船舶设计

船舶设计
船舶设计

第一章

船舶设计原理是在船舶原理·船体结构与强度·造船工艺学·船舶制图等课程的基础上,在长期的船舶设计,建造与营运的实践中总结出来的一门工程设计理论课,它为实船设计作了理论上的准备和指导。

设计人员在设计中必须注意以下几点:1认真贯彻国家的技术政策;2熟悉并遵守各项规范和公约;3认真做好调查研究;4注重在借鉴与继承的基础上创新;5采用逐步近似的方法,逐步深化,最终使设计结果接近最佳组合。设计的新船应达到以下要求:适用·经济·安全可靠·美观。

初步设计,技术设计,施工设计和完工设计等四个阶段。

初步设计主要任务:要确定与船舶技术经济性能关系最大的一些项目,如船的主尺度和排水量·船体型线·建筑形式及总体布置·基础结构·主辅机及主要装置系统。

试航航速指满载试航航速,即主机发出的额定功率的新船在静水中,不超过三级风·二级浪时满载试航所测得的航速。服务航速:平时营运所使用的航速。

续航力:在规定的航速和主机功率下,船上所带的燃油可供船连续航行的距离或航行的时间。自持力:指船上所带淡水·食品等能供人员在海上维持的天数。

设计工作方法:认真做好调查研究;注重在借鉴与继承的基础上创新;逐步近似。

第二章

船舶设计的基本要求是(1)使船舶按预定状态浮在水面(2)使设计船满足预订载重量(3)使设计船满足任务书规定的各项性能要求。

载重量是指船员及其行李,货物旅客及其行李,燃油、滑油及炉水,食品淡水备品及其供应品。

通常取四种典型载况即:满载出港──设计排水量状态;满载到港──这时船上的油水等消耗品重量规定为设计状态储备量的10%;压载出港──船上不装载货物,但有所需的压载水,油水储备量为设计状态之值;压载到港──船上不装载货物,但有所需的压载水,油水为其总储备量的10%。

空载排水量是指新船竣工时的排水量。

满载排水量是指船舶装载了预定的全部载重量,这种载况称为满载排水量。它是船舶设计时决定主要要素的出发点,因此也叫做设计排水量。

压载排水量:一般货船在无货空放航行时,通常都必须加载一定数量的压载水便保证船舶在空放航行时的适航性能。

重量重心估算的重要性:准确与否直接影响设计船的航行性能与经济性。重量估算过轻则完工实际重量大于计算重量,实际吃水大于设计吃水。新船不能在预定的航线上航行或必须减载航行,船舶的干舷减小,储备浮力减小,船舶的大倾角稳性和抗沉性难以满足,甲板容易上浪,结构也可能不满足要求。重量估算过重则船舶的主尺度势必偏大,船舶建造所需的原材料与工时费增加,经济性降低,实际吃水小于设计吃水,螺旋桨有可能露出水面而影响推进效率,海上航行时耐波性可能変差。重心纵向位置计算过大,则是船将会出现较大的纵倾,影响船舶的浮态、快速性与耐波性。

重量重心计算的特点:贯穿于整个设计过程的始终;逐步近似。

影响船体钢料重量的主要因素:主尺度(其中影响最大的是L,其次是B,d和C B 对W H的影响较小,而D的影响程度要根据具体情况来分析),布置特征,船级、规范和航区,结构材料。

舾装部分重量的特点是:项目繁多,且各自独立,规律性差。为了估算舾装重量,通常将舾装重量分成以下四部分。与船的排水量 和主尺度有关的重量──如船

舶设备与系统,包括锚、舵、系泊、消防、管系、油漆等。与船员或旅客人数有关的重量──如舱室木作(衬板、天花板、甲板敷料)、家俱、卫生设备、救生设备等。与船的使用特点有关的重量──如货船上的起货设备及舱口盖,拖船上的拖带设备等。特殊项目重量──如减摇装置,侧向推进装置等。

机电设备主要包括主机、辅机、轴系、动力管系(也有包括船体管系)、电气设备等项。

固定压载的作用:降低重心提高稳性;增加重量加大吃水;调整纵倾。

第三章

船舶容量是船内容积与甲板面积的总称。

货物的积载因数是每吨货物装船时所占据的货舱容积,以Uc表示。积载因数小的货物如铁矿石、钢材、砂等称为重货,重货对船舶舱容要求低;积载因数大的货物如棉纱、黄麻、布匹等为轻质货,轻质货对船舶舱容要求高。

型容积系指按型线图计算所得的舱内容积。实际上,船舱内总是含有骨架的,而舱内骨架、护条、垫板等总要占据一定的空间,当货物、油、水等装载时扣除掉这部分空间后所剩余的有效装载容积称为净容积;舱内净容积与型容积之比称为型容积利用系数也称为折扣系数,Kc表示。

载运时用箱、桶或袋子包装起来的称为包装货;如水果、食品、家具、五金、酒、油类面粉、水泥食糖。另一类货物如矿石、煤炭、谷物、散装水泥等,运输时不用包装,而直接装在货舱里的称为散装货。

装载压载水的理由:保证必要的浮态;空载返航过程中,油、水和备品的消耗,使船舶重心提高,初稳性高度GM降低。为保证稳性,也须加压载水。

增加货舱容积的措施:加大L和B;减小La、Lf和Hd;减小Lm;增加D。

容量校核一方面是按设计任务书的要求估算设计船所需的容积,另一方面是按设计船舶的主尺度与总布置估算其实有的容积,通过所需容积与实际容积的比较来校核设计船主尺度方案与总布置格局的可行性与合理性。其方法有:按照全船容量方程式分别估算船主体实有容积及各类舱室所需总容积,按照货舱容量方程式分别估算设计船舱室区段实有容积与载重预订的货舱所需的货舱容积。

容量图表示全船主体各舱室容积的大小及分布。提供各液体舱的容积和容积形心随液面高度变化的曲线即为舱容要素曲线。

围蔽处所是指由船壳、固定的货可移动的隔板或舱壁,甲板或盖板所围成的处所,但由永久的或可移动的处所除外。

免除处所是指一端敞开,开口宽度大于0.9B的处所。

船舶登记吨位(RT)指按船籍国制订的《船舶登记吨位丈量规范》对船内容积进行丈量和计算所得的登记吨数。按摩逊法丈量的船舶吨位有两种:一种是量计除“免除处所”以为的全船所有“围蔽处所”所得的吨位叫做总吨位GT;另一种是从总吨位中减除船员舱室和机舱处所等非营利容积后所余的容积称为净吨位NT。总吨位GT主要用于:表示运输船的大小;统计世界或一个国家或一个公司的船舶拥有量;计算造船或租船费用;作为执行公约规则和配备安全设施的依据;有些国家用作造船补助金,航海津贴,以至船员工资等的计算依据;船舶检验、登记丈量的收费标准;作为引水费、拖船费、浮筒费和进坞费等的收费标准。净吨位NT主要用于:吨钞税、港口费、灯塔费、码头费和代理费等的计算标准;计算运河的通行费。船舶设计中的注意点:注意控制吨位档次;注意国际航线上的吨位差别。

第四章

设计中保证快速性的措施:选取合适的尺度;选用合适的、优秀的节能船型及节能推进装置;对于高速小艇应尽量减小排水量,如对材料、结构形式、机电设备等应精心选择,以控制空船重量;采用低转速、大直径的螺旋桨,以获得较高的敞水效率;减小附体阻力,如比龙骨应沿流线方向设置,首侧推装置的开孔位置、空口形状应设计合理,其他附体都应与船体有良好的水动力配合;减小迎面受风面积,以减小空气阻力。

