内质网应激与心血管疾病

内质网应激与心血管疾病
内质网应激与心血管疾病

内质网应激与心血管疾病

摘要:应激是心血管疾病发生的机理之一,内质网应激是亚细胞器水平的应激。内质网内钙稳态失衡,错误折叠蛋白质聚集等都可引起内质网应激。研究发现内

质网应激参与动脉粥样硬化的形成;同时还介导组织缺血再灌注时的细胞损伤和

细胞死亡;预先诱发内质网应激可以通过改善再灌注损伤时细胞钙超载保护心肌

细胞。

关键词:内质网应激;细胞凋亡;心血管疾病

前言:内质网(endoplasmicreticulum,ER)是真核细胞蛋白质合成折叠、脂质合成以及

细胞内钙储存的亚细胞器,也是调节细胞应激与凋亡的重要场所。很多病理生理刺激,如氧

化应激、缺血缺氧、钙稳态紊乱及病毒感染等,能够引起内质网腔内未折叠与错误折叠蛋白

蓄积以及Ca2+平衡紊乱,称为内质网应激(endoplasmicreticulumstress,ERS)。适度的ERS

是一种保护性细胞机制,可通过促进内质网处理未折叠及错误折叠蛋白等降低损伤;持久或

严重的ERS可引起细胞凋亡。根据诱发ERS的原因不同,ERS可分为3种类型:未折叠/误折

叠蛋白在内质网内蓄积激发的未折叠蛋白反应(unfoldedproteinresponse,UPR),过多表达

的蛋白质经ER膜转运(如病毒感染产生大量病毒糖蛋白)激发的内质网过负荷反应,以及

ER膜上固醇剥夺激活的固醇级联反应。UPR是介导ERS的最重要的信号机制。ERS与很多心

血管疾病如动脉粥样硬化、缺血性心脏病、心肌肥大及心力衰竭等有关。

一、内质网应激反应的途径

内质网是一个动态的膜性细胞器,具有多种功能,包括:蛋白质的合成、修饰、折叠和

亚基的组合;类固醇合成;脂质合成;糖原合成;钙的储存以及钙稳态的维持等。感染性因素,环境中的毒性物质,不利的代谢条件以及蛋白质糖基化障碍、二硫键生成减少,蛋白质

从内质网到高尔基体的转运障碍,错误折叠蛋白的表达,内质网腔内的钙损耗等都可以干扰

内质网的功能,破坏内质网稳态,引发内质网应激。细胞为了生存产生针对内质网应激的反应,称内质网应激反应,迄今为止,至少已发现了四种功能上相互独立的反应途径。

1.1蛋白质生物合成的早期暂时性减缓:

蛋白质的不正确折叠引发的内质网应激反应称未折叠蛋白反应(unfoldedprote in response,UPR),在哺乳动物细胞中由三种内质网感应蛋白介导,即IRE-1 (type-I ER transmembrane prote in kinase),ATF-6 (activating transcription factor 6)和PERK(panc reatic eIF-2 kinase,pancreatic ER kinase)。此三种感应蛋白在未发生应激时都以无活性的状

态与GPR78 (glucose-regu-lated prote in78)/ B iP (immunoglobulin-binding prote in)结合。

未折叠蛋白的积聚使GRP78 / B ip与三种感应蛋白分离,引起它们的激活。其中PERK 自身聚合、自我磷酸化激活,将e IF-2α(α subunit of eukaryotic translation initiation factor 2)的

Ser51磷酸化,使之不能结合GTP,阻止了起始蛋氨酸..RNA与核糖体的结合,无法进行翻译

起始。这种保护性机制很快阻止了新生蛋白向内质网腔的转运,抑制了内质网的负荷过重。

2 某些基因的活化:

编码参与内质网蛋白质的折叠、转运、分泌、降解的基因在内质网应激时诱导表达,其

中包括内质网应激反应的标志性蛋白GRP78 / B ip。GRP78 / B ip是热休克蛋白家族H SP70的

成员之一,主要参与内质网中蛋白质的重新折叠和装配。

研究发现:内质网应激时诱导基因表达的通路有3条。

IRE-1是应激激活的有内切酶活性的内质网跨膜蛋白激酶,作为核酸内切酶对XBP-1 (X-box binding prote in 1)mR-NA进行选择性剪接,去除26bp的内含子序列,导致蛋白翻译移码,产生XBP..1 蛋白,转录活化含有上游ERSE (ERstress response e lement or the unfolded prote in response e lement(UPRE ))元件的基因。[1]

ATF-6在内质网应激发生后,从内质网膜转移到高尔基体,其反式激活结构域被特异蛋白

酶(specific proteases )S1P和S2P从膜上水解下来,转移到胞核中,与ERSE 相互作用,激

活许多内质网应激反应蛋白的转录,包括GRP78 / B ip,CHOP(C /EBP homologous prote in)/ GADD153 (grow tharrestand DNA-dam ag e-induc ib le gene 153),XBP-1,ERp72 (ERprote

