(完整word版)六自由度机器人结构设计

(完整word版)六自由度机器人结构设计
(完整word版)六自由度机器人结构设计

六自由度机器人结构设计、

运动学分析及仿真

学科:机电一体化

姓名:袁杰

指导老师:鹿毅

答辩日期: 2012.6

摘要

近二十年来,机器人技术发展非常迅速,各种用途的机器人在各个领域广泛获

得应用。我国在机器人的研究和应用方面与工业化国家相比还有一定的差距,因此

研究和设计各种用途的机器人特别是工业机器人、推广机器人的应用是有现实意义

的。

典型的工业机器人例如焊接机器人、喷漆机器人、装配机器人等大多是固定在

生产线或加工设备旁边作业的,本论文作者在参考大量文献资料的基础上,结合项

目的要求,设计了一种小型的、固定在AGV 上以实现移动的六自由度串联机器人。

首先,作者针对机器人的设计要求提出了多个方案,对其进行分析比较,选择

其中最优的方案进行了结构设计;同时进行了运动学分析,用D-H 方法建立了坐标变换矩阵,推算了运动方程的正、逆解;用矢量积法推导了速度雅可比矩阵,并计算了包括腕点在内的一些点的位移和速度;然后借助坐标变换矩阵进行工作空间分析,作出了实际工作空间的轴剖面。这些工作为移动式机器人的结构设计、动力学分析和运动控制提供了依据。最后用ADAMS 软件进行了机器人手臂的运动学仿真,并对其结果进行了分析,对在机械设计中使用虚拟样机技术做了尝试,积累了

经验。

第1 章绪论

1.1 我国机器人研究现状

机器人是一种能够进行编程,并在自动控制下执行某种操作或移动

作业任务的机械装置。

机器人技术综合了机械工程、电子工程、计算机技术、自动控制及

人工智能等多种科学的最新研究成果,是机电一体化技术的典型代表,是当代科技发展最活跃的领域。机器人的研究、制造和应用正受到越来越多的国家的重视。近十几年来,机器人技术发展非常迅速,各种用途的机器人在各个领域广泛获得应用。

我国是从 20 世纪80 年代开始涉足机器人领域的研究和应用的。1986年,我国开展了“七五”机器人攻关计划。1987 年,我国的“863”计划将机器人方面的研究列入其中。目前,我国从事机器人的应用开发的主要是高校和有关科研院所。最初我国在机器人技术方面的主要

目的是跟踪国际先进的机器人技术,随后,我国在机器人技术及其应用方面取得了很大成就。主要研究成果有:哈尔滨工业大学研制的两足步行机器人,北京自动化研究所1993 年研制的喷涂机器人,1995 年完成的高压水切割机器人,国家开放实验和研究单位沈阳自动化研究所研制的有缆深潜300m 机器人,无缆深潜机器人,遥控移动作业机器人,2000 年国防科技大学研制的两足类人机器人,北京航空航天大学研制的三指灵巧手,华理工大学研制的点焊、弧焊机器人,以及各种机器人装配系统等。

我国目前拥有机器人 4000 台左右,主要在工业发达地区应用,而全世界应用机器人数量为83 万台,其中主要集中在美国、日本等工业发达国家。在机器人研究方面,我国与发达国家还有一定差距。

1.2 工业机器人概述:

在工业领域广泛应用着工业机器人。工业机器人一般指在工厂车间

环境中,配合自动化生产的需要,代替人来完成材料或零件的搬运、加工、装配等操作的一种机器人。工业机器人的定义为:“一种自动定位控制、可重复编程的、多功能的、多自由度的操作机。能搬运材料、零件或操持工具,用以完成各种作业。”

操作机定义为:“具有和人的手臂相似的动作功能,可在空间抓放物体或进行其它操作的机械装置。”

一个典型的机器人系统由本体、关节伺服驱动系统、计算机控制系统、传感系统、通讯接口等几部分组成。一般多自由度串联机器人具有4~6 个自由度,其中2~3 个自由度决定了末端执行器在空间的位

置,其余2~3 个自由度决定了末端执行器在空间的姿态。

1.3 研究课题的提出

本研究课题是根据省教育厅《物流机器人操作研究与开发》课题的需要而提出的。工业机器人在FMS 中的一种典型应用如图1-1 所示。

图 1-1 工业机器人的一种典型应用

工业机器人固定在机床或加工中心旁边,由它们完成对加工工件的上、下料和装夹作业,通过输送线运送工件,实现物流的运转。当所要加工的产品放生变化、工件工艺流程改变时,就要调整柔性制造系统的布局。现在设想,将工业机器人固定在自动引导车(AGV)上,改变自动引导车的轨迹,就可以适应工件和工件工艺流程的变化,大大提高加工系统的柔性。