初稳性下限值是保证船的安全和使用要求所需的最低初稳性值。影响初稳性的因素分析:型宽B及B|T;水线面系数Cw;型深D。

大倾角稳性指船在外力作用(较大的风和浪作用)下,横倾角超过10度—15度时的稳性,它涉及到船在航行中能抗多达风浪或横倾力矩而不倾覆。

船舱分舱及破舱(抗沉性)是船舶在一舱或数舱破损进水后,仍能保持一定浮性和稳性的能力,它是船舶的一项重要性能。船舶耐波性指船舶在风浪中遭受外力扰动而产生各种摇摆运动,以及抨击、上浪、失速、飞车等时,仍能维持一定航速在水面上安全航行的性能。甲板淹湿性指当船舶在波浪中的纵摇和升沉异常激烈时,在船首柱处,船与波浪相对运动的幅值大于船首柱处的干舷,波浪涌上甲板的现象。主要要素对甲板淹湿性的影响,当船首干舷一定时可得如下结论:甲板淹湿的概率随方形系数Cb的增大而减小;甲板淹湿的概率随船长的增加而减小;甲板淹湿概率随航速的增加而增加。

抨击:由于严重的纵摇和垂荡,船体与风浪之间产生猛烈的局部冲击现象。

上浪:船舶在风浪中剧烈时风浪涌上甲板的现象。

失速是指推进动力装置功率调定后,由于剧烈的摇荡时船舶较静水中航行时航速的降低值。改善失速:一是减小船在风浪中的阻力的增加;二是改善在恶劣海况中船的运动,以求被迫减速的幅度不大。

最小干舷是指按《载重线规范》的有关规定计算的最小值。其主要从两方面考虑:减小甲板上浪和保证一定的储备浮力。船舶最小干舷指船中处载重线的距离,即F=D-T+t,t为甲板边板厚度。

最小干舷船(对于货船如载运积载因数小Uc小于 1.3的重货,可按《载重线规范》来决定最小干舷,从而确定出船的型深D,这种船称为最小干舷船,其型深D既满足容积要求,也符合最小干舷的要求)

富裕干舷船(型深D需根据舱容确定,即D大于Fx+T,船的实际干舷大于最小干舷,这种船称为富裕干舷船)

变吃水船(对于富裕干舷船,在设计时可根据规范核算最小干舷,求得最大装载吃水Tmax,并使船体结构符合Tmax的要求,此时Tmax又称结构吃水。这样在一般情况下,船装载至满载吃水,而在装重货时,船吃水达到Tmax,根据这种要求设计的船称为变吃水船。显然这种船使用灵活方便在经济上也是有利的。

船舶操纵性包括以下三个方面:航向稳定性、回转性和转首性。设计中要考虑的因素:a舵、螺旋桨、与船体尾机型线要有很好的配合b受航道限制时,应特别注意船的回转性能,选取较大的船长和较大的舵面积c推、托船都要求船的回转性能好以利灵活作业,故也应采用较短的船长和较大的舵叶面积系数d有的船,为更好地控制船的航向和缩短靠离码头的时间,或节约拖船费,应分析是否有采用首部侧推装置的必要性e从航向稳定性看,L/B小、Cb及B/T大的船是不利的f肥大性船可能存在操作性异常现象,即在小舵角下船可能是稳定的,也可能是不稳定的。

第五章

在保证航行安全的前提下,营运最经济的船型就是最佳船型。

进入船舶基础经济数据计算的前提是:依据船舶设计任务书给定了船舶设计载重量·主机类型与功率以及设计服务航速;通过调研,获得了预定航线的有关营运·经济数据;通过初步论证,拟定了船舶主尺度要素。

船价:是设计与建造一艘新船所花的总投资,包括各种材料·设备费·加工工时费及其他费用。

年营运成本,是船舶一年内各种成本的总和。(船员费用·与船价相关的费用·燃润料费·港口费和其他费用)

运输船舶型技术对经济性的影响可得出如下结论:远程船·装卸效率高的船适于采用大吨位,反之,近程·装卸效率低的船一般不宜采用大吨位;给定航线与航速,一般可求得一个最佳船舶吨位;提高装卸效率,有利于经济性,尤其对短程·较大吨位船经济效果更显著;远程船舶·装卸效率高的船舶可适当增加航速,反之宜适当减小航速;给定航线与吨位,一般可求得一个最佳航速。

船型论证的步骤:调查研究;设立船型方案;船型方案的技术·营运·经济性计算;选取最佳船型;敏感性分析;提出建议方案编制船舶设计技术任务书。

第六章

船舶的排水量、主要尺度以及船型系数统称为船舶主要要素。

确定船舶主要要素有三个显著特点:问题的综合性,求解的灵活性和多解性、求解过程的逐步近似。

选L时应考虑的因素:a主尺度限制b浮力c快速性d总布置e经济性f耐波性g操作性h抗沉性选B时应考虑因素:a主尺度限制b稳性与横摇c总布置d浮力和经济性e快速性选T时应考虑:a主尺度限制b浮力c快速性与经济性选D时应考虑:a舱容与总布置b甲板上狼与抗沉性c稳性d强度与经济性选Cb时应考虑:a浮力b快速性与耐波性c经济性d 总布置

载重型船:指载重量与排水量的比值较大,较稳定的船舶,设计这类船时DW是主要矛盾,其主尺度确定往往从重力与浮力平衡入手。

布置地位型船:指为了布置各种用途的舱室需要较大舱容或甲板面积的船舶,这类船舶的容量是主要矛盾,故也称为容积型船,其主尺度确定通常从总布置入手。

载重型船排水量的估算方法主要有两种:载重量系数法和诺曼系数法。

诺曼系数N表示载重量增加1吨时船舶排水量的增量。由于船舶排水量=LW+DW,所以,N 越大表示载重量增加时其LW的增加越多。

诺曼系数N的数值特点:a恒有N大于1,因为公式中方括号内的数值恒小于1,所以,如果载重量增加1吨,则排水量必须增加1吨以上。B N的大小随船型而异,载重型船的N较小,而布置地位型船的N较大。C N的大小随所改变的主尺度项目而异。

布置地位型船的主尺度主要取决于所需的船主体容积及上层建筑甲板面积。

主尺度选优:借助计算机进行船舶主尺度方案的技术经济分析,可以设立足够多的方案,在很短的时间内由计算机完成大量繁复的设计计算工作,获得各方案的技术、营运和经济指标,通过综合评判求得最优的主尺度方案。

优化船舶主尺度的方法有三种:变值法(亦称网格法或参数分析法)、最优化方法、正交设计法。

第七章

型线设计应注意以下几个方面:(1)保证良好的航海性能。(2)考虑总布置的要求。(3)考虑船体结构的合理性和工艺性。

绘制型线图的方法:改造母型法,自行绘制法,系列型线,数学型线。

横剖面面积曲线具有以下特征:(1)横剖面面积曲线下的面积相当于船的型排水体积(▽),(2)曲线下面积的丰满度系数等于船的纵向棱形系数C P(C P=▽/(A M·L PP));(3)面积形心的纵向位置相当于船的浮心纵向位置X B;(4)曲线的最大纵坐标值代表最大横剖面面积。(5)丰满船的横剖面面积曲线的中部有一平行段,称为船的平行中体,长度为L P,平行中体前、后的两段长度分别称为进流段长L E和去流段长L R;方形系数小的船一般都没有平行中体,最大横剖面常位于船中(MS)之后。

浮心纵向位置X B的选择主要从快速性上有利的最佳浮心位置和与总布置所确定的重心纵向位置相配合这二个方面来考虑

第八章

在总布置设计时,在注意各类船舶布置的特殊要求的同时,都应遵循下列的基本原则:(1)最大限度地满足和提高船的使用效能,这是考虑问题的基本出发点。例如:运输船舶首先应合理利用舱容,提高装卸效率,确保运输质量,提高运输能力;(2)客船则应合理分区和布置客舱,保证旅客的舒适、安全与方便。保证船舶具有良好的航海性能。(3)总布置设计时应采取适当的措施保证船舶有适宜的浮态和稳性,良好的耐波性和驾驶视野等。注意船体结构的合理性和工艺性。总布置中应注意重量的分布,力求减小纵总弯矩和剪力。避免主要结构的不连续性和纵向构件截面的突变,改善应力集中。各种舱壁、围壁、支柱等的设置应充分考虑它们对结构强度、振动以及施工的影响。满足法规和规范的要求。例如消防法规对防火的要求,破舱稳性对分舱的要求,救生设备的布置要求等。尽力搞好外部造型和内部装潢。(6)在经济、适用的前提下,充分运用建筑美学的手法于设计之中,给人以舒适和美感,要为改善船员和旅客的工作和生活质量创造条件。

