来,纳米技术正广泛用于改善药物的释药性能和药动学特征、提高治疗药物的靶向性、降低药物的毒性或用作基因治疗的载体等。纳米制剂已成为解决药物制剂难题的一项重要手段。 在纳米药物的研究开发中,纳米制剂的有效性和安全性是倍受关注的问题。近年来,对纳米药物的有效性和安全性研究已取得了一些进展。在有效性研究方面,集中于提高难吸收药物的生物利用度、抗肿瘤药物的组织靶向性、提高药物的脑靶向性分布、作为基因治疗载体的表达效率等研究。安全性评价方面主要研究纳米药物降低药物的全身性毒性、纳米载药系统的细胞毒性评价、纳米脑靶向药物对血脑屏障的影响等。但至今纳米药物在有效性和安全性评价方面的技术性规范尚未建立。 对纳米药物的有效性和安全性评价,应遵循新药药理毒理学研究的一般原则,同时应结合纳米粒的生物学特性,有针对性增加相关性研究,如纳米药物在用药局部的致炎性、纳米药物对机体免疫系统的影响、纳米材料的生物相容性与细胞毒性、吸入性纳米药物在肺部的沉积、纳米粒对血液循环系统的影响、纳米粒对各种屏障系统的损伤等。纳米药物的脑组织分布及对神经系统的损害、纳米药物的致突变性、纳米药物对靶向组织的致癌性也应认真考虑。 14.2纳米药物的药物动力学评价 14.2.1药物动力学评价方法 药物动力学(Pharmacokinetics)是研究机体对药物处置规律的科学。血药浓度经时变化规律的研究是药物动力学的基本内容,由此可得到药物在机体内的动力学参数。系统的药物动力学包括机体对受试物的吸收、分布、代谢及排泄等过程的研究。随着药物动力学学科的发展,形成了一些新的分支,包括疾病状态下的药物动力学、群体药物动力学及药物代谢物的动力学等。内源性药物代谢动力学、生物技术产品药物动力学、中药药动学等也已引起重视。药物动力学研究常用方法是整体动物实验,离体实验方法如透皮吸收、细胞培养方法如结肠腺癌细胞株(Caco-2)单层小肠吸收模型等常用于评价药物的经皮或经肠道吸收情况。 药物动力学研究在新药研制及评价中具有十分重要的意义,是新药和新制剂研制的基本内容。目的在于认识药物进入体内后的转运、药物从体内排出的形式与速度、不同剂量下变

纳米材料的生物安全性

纳米材料的生物安全性研究 田蜜 (湖北的二师范学院化学与生命科学学院,武汉,430205) 摘要 综述了包括富勒烯(C60)、氧化铁、氧化铝、氧化锌、二氧化钛、二氧化硅等在内的多种典型的碳基纳米材料、金属及其氧化物纳米材料和半导体(绝缘体)纳米材料的生物安全性研究进展。 关键词:纳米材料;纳米生物安全;纳米毒理学:毒性 Abstract Including of fullerenes (C60) are reviewed in this paper, ferric oxide, aluminum oxide, zinc oxide, titanium dioxide, silica, such as a variety of typical carbon nano material and semiconductor, metal and oxide nanomaterials (insulator) biological safety of nanomaterials were reviewed. Key words: nano materials; Nano biological safety; Nanotoxicology: toxicity 引言 纳米粒子尺寸小、比表面积大、表面态丰富、化学活性高,具有许多块体及通粉末所没有的特殊性质,许多在普通条件没有生物毒性的物质,在纳米尺寸下却表现出很强的生物毒性[1]。与此同时,纳米材料可能产生的负面效应特别是对环境和健康的潜在影响,也引起了人们的关注。2003 年4 月,Science 首先发表文章讨论纳米材料可能产生的生物安全性问题[2]。随后,许多学者相继开展了纳米材料的毒理学研究。本文将一些学者的研究进行了综合,希望对各位有所帮助。 一、纳米安全性问题的提出 纳米科技预计也将给人类生活带来巨大的变化,因而成为发展最快的研究和技术开发领域之人们在逐渐认识纳米科学技术的优点和其潜在的巨大市场的同时,一个新的科学问题及社会问题—一纳米效应与安全性,引起人们广泛关注。首先,2003年的美国化学会年会上报告了纳米颗粒对生物可能的危害。2003年4月Science[2]引、7月Nature[3]相继发表编者文章,开始讨论纳米尺度物质的生物效应以及对环境和健康的影响问题。