in72)和H erp (H cy-induced ER prote in)。S1P和S2P同时识别、裂解、激活SREBPs

细胞氧化应激基本概念讲解

1、细胞氧化 细胞生命活动过程中所需的能量约有95%是来自于线粒体,其来源是将细胞内的供能物质氧化、分解、释放能量,并排出CO2和H2O,这一过程称之为细胞氧化(cellular oxidation),又称细胞呼吸(cellular respiration)。其基本步骤有:糖酵乙酰辅酶A(CoA)的形成、进行三羧酸循环及电子传递和化学渗透偶联磷酸化作用。酶能使细胞的氧化过程在此比较低的温度下进行,并释放出仅仅使细胞能够扑获和储存的能量。这个受生物学控制的氧化结果起初就和简单的燃烧现象一样:复杂的分子被降解为水,二氧化碳,并释放能量。这个过程中一些经过交换的电子永久地逃离细胞的呼吸或从呼吸中心遗漏掉并同周围的氧分子相互作用,产生有毒性氧分子—自由基。在细胞呼吸的过程中,估计有2-5%的电子转化为过氧化物分子和其他类型的氧化自由基,自由基的持续增加就对机体组织造成大量的氧化压力。自由基被认为与大约60种(而且至少是60种)疾病的发生有关,科学有证据证实,抗氧化剂能停止甚至逆转(在某些疾病中)由于自由基所导致的损伤。自由基与机体细胞发生作用后,给机体留下了毁灭性的灾难。在细胞膜上留下了许多微笑的孔洞,使细胞的分子结构发生改变,破坏了细胞的蛋白和脂类分子。一旦我们机体细胞内有足够的抗氧化剂储备,我们就能将自由基对机体的损伤程度降到最低。 2、OS 氧化应激(Oxidative Stress,OS)是指体内氧化与抗氧化作用失衡,倾向于氧化,导致中性粒细胞炎性浸润,蛋白酶分泌增加,产生大量氧化中间产物。氧化应激是由自由基在体内产生的一种负面作用,并被认为是导致衰老和疾病的一个重要因素。指机体在内外环境有害刺激的条件下,体内产生活性氧自由基(Reactive Oxygen Species,ROS)和活性氮自由基(Reactive Ntrogen Species,RNS)所引起的细胞和组织的生理和病理反应。ROS有超氧阴离子(.O2-)、羟自由基(.OH-)和过氧化氢(H2O2)等等;RNS有一氧化氮(NO)、二氧化碳(CO2)和过氧亚硝酸盐(.ONOO-)等等。由于它们可以直接或间接氧化或损伤DNA、蛋白质和脂质,可诱发基因的突变、蛋白质变性和脂质过氧化,被认为是人体衰老和各种重要疾病如肿瘤、心脑血管疾病、神经退行性疾病(老年痴呆)、糖尿病-最重要的危氧化应激和抗氧化不单纯是一种生化反应,它更有着极其复杂的细胞和分子机制,包括膜氧化、线粒体代谢、内质网应激、核的重构、DNA损伤修复、基因转录表达、泛素和泛素化、自吞和溶酶体、细胞外基质、信号传递、蛋白折叠等多重的细胞和分子改变。 3、ROS 需氧细胞在代谢过程中产生一系列活性氧簇( reactive oxygen species, ROS),包括:O2 -·、H2O2 及HO2·、·OH 等。 4、细胞凋亡 细胞凋亡(apoptosis )是维持正常组织形态和一定功能的主动自杀过程,是在基因控制下按照一定程序进行的细胞死亡,故又称为程序性细胞死亡( PCD ) 5、SOD 超氧化物歧化酶Orgotein (Superoxide Dismutase, SOD),别名肝蛋白、奥谷蛋白,简称:SOD。SOD 是一种源于生命体的活性物质,能消除生物体在新陈代谢过程中产生的有害物质。对人体不断地补充SOD 具有抗衰老的特殊效果。是生物体内重要的抗氧化酶,广泛分布于各种生物体内,如动物,植物,微生物等。SOD具有特殊的生理活性,是生物体内清除自由基的首要物质。SOD在生物体内的水平高低意味着衰老与死亡的直观指标;现已证实,由氧自由基引发的疾病多达60多种。它可对抗与阻断因氧自由基对细胞造成的损害,并及时修复受损细胞,复原因自由基造成的对细胞伤害。

内质网应激

内质网应激 庄娟(江苏省淮阴师范学院生命科学学院淮安223300) 摘要内质网是真核细胞内蛋白质合成的重要场所,只有正确折叠的蛋白质才能够在内质网驻留或转运至高尔基体。如果蛋白质合成过多或不能正确折叠与运输,内质网内就会累积大量蛋白质,造成内质网应激,引发未折叠蛋白质反应。未折叠蛋白质反应主要与内质网感受器蛋白介导的信号通路有关。 关键词内质网应激未折叠蛋白质反应内质网感受器 内质网(endoplasmic reticulum,ER)是真核细胞内蛋白质合成、脂质生成和钙离子贮存的主要场所。多种蛋白需要在内质网中折叠、组装、加工、包装及向高尔基体转运,这是一个需要细胞精确调控的过程。ER 含有一种免疫球蛋白结合蛋白(immunoglobulin-bind-ing protein,BIP)和蛋白二硫键异构酶(protein disulfide isomerase,PDI),可以帮助与促进蛋白质的正确折叠。不能正确折叠的畸形肽链或未组装成寡聚体的蛋白质亚单位,无论是在内质网腔内还是在内质网膜上,一般不能进入高尔基体,主要通过泛素依赖性降解途径被蛋白酶体所降解。当内质网中未折叠或错误折叠蛋白累积,就会造成内质网应激,引发未折叠蛋白质反应(unfolded protein response,UPR)。 1内质网应激 内质网应激(endoplasmic reticulum stress,ERS)是指细胞受到内外因素的刺激时,内质网形态、功能的平衡状态受到破坏后发生分子生化的改变,蛋白质加工运输受阻,内质网内累积大量未折叠或错误折叠的蛋白质,细胞会采取相应的应答措施,缓解内质网压力,促进内质网正常功能的恢复[1]。引发ERS的因素很多,缺血低氧、葡萄糖或营养物匮乏、钙离子紊乱等可造成急性应激损伤;而病毒感染、分子伴侣或其底物的基因突变等能引发慢性应激损伤。 根据诱发原因,可将ERS分为以下3种类型:①未折叠或者错误折叠蛋白质在内质网腔内蓄积引发的UPR;②正确折叠的蛋白质在内质网腔内过度蓄积激活细胞核因子κB(NF-κB)引发的内质网过度负荷反应(ER over-load response,EOR);③胆固醇缺乏引发的固醇调节元件结合蛋白质(sterol regulatory element binding protein,SREBP)通路调节的反应。 ERS是细胞对内质网蛋白累积的一种适应性应答方式,细胞通过减少蛋白质合成,促进蛋白质降解,增加帮助蛋白质折叠的分子伴侣等方式缓解内质网压力[2]。但ERS过强或持续时间过长,超过细胞自身的调节能力,就会伤害细胞,引起细胞代谢紊乱[3]和凋亡[1]等。 2未折叠蛋白质反应 目前对UPR的机制研究较为深入。如果新合成的蛋白质在N末端糖基化、二硫键形成以及蛋白质由内质网向高尔基体转运等过程受阻时,未折叠或错误折叠的新合成蛋白质就会在内质网中大量堆积,细胞就会启动UPR[2]。UPR与内质网膜上的跨膜蛋白PERK(PKR-like ER1kinase)、IRE1(inositol requiring enzyme1)和ATF6(activating transcription factor-6)介导的信号通路有关[4,5],这三种膜蛋白也被称为内质网感受器(ER stress sensors)[2]。 2.1内质网感受器蛋白的激活BIP(immunoglobulin -binding protein)是ER腔内的一种分子伴侣,为热休克蛋白70(heat shock protein of70kDa,HSP70)家族成员,又称为葡萄糖调节蛋白78(glucose-regulated pro-tein of78kDa,GRP78),由N端的ATP酶结构域和C 端的待折叠蛋白结合结构域组成,从酵母到高等哺乳动物高度保守。BIP能结合未折叠蛋白质富含疏水氨基酸区域,利用ATP水解释放能量帮助蛋白质折叠,并阻止未折叠、错误折叠的蛋白质聚集。非应激状态时GRP78/BIP与PERK、IRE1及ATF6这三种感受器的ER腔部分结合在一起,此情况下感受器蛋白没有活性。当ER内蛋白聚集,内质网处于应激状态时,与未折叠蛋白结合能力较强的BIP就解离释放到ER腔内,执行蛋白质折叠功能。此时内质网感受器被激活,产生PERK-eIF2α、IRE1-XBP1s和ATF6-ERSE三条主要的信号通路,进行UPR[2,6]。内质网应激条件下,BIP/GRP78表达上调明显,因而BIP/GRP78的诱导表达可作为ERS和UPR的激活标志[7]。 2.2信号通路PERK-eIF2α的应答反应PERK是内质网单次跨膜蛋白,胞质区有激酶结构域。内质网应激时,与BIP/GRP78解偶联的PERK蛋白形成同源二聚体,胞质区结构域自身磷酸化被激活,与真核生物起始因子2(eukaryotic initiation factor2,eIF2)的α亚单位(eIF2α)结合并促使eIF2α上的N端第51位丝氨酸磷酸化。磷酸化的eIF2a蛋白能抑制翻译起始复合物中GDP与GTP的交换,阻断了翻译起始复合物eIF2-GTP-tRNAMet的组装,从而抑制蛋白质的翻译与合成,减少新生蛋白质向内质网的内流,减少未折叠蛋