尾机型的优点提高货船的使用效能和经济效益非常有利缩短轴系长度,提高轴系效率,降低造价,且不需设轴隧而损失舱容,并有利于结构的连续性和工艺性;缺点是浮态调整比较困难,人员的舒适性较差。

双层底的作用是为了保障船底触礁或搁浅是船舶的不沉性,同时可作为燃油、淡水储备仓或压载水舱。其优点是:对内底起保护作用;便于人员的施工满足管路安装、检修的要求;计及油水舱容积上的需求。

上层建筑是指上甲板以上各种围蔽建筑物的统称。上层建筑分船楼和甲板室两种船楼是指在上甲板上伸至两舷或舷边的距离小于4%船宽的上层建筑。优点是增加了内部容积和有利于舱室布置;如果船楼的结构强度和封闭条件符合载重线公约关于封闭上层建筑的条件时,船楼作为储备浮力对稳性有一定的贡献,从而有助于提高船的安全性。

确定上层建筑尺度应考虑的因素有:(1)甲板面积要求(2)浮态与稳性(3)驾驶视线(4)其他尺度限制因素。

从驾驶员眼睛到船首遮挡物(如首端舷墙顶点)所引直线与水面的交点到首柱的区域称为“盲区”。货船的盲区在满载状态约为1.25L PP左右,压载时约为2L PP。救生设备包括救生艇、救生筏、救助艇和个人救生设备(救生圈、救生衣、救生服及保温用具)。

救生艇的布置一般注意的有:(1)救生艇的布置应保证紧急时立即可用。(2)救生艇存放处所应宽敞,交通方便,以便等艇人员迅速到达并登艇。(3)救生艇沿B方向不突出于舷外,沿L方向,距首端至少L/3,艇尾距推进器至少1.5倍桨距,以免艇进入水中被螺旋桨水流吸入(4)机舱部分舷外排水孔应尽可能避开

艇的降落位置,否则应设有盖罩,以防排水进入救生艇内。

第十章

船舶节能研究主要在两个方面:节能船型与节能技术研究,旨在降低船型阻力·提高推进效率和回收桨后尾流的能量;从主机与动力装置入手,提高热效率·降低单位功率的耗油量以及余热利用等。

节能船型:在相同的功能下所需功率比常规船型更小的船型(即阻力小,推进率高的船型)。本节依次讲解平头涡尾船型·双尾与双尾鳍船型·不对称尾船型和隧道尾船。

基于三维建模的船舶管系设计

基于三维建模的船舶管系设计 摘要:三维建模技术的崛起以及虚拟现实技术的出现,为生产设计和创新提供了一种非常好的工作平台。设计人员可以直接从三维概念和构思入手,通过模型仿真来分析和评价设计方案的可行性与可靠性。本文介绍了NUPAS-CADMA TIC在船舶管系设计中的应用,并以一个实际案例阐述了三维建模的整个流程,同时探究了其存在的必要性与优势。 关键字:三维建模模型仿真管系设计优势 引言 船舶管系的设计, 首先必须进行原理设计, 然后根据原理图进行管系的布置设计。管系原理图没有说明管系的具体位置, 因此利用原理图无法进行管系的制造及安装。传统的管子制造是按“样棒弯管”法进行。由于该方法制造的管子安装质量差、劳动强度大、船舶建造周期长,所以现在已不再使用。现在的管子制作都是通过计算机布置管路、放样及出零件图, 然后在车间按零件图预制好。 船舶管系三维建模国内外现状 随着科学技术的发展,船舶设计手段不断更新,当今船舶的三维建模设计应用越来越普遍。船舶三维建模技术是一种新型的船舶设计手段,它是对传统的以二维平面设计(AUTOCAD 为平台)为主的船舶管系放样方式的突破。改变了传统管系放样模式,将计算机三维建模技术与现代船舶管系放样紧密结合,能够准确的反应设计者的意图,直观真实地呈现在设计者面前,使得船舶管系放样与建造有机地结合在一起,对于减少劳动强度,防止返工现象是一种行之有效的方法,从而达到提高生产效率和经济效益,减少建造周期的目的[1]。 目前三维建模在国外的发展要领先于国内。在国外,三维技术已经是比较成熟的技术,但是在国内,由于知识产权等因素的制约,加上起步较晚,国内的三维软件与国际水平还有一定的差距,目前国际常用船舶设计软件主要有Tribon 、NUPAS 、NAPA、Catia 等,国内的软件有东欣、沪东等,从上世纪90 年代起,上海沪东开始研发自己的三维放样软件,经过十几年的发展,已经形成了较为完善的系统,同时被国内很多厂家采用,目前在国内应用最广泛的是Tribon[2]。下面就三维建模软件NUPAS-CADMATIC为例,从建模到输出管系透视图ISOS 和管道图SPOOLS,如何识别图纸探讨三维建模在船舶管系设计中的应用与优势。

船舶设计基础B

船舶设计基础 一、基本概念(20分,每题4分) 1、吃水d 2、型深D 3、续航力 4、休止角 5、货物积载因数 二、简答题(20分,每题5分) 1、尺度系数L/B、B/d代表什么? 其值对船舶的哪些性能有影响? 2、船舶设计的基本要求? 3、气象衡准 4、型线设计的主要方法有哪些? 三、论述题(30分,每题10分) 1、总布置设计应遵循的一般原则? 2、选择主尺度时考虑的主要因素(船长L)? 3、解释防火等级中A-30与B-30的含义。 四、计算题(30分) 某船静水力值如下表所示,请计算该船在排水量△=186.9t,重心纵向座标Xg=—0.28m时艏艉吃水值。(该设计船水线长60m,宽8m) 吃水(m)排水量(t)浮心纵坐标(m)漂心纵坐标(m)每厘米纵倾力矩(t·m) 0.92177.550-1.5 11.23 0.94182.220-1.511.29 0.96186.90-1.511.35 0.98191.590-1.511.4 1196.290-1.5 11.46 1.02200.990-1.511.52 1.04205.710-1.511.57 1.06210.440-1.511.63 1.08215.180-1.5 11.68 1.1219.930-1.511.74

一、基本概念(20分,每题4分) 1、吃水d 在船长中点处由平板龙骨上缘量至满载水线的垂直距离。 2、型深D 在船长中点处由平板龙骨上缘量至上层连续甲板横梁上缘的垂直距离。 3、续航力 在规定的航速与主机功率下,船上所带燃料储备量可供连续航行的距离 4、休止角 休止角—货物由于自身的摩擦产生的堆积角度。 5、货物积载因数 积载因数—每吨货物所需的货舱容积。 二、简答题(20分,每题5分) 1、尺度系数L/B、B/d代表什么? 其值对船舶的哪些性能有影响? 长宽比,其值与船舶快速性有关。 宽吃水比,其值与船舶稳性、操纵性、快速性有关。 2、船舶设计的基本要求? 适用性:较好的完成规定的使用任务;安全性:满足规范等对船舶安全性的有关规定;经济性:在满足安全、使用性的前提下,尽可能降低造价、航运成本、维修成本;美观。 3、气象衡准 也称突风和横摇衡准,该衡准规定船舶所受风浪等外力,计算出倾侧力矩与船舶的复原力矩如果复原力矩大于等于倾侧力矩,则认为船舶满足稳性要求。 4、型线设计的主要方法有哪些? 改造母型法、自行设计法、数学船型法 三、论述题(30分,每题10分) 1、总布置设计应遵循的一般原则? 提高船舶的使用性能,对船舶安全性能、航海性能、结构性能的把握,结构的合理性,便于建造、维修等,造型美观、大方。 2、选择主尺度时考虑的主要因素(船长L)? 阻力影响;使用条件建造条件的影响;总布置要求;操纵性、耐波性、抗沉性的影响;重量和造价影响;浮力要求。 3、解释防火等级中A-30与B-30的含义。 由钢或其他等效材料制造、有适当的防挠加强、应用认可的不然材料,在30分钟内其背火面的平均温度较初始温度升高不超过140o C,且包括任何接头在内的任何一点温度较初始温度升高不超过180o C。 由认可的不然材料制成、其具有的隔热值使之在30分钟内其背火面的平均温度较初始温度升高不超过140o C,且包括任何接头在内的任何一点温度较初始温度升高不超过225o C。 四、计算题(30分) 某船静水力值如下表所示,请计算该船在排水量△=186.9t,重心纵向座标Xg=—0.28m时艏艉吃水值。(该设计船水线长60m,宽8m) 吃水(m)排水量(t)浮心纵坐标(m)漂心纵坐标(m)每厘米纵倾力矩(t·m)