碳纳米管的改性研究进展

碳纳米管的改性研究进展 摘要:碳纳米管因其独特的结构与优异的性能,在许多领域具有巨大的应用潜力而引起了广泛的关注。由于碳纳米管不溶于水和有机溶剂,极大地制约了其性能的应用,因此碳纳米管的功能化改性 就成为目前研究的热点。本文简要介绍了碳纳米管及其性质作,详细阐述了碳纳米管的改性研究进展,并对今后的研究方向进行了展望。 关键词:碳纳米管;结构与性能;功能化;共价改性;非共价改性 1. 碳纳米管及其性能简介 1.1碳纳米管的结构 碳纳米管(Carbon Nanotubes,CNTs)是1991年由日本筑波NEC公司基础研究实验室的Iijima在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时意外发现的一种具有一维管状结构的碳纳米材料。因其独特的准一维管状分子结构、优异的力学、电学和化学性质及其在高科技领域中潜在的应用价值,引起了世界各国科学家们的广泛关注,由此引发了碳纳米管的研究热潮和十多年来纳米科学和技术的飞速发展。 碳纳米管是单层或多层石墨片围绕中心轴按一定的螺旋角卷曲而成的无缝、中空的 微管,每层纳米管是一个由碳原子通过SP2杂化与周围3个碳原子完全键合后所构成的 六边形平面组成的圆柱面。根据构成管壁碳原子层数的不同,CNTs可以分为:单壁碳纳 米管(single-walled carbon nanotube,SWNT)和多壁碳纳米管(multi-walled carbon nanotube, MWNT)两种形式。MWNTs的层间接近ABAB堆垛,其层数从2~50不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。MWNTs的典型直径和长度分别为2~30nm 和0.1~50μm;SWNTs典型的直径和长度分别为0.75~3nm和1~50μm。与MWNTs 比,SWNTs是由单层圆柱型石墨层构成,其直径的分布范围小,缺陷少,具有更高的 均匀一致性。无论是MWNTs还是SWNTs都具有很大的长径比,一般为100~1000, 最大可达到1000~10000,可以认为是一维分子。CNTs有直形、弯曲、螺旋等不同外形。在MWNTs中不同石墨层的螺旋角各不相同,由Euler定理可知,在CNTs的弯曲处,一定要有成对出现的五元环和七元环才能使碳纳米管在弯曲处保持光滑连续,而封 闭的两端半球形或多面体的圆拱形是由五元环参与形成的。但是实际制备的CNTs或多 或少存在这样那样缺陷,主要缺陷有三种类型:拓扑学缺陷,重新杂化缺陷和非完全键