设想的机器人工作方式如图1-2 所示

图 1-2 可移动式机器人的应用

此外,对于这类小型的机器人,在原理不变的情况下,改变其结构,增强人机功能,将它固定在小型的移动装置或直接与移动装置结合成一体,就可以应用到日常生活中,如生活中物体的搬运、人员的看护等。

因此,设计开发这样一种可移动式、多自由度的小型机器人是有实际意义的。

1.4 本论文研究的主要内容

作者系统学习了机器人技术的知识,查阅了大量的文献资料,对国内外机器人、主要是工业机器人的现状有了比较详细的了解。在此基础

上,结合作者本人的设想,和设计工作中需要解决的任务,主要进行以

下几项工作:

(1)进行机器人本体结构的方案创成、分析和设计。

(2) 进行机器人静力学学分析,

(3) 分析机器人操作臂的工作空间,根据分析结果对操作臂各个杆件的长度进行选择和确定。

第2 章机器人方案的创成和机械结构的设计

2.1 机器人机械设计的特点

串联机器人机械设计与一般的机械设计相比,有很多不同之处。首先,从机构学的角度来看,机器人的结构是由一系列连杆通过旋转关节(或移动关节)连接起来的开式运动链。开链结构使得机器人的运动分析和静力分析复杂,两相邻杆件坐标系之间的位姿关系、末端执行器的位姿与各关节变量之间的关系、末端执行器的受力和各关节驱动力矩(或力)之间的关系等,都不是一般机构分析方法能解决得了的,需要建立一套针对空间开链机构的运动学、静力学方法。末端执行器的位置、速度、加速度和各个关节驱动力矩之间的关系是动力学分析的主要内容,在手臂开链结构中,每个关节的运动受到其它关节运动的影响,作用在每个关节上的重力负载和惯性负载随手臂位姿变化而变化,在高速情况下,还存在哥氏力和离心力的影响。因此,机器人是一个多输入多输出的、非线性、强耦合、位置时变的动力学系统,动力学分析十分复杂,因此,即使通过一定的简化,也需要使用不同于一般机构分析的专门分析方法。

其次,由于开链机构相当于一系列悬臂杆件串联在一起,机械误差和弹性变形的累积使机器人的刚度和精度大受影响。因此在进行机器人机械设计时特别要注意刚度和精度设计。

再次,机器人是典型的机电一体化产品,在进行结构设计时必须要

考虑到驱动、控制等方面的问题,这和一般的机械产品设计是不同的。另外,与一般机械产品相比,机器人的机械设计在结构的紧凑性、

灵巧性方面有更高的要求。

2.2 与机器人有关的概念

以下是本文中涉及到的一些与机器人技术有关的概念。

1 自由度:工业机器人一般都为多关节的空间机构,其运动副通常

有移动副和转动副两种。相应地,以转动副相连的关节称为转动关节。以移动副相连的关节称为移动关节。在这些关节中,单独驱动的关节称

为主动关节。主动关节的数目称为机器人的自由度。

2 机器人的分类

机器人分类方法有多种。

(1) 按机器人的控制方法的不同,可分为点位控制型(PTP),连续

轨迹控制型(CP):(a)点位控制型(Point to Point Control ):机器人受控运动方式为自一个点位目标向另一个点位目标移动,只在目标点上完成操作。例如

机器人在进行点焊时的轨迹控制。

(b)连续轨迹控制型(Continuous Path Control ):机器人各关节同时做受控运动,使机器人末端执行器按预期轨迹和速度运动,为此各关节控制系统需要获得驱动机的角位移和角速度信号,如机器人进行焊缝为曲线的弧焊作业时的轨迹控制。

(2) 按机器人的结构分类,可分为四类:

(a)直角坐标型:该型机器人前三个关节为移动关节,运动方向垂直,其控制方案与数控机床类似,各关节之间没有耦合,不会产生奇异

状态,刚性好、精度高。缺点是占地面积大、工作空间小。

(b)圆柱坐标型:该型机器人前三个关节为两个移动关节和一个转动关节,以q, r, z为坐标,位置函数为P = f (q, r, z) ,其中,r 是手臂径向长度,z 是垂直方向的位移,q 是手臂绕垂直轴的角位移。这种形式的机器人占用空间小,结构简单。

(c)球坐标型:具有两个转动关节和一个移动关节。以q,f, y 为坐标,位置函数为P = f (q ,f, y),该型机器人的优点是灵活性好,占地面积小,但刚度、精度较差。