常用船舶设计软件对比

常用船舶设计软件对比 目前,国际上常用的船舶设计软件有如下几种: Tribon Tribon 系统是由瑞典KCS(Kockums Computer System AB)公司设计开发的一套用于辅助船舶设计与建造计算机软件集成系统。Tribon集 CAD/CAM(计算机辅助设计与制造)与MIS(信息集成)于一体,并覆盖了船体、管子、电缆、舱室、涂装等各个专业的一个专家系统。 总体上Tribon系统可分为船体设计、舾装设计、系统管理及维护三大部分。该软件是一个出色的集成系统,也是一个庞大的系统,它具有许多其他系统所不具备的优点。Tribon推出的新版本较过去添加了很多新的功能,如在设备选择、合同设计等方面的功能。我国使用该设计软件系统的公司有:广船国际股份有限公司、江南造船(集团)有限公司等。对我国的用户来说,该软件存在的缺点有:数据开放性不够,数据库系统自成一套与常用的数据库缺少接口等。 TRIBON的第一个软件包是TRIBON Solution。在2004 TRIBON Solution 被AVEVA集团收购,M3是tribon的最新版本。它包括初始设计模块,基本设计,船体建模,船舶配件模块,装配计划和工件准备模块。运行于windows系统,在造船工业排他性发展。(注:言下之意是说tribon和其他程序的接口、兼容等方面过于保守)

vantage marine是AVEVA基于已有着名的PDMS(工厂设计管理系统)发展的新产品。vantage marine的意义在于它是PDMS配件模块和tribonM3船体和基本应用程序的联合产物。 NAPA NAPA 公司首次在船舶设计软件中采用3D技术,并在船舶初步设计和基本设计阶段提出了3D NAPA船舶模型的概念,这一概念己得到广泛认同。利用NAPA Steel设计师们可以在较短时间内迅速完成结构初步设计和重量、成本计算,生成可供送审的技术文件和图样,并根据需要生成结构有限元计算所需的网格模型。在NAPA于 2003.1发布的版本中具有的最新的功能之一是提供了许多软件与NAPA Steel之间的接口,比如说Tribon Hull和Nupas-Cadmatic,以及其它一些典型的经常使用的船舶设计系统。其中与Tribon之间的接口可以实现:曲线的转换、表面的转换、图的转换等。 FORAN FORAN 的开发和维护者SENER Ingeniería y Sistemas SA公司成立于1956年,是西班牙最大的私营独资的工程公司。利用50多年的船舶设计经验,SENER保证其最终产品是可信赖的、高效的工具,帮助用户实现其唯一的目标:让船舶的设计和建造更快、更好、更节省。 FORAN软件是一个囊括了船、机、电、涂、舾装各个专业的强大设计软件。在船舶设计和建造中,从开始的方案设计、初步设计和送审设计

船舶总体设计任务书

一、总体 1、概述 本船为单桨、单舵、长艏楼中型渔政船。作为我国沿海各省市渔政执法公夯船,其主要任务是担负我国200海里专属经济区管理任务和渔业法所赋予的渔政渔港监督任务。本船性能指标,结构强度,设备配备均满足CCS对无限航区船舶的要求,并符合有关国际公约的规定。 为适应渔政船的特殊使命,有效进行海上监督检查,维护海上渔业生产秩序,执行海难救助和登临、紧追违规船舶的任务,保证本船具有优良的快速性、操纵性和适航性等各项船舶性能指标是本船设计的关键。本船双机并车设可调螺距桨,可适应巡航和追踪等不同航速的要求,在各种航速情况下均可获得最佳的机桨匹配。本船设减摇鳍和舭龙骨改善了适航性能,增强了恶劣海况下有效执行任务的能力。 作为代表国家行使渔业执法权力的专用船舶,本船在外观建筑造型上进行了精心设计,力求体现美观、威武、壮重的风格。全船舱室布置既考虑合理利用船舶空间,又充分顾及船上人员工作便利有效,居住舒适实用。全船主甲板以上设三层甲板室,驾驶室具有良好的环视视野,以适应执行任务时高度警戒能力的要求。 本船各类船舶设备和特种功能设备的配备和选型以满足设计任务书要求和规范规定为原则,注重设备先进性、可靠性、合理性和经济性的有机结合。 2、主尺度要素 总长55.00 m 垂线间长49.20 m 型宽 7.80 m 型深 3.90 m

设计吃水 3.00 m(原始尾纵倾0.5m) 排水量 599 t 甲板间高 主甲板至艏楼甲板 2.30 m 艏楼甲板至驾驶甲板 2.30 m 驾驶甲板至罗径甲板 2.30 m 定员(床位) 24 人 3、主要技术性能 (1) 航速 主机功率1250kW(1700PS)×2 在风力不超过蒲氏3级,海浪不超过2级,潮流平稳、深水海区试航。 最大持力航速17.0 kn 经济航速(双机70% MCR) 16.0 kn (2) 稳性 满足中华人民共和国船舶检验局《船舶与海上设施法定检验技术规则非国际航行海船法定检验技术规则》(2004)对远海航区船舶的完整稳性要求。 (3) 干舷 满足中华人民共和国船舶检验局《船舶与海上设施法定检验规则非国际航行海船法定检验技术规则》(2004)B型船舶的规定。(4) 适航性 在5级海况下,平均剩余横摇角不大于5o。 (5) 续航力 2000海里(按经济航速计算)。 (6) 自持力30天

船舶三维模型参数化设计技术开发及应用研究

船舶三维模型参数化设计技术开发及应用 强兆新 摘要:本文介绍了船舶三维模型参数化设计中船型生成系统、船舶参数化分舱和稳性计算系统、船体结构参数化生成、有限元模型快速生成系统、船舶模型在各系统间无缝传递的实现等功能。给出了船舶三维模型参数化设计的应用案例,并展望其对我国数字化造船起到的推动作用及积极意义。 关键词:三维模型,参数化设计,技术开发 Ship 3D Parametric Design Technology Development and Application QIANG Zhao-xin (China Ship Design & Research Center Co., Ltd, Beijing 100081, China) Abstract: In this paper, 3D model of the ship design parameters of the system to generate ship, ship parameters of the subdivision and stability calculation, the parameters of the hull structure of production, rapid finite element model generation systems, ships models in the seamless delivery systems such as the realization of the Function. Gives three-dimensional model of the ship design parameters of the application of the case and its outlook on China's Digital Shipbuilding and play a role in promoting positive. Key words: 3D model, Parametric Design, Technology Development 1 引言 三维参数化设计是提高产品设计质量和效率的重要手段,目前已在航空、航天、汽车工业等行业的研发设计全过程中得到广泛应用。由于船舶产品的相对复杂性,其三维参数化设计的应用程度相对落后。虽然目前国内各大造船企业均采用了如TRIBON、CADDS5等软件来进行三维的生产设计,在提高设计质量上取得了显著的成效,然而这仅仅是在设计后期三维设计技术的基本应用。为减少重复劳动和保证设计的一致性和连贯性,船舶三维设计技术正在向详细设计拓展。 “船舶三维模型参数化设计技术应用开发研究”科研项目是国防科工委批准的国家重点科技攻关项目,旨在对现有三维设计系统进行消化、吸收的基础上,通过技术引进、自主开发、二次开发等手段,对三维设计系统进行整合,将船舶三维设计技术向详细设计拓展。通过一个多专业共用的参数化模型,实现船舶设计的并行协同和众多设备、系统的集