纳米材料安全性的研究进展

纳米材料安全性的研究进展 摘要人们对纳米材料的关注推动了纳米科学和技术的快速发展。随着纳米材料和纳米技术的迅速发展和广泛应用, 人们接触不同种类的纳米材料的机会大大增加. 有超过500种消费品宣称采用了纳米技术,每年市场需求成吨的纳米原材料,包括纳米金属、纳米氧化物和碳纳米管,对纳米医药产品的需求每年以17%速度在增长,到2011 年市场规模估计有530亿美元,其中药物市场最大,在2014年可达到180亿美元。目前至少有12种纳米药物已获得批准。在生产和使用过程中,纳米材料通过多种途径释放到环境、生态系统、水源和食品供应中,并进入人体。纳米材料与人体接触会不会引起不良的后果? 纳米材料对环境是否有危害? 当纳米材料和纳米技术与人类的关系越来越紧密的时候, 其引起的伦理学、社会和法律问题也越来越引起人们的关注. 本文就纳米安全性研究, 结合国内外各研究机构的实验结果和流行病学调查资料, 从纳米材料本身的安全性、纳米材料的生物效应、纳米材料毒性的体外评价3个方面, 简要阐述如何正确认识纳米材料和纳米技术的安全性. 关键词纳米材料安全性毒性生物效应 物质到纳米尺度(0.1~100 nm, 1 nm= 10?9 m)后会出现特殊性能, 这种既不同于原来组成的原子、分子,也不同于宏观物质的材料即为纳米材料. 纳米材料尺寸小, 可轻易进入到生物体内, 这就为构建药物运输系统或者肿瘤的治疗提供了巨大的优势. 但是, 纳米材料作用于人体会不会引起不良的后果? 纳米材料对环境是否有危害? 当纳米材料和纳米技术与人类的关系越来越紧密的时候, 其引起的伦理学、社会和法律问题也越来越引起人们的注意. 随着社会学家对这些问题的理论阐述日益完善, 公众对纳米技术的理解也越来越深入[1]. 本文就 纳米材料和纳米技术安全性研究的发展做一初步的总结与探讨. 1 纳米材料本身的安全性 纳米材料的尺寸大小、化学组成、表面结构、溶解性、形状以及聚集状态等均可以影响其生物学效应. 同时, 纳米材料的暴露途径也是一个重要的影响因素. 这些参数会影响其细胞内吞、细胞内的转运和定位、与蛋白的结合、体内的迁移和蓄积, 从而可能会引起特定的生物学反应. 迄今为止, 许多实验组对多种纳米材料的安全性进行了研究. 但是目前得到的实验结果并不相同甚至相互

纳米材料在食品包装中的应用及安全性评价_杨龙平

纳米材料在食品包装中的应用及安全性评价 杨龙平,章建浩,黄明明,严文静 (南京农业大学,南京210095) 摘要:目的阐述几种常用纳米材料在食品包装中的应用,并对其安全性进行研究。方法方法分别阐述Ag ,TiO 2,SiO 2,ZnO ,蒙脱土等纳米材料在食品包装方面的应用。结论结论纳米材料能有效改善包装材料的特性,保持食品的品质和风味,防止微生物滋生,具有显著的意义和广阔的发展前景。关键词:纳米材料;食品包装;应用;安全性中图分类号:TB487;TS206.4 文献标识码:A 文章编号:1001-3563(2015)01-0019-05 Application and Safety Evaluation of Nanomaterial in Food Packaging YANG Long-ping ,ZHANG Jian-hao ,HUANG Ming-ming ,YAN Wen-jing (Nanjing Agricultural University ,Nanjing 210095,China ) ABSTRACT :The applications and safety of several common nanomaterials used in food packaging were reviewed in this paper.The applications of nanomaterials including Ag nanomaterials,TiO 2nanomaterials,SiO 2nanomaterials,ZnO nanomaterials and montmorillonite used for food packaging were illuminated.Nanomaterials can effectively improve the properties of packaging materials,maintain the quality and flavor of food,prevent microbial growth,and have significant meaning and bright prospects. KEY WORDS :nanomaterial ;food packaging ;application ;safety 收稿日期:2014-10-08 基金项目:江苏省国际科技合作计划(BZ2014034);江苏省优势学科人才引进(80900229)作者简介:杨龙平(1991—),女,重庆人,南京农业大学硕士生,主攻纳米抑菌材料的开发。 通讯作者:严文静(1986—),女,陕西咸阳人,博士,南京农业大学讲师,主要研究方向为纳米生物传感检测技术及抑菌纳米保鲜 材料。 纳米技术是在单个原子或分子尺度上准确识别、观测和控制物质的个数、种类和几何构型,据此来制造特定产品或创造纳米级加工工艺的一门新兴学科。其中,纳米材料是纳米技术最重要的基础,是由纳米粒子组成的一种超微颗粒材料,尺寸为1~100nm。在该尺寸范围内的纳米材料由于其独特的尺寸效应,因而会呈现出许多大块材料不具备的特殊性质,如优异的物理化学性能、较好的力学性能、优良的加工性能、较好的生态性[1]。纳米包装材料是一种新型包装材料,通过向原有包装材料中加入纳米材料对其进行改性、复合,从而赋予新材料具有纳米材料的表面等离子体性质,并表现出很好的抑菌性、力学性能和透气性等[2],目前已经广泛应用于食品、环境、医药等领域。 在食品包装领域,目前研究比较多的是以聚合物为基底的纳米复合材料,该材料是通过向柔性较好的高分子聚合物中加入纳米尺寸的分子或纳米颗粒制备而成。纳米复合材料主要包括2种成分:无机纳米材料(如Ag,TiO 2,SiO 2等)和有机聚合物(如聚乙烯、淀粉、聚乳酸、水溶性聚糖或酯类等)。无机纳米粒子使复合包装材料具有传统包装材料所不具备的特殊性质。根据基质材料对生物降解的承受能力可将食品包装材料分为2类:不可降解的纳米复合材料和可生物降解的纳米复合材料。如果使用的基质是水溶性聚糖或酯类材料,还能够制备得到可食性纳米复合材料[3]。目前,各种纳米复合包装材料中应用比较广泛的包括硅酸盐-环氧树脂纳米复合材料、尼龙66-粘土复合材料、纳米蒙脱石粉/PA 类、纳米SiO 2/PP 类等[4]。 包装工程 PACKAGING ENGINEERING 第36卷第1期2015年1月 19