寒冷应激与心血管疾病

寒冷应激与心血管疾病 1 寒冷与心血管流行病学 据WHO 2011年统计,全世界每年约有1710万人死于心血管疾病,占全部死亡人数的29%。研究证实气温与心血管疾病死亡率呈U型关系,寒冷地区气温每降低一摄氏度,心血管疾病死亡率就增加1%。中国北方寒冷地区因其地理位置和特殊的寒地气候,是心血管系统疾病高发区。 2 寒冷应激与适应性产热 适应性产热(Adaptive thermogenesis),为机体处在低温寒冷环境时进行的产热反应,以达到平衡体温及能量的作用。游离脂肪酸及葡萄糖被氧化形成烟酰胺腺嘌呤二核苷酸(NADH)及黄素腺嘌呤二核苷酸(FADH2),并将电子传递给电子传递链。辅酶Q将电子从复合物I及II传递给复合物IV,最终传递给氧分子。同时,泵出到线粒体外的质子使得线粒体膜电位升高。生理情况下,质子通过F0/F1-ATP酶重新进入到线粒体中,促进ADP和Pi合成ATP。在寒冷应激时,质子经解偶联蛋白(uncoupling protein, UCP)途径进入到线粒体中,并产生大量热量保持机体体温恒定。机体长期处在寒冷应激,细胞产生大量活性氧(ROS)引起氧化应激,同时,持续的寒冷应激导致ATP合成不足(图1)。 3 寒冷应激与高血压 高血压是冠心病、外周血管疾病、脑卒中及心衰等心血管疾病的明确的危险因素。高血压的发病除与遗传因素密切相关外, 环境因素也起着十分重要的作用。一些环境因素如寒冷、饮食等对血压有显著的影响。流行病学资料表明:冬季是心脑血管事件的好发季节,冬季平均收缩压比夏季高5 mmHg;高血压的患病率冬季为33.4%,夏季降至23.8%;且冬季降压药敏感性较夏季低;我国北方地区地处寒地,其高血压的患病率约为40%,几近我国高血压的患病率的2倍。 对寒地的高血压人群及寒冷应激高血压大鼠的研究发现有以eNOS表达减少为主要表现的内皮功能障碍。血管内皮细胞处于易损的功能性界面,是“内皮-高血压-心血管事件链”的始动因子和载体。寒地冬季时间长达3-4月,研究显示持续的寒冷应激可诱导交感神经活性增高,激活RAS系统。 4 寒冷应激与动脉粥样硬化斑块破裂 根据《中国卫生统计年鉴2008》提供的数据,2007年中国城市居民冠心病