船舶结构设计基础作业1

1波浪包括哪些要素?并叙述在实际计算时各个波浪要素的选取方法。 答:波浪要素包括波形、波长与波高。 在实际计算时,波形为坦谷波, 取计算波长等于船长,波高随船长变化,并且规定按波峰在船舯和波谷在船舯两种典型状态进行计算。 2试简述浮力曲线的绘制方法 答:浮力曲线是指船舶在某一装载状态下(一般为正常排水量状态),浮力沿船长分布状况的曲线。浮力曲线的纵坐标表示作用在船体梁上单位长度的浮力值,其与纵向坐标轴所围的面积等于作用在船体上的浮力,该面积的形心纵向坐标即为浮心的纵向位置。通常根据邦戎曲线求得浮力曲线。下 . 图为邦戎曲线及获得的浮力曲线 浮态第一次近似计算 根据静水力曲线去确定相应与给定排水量时的平均吃水dm、浮心纵向坐标xb、水线面漂心坐标xf 以及纵稳心半径R。 由于实船的R远大于KC,所以 确定了首尾吃水之后,利用邦戎曲线求出对应于该吃水线时的浮力分布,同时计算出总浮力及浮心纵向坐标。如果求得的这两个数值不满足精度要求,则应作第2次近似计算。 浮态第二次近似计算 1

A-水线面面积 若浮心与重心的纵向坐标之差不超过船长L 的0.1%,排水量与给定的船舶重量之差不超过排水量的0.5%,则认为调整好了,由此产生的误差不超过5%M max ,应根据最后一次确定的首尾吃水求出浮 力分布曲线。 3若被换算构件的剖面积为ai ,其应力为σi ,弹性模量为Ei ;与其等效的基本材料的应力为σ,弹性模量为E ,根据变形相等且承受同样的力P ,则与其等效的基本材料的剖面积为a 为多少? 答:aE P E a P E E i i i i ====εσσε或 所以E E a a i i ?= 4按照纵向构件在传递载荷过程中产生的应力种类和数目,将纵向强力构件可分为哪几类? 答:只承受总纵弯曲的纵向构件,称为第一类构件,如不计甲板横荷重的上甲板纵向构件。同时承受总纵弯曲和板架弯曲的纵向构件,称为第二类构件,如船底纵桁、内底板。同时承受总纵弯曲、板架弯曲及纵骨弯曲的纵向构件,或者同时承受总纵弯曲、板架弯曲及板格弯曲(横骨架式)的纵向构件,称为第三类构件,如纵骨架式中的船底纵骨或横骨架式中的船底板。同时承受总纵弯曲、板架弯曲、纵骨弯曲及板格弯曲的纵向构件,称为第四类构件,如纵骨架式中的船底板。 5已知纵骨架式船底外板的板架弯曲应力为σ2=+-300, 欧拉应力为σE=800 总纵弯曲应力为σ1=-1000, 试计算该板的折减系数φ 答: 1.11000 30080012=+=+=σσσ?E 实取1=? 5.0100030080012=-=-= σσσ?E 实取5.0=?

船舶设计基础知识(轮机)

船舶轮机设计基础知识 服务对象:在校大学生及刚入行那不久的船舶技术设计人员 概述: 作为一名船舶专业的人员在从事这方面的工作时需要储备好以下知识:船舶专业基础、船舶英语、船舶规范。 船舶基础知识就是在平常的课堂上、船厂参观实习及阅读专业书籍。对于大多数的人来说课堂上了解到的基本上就是自己整个船舶专业知识的全部了,有这样的基础储备也不错。 船舶英语:沟通是桥梁,不能沟通就无法进入下一步的工作并且会让自己在船检船东的沟通或谈判中处于极不利的位置。国内的船大多数都是国外船东监造的,船入级一般都是如国外船级社,主要的设备资料也基本上都是英文。在工作中避免不了需要用到英文,专业英语好得到的机会也是很多的。 船舶规范:作为在校生或是刚入行的人来说,对船舶规范因为没有经历过很难有很深刻的印象但又不得不去了解它。它是今后你碰到问题为了减少造船成本说服船东、船检的主要工具。如果不了解船舶规范就等于没有了造船的工具。刚入行前对规范规则需要有些了解,了解的越多越好。船舶规范知识很广泛,边学便用会伴随一个船人的始终。上面提到的三个方面在实际的工作中会有深刻的了解,在校如果能打好基础毕业后不管船舶市场像现在这么差都将是前途一片光明,这一点是肯定的。对于船舶学子必须要有这样的一个信心。 具体轮机专业方面:

1.规格书:船东需要造船会起草或让专业的咨询公司代理起草一份船舶规格书,现在船舶市场已经很成熟绝大多数的规格书都有一些范本,一般只需要船东根据自己的实际需要进行一些修改即可,船舶规格书都是作为商务合同的附件。一旦商务合同生效,规格书就是船舶设计或技术人员从事工作的基础,一般在160到200页左右用的都是英文。规格书主要分为概述、结构、舾装、轮机和电气五个方面,开展项目前必须要认认真真的将规格书看完,需要注意的就做好笔记。作为轮机专业人员概述及轮机需要仔仔细细看完看懂,其他专业的也需要认真看下,有时候船东习惯不一样可能在电气或是舾装里面也有些轮机方面需注意的东西。规格书不熟悉会直接影响设备订货和图纸审核,出现失误就需要拿钱和时间去弥补。船舶不同于一般的制造业,出现失误造成的损失动不动就是几千几万几十万还有买不到的建造时间,要命的是大大小小的失误在国内的造船行业都是避免不了的。如现在船舶市场如此惨淡,作为技术设计人员减少造船成本的最好办法就是认真仔细,如同走钢丝需要时刻提醒自己。入行就这么5年我就见过好几十个因为一个简单的失误造成巨大损失而被公司扫地出门。设计公司稍微好些山高船厂远,作为船舶技术人员尤其在船厂工作是极为考验人的工作。 总之规格书是造船人员的立足之本。 2.熟悉完规格书就需要编号详设图纸目录,一般都会在与设计院谈合同的时候附在合同里面。作为详细设计就是原理性设计,一般是根据母型船,对图纸进行小修小改。将做好的图纸文件给船级社、船东、

船舶设计系统介绍及比较

2012年10月 船舶设计系统介绍

?瑞典KCS公司的Tribon船舶CAD软件?美国PTC公司的CADDS5软件?法国达索公司CATIA ?西班牙Foran ?澳大利亚Maxsurf船舶设计软件 ?加拿大ShipConstructor船舶建造软件? 芬兰纳帕有限公司NAPA船舶设计系统 船舶设计系统概览

专用船舶设计软件系统特点 ?以某船舶设计公司自有系统发展而来 ?仅在船舶行业应用 ?系统集成了该公司对船舶设计方法及业务过程的理解 ?对典型的船舶设计过程尤其是其母公司的产品类型有很好的支持 ?一般将船体信息保存在专用数据库中 ?单一系统覆盖整个船舶设计过程,包括数据管理及CAD环境 ?其CAD环境是为船体定义及渲染服务的,CAD本身的建模功能严格受限于船体的特征类型

?优势 –专业性强 –数据存储一致 ?弱势 –CAD 渲染功能较差–运动仿真功能弱 –开放性差,二次开发受限 – 设计过程受限于软件本身所提供的业务过程及操作方法,不利于设计创新 专用船舶设计软件系统优势与不足

?瑞典KCS 公司的Tribon 船舶CAD 软件?美国PTC 公司的CADDS5软件?西班牙Foran ?澳大利亚Maxsurf 船舶设计软件 ?加拿大ShipConstructor 船舶建造软件? 芬兰纳帕有限公司NAPA 船舶设计系统 专用船舶设计软件系统代表

通用软件系统中的船舶模块组合概述?软件系统本身并不仅仅针对船舶行业 ?软件系统的全部功能是覆盖多个行业所需功能的全部超集 ?针对船舶行业,这些软件系统有相应的一系列模块组织,用于完成船舶行业各过程所需操作,但这些模块自身可能不仅仅限于船舶行业应用 ?通过系统的组合与模块的组合,实现对船舶行业过程的整体性支持 ?几何模型信息存储在软件自身CAD文件中而非数据库中 ?通过与PDM系统的结合,形成对船舶行业整个过程的支持。PDM实现过程管理与数据管理,CAD完成船舶设计建模