碳纳米管在电化学中的应用

碳纳米管在电化学中的应用 【摘要】对碳纳米管修饰电极的制备方法、应用以及碳纳米管修饰电极的发展趋势作比较全面的综述。 【关键词】碳纳米管;化学修饰电极 Application of the Carbon nanotube in electrochemistry Abstract The methods of preparation, applications and developing trends of carbon nanotube modified electrodes in the field of electrochemistry were reviewed. Key words Electrochemistry Carbon nanotube modified electrodes 碳纳米管,又名巴基管(buckytube),是1991年由日本科学家饭岛澄男(Sumio Iijima)在高分辨透射电镜(HRTEM)下发现的一种针状的管形碳单质。它以特有的力学、电学和化学性质,以及独特的准一维管状分子结构和在未来高科技领域中所具有的潜在应用价值,迅速成为化学、物理及材料科学等领域的研究热点。目前,碳纳米管在理论计算、制备和纯化生长机理、光谱表征、物理化学性质以及在力学电学、化学和材料学等领域的应用研究方兴未艾,在一些方面已取得重大突破。碳纳米管(CNT)的发现,开辟碳家族的又一同素异形体和纳米材料研究的新领域。 由于CNT具有良好的导电性、催化活性和较大的比表面积,可使过电位大大降低及对部分氧化还原蛋白质能产生直接电子转移现象,因此被广泛用于修饰电极的研究。碳纳米管在作为电极用于化学反应时能促进电子转移。碳纳米管的电化学和电催化行为研究已有不少报道。 1碳纳米管的分类 CNT属于富勒碳系,管状无缝中空,具有完整的分子结构,由碳六元环构成的类石墨平面卷曲而成,其中每个碳原子通过sp2杂化与周围3个碳原子发生完全键合,各单层管的顶端有五边形或七边形参与封闭。CNT的径向尺寸为纳米量级,轴向尺寸为微米量级,具有较大的长径比。由单层石墨片卷积而成的称为单壁碳纳米管(SWNT),制备时管径可控,一般在1~6 nm之间,当管径>6 nm后CNT 结构不稳定,易塌陷。SWNT轴向长度可达几百纳米甚至几个微米。由两层以上柱状碳管同轴卷积而成的称为多壁碳纳米管(MWNT),层间距约为0.34 nm。

碳纳米管_羟基磷灰石复合材料兔胫骨生物相容性研究_赵冬梅 (1)