波动性高血糖和恒定性高血糖的代谢记忆效应对主动脉内皮细胞氧化

波动性高血糖和恒定性高血糖的代谢记忆效应对主动脉内皮细胞氧化应激的影响 发表时间:2018-08-24T14:26:05.347Z 来源:《中国误诊学杂志》2018年7月19期作者:孙妍蕾孙家忠曹晨肖婷杨梅邓向群(通讯作者[导读] 研究在不同的血糖波动条件下,高血糖的代谢记忆效应对主动脉内皮细胞氧化应激的影响 孙妍蕾孙家忠曹晨肖婷杨梅邓向群(通讯作者)武汉市第三医院湖北武汉 430000 摘要:目的研究在不同的血糖波动条件下,高血糖的代谢记忆效应对主动脉内皮细胞氧化应激的影响,用抗氧化剂a-硫辛酸研究主动脉内皮细胞损伤机制。方法体外培养主动脉内皮细胞株,分组:实验分为以下2类,对照组:①正常对照组:5mmol/L葡萄糖组;②高糖组:20mmol/L葡萄糖组;③低水平波动组:5mmol/L葡萄糖和20mmol/L葡萄糖;④高水平波动组:5mmol/L葡萄糖组和30mmol/L葡萄糖组。药物组:在对照组的基础上加入药物a-硫辛酸(ALA),24小时后进行指标检测;波动组培养基中葡萄糖浓度按高低循环的方式给予,即:20 mmol/L葡萄糖培养2 h,更换5 mmol/L葡萄糖培养3 h,进行3个循环,夜间9 h,加5 mmol/L培养基,共作用24 h,培养14天后进行指标检测。结果 1:与正常组比较,高糖组和波动组细胞内氧化应激水平均有显著升高;2:与高糖组比较,低水平波动组和高水平波动组细胞内氧化应激水平有显著升高;3:与低水平波动组比较,高水平波动组细胞内氧化应激水平有显著升高;4:与对照组比较,药物组细胞内氧化应激水平有显著下降。结论波动性高血糖较恒定性高血糖对主动脉内皮细胞具有更强的损伤效应,其机制可能是波动性高血糖比恒定性高血糖能引起更为强烈和持久的“代谢记忆效应”,抗氧化剂a-硫辛酸可以对抗主动脉内皮细胞的氧化应激损伤。关键词:波动性高血糖;恒定性高血糖;代谢记忆效应;主动脉内皮细胞;氧化应激引言 近年来,有研究提出在糖化血红蛋白相同时,血糖波动越大,慢性并发症的发生率越高,波动性高血糖相对于恒定性高血糖更能促进糖尿病患者慢性血管并发症的发生与发展[1]。血糖波动已成为一个独立于HbA1c的糖尿病慢性并发症的重要危险因素,波动性高血糖比恒定性高血糖更易促进糖尿病患者慢性血管并发症的发生与发展,其可能作为糖尿病控制的“金标准”。波动性高血糖已成为糖尿病血管并发症防治领域的一个研究热点。“代谢记忆”即机体根据最初的血糖水平形成持续性地、级联性的血管内皮细胞炎性因子表达,从而导致细胞增殖、凋亡及功能紊乱,尽管严格控制血糖,数年内大血管和微血管病变仍持续发展[2-4]。近年来大量研究已证实血糖水平与糖尿病并发症的发病率及严重程度之间存在明显不一致,这是因为高糖具有代谢记忆效应。氧化应激是形成高糖代谢记忆的基础,同时也是高糖代谢记忆参与糖尿病并发症的主要途径[5]。但波动性高糖的代谢记忆效应导致并发症形成的具体机制以及治疗措施至今尚未完全阐明,一直是国内外研究的热点。 一、材料和方法 1.主动脉内皮的细胞的培养与传代 主动脉内皮细胞参照商品说明培养,培养14天。每组12小时更换新鲜培养基。每24小时对相关指标进行检测,最后实验结束后对相关指标进行检测,动态观察指标变化。 2.实验的分组与处理: 对照组: (1)正常糖对照组:持续葡萄糖浓度为5mmol/L; (2)恒定性高糖组:持续葡萄糖浓度为20mmol/L; (3)低水平高糖波动组:培养基中葡萄糖浓度按高低循环的方式给予,即:20 mmol/L葡萄糖培养2 h,更换5 mmol/L葡萄糖培养3 h,进行3个循环,夜间9 h加5 mmol/L培养基,共作用24 h; (4)高水平高糖波动组:培养基中葡萄糖浓度按高低循环的方式给予,即:30 mmol/L葡萄糖培养2 h,更换5 mmol/L葡萄糖培养3 h,进行3个循环,夜间9 h加5 mmol/L培养基,共作用24 h;药物组: (1)恒定性高糖+α-硫辛酸(α-LA)组:如第2组处理方法,负载终浓度为62.5μmol/L的α-LA; (2)低水平高糖波动+α-硫辛酸(α-LA)组:如第3组处理方法,负载终浓度为62.5μmol/L的α-LA; (3)高水平高糖波动+α-硫辛酸(α-LA)组:如第4组处理方法,负载终浓度为62.5μmol/L的α-LA; 3.指标检测 1)活性氧(ROS):用活性氧检测试剂盒进行检测,采用DCFH-DA探针,在激发波长为502nm,发射波长为530nm附近,使用流式细胞仪测定DCF荧光,从而测定细胞内活性氧水平。 2)丙二醛(MDA):用MDA试剂盒进行检测,用TBA法在532nm处用分光光度计检测吸光度值,经标准曲线换算成其浓度,血清MDA含量 =(测定管吸光度-测定空白管吸光度)/(标准管吸光度-标准空白管吸光度)*10。 4.统计学处理 采用SPSS 13.0软件进行统计分析,计量数据用(x±s)进行正态性检验和方差齐性检验,若资料为正态分布及方差齐性,组间比较用t检验或方差分析,正态分布或用Mann-Whitney U检验。P<0.01为差异有统计学意义。 二、结果 1.波动性高血糖、恒定性高血糖和抗氧化剂a-硫辛酸对主动脉内皮细胞中MDA含量的影响与对照组相比,高水平波动组、低水平波动组、恒定性高血糖组细胞上清MDA含量明显升高(t值分别为40.58、33.15、11.69,均P<0.01),高水平波动组、低水平波动组高于恒定性高血糖组(t=17.01、13.70、,均P<0.01),高水平波动组高于低水平波动组(t=9.85,均P<0.01)。采用抗氧化剂a-硫辛酸干预后,高水平波动组、低水平波动组、恒定性高血糖组细胞上清MDA含量明显下降(t值分别为15.58、11.60,10.27均P<0.01)(图1)。