使用CATIA对船舶机舱进行三维设计

使用CATIA对船舶机舱进行三维设计 本文应用catia软件尝试设计机舱,展示了catia强大的设计功能。随着 ibm/dassault公司对其功能的不断完善,该软件一定能在船舶制造行业得到更广泛的应用。 1 引言 众所周知,CATIA[1]软件在航天航空、汽车等一些高端技术的制造行业得到非常广泛的应用和取得非常成功的效果。而将CATIA引入造船行业则是直接引用或间接借鉴了CATIA 在航天、航空、汽车等制造行业内的先进成熟技术。这些技术对常规船舶、特别对航母、军舰、豪华游轮、钻井平台等特殊海洋工程平台的设计上有着非常独特的借鉴[1,2]。 CATIA可实现船舶的可视化三维设计。其基本功能可涵盖船舶设计的各个方面,贯穿分析、设计、建造、维护整个船舶产品生命周期。CATIA软件各项模块功能强大、工作模式转换灵活,设计手段丰富简捷,其在船舶机舱三维设计中运用的 基本功能可概括为以下6个方面: 1. 船体结构模型的设计与导入; 2. %26ldquo;制造%26rdquo; 各类真正的三维设备、部件系列实体建模; 3. 舱室三维实体布置; 4. 二维原理图设计及设备、管路三维布置与部件定位; 5. 各类统计汇总报表、加工表单、布置图、安装图的输出; 6. 电子样船。 2 利用CATIA进行船舶的三维设计 CATIA软件的各个模块的运行平台,无缝地集成了基本的通用机械CAD功能与专用的船舶设计CAD功能。在实际进行船舶设计时,用户可根据其具体的设计项目,分门别类地实时切换工作模式( 即船体结构、曲面造型、管系设计、电气电缆设计、风管设计、知识工程、人机工程、零件及装配设计、机械制图、机构仿真、模具设计、钣金设计、物理量计算、干涉检查、强度分析等工作模式 ),灵活机动地采用该工作模式环境中的各种设计手段、方法,因而,用户可最大限度地调用CATIA 软件的各种知识工程资源,同时,亦可构筑自己%26ldquo;个性化%26rdquo;工作模式,在其平台上设置各类工具条,选择合适的图标,补充相应的指令,从而来创造性地完成自己的设计工作。 1. 1船体结构模型的设计与导入 船体结构是进行船舶舱室设计的基础,CATIA软件针对目前船舶制造行业的各种 CAD/CAM/CAE软件的实际应用情况,提供了与这些软件(如:TRIBON / NAPA / Maxsurf / Fastship / AUTOCAD等)的专用或标准接口。这些专用或标准接口,为船舶制造业已有的CAD/CAM/CAE应用软件向其方便灵活地导入数据提供了非常便捷的工具。本文直接读取TRIBON造船集成软件中的*.dxf格式的结构数据,转化、生成在CATIA软件中的船体结构模型,如图一所示。

《船舶设计原理》部分答案

1基本概念: 绿色设计思想:减少物质和能源的消耗,减少有害物质的排放,又要使产品及零部件能够方便的分类回收并再生循环或重新利用。 船舶绿色设计:利用绿色设计基本思想,设计出资源省,能耗低,无污染,效益高的绿色船型。 能效设计指数 试航速度:是指满载时主机在最大持续功率前提下,新船于静,深水中测得的速度。 服务速度:是指船在一定的功率储备下新船满载所能达到的速度。 续航力:一般是指在规定的航速和主机功率情况下,船一次所带的燃油可供连续航行的距离。 自持力:是指船上所带的淡水和食品所能维持的天数。 全新设计法:在没有合适母型船的情况下,往往采用边研究、边试验、边设计的方法 母型设计法:在现有船舶中选取与设计船技术性能相近的优秀船舶作为母型船,并在其基础上,根据设计船的特点,运用基本设计原理有所改进和创新的设计方法。 四新:新技术、新设备、新材料、新工艺 最小干舷船:对载运积载因数小的重货船,其干舷可为最小干舷,并据此来确定型深D ,这类船称为最小干舷船。 富裕干舷船:对载运积载因数大的轻货船,按最小干舷所确定的D ,其舱容往往不能满足货舱容积的要求,因而D 需根据舱容来定,从而实际干舷大于最小干舷,这类船称为富裕干舷船。 结构吃水:如结构按最大装载吃水设计,则此时的吃水称为结构吃水。 出港:到港: 载重型船:运输船舶中,载重量占排水量较大的船舶,如散货船、油船等。这类船对载重量和舱容的要求是确定船舶主尺度是考虑的主要因素。 DWT V E E EEDI ref ?-=节能装置设备消耗

布置型船:船舶主尺度由所需的布置地位决定,而载重量不作为主要因素考虑 的一类船舶。如客船等。 舱容要素曲线:是指液体舱的容积、容积形心垂向和纵向坐标、自由液面对通过其中心纵轴的惯性矩等随液面不同而变化的曲线。 容量方程: 吨位:船舶登记吨位(RT):是指国际船舶吨位丈量公约或船籍国政府制定的 吨位丈量规则核定的吨位,包括总吨位和净吨位。 ⒈总吨位(GT):是以全船围蔽处所的总容积(除去免除处所)来量计,它表征船的大小。 ⒉净吨位(NT):是按船舶能用于营利部分的有效容积来量计,它表征船舶的营利能力。 船舶登记吨RT为与船的载重吨位DW是完全不同的概念。对于同样载重量的船舶,其登记吨位小者经济性要好些。 最佳船长:对应于阻力最小的船长。 经济船长:从造价和营运经济角度出发,对应于阻力稍有增加的较短船长。临界船长:对应于阻力开始显著增加的最短船长。 耐波性:是指船舶在风浪中遭受外力干扰产生各种摇摆运动以及砰击、上浪、失速等情况下,仍能维持一定航速在水面上航行的性能。 抗沉性: 操纵性::是指船舶利用其控制装置来改变或保持其运动速率、姿态和方向的能力。它关系到船的安全性和经济性 快速性:就是航行速度与所需主机功率之间的问题,一是达到规定的航速指标,所需的主机功率小:二是当主机功率给定时,船的航速比较高。 资金时间价值:是指资金随时间变化而产生的资金增值和效益,其计算方法分单利法和复利法。 总现值:船舶(设备)使用期内个年总费用与残值的折现,其值越小越好。平均年度费用(AAC):是指将船舶或设备的初投资在营运期内每年的等额资金会收费用与年营运费用之和,其值越小越好。 必要费率:是指为达到预订的投资收益率单位运量(周转量)所需的收入。

maxsurf的中文使用手册(船舶设计建造软件).

Maxsurf 的中文使用手册 (版权所有) Formation Design Systems Pty Ltd 1984-99 授权与版权 Maxsurf程序 Maxsurf 的使用权作为一个单用户权利由本公司授予购买该软件的用户。本程序不允许同时在一台以上机器上运行,只有在用户保证对所有备份文件拥有所有权时才允许以备份为目的拷贝此程序。 Maxsurf用户手册 1990~1999 Formation Design Systems保留所有权利,未经许可,本出版物的任何部分均不允许以任何形式和任何目的进行复制、传播或翻译。Formation Design Systems保留修订及改进的权利,本出版物仅描述其出版时的内容,并不反映未来产品情况。 责任声明 任何因购买或使用该软件及其资料而造成的特殊、直接、间接的损害,包括但不仅限于服务中止,业务和期望利益的丢失,Formation Design Systems及作者均概不负责。任何Formation Design Systems的子公司,代理商或雇员没有对这些保证进行修改、扩充或增加的权利。

目录 授权与版权 (2) 目录 (3) 有关说明 (4) 第一章简介 (5) 第二章基本原理 (6) 第三章快速入门 (8) 第四章Maxsurf应用 (24) 曲面 (41) 控制点 (54) 参数转化 (78) 数据输出 (79) 第五章Maxsurf 索引 (85) 工具栏 (86) 菜单 (87) 附录A绘图 (101) 附录B数据输出 (103) 附录C曲面算法 (106) 附录D命令键 (111) 附录E平台间的文件传送 (112)