25卷3期2006年6月中 国 生 物 医 学 工 程 学 报 Chinese Journal o f Biomedical Engineerin g Vol.25 No.3 June 2006 收稿日期:2005-11-20,修回日期:2006-04-27。基金项目:国家自然科学基金资助项目(30170269)。*通讯作者。 E -mail:dongmei zhao663@sohu.c om 碳纳米管/羟基磷灰石复合材料兔胫骨生物相容性研究 赵冬梅 1* 刘中浩1 武士清1 李爱民2 赵敬杰1 王 彭3 孙康宁 2 1(山东大学第二医院骨科,济南 250033)2 (山东大学材料科学与工程学院,济南 250061) 3 (北京协和医院中心实验室,北京 100005) 摘 要:目的:探讨不同比例碳纳米管/羟基磷灰石纳米复合材料兔胫骨的生物相容性。方法:将碳纳米管含量为2%和3%的碳纳米管/羟基磷灰石复合材料置入兔右侧胫骨的缺损处,在1周~12周分别进行x 线检查、组织学检查及分子生物学分析。结果:不同碳纳米管含量的复合材料均能诱导成骨,无排斥反应。X 线片、组织学检查、分子生物学检查均无明显差别。结论:碳纳米管/羟基磷灰石材料有良好的骨相容性。关键词:碳纳米管;羟基磷灰石;复合材料;胫骨;生物相容性 Biocompatibility of C arbon Nanotubes P Hydroxyapitite Composite with Tibia of Rabbit Z HAO Dong -Mei 1* LIU Zhong -Hao 1 WU Sh-i Qing 1 LI A-i Min 2 Z HAO Jing -Jie 1 WANG Pe ng 3 SUN Kang -Ning 2 1 (De pa rtmen t o f O rtho pe dics ,Th e Secon d Hospital o f Shan don g Un ive rsity ,Jina n 250033) 2 (Shool o f Ma te ria l Scie nce an d En gine erin g ,Sh an dong U ni versit y ,Jin an 250061) 3 (Pekin g Un ion Medic al Colleg e Hospital ,Be ijin g 100005) Abstract :Objective :To study the biocompatibility of carbon nanotubes P hydroxyapitite c omposite (CN Ts P HAP).M ethods :X -ray,histology observation and molecular biology were ca rried out for 1~12weeks after CNTs P HAP was implanted into the right tibia of rabbit.Resu lt :The composites c ould induce ossification without rejection.There was no t significant difference between the co mposites.Con clusion :CNTs P HAP have acc eptable bioc ompa t ibility.Key words :ca rbon nanotubes;hydroxyapatite;c omposi te;t ibia;bioc ompatibility 中图分类号 R318 文献标识码 A 文章编号0258-8021(2006)03-0342-04 引言 羟基磷灰石(Hydroxyapatite,HAP),作为修复骨缺损的常用材料,存在强度低、韧性差的缺点,限制了其在骨外科领域的广泛应用。碳纳米管具有优异的力学和电学性能,已被用来增强各种材料,包括高分子材料、金属材料和陶瓷材料[1-3] 。本研究分析认为,将碳纳米管与羟基磷灰石复合,有可能发挥碳纳米管在力学性能方面的优势,同时可使复合材料具有良好的生物相容性。本研究将碳纳米管/羟基磷灰石复合材料(Carbon Nanotubes P Hydroxyapitite,C NTs P HAP)植入兔胫骨内,通过行 X 线片检查、组织学观察以及分子生物学检测,评价了该复合材料的生物相容性,为其应用于临床修复骨缺损提供实验依据。 1 材料与方法 111 材料 本实验中所使用的CNTs/HAP 由山东大学材料 科学与工程学院制备,其成分比例、制备方法、理化特性见表1。复合材料用高压灭菌。健康雄性新西兰大白兔30只,体重215kg ?100kg,月龄2月,由山东大学动物实验中心提供。

碳纳米管的生物医学应用(原创)