内质网应激与心血管疾病

内质网应激与心血管疾病 摘要:应激是心血管疾病发生的机理之一,内质网应激是亚细胞器水平的应激。内质网内钙稳态失衡,错误折叠蛋白质聚集等都可引起内质网应激。研究发现内 质网应激参与动脉粥样硬化的形成;同时还介导组织缺血再灌注时的细胞损伤和 细胞死亡;预先诱发内质网应激可以通过改善再灌注损伤时细胞钙超载保护心肌 细胞。 关键词:内质网应激;细胞凋亡;心血管疾病 前言:内质网(endoplasmicreticulum,ER)是真核细胞蛋白质合成折叠、脂质合成以及 细胞内钙储存的亚细胞器,也是调节细胞应激与凋亡的重要场所。很多病理生理刺激,如氧 化应激、缺血缺氧、钙稳态紊乱及病毒感染等,能够引起内质网腔内未折叠与错误折叠蛋白 蓄积以及Ca2+平衡紊乱,称为内质网应激(endoplasmicreticulumstress,ERS)。适度的ERS 是一种保护性细胞机制,可通过促进内质网处理未折叠及错误折叠蛋白等降低损伤;持久或 严重的ERS可引起细胞凋亡。根据诱发ERS的原因不同,ERS可分为3种类型:未折叠/误折 叠蛋白在内质网内蓄积激发的未折叠蛋白反应(unfoldedproteinresponse,UPR),过多表达 的蛋白质经ER膜转运(如病毒感染产生大量病毒糖蛋白)激发的内质网过负荷反应,以及 ER膜上固醇剥夺激活的固醇级联反应。UPR是介导ERS的最重要的信号机制。ERS与很多心 血管疾病如动脉粥样硬化、缺血性心脏病、心肌肥大及心力衰竭等有关。 一、内质网应激反应的途径 内质网是一个动态的膜性细胞器,具有多种功能,包括:蛋白质的合成、修饰、折叠和 亚基的组合;类固醇合成;脂质合成;糖原合成;钙的储存以及钙稳态的维持等。感染性因素,环境中的毒性物质,不利的代谢条件以及蛋白质糖基化障碍、二硫键生成减少,蛋白质 从内质网到高尔基体的转运障碍,错误折叠蛋白的表达,内质网腔内的钙损耗等都可以干扰 内质网的功能,破坏内质网稳态,引发内质网应激。细胞为了生存产生针对内质网应激的反应,称内质网应激反应,迄今为止,至少已发现了四种功能上相互独立的反应途径。 1.1蛋白质生物合成的早期暂时性减缓: 蛋白质的不正确折叠引发的内质网应激反应称未折叠蛋白反应(unfoldedprote in response,UPR),在哺乳动物细胞中由三种内质网感应蛋白介导,即IRE-1 (type-I ER transmembrane prote in kinase),ATF-6 (activating transcription factor 6)和PERK(panc reatic eIF-2 kinase,pancreatic ER kinase)。此三种感应蛋白在未发生应激时都以无活性的状 态与GPR78 (glucose-regu-lated prote in78)/ B iP (immunoglobulin-binding prote in)结合。 未折叠蛋白的积聚使GRP78 / B ip与三种感应蛋白分离,引起它们的激活。其中PERK 自身聚合、自我磷酸化激活,将e IF-2α(α subunit of eukaryotic translation initiation factor 2)的 Ser51磷酸化,使之不能结合GTP,阻止了起始蛋氨酸..RNA与核糖体的结合,无法进行翻译 起始。这种保护性机制很快阻止了新生蛋白向内质网腔的转运,抑制了内质网的负荷过重。 2 某些基因的活化: 编码参与内质网蛋白质的折叠、转运、分泌、降解的基因在内质网应激时诱导表达,其 中包括内质网应激反应的标志性蛋白GRP78 / B ip。GRP78 / B ip是热休克蛋白家族H SP70的 成员之一,主要参与内质网中蛋白质的重新折叠和装配。 研究发现:内质网应激时诱导基因表达的通路有3条。 IRE-1是应激激活的有内切酶活性的内质网跨膜蛋白激酶,作为核酸内切酶对XBP-1 (X-box binding prote in 1)mR-NA进行选择性剪接,去除26bp的内含子序列,导致蛋白翻译移码,产生XBP..1 蛋白,转录活化含有上游ERSE (ERstress response e lement or the unfolded prote in response e lement(UPRE ))元件的基因。[1] ATF-6在内质网应激发生后,从内质网膜转移到高尔基体,其反式激活结构域被特异蛋白 酶(specific proteases )S1P和S2P从膜上水解下来,转移到胞核中,与ERSE 相互作用,激 活许多内质网应激反应蛋白的转录,包括GRP78 / B ip,CHOP(C /EBP homologous prote in)/ GADD153 (grow tharrestand DNA-dam ag e-induc ib le gene 153),XBP-1,ERp72 (ERprote in72)和H erp (H cy-induced ER prote in)。S1P和S2P同时识别、裂解、激活SREBPs

氧化应激与心肌

氧化应激与心肌 1957年美国克里夫兰临床中心,首先将大隐静脉搭桥术应用于冠心病病人,此后冠状动脉粥样硬化性心脏病血运重建治疗快速发展。冠状动脉溶栓术、经皮冠状动脉成形术、冠状动脉支架植入术、冠状动脉旁路手术已成为挽救缺血心肌的重要治疗方式。但血流恢复本身也会引起显著的损伤,部分患者在血供恢复后,出现细胞超微结构变化、细胞代谢障碍、细胞内外环境改变,导致缺血再灌注损伤(ischemia/reperfusion-associated tissue injury,IRI),临床表现为心律失常、心力衰竭等。IRI也出现在心脏手术、心脏移植、心肺复苏等临床情况后。目前研究表明细胞IRI的机制主要包括:氧自由基含量增多、细胞内钙超载、线粒体膜去极化等。氧化还原失衡是IRI发生的重要起始因素,但其机制和细胞中存在的保护机制尚不完全明确,本文重点对氧化应激与心肌IRI的研究进展做一综述。 1.氧化应激和ROS 氧化应激(oxidative stress,OS)主要是由于内源性和(或)外源性刺激引起机体代谢异常而骤然产生大量活性氧簇(ROS)。ROS是指在外层电子轨道含有一个或多个不配对电子的原子、原子团或分子,包括超氧阴离子(O2- ·)、过氧化氢(H2O2)、过氧亚硝酸盐(ONOO-)和羟基自由基(·OH)。ROS作为第二信使介导了许多生理性与病理性细胞事件,包括细胞分化、过度生长、增殖及凋亡。超氧化物歧化酶、谷胱甘肽过氧化物酶和过氧化氢酶作为体内清除自由基的重要物质,在维持体内氧化还原平衡方面发挥重要的作用。但在IRI过程中,参与合成ROS的酶体系增多,且活性更强,如NADPH氧化酶、线粒体黄素酶、黄嘌呤氧化酶、未偶联的一氧化氮合酶、细胞色素P450、脂氧合酶、环氧合酶和过氧化物酶体,ROS的生成量明显高于细胞内的清除能力,导致氧化还原失衡。ROS虽然半衰期很短,但具有极强的氧化活性,与细胞内脂质、蛋白质、核酸等生物大分子发生过氧化反应,造成细胞结构损伤和代谢障碍。 2.ROS的主要来源 NADPH氧化酶是细胞内ROS的最主要来源,是由催化亚基gp91phox或其同系物,即非吞噬细胞氧化酶1~4(NOX1~4) 、双功能氧化酶1~2(Duox1~2) ,跨膜亚基p22phox,胞浆亚基p47phox、p67phox等蛋白分子共同组成的多亚基蛋白复合体。NOX家族蛋白亚型与跨膜亚基、胞浆亚基结合并组装成有活性的复合体后发挥其生物学功能。活化的NADPH氧化酶复合物与NADPH结合并释放2个电子,通过黄素腺嘌呤二核苷(FAD)传递给亚铁血红素,与细胞膜的外侧的2个氧分子结合生成O2-,最后生成H2O2、过氧化硝酸盐(ONOO-) 、羟基团(-OH) 及其它基团[1,2]。NOX源性的ROS在维持机体稳态中是把双刃剑,NOX源性ROS 一方面在氧化还原信号通路中起到了第二信使作用,参与多种细胞生理功能;另一方面,在高血压、动脉粥样硬化以及心肌IRI的病程中发挥了重要作用,因此单一抑制NOX活性对治疗心肌IRI并不是最好的选择。Vincent等[3]研究发现在30分钟缺血-24小时再灌注小鼠模型中,NOX4基因敲除组与NOX1和NOX2敲除组相比,表现出更大面积的心肌梗死,提示内源性NOX4 在H/R损伤中可能发挥着心肌细胞保护作用。 黄嘌呤氧化酶(XO)是IRI中ROS产生的另一重要来源,与合成抗氧化剂尿酸的黄嘌呤还原酶(XDH)作用相反。XDH/XO活力受细胞因子、细胞内化学物质及激素的调节。细胞缺血时XO活力升高,并且A TP分解产物次黄嘌呤积聚,再灌注时O2大量介入,次黄嘌呤和氧在XO作用下反应生成O2- ·和H2O2。有研究指出,XO不仅通过合成ROS参与心肌缺血再灌注损伤,XO本身可以与白细胞产生相互作用,造成微循环阻塞,导致再灌注的无复流现象。此外,XO可以直接损伤血管内皮细胞(EC)或通过ROS间接损害EC,影响心肌血流再灌注[4]。 3.ROS与细胞损伤