最新船舶设计原理总复习

第一章船舶设计概要 1.船舶设计工作具有哪些特点? 答:(1)必须贯彻系统工程的思想,考虑问题要全面,决策时要统筹兼顾;在总体设计中一定要处理好主要矛盾和次要矛盾的关系,要协调好各部门的工作,既要使船舶的各部分充分发挥自身功能,又要是相互关系达到最佳的配合。 (2)船舶设计的另一个特点是:设计工作是由粗到细、逐步近似、反复迭代完成的。 船舶设计也可以说是一个多参数、多目标、多约束的求解和优化问题。 2.船舶设计有哪些基本要求? (1)适用、经济 (2)安全、可靠 (3)先进、美观 3.新船设计的基本依据是“设计技术任务书”,它反映了船东对新船的主要要求。请问设 计技术任务书通常是如何制定的?运输船舶的设计技术任务书一般包括哪些基本内容? 答:(1)设计技术任务书是用船部门根据需要和可能,经船型的技术经济论证后得出的。 船型的技术经济论证是对不同船型方案的投资规模、经济效益和技术上的可行性进行比较和分析。 (2)一般运输船舶的设计技术任务书包括以下基本内容: 1)航区和航线 海船航区是根据航线离岸距离和风浪情况来划分的。航区不同,对船舶的安全性和配备配置要求不同。我国法规对非国际航行海船的航区划分为远海航区、近海航区、沿海航区、遮蔽航区。 内河船的航区根据不同水系或湖泊的风浪情况划分为A级、B级、C级等。 2)船型 这里的船型是指船舶的类型、甲板层数、机舱部位、首尾形状和其他特征。 3)用途 新船的使用要求,通常给出货运的货物种类和数量以及货物的理化性质和其他要求。 4)船籍和船级 船级是指新船准备入哪个船级社,要求取得什么船级标志,确定设计应满足的规范。 船籍是指在哪国登记注册的船舶,确定新船应遵守的船籍国政府颁布的法定检验规则。 5)动力装置 给出主机和发电机组的类型、台数、燃油品质和推进方式。 6)航速和功率储备 对航速一般给出服务航速(kn,节,海里/小时)。 服务航速是指在一定的功率储备下新船满载能够达到的航速。对拖船通常提出拖带航速下拖力的要求或自由航速的要求。 功率储备是指主机最大持续功率的某一百分数,通常低速机取10%,中速机取15%。 7)续航力和自持力 续航力是指在规定的航速(通常为服务航速)或主机功率下,船上所带的燃料储备量可供连续航行的距离(n mile)。 自持力是指船上所带淡水和食品可供使用的天数。运输船舶不给出自持力时,淡水和食