碳纳米管的生物医学应用 摘要:碳纳米管的发现以及其优异的物理化学性能,使得它在生物和医学领域的具有很大的应用潜力。碳纳米管(CNTs)是碳纳米结构的同素异形体,长度与直径之比大于1,000,000甚至更大。这些圆柱形的碳分子使它们在许多应用纳米技术可能有新的性能,其独特的表面面积,刚度,强度和弹性,导致在制药领域是研究热门。碳纳米管属于富勒烯家族的卷成管状的形式的石墨薄片组成。可为单个或多壁碳纳米管。分子和离子迁移通过碳纳米管,为分子电子传感器和核酸测序制造提供可能。这篇文章提供了有关药物载体系统,生物传感器等应用,其毒性以及生物相容性的概述。 关键字:碳纳米管,生物医学,应用 1 前沿 以碳纳米管为载体的药物为治疗癌症提供了很大的希望[1]。碳纳米管的功能化可产生新的化学和生物应用[2]。这种药物有许多优点,主要提高了安全性和有针对性的提供药品,提高生物利用度,延长药物或基因药物对组织的作用、提高化学药物治疗稳定性、酶降解药物的效率等[3]。与其他材料,如聚合物,碳纳米管的兼容性,也可望提高。此外,一旦功能化,碳纳米管可作为溶剂,他们的性质值得进行研究。许多功能化碳纳米管在材料科学和技术,包括光电领域有有效的应用。碳纳米管在药物化学还发挥了重要作用。他们已被使用在药物支架和疫苗基板。CNT的官能基与生物活性特别适合用于靶向给药。然而,碳纳米管有机改性还不是一个完善的领域。碳纳米管的内在化学反应活性低,反应相结合的比较困难。 2 碳纳米管的生物医学应用 2.1药物载体系统及生物传感器 碳纳米管的一个重要特性是可以跨越细胞膜和生物体内的多种屏障,进入到细胞和生物体内多种器官内。研究结果显示,碳纳米管可以穿过多种细胞的细胞膜,包括小鼠成纤维细胞、人宫颈癌细胞、人乳腺癌细胞、和人T-细胞淋巴瘤细胞、Jurkat细胞等。 碳纳米管可以作为生物分子的载体,这一现象引起了众多研究者广泛的研究兴趣,从而将碳纳米管用于DNA、蛋白质和药物的输运,如图1所示,DNA可以通过共价和非共价作用连接到碳纳米管的表面。

碳纳米管的应用与前景

单壁碳纳米管的应用与前景 1. SWNTs在现实中的应用: 当材料尺度减少到纳米量级,会产生在宏观尺度上完全看不到的或者是特别优异的性能,达到纳米量级的材料会产生自组装效应、小尺寸效应、表面效应和量子效应。 1.1 储氢材料 氢气在未来的能源方面将扮演一个重要的角色。氢能量蕴含值高,不污染环境,资源丰富,但氢气能源实用化的关键环节是氢气的储存。因SWNTs的中空部分是极好的微容器,可吸附大小合适其内径的各种分子,可储存包括氢在内的各种气体。通过对SWNTs的吸氢过程研究发现,氢可能以液体或固体的形式填充到SWNTs的管体内部以及SWNTs束之间的孔隙,纯的表面活性高的SWNTs有利于储氢。 1997年,美国可再生能源实验室的Dillon和Heben等人首次报道了SWNTs的氢气吸附性能。他们发现SWNTs在133K和40KPa的压力下能吸附大约5%-10%(质量分数)的氢,并指出SWNTs是目前唯一能满足氢能源燃料电池汽车的储氢材料。Ye等人使用高纯度的SWNTs在80K和10MPa下获得8.25%的氢吸附率。C.Liu等最近使用37%的盐酸浸泡48h 和773K真空热处理2h的SWNTs在室温和10-12MPa的条件下获得了4.2%的氢吸附率(样品如图1所示)。我国成会明等也研究了半连续氢等离子弧制得的SWNTs经适当预处理后,在10MPa压力、室温下储氢质量分数可达4.2%-4.7%。这些研究表明,SWNTs是一种理想的储氢材料,具有潜在的应用前景。 (图1)硝酸处理后的SWNTs的SEM(扫描电子显微镜)照片