(d)关节坐标型:有垂直关节型和水平关节型(SCARA 型)机器人。前三个关节都是回转关节,特点是动作灵活,工作空间大、占地面积小,缺点是刚度和精度较差。

(3) 按驱动方式分类:

按驱动方式可分为:(a)气压驱动;(b)液压驱动;(c)电气驱动。电气驱动是 20 世纪90 年代后机器人系统应用最多的驱动方式。它有结构简单、易于控制、使用方便、运动精度高、驱动效率高、不污染

环境等优点。

(4) 按用途分类:

可分为搬运机器人、喷涂机器人、焊接机器人、装配机器人、切削

加工机器人和特种用途机器人等。

2.3 方案设计

2.3.1 方案要求

如前所述,该机器人用于制造车间物流系统中工件的搬运、装夹和

日常生活中的持物、看护等。能够固定在移动装置(如AGV)上,以实现灵活移动。要求动作灵活,工作范围大,被夹持物应具有多种姿态,自由度在5~6 个,结构紧凑,重量轻。采用电动机驱动,设计负重为6公斤,手爪开合范围5 mm~100 mm。

2.3.2 方案功能设计与分析

a 机器人自由度的分配和手臂手腕的构形

手臂是执行机构中的主要运动部件,它用来支承腕关节和末端执行器,并使它们能在空间运动。为了使手部能达到工作空间的任意位置,手臂一般至少有三个自由度,少数专用的工业机器人手臂自由度少于三个。手臂的结构形式有多种,常用的构形如图2-1。

本课题要求机器人手臂能达到工作空间的任意位置和姿态,同时要

结构简单,容易控制。综合考虑后确定该机器人具有六个自由度,其中手臂三个自由度。由于在同样的体积条件下,关节型机器人比非关节型机器人有大得多的相对空间(手腕可达到的最大空间体积与机器人本体外壳体积之比)和绝对工作空间,结构紧凑,同时关节型机器人的动作和轨迹更灵活,因此该型机器人采用关节型机器人的结构。

图 2-1 几种多自由度机器人手臂构形

手腕的构形也有多种形式。三自由度的手腕通常有以下四种形式:BBR 型、BRR 型、RBR 型和RRR 型。如图2-2 所示。

四种三自由度手腕构形

B 表示弯曲结构,指组成腕关节的相邻运动构件的轴线在工作过程

中相互间角度有变化。R 表示转动结构,指组成腕关节的相邻运动构件的轴线在工作过程中相互间角度不变。BBR 结构由于采用了两个弯曲结构使结构尺寸增加了,BRR、RBR 前者相比结构紧凑。