内质网应激

2.2 内质网应激 2.2.1 内质网及内质网应激概述 内质网(endoplasmic reticulum,ER)是哺乳动物细胞中一种重要的细胞器,其膜结构占细胞内膜的二分之一,是细胞内其它膜性细胞器的重要来源,在内膜系统中占有中心地位。ER 的功能包括:①ER 是细胞的钙储存库,内质网的钙离子浓度高达 5.0mmol/L,而胞浆中为 0.1ummol/L。并能调节维持细胞内钙平衡。②ER 是分泌性蛋白和膜蛋白的合成、折叠、运输以及修饰的场所。ER 通过内部质量调控机制筛选出正确折叠的蛋白质,并将其运至高尔基体,将未折叠或错误折叠的蛋白质扣留以进一步完成折叠或进行降解处理。③ER 还参与固醇激素的合成及糖类和脂类代谢,内质网膜上含有固醇调节元件结合蛋白,对固醇和脂质合成起调节作用。 ER对影响细胞内能量水平、氧化状态或钙离子浓度异常的应激极度敏感。当细胞受到某些打击(如缺氧、药物毒性等)后,内质网腔内氧化环境被破坏,钙代谢失调,ER功能发生紊乱,突变蛋白质产生或者蛋白质二硫键不能形成,引起未折叠蛋白或错误折叠蛋白在内质网腔内积聚以及钙平衡失调的状态,即内质网应激(endoplasmic reticulumstress,ERS)。内质网巨大的膜结构为细胞内活性物质的反应提供了一个广阔的平台,在许多信号调控中起到关键作用。最近的研究表明,内质网是细胞凋亡调节中的重要环节[39]。ERS可以介导与死亡受体和线粒体途径不同的一条新的凋亡通路。当细胞遭到毒性药物、感染、缺氧等刺激时,内质网腔未折叠蛋白增多和细胞内钙离子超载,引起caspase 12活化,继而激活下游的caspase,导致细胞凋亡。早期的ERS是机体自身代偿的 过程,对细胞具有保护作用;如果这种失衡超过了机体自身调节的能力,最终的结局将是细胞的死亡。ERS的确切机制目前尚不明确。深入研究ER及ERS,对于完善细胞损伤和凋亡理博具有重要意义,有助于进一步认识疾病发生发展的机制,为临床疾病预防和治疗提供新的理博依据。 2.2.2 内质网应激的信号通路 ER 内环境的稳态一旦被打破,将激活一系列的级联反应通路,包括PERK/eIF2α通路、IRE1/XBP1 通路及 ATF6 介导的通路。内质网应激激活的信号通路主要有[40]:①未折叠蛋白反应(unfolded protein response,UPR);

氧化应激

氧化应激 本综述由解螺旋学员穿山甲说了什么负责整理(2017年12月) 氧化应激(oxidative stress, OS)是指体内氧化与抗氧化作用失衡,倾向于氧化而导致的组织损伤。1, 2一旦发生氧化应激,许多细胞生物分子,如DNA、脂质和蛋白质就会容易受到自由基引起的氧化损伤,从而导致细胞和最终的组织器官功能障碍。氧化应激与多种疾病有关。 1.心血管疾病 过多的氧化应激反应物的堆积对血管系统有害1,它们会损伤内皮和平滑肌细胞膜,减少NO水平,氧化四氢生物蝶呤(BH4)作为一氧化氮合酶(NOS)的辅助因子,促进不对称二甲基精氨酸(ADMA)的合成,产生NOS抑制物,抑制鸟苷环化酶。其中的一个机制是低密度脂蛋白(LDL)中的多不饱和脂肪酸氧化成氧化低密度脂蛋白(oxLDL),这也是动脉粥样硬化的一个中间产物。3-5ROS依赖的信号通路引起转录和表观遗传失调,导致慢性低度炎症、血小板活化和内皮功能障碍。4, 6心血管疾病与心肌细胞活性氧族(ROS)的过多有关。7, 8 2.神经退行性疾病9-11 图1. 氧化应激与各种神经退行性疾病的关系 3.系统性红斑狼疮(SLE) SLE的特点是产生有害的自身抗原,炎症因子的过度作用,以及破坏性的组织和器官损