(图2)吸附氢的SWNTs结构示意图 (a)所有氢吸附在内表面(b)以氢分子形式稳定存在于碳管内部) 1.2 电子领域的应用——双电层超级大容器 由于CNTs具有很好的电学性能,特别是经高温退火处理消除部分缺陷后的CNTs,导电性能更高,使得目前关于CNTs的应用研究主要集中在电子领域。我们就以SWNTs来说吧。 德国物理学家亥姆霍兹(Helmhots)在进行固体与液体界面现象的研究中发现,将金属板或其它导电体插入电解质溶液时,由于库仑力、分子间作用力或原子间作用力(共价力)的作用,使金属表面出现稳定的、符号相反的双层电荷,称为双电层。对于双电层电容器,其储存能量的多少是由电容器电极极板的有效表面积确定,而SWNTs具有最大的比表面积和良好的导电性,碳纳米管制备的电极,可以显著提高双电层电容器的电容量。双层电容器的出现使得电容器的极限容量骤然上升了3-4个数量级,达到了近1000F的大容量。双层电容器的工作原理是基于在电极与电解液界面形成所谓的双电层的空间电荷层,在这种双电层中积蓄电荷,从而实现储能的目的。它不同于传统意义上的电容器,而类似于充电电池,但比传统的充电电池(镍氢电池盒锂离子电池)具有更高的比功率??和更长的循环寿命(循环寿命在万次以上)。 因此,电化学电容器在移动通讯、信息技术、电动汽车、航天航空和国防科技等方面具有极其重要和广阔的应用前景。例如,大功率的超级电容器对于汽车的启动、加速和上坡行驶极具重要。它可以大大延长蓄电池的使用寿命,提高电动汽车的实用性,况且,对于燃料电动汽车的启动都是不可少的。鉴于双电层超级电容器的重要性,各工业发达国家都给予了高度重视。1996年欧共体制定了电动汽车超级电容器的发展计划。美国能源部也制定了相应的发展超级电容器的研究计划。我国清华大学的马仁志等人采用催化裂解内烯和氢气的混合气体制备碳纳米管原料,并通过添加粘合剂或经高温加压的工艺手段制备碳纳米管的固体电极,再加入硫酸水溶液做电解质,成功地制备出超级电容器。 碳纳米管在电子领域应用非常广泛。如可作为导线、开关盒记忆元件,应用于微电子器件。利用碳纳米管的量子效应,在分子水平上对其进行设计和操作,可以推动传统器件的微型化。另外,碳纳米管具有很好的导电性,可以避免因电极材料的电阻极化对电池性能产生不利影响。因此,采用碳纳米管作为负极材料有利于提高锂离子电池的放电容量、循环寿命和改善电池的动力学性能等。 双电层电容器电荷 及电位分布示意图 (图3)

纳米生物材料生物学特性和生物安全性的研究

一、纳米生物材料生物学特性、生物安全性及在重大疾病快速检 测中的应用基础研究 一、项目提出的背景及意义 近年来,在医疗卫生和生物医学工程领域,纳米技术的引入和纳米生物材料的使用,极大的促进了现代医学的发展。现在已有多种含纳米生物材料的医疗用品得到国家或省市级食品药品监督管理局的批件,进入了临床阶段。 国内外已有很多报道,纳米材料具有特殊的生物性质,主要体现在两个方面:一方面,从生物体整体而言,纳米材料在生物体内的分布途径及靶器官具有特殊性;另一方面,从细胞水平来讲,与常规材料不同,纳米颗粒可以通过各种方式直接进入细胞内,导致细胞功能的改变甚至丧失,影响细胞的正常工作。因此,纳米材料特殊生物学性质可能会引起生物负效应,有必要对纳米材料的生物学特性和生物安全性进行研究。 在众多人们日常生活中所能接触的纳米材料中,纳米生物材料与其它纳米材料相比,在与人体的接触方式上有明显不同。纳米医用材料一个最显著的特点就是在研制和使用它的过程中,已经人为的使它通过了肺、肠、皮肤这三个人体抵御外来颗粒物侵入的主要屏障,直接进入人体的循环系统,因此可能对人体造成更直接、更巨大的危害。所以,迫切需要马上开展对纳米生物材料安全性的研究。 纳米材料的生物安全性是一个方兴未艾的研究热点,国内外的研究水平基本处在一个水平线上,还有很多问题没有研究透彻,尤其是对纳米生物材料来讲。例如,现在人们还不了解不同纳米生物材料在生物体内的分布、蓄积、排泄特性,也不了解不同纳米生物材料是如何与各种细胞相互作用的。因此,对纳米生物材料毒理学的研究还基本上是空白,需要更加细致的研究。 通过对纳米生物材料安全性的研究,可以了解、掌握各种纳米生物材料的毒理学数据,为相关管理机构对纳米生物材料及其产品进行风险管理提供理论依据和数据基础;使管理机构可以制定科学有效的管理办法来规范纳米医用产品的使用、处理,这一方面可以增强消费者对相关纳米医用产品的使用信心,扩大纳米医用产品的使用市场;另一方面,可以增强国家产业政策决策机构对纳米医用产业的信心,增大对纳米产业政策倾斜和资金投入,促进纳米医用产业的发展。另

相关文档
最新文档