船舶设计

船舶设计阶段划分:初步设计,技术设计,施工设计,完工设计船舶设计阶段的基本内容:编制设计技术任务书,初步设计,技术设计,施工设计,制定完工文件。制定设计技术任务书之前的论证工作:运输类型,船型论证设计技术任务书:航区、航线,用途,船型,船级,动力装置,航速、续航力、自持力,结构,设备,性能,船员,尺度限制海船航区分为:无限,近海,沿海,遮蔽等航区,内河船舶按照水系分为,A,B,C级航区和J级航段.航速:试航航速,服务航速试航航速V1:一般指满载试航速度,即主机发出额定功率的新船在静深水中,不超过三级风二级浪时满载试航所测得的航速服务航速Vs:指船平时营运所使用的航速。一般取为主机功率的80%~90%时的速度续航力:在规定的航速和主机功率下,船上所带的燃油可供船连续航行的距离或连续航行的时间,留10%的燃油自持力:船上所带的淡水和食物等能供人员在海上维持的天数,也称自给力设计方法——母型改造法母型:与新船在主要方面相似的实船或已设计好的船船长受泊位长度,港域宽度,河道曲率,以及船闸,船坞等的限制船宽受进运河过船闸进船坞的限制吃水受航道和港区的水深限制载重量:包括货物,船员以及行李、旅客及其行李,燃油,滑油以及炉水、食品,淡水,备品及供应品等重量湿重:新船竣工交船时,动力装置管系中有可供主机动车的油和水,这部分重量包含在机电设备重量内,相应的机电设备重量称为湿重。空船排水量:指新竣工交船时的排水量≈Lw满载排水量:船舶装载了预定的全部载重量的载况称为满载,此时的排水量称为满载排水量也叫设计排水量。设计中四种典型载况:满载出港:设计状态。满载到港:这时的油水等重量规定为设计状态的10%(不包括滑油)空载出港:船上不载运旅客与货物,油水储备量为100%空载到港:船上不载运旅客与货物,油水储量为10%重量重心的重要性:重量重心的估算准确与否直接影响设计船舶的航行性能与经济性,如果设计过轻:则完工船舶的重量将大于计算值,实际吃水将超过设计吃水,此时可能会出现:①新船不能按规定的航线航行或必须减载航行②船舶干舷减小,储备浮力减小,船舶大倾角稳性与抗沉性难以满足,甲板容易上浪,结构强度不能满足 如果设计过重:①尺度偏大,原材料与工时消耗增加,经济性下降。②实际吃水小于设计吃水,船舶的螺旋桨可能露出水面而影响推进效率,耐波性也可能变差。重量重心计算的方法和特点,特点;贯穿整个设计过程的始终,逐步近似。方法:设计初期—依靠母型船或统计资料进行粗略估算。技术设计:按图纸详细的进行分项计算,逐步累计 空船重量分为:船体钢料重量Wh,木作舾装重量Wf,机电设备重量Wm。影响Wf的因素:船排水量,主尺度,船员,旅客人数,生活设施标准影响Wm的因素:主机类型与功率影响船体钢料重量的因素:船舶尺度及系数(船长L>B>T>D>Cb),布置特征,船级、规范、航区,结构材料。大船的船体钢料重量Wh近似正比于主尺度立方。木作舾装的特点:名目繁多,各自独立,规律性差。固定压载是固定加在船上的载荷。作用:降低船的重心以提高稳性;增加重量以加大吃水,必要时也可用来调整船的纵倾。排水量裕度:在船舶设计中,为确保设计船的载重量,避免船舶超重,通常在分部估算Wh,Wf,Wm的基础上将LW预加一定的裕度,称为排水量裕度(排水量储备)其原因有三1,估算误差,2,设备增加,3,采用代用设备和材料。排水量裕度取法:1,取空船重量LW的某一百分数,一般2%~3% 2,分项储备。3、船级(船舶入级):是指新船准备入哪个船级社,要求取得什么船级标志,确定设计满足的规范。4、积载因数Uc:对于干货船,通常用其表征货物所需的容积,即每吨货所要求的货舱容积数,单位是T/m3。5、船型:是指船的建筑特征,包括上层建筑形式,机舱位置,货舱划分,甲板层数,甲板间高等。6、载重量系数ηDW=DW0/Δ0:它表示DW0占Δ0的百分数,对同样Δ的船来说,ηDW大者,LW小,表示其载重多。而对同一使用任务要求,即DW 和其他要求相同时,ηDW 大者,说明Δ小些也能满足要求。7、平方模数法:假定Wh比例于 船体结构部件的总面积(用L,B,D的某种组合) 如Wh=ChL(aB+bD)。该方法对总纵强度问题不突 出的的船,计算结果比较准确,适用于小船尤 其是内河船。8、立方模数法:假定Wh比例于 船的内部总体积(用LBD反映)则有Wh=ChLBD。 该方法以船主体的内部体积为模数进行换算, Ch值随L增加而减少的趋势比较稳定。对大、 中型船较为适用。缺点:没有考虑船体的肥瘦 程度,把LBD各要素对Wh的影响看成是等同的。 9、诺曼系数N:错误!未找到引用源。,表示的 是增加1Tdw时船所要增加的浮力。10、载重型 船:指船的载重量占船的排水量比例较大的船 舶。11、布置地位型船:又称容积型船,是指 为布置各种用途的舱室,设备等需要较大的舱 容及甲板面积的一类船舶。12、失速:风浪失 速是指船舶在海上航行,由于受风和浪的扰动, 航行的速度较静水条件时的减少量,这种速度 损失有时是相当大的。甲板淹湿性:是指在波 浪中的纵摇和垂荡异常激烈时,在船首柱处, 船与波浪相对运动的幅值大于船首柱处的干 舷,波浪涌上甲板的现象。14、最小干舷:对 海船来说,就是根据《海船载重线规范》的有 关规定计算得的Fmin值,它是从保证船的安全 性出发,为限制船舶在营运过程中的最大吃水 而提出的要求,是从减小甲板上浪和保证储备 浮力两方面考虑的。 15、A型船舶:载运液体货物的船舶(如油船)。 这类船舶具有货舱口小且封闭性好,露天甲板 的完整性高,再如油船甲板上设备少,较易排 水,货物的渗透率低,抗沉的安全程度较高的 特点等,称为A型船。B型船舶:不符合A型船 舶特点的其他船舶,他们的干舷应大些。 16、载重线标志:表示船在不同航区,不同季 节,允许的最小干舷,以此规定船舶安全航行 的最大吃水,便于港监部门监督。 17、登记吨位Rt:是指按《船舶吨位丈量规范》 的有关规定计算得到的船内部容积,1登记吨位 =2.832m3=100立方英尺 18、总吨位Gt:登记吨位的一种,是计量除“免 除处所”以外的全船所有“围蔽处所”而得到 的登记吨位。 净吨位:从总吨位中减去非营利容积后所余的 吨位 结构吃水T:对于富裕干舷船,在设计时根据 规范核算最小干弦,求得最大装载吃水Tmax, 并使船体结构实际符合Tmax的要求,此时Tmax 又称结构吃水。 19、最小干舷船:对于货船,如运载积载因数 小(C小于1.3)的重货(煤、矿石等),可按 《载重线规范》来决定最小干舷,从而可确定 船的型深D,这种船称为最小干舷船,其D即符 合最小干弦的要求,也满足容积的要求。 20、富裕干舷船:当设计C较大的货船时,按 载重线规范求得的最小干舷Fx所决定的D,不 能满足货舱容积的要求。型深D需根据舱容确 定,船的实际干舷大于最小干舷,这种船称为 富裕干舷船。 21、变吃水船:在一般情况下,装载至满载吃 水(设计吃水);又可在载重货物时,吃水达到 Tmax,根据这种要求设计的船就称变吃水船。 船舶容量:船内容积和甲板面积的总称 型容积:按型线图计算所得的舱内容积。 净容积:扣除骨架,护条等占用的空间后,所 剩余的有效装载容积 型容积利用系数:净容积与型容积的比值,也 叫折扣系数,Kc,表明了仓容利用率的高低 散装货:不用包装,直接装在货舱里的货物 包装货:运载时用包装包起来的货物 散装舱容:装载散装货物时的有效容积,包装 舱容一般为散装舱容的0.9 容量校核:按设计任务书的要求估算设计船所 需容积,按设计船的主尺度与总布置估算实有 容积,通过所需容积与实有容积的比较来校核 设计船的主尺度方案与总布置格局的合理性, 可行性。方法:按照容量方程式,(2)按货舱 容量方程式估算设计船 容量图的绘制依据是:总布置图,帮戎曲线图, 型线图,肋骨型线图 登记吨位设计时注意的要点:注意控制吨位的 档次,注意国际航线上的吨位差别。9下限值 是保证船的安全和使用要求所需的最低初稳性 值。10 B B/T CW增大,D减小对增加 GM值有好处 在大倾角情况下,保证船抵抗外力作用能力的 是静稳性曲线。快速性:指船舶消耗较小的功 率而获得较高航速的能力。 稳性:当船舶受到歪理的作用而偏离原平衡位 置发生倾侧,当外力消除后能自动恢复到原平 衡位置的能力。大倾角的稳性:指船舶在外力作 用下,横倾角超过10—15时的稳性。抗沉性: 指船舶一舱或数舱破损进水后,仍能保证一定 浮性和稳性的能力。耐波性:指船舶在风浪中 遭受外力干扰而产生各种摇摆运动,以及砰击 上浪失速飞车等时,仍能维持一定航速在水面 上安全航行的性能。12耐波性一般从适居性, 安全性,使用性加以考虑。13影响横摇幅值 ¢a的因素:T¢ B/T Cw Cb14 纵摇与升沉运动的主要影响因素:航向角,波 长,调谐因素,主尺度及船型特征。15Cb,L 增大V减小甲板淹湿性减小。16改善船舶失速 的措施:减小船舶在风浪中阻尼的增加;改善 在恶劣海况中的运动,以求被迫减速的幅值不 大。17规定最小干舷考虑的因素:减小甲板上 浪;保证有一定的储备浮力。18甲板上浪影响 的因素:纵摇及升沉运动的幅度,舷弧的大小, 上建的地位和大小。19储备浮力的影响因素: 丰满度Cb,上建,舷弧。20 A型船舶载运液 体货物的船舶最小干舷可低一些。21操纵性包 括以下内容:航线稳定性,回转性,转首性22 船舶的排水量,主要尺度(LBDT)以及船型系数 (CbCpCwCm)称为船舶的主要要素。23诺 曼系数N表示载重量增加1t时排水量的增量, N越大表示载重量增加时LW增加越多。载重 型船N较小,布置地位型船N较大。24布置 地位型船的主尺度主要取决于所需的船主体容 积及上层建筑甲板面积。25横剖面积曲线:面 积等于排水体积,丰满度系数等于棱形系数, 面积的形心横坐标等于浮心纵向位置,最大纵 坐标值等于最大横剖面面积。26 p的选择必须 与Cm的选择一起来考虑,低速时Cm大,Cp 与Cb相差不大,中速时实际所取的Cp值一般 比剩余阻力最佳时的大,高速时Cb一定时取 较大的Cp。27浮心纵坐标Xb的选择主要考 虑:阻力,布置方面。28浮心位置向后移动, 相当于前半体丰满度系数减小,后体丰满度增 大,形状阻力由小变大,而兴波阻力由大变小。 29横剖面两端的形状:Fr<0.2—0.22直线型 的首端Fr=0.22—0.28 凹形或微凹型Fr> 0.28微凹型或直线型,尾端微凹型或直线型 30设计水线的特征参数包括:水线面系数Cw, 前后半段的丰满度系数Cwf和Cwa,平行中段 长度,端部形状,半进流角以及尾部的纵向斜度 等。31从耐波性方面来看,设计首段适当丰满 一些较为有利,而成S型的不利。32 设计水 线尾段的形状,从阻力上看主要影响的是形状 阻力,尾段线型应以直线型为佳,而不易成凹 33设计中Cw的选取主要从快速性着眼,然 后校核稳性,总布置及型线配合等方面。34球 鼻首可以减小:兴波阻力,舭涡阻力,破波阻力。 35确定上建尺度应考虑的因素;甲板面积需 求,浮态与稳性,驾驶视线,其它尺度限制因 素。36货船纵倾的调整方法:a满载出港状态: 改变油舱淡水舱的布局;中机型及中尾机型可 适当改变机舱的位置;改变浮心位置。B压载 出港状态:重新分配压载舱。37涡尾的五种作 用:形成假尾,消减尾浪,提高推进效率,回 收螺旋桨尾流中的旋转能量,消减振动。38平 头涡尾船型首部设计参数:纵流角,首压浪长 度。39双尾船型的线型以中央隧道的纵剖面形 状和尾轴间距作为主要参数。40隧道型船尾为 了增大螺旋桨直径,获得较高的敞水效率。41 反应鳍节能机理是形成和螺旋桨尾流方向相反 的预旋流,减小了螺旋桨尾流旋转能量损失的 作用。型容积:指按型线图计算所得到的舱内 容积。干舷甲板:即用以计算干舷的甲板,通 常为上甲板,也可选取较低一层甲板作为干舷 甲板,但要符合规范的有关规定操纵性:指船 舶能根据驾驶者的意图保持或改变航线航速的 性能。经济船长:综合船长L对船价和燃料开支 的不同影响,民用运输船从船舶经济性角度常 选取一个最有利的船长称为经济船长。经济方 形系数:当Fr一定的情况下,存在一个阻力最

相关文档
最新文档