伤。所有这些紊乱都会因活性氧的异常消耗和过量生成而增强或减弱。12氧化应激在SLE中增加,导致免疫系统失调、细胞死亡信号的异常激活和处理、自身抗体的产生和致死性并发症。自身抗原的氧化修饰引起自身免疫,血清蛋白的氧化修饰程度与SLE的疾病活动和器官损害密切相关。13 4.慢性阻塞性肺疾病(COPD) 有证据表明COPD患者存在氧化和羰基应激,特别是在急性加重期。14COPD患者的肺泡巨噬细胞更活跃,释放更多的活性氧,表现为超氧自由基和过氧化氢。15COPD患者激活的外周血中性粒细胞释放的活性氧增加,特别是在病情恶化期间。14COPD常加重期患者体内内源性抗氧化物谷胱甘肽的浓度低于稳定期患者。16 5.高血压病 ROS影响高血压发展的过程包括氧化还原敏感信号通路的激活,尤其是在血管系统中,血管扩张剂NO减少,ROS生成增加。17, 18 OS与多种疾病有关,但研究最多的还是心血管疾病。针对OS与各疾病的关系,已经出现了抗OS的治疗方案。 参考文献 1. Annuk M, Zilmer M, Fellstrom B. Endothelium-dependent vasodilation and oxidative stress in chronic renal failure: impact on cardiovascular disease. Kidney Int Suppl 2003; (84): S50-3. 2. Al Shahrani M, Heales S, Hargreaves I, Orford M. Oxidative Stress: Mechanistic Insights into Inherited Mitochondrial Disorders and Parkinson's Disease. J Clin Med 2017; 6(11). 3. Heinecke JW. Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis. Atherosclerosis 1998; 141(1): 1-15. 4. Santilli F, D'Ardes D, Davi G. Oxidative stress in chronic vascular disease: From prediction to prevention. Vascul Pharmacol 2015; 74: 23-37. 5. He F, Zuo L. Redox Roles of Reactive Oxygen Species in Cardiovascular Diseases. Int J Mol Sci 2015; 16(11): 27770-80. 6. Santilli F, Guagnano M, Vazzana N, La Barba S, Davi G. Oxidative stress drivers

内皮细胞在血液循环系统中的影响和作用

研究生课程论文 课程名称动物生理生态学 开课时间 2013学年第一学期 学院化学与生命科学学院 学科专业动物学 学号 姓名 学位类别全日制硕士 任课教师 交稿日期 2013.12 23 成绩 评阅日期 评阅教师 签名

内皮细胞在血液循环系统中的影响和作用摘要:内皮细胞是血液包裹的最里面的,也是直接接触的一层内皮细胞,对血管和机体有保护作用,通过尿酸、染木素、晚期糖基化的三种物质对内皮细胞的凋亡、功能性的研究,对内皮细胞的合成和释放的细胞因子之间的平衡的紊乱,本综述是总结三个实验性文章对于后来糖尿病、心血管通透性增加还有血管舒张及各种炎症,和心血管增生疾病,有一个铺垫性开创。 关键词:内皮细胞,尿酸,染木素,晚期糖基化,凋亡。 The impact and role of endothelial cells in the circulatory system Abstract: endothelial cells is the most inside blood package. a layer of endothelial cells are in direct contact. and has a protective effect on blood vessels and the body. the functionality of the three substances through the uric acid. dye lignin, advanced glycation apoptosis. on endothelial cells. balance disorder between cytokine synthesis and release of endothelial cells of this review is a summary. three experimental articles for later diabetes. cardiovascular increased permeability and vasodilation and various kinds of inflammation. and cardiovascular proliferative diseases, there is a basic starting. Keywords: endothelial cells. uric acid. dye lignin.advanced glycation.apoptosis. 引言 血管内皮覆盖于血管内膜表面,不仅是血管的保护膜,更是机体重要的内分泌、旁分泌器官,其参与调节血管壁通透性、维持血管舒张/收缩平衡、调节凝血功能平衡、减轻血管炎症反应等,对维持心血管系统发挥正常功能起着重要的作用。1993年Ross等人[1]首次提出“内皮功能障碍”假说,即在各种因素作用下,血管内皮细胞合成和释放的细胞因子之间的平衡紊乱,导致血管通透性增加、血管舒张/收缩失衡、炎症反应增加等[2]。此后,血管内皮功能成为心血管领域研究的热点,几乎所有的心血管疾病均与内皮功能障碍有关。正是因为内皮细胞的重要性,在近期的三篇文献中“尿酸对血管内皮细胞氧化应激反应的影响及其对细胞的损伤作用”“染料木素对氧化应激诱导内皮细胞氧化应激损伤的保护作用和机制”“晚期糖基化终产物对心肌微血管内皮细胞及糖尿病心肌缺血再灌注损伤的影响及机制”总结性的对内皮细胞的结构和功能做出一个简要的分析。

内质网应激的信号通路及其与细胞凋亡相关疾病关系的研究进展

山东医药2019年第59卷第17期 内质网应激的信号通路及其与细胞凋亡 相关疾病关系的研究进展 叶勇1,赵海霞2,张长城2 (1三峡大学第一临床医学院,湖北宜昌443000;2三峡大学医学院) 摘要:细胞凋亡是指生理性或者病理性因素触发细胞内预存的死亡程序,内质网应激(ERS)在细胞凋亡过程中发挥着重要作用。氧化应激、Ca"稳态失衡及缺氧等可引起蛋白质在内质网内的折叠受到抑制,促使未折叠蛋白聚集,引起ERS,激活未折叠蛋白反应,若此反应持续存在,则可诱发细胞凋亡。ERS包括PERK、IRE1、ATF6三条经典的信号通路,由PERK介导的信号通路能快速减少蛋白质的合成,减轻内质网的负荷;IRE1和ATF6介导的信号通路能增加内质网分子伴侣蛋白的合成,增加内质网蛋白的折叠、转运和降解的能力,减轻内质网的负荷。 ERS参与了心肌缺血再灌注损伤、衰老、骨质疏松、肝硬化、肿瘤等疾病的发生发展男十对ERS进行干预有望成为治疗凋亡相关疾病的重要靶点。 关键词:内质网应激;细胞凋亡;凋亡相关疾病 doi:10.3969/j.issn.1002-266X.2019.17.028 中图分类号:R329.2文献标志码:A文章编号:1002-266X(2019)174098-04 细胞凋亡又称为程序性死亡,是指生理性或者病理性因素触发细胞内预存的死亡程序,导致细胞自主有序的死亡。与坏死不同,凋亡是主动过程,涉及一系列信号通路的激活与调控,与细胞增殖共同 维持体内细胞数量的动态平衡。研究表明,内质网 应激(ERS)、线粒体通路、死亡受体通路及氧化应激等均参与了细胞凋亡的发生发展,其中ERS是目前的研究热点[1>2]o内质网是由细胞内膜构成的封闭网状管道系统,是真核细胞内重要的细胞器,主要负 通信作者:张长城(E-mail:greatwall@https://www.360docs.net/doc/802991731.html,) [21]Su V,Lau AF.Connexins:Mechanisms regulating protein levels and intercellular communication[J].FEBS Lett,2014,88(8): 1212-1220. [22]Liu P,Xia L,Zhang WL,et al.Identification of serum microR- NAs as diagnostic and prognostic biomarkers for acute pancreatitis [J].Pancreatology,2014,14(3):159-166. [23]Bi Y,Wang G,Liu X,et al.Low-after-high glucose down-regula- ted Cx43in H9c2cells by autophagy activation via cross-regulation by the PI3K/Akt/mTOR and MEK/ERK(1/2)signal pathways [J].Endocrine,2017,56(2):336-345. [24]李靖华,张涛,张胜逆,等.水通道蛋白-1及核因子k B在大鼠 重症急性胰腺炎肺损伤中的表达及意义[J].中华消化外科杂 志,2016,15(8):830-835. [25]刘多谋,黄鹤光,周武汉,等.白细胞介素-1|3对人脐静脉内皮 细胞结构及水通道蛋白-1的影响[].中华肝胆外科杂志, 2014,20(2):142-145.责分泌型蛋白和膜蛋白的合成、折叠、修饰及运输,同时也是细胞内Ca2+的主要储存库。在某些生理和病理条件下(如氧化应激、Ca2+稳态失衡及缺氧等)可引起蛋白质在内质网内的折叠受到抑制,促使未折叠蛋白聚集,激活未折叠蛋白反应,引起ERS o ERS包括未折叠蛋白反应、内质网相关性死亡和整合应激反应三个相互联系的动态过程,其中未折叠蛋白反应起重要作用[]。一定程度的ERS 有利于激活细胞的保护性适应机制,而ERS过强或持续时间过长,导致内质网的内稳态严重失衡,无法修复,则引起细胞凋亡[,]。因此,受损细胞往往会 [26]Zhang Z,Chen Z,Song Y,et al.Expression of aquaporin5in- creases proliferation and metastasis potential of lung cancer[J].J Pathol,2010,221(2):210-220. [27]Cao C,Sun Y,Healey S,et al.EGFR-mediated expression of aquaporin-3is involved in human skin fibroblast migration[J]. Biochem J,2006,400(2):225-234. [28]Crockett SD,Wani S,Gardner TB,et al.American gastroenter- ological association institute guideline on initial management of a-cute pancreatitis[J].Gastroenterology,2018,154(4):1096-1101. [29]陈康部?乌司他汀治疗急性重症胰腺炎疗效观察[]?中国误 诊学杂志,011,1(30):7353-7353. [30]Xie Z,Chan E,Long LM,et al.High dose intravenous immuno- globulin therapy of the Systemic Capillary Leak Syndrome( Clark-son disease)J] .Am J Med,2015,128(1):91-95. (收稿日期:2019-01-21) 98

蔗糖铁氧化应激反应和内皮细胞功能障碍

蔗糖铁引起的体内氧化应激反应和内皮细胞功能障碍 European Journal of Clinical Investigation (2002), 32 (Suppl.1), 9-16 T. M. Rooyakkers*?, E. S. G. Stroes*, M. P. Kooistra?, E. E. van Faassen?, R. C. Hider§, T. J. Rabelink* and J. J. M. Marx? *Department of Internal Medicine, University Medical Center, Utrecht, The Netherlands, ?Dianet, Utrecht, The Netherlands, ?Debye Institute, University Utrecht, The Netherlands, §Department of Pharmacy, School of Health and Life Science, King’s College London, UK, ?Eijkman-Winkler Institute, University Medical Centre, Utrecht, The Netherlands 摘要背景静脉补充铁剂在血液透析病人中已得到广泛应用。但是,静脉补充蔗糖铁后增加的非转铁蛋白结合铁(NTBI)被认为在体外氧自由基产生中起催化剂作用,可在体内引起内皮损伤。材料和方法在20名志愿者中注射100mg蔗糖铁。应用血管超声评价注射前、注射蔗糖铁后10min和240min三个时间点内皮依赖的血管扩张程度。收集全血检测NTBI,用电子自旋共振法评价体内氧自由基形成。对照组注射生理盐水。结果注射蔗糖铁使NTBI升高超过基础值4倍。与注射生理盐水组相比,注射蔗糖铁10min后血流介导的血管扩张有暂时而明显的减弱。注射蔗糖铁10min,240min后全血超氧化物的产生分别增加了70%和53%。结论目前治疗量的静脉用铁剂导致氧化应激增强和急性内皮功能障碍。 关键词内皮功能,蔗糖铁,血流介导的血管扩张,一氧化氮,氧自由基,超氧化物 重组人红细胞生成素(r-HuEPO)治疗终末期肾性贫血的疗效很大程度上取决于红细胞生成过程中铁的利用。血透和腹透时影响铁的吸收,鉴于已有的发现,补充铁剂可以大大提高病人对r-HuEPO的反应,因此许多透析病人均定期接受补铁治疗。最近我们发现,静脉注射100mg标准剂量铁剂后,这些病人的非转铁蛋白结合铁(NTBI)增加超过4倍。尽管这种NTBI池增加的临床意义尚不清楚,但已有体外研究显示,NTBI在毒性氧自由基形成过程中起到催化剂的作用。 以往的研究已经强调了内皮细胞和作为防止粥样硬化改变的一线防御机制的一氧化氮(NO),特别是内皮来源的NO之间有关联。实际上,NO利用受损在心血管风险增高的病人中普遍存在。当多种心血管危险因子存在时,如脂质代谢紊乱,高半胱氨酸血症和糖尿病时,NO生物利用受损与超氧化物导致的NO降解增加有关。反应的结果产生强氧化剂,过(氧化)亚硝酸盐,这种物质被认为参与

相关文档
最新文档