旋转关节相对平移关节来讲,操作空间大,结构紧凑,重量轻,关节易于密封防尘。这里使用了六个旋转关节,综合各种手臂和手腕构形,最后确定其结构形式如图2-3。

图 2-3 该型机器人构形

前三个关节决定了末端执行器在空间的位置,后三关节决定了末端

执行器在空间的姿态。

b 传动系统的布置

总体结构方案确定后,作出机器人结构草图。在传动系统的布置方面,尝试了多种不同的方案。主要有以下几种,见图2-4。

方案 1(图2-4a)传动链最短,诱导运动少。但手腕结构尺寸大,重量大,腰部结构复杂。方案3(图2-4c)、方案4(图2-4d)腰部结构简单,便

于应用重力进行力矩平衡,但大、小臂结构复杂,传动链长,诱导运动

多,方案2(图2-4b)传动链短,手腕重量轻,结构紧凑。综合考虑,最后

确定方案2 为较优方案,根据该方案进行机械结构设计。

c 方案描述

该机器人固定在自动引导车( AGV)上。这种AGV 可以实现水平方

向两个自由度的运动,导航方式有多种,如磁导航、激光导航、程序自

动轨迹控制等方式,因此,该机器人有运动自由灵活的特点。

机器人本体由机座、腰部、大臂、小臂、手腕、末端执行器和驱动

装置组成。共有六个自由度,依次为腰部回转、大臂俯仰、小臂俯仰、手腕回转、手腕俯仰、手腕侧摆。

机器人采用电动机驱动。这种驱动方式具有结构简单、易于控制、

使用维修方便、不污染环境等优点,这也是现代机器人应用最多的驱动

方式。

为实现机器人灵活自由地移动,驱动系统使用了蓄电池供电。电动

机可以选择步进电机或直流伺服电机。使用直流伺服电机能构成闭环控

制,精度高,额定转速高,但价格较高,而步进电机驱动具有成本低,控制系统简单的优点。确定这种机器人的6 个关节都采用步进电机驱动,

开环控制。

由于大臂俯仰和小臂俯仰运动的力矩很大,分别为 150Nm 和27Nm 左右,如果使用电机直接驱动的话,要求电机的输出扭矩很大,因此考虑在大臂关节和小臂关节处使用减速器。常用的减速器有行星减速器和谐波减速器等。谐波减速器具有传动比大、承载能力强、传动平稳、体积小、重量轻的优点,已广泛应用在现代机器人中。因此在大臂和小臂关节处使用了谐波减速器,减速比分别为1:100 和1:50,使用的步进电机输出扭矩分别为3.7Nm和1.0 N m 。

在现代机器人结构中广泛使用着各种机器人轴承,常用的有环形轴承和交叉滚子轴承。这几种机器人专用轴承具有结构简单紧凑,精度高、刚度大,承载能力强(可承受径向力、轴向力、倾覆力矩)和安装方便等优点。但考虑到这些轴承价格昂贵,而使用普通的球轴承或滚子轴承也能满足结构的需要,所以在该机器人的结构中仍然全部采用球轴承。在电机的布置上,考虑尽量将电机放置在相应的操作臂的前端,这样可以减小扭矩,同时也可以起到重力平衡的作用,但同时尽量避免过长的传动链,以简化结构,减少诱导运动。

参考同类机器人的运动参数,结合工作情况的需要,定出该型机器人的运动参数如下:

关节 1( T ): 30 o/s (0.524 rad/s) ( 5 r/min)

关节 2( W ): 30 o/s (0.524 rad/s) ( 5 r/min)

关节 3( U ): 60 o/s (1.047 rad/s) (10 r/min)

关节 4( C ): 120 o/s (2.094 rad/s) (20 r/min)

关节 5( B ): 120 o/s (2.094 rad/s) (20 r/min)

关节 6( S ): 180 o/s (3.142 rad/s) (30 r/min)

最大加速度:2 m/s2

各关节转动范围:

关节 1( T ): -360 o ~ +360 o

关节 2( W ): - 90 o ~ + 90 o

关节 3( U ): -60 o ~ +210 o

关节 4( C ): -360 o ~ +360 o

关节 5( B ): - 90 o ~ + 90 o

关节 6( S ): -360 o ~ +360 o

2.4 方案结构设计与分析

该机器人的本体组成如图 2-5。

各部件组成和功能描述如下:

(1) 底座部件:

底座部件包括底座、回转部件、传动部件和步进电机等。底座部件固定在自动引导车(AGV)上,支持整个操作机,步进电机固定在底座

上,一级同步带传动将运动传递到腰部回转轴,同时起到减速作用。

(2) 腰部回转部件:

腰部回转部件包括腰部支架、回转轴、支架、谐波减速器和步进电机、制动器等。作用是支承大臂部件,并完成腰部回转运动。在腰部支架上固定着驱动大臂俯仰和小臂俯仰的电机。

(3) 大臂部件:包括大臂和传动部件。

(4) 小臂部件:包括小臂、减速齿轮箱、传动部件、传动轴等,在小臂前端(靠近大臂的一端)固定驱动手腕三个运动的步进电机

(5) 手腕部件:包括手腕壳体、传动齿轮和传动轴、机械接口等

(6) 末端执行器:

为抓取不同形状、不同材质的物体,末端执行器设计得开合范围比

较大,为0~100mm。考虑在指尖的平面上贴传感器片,进行力的控制。设计了两种手爪。

两种手爪都采用电机驱动,平行开合机构。方案 1 采用了左右旋螺杆,同一根螺杆一端为左旋螺纹,另一端为螺距相同的右旋螺纹,当螺

杆转动时,两只螺母带动左右两个手指同时开合,燕尾导轨定向。

方案 2 的运动机构采用平行四连杆机构。方案2 比方案1 重量轻,被夹持物到手腕的高度尺寸大,刚度略差。使用了蜗轮蜗杆机构起到减

速和增大扭矩的作用。两种手爪使用同样的与手腕连接的机械接口。

六自由度工业机器人设计

六自由度工业机器人 对于工业机器人的设计与大多数机械设计过程相同;首先要知道为什么要设计机器人机器人能实现哪些功能活动空间(有效工作范围)有多大了解基本的要求后,接下来的工作就好作了。 首先是根据基本要求确定机器人的种类,是行走的提升(举升)机械臂、还是三轴的坐标机器人、还是六轴的机器人等。选定了机器人的种类也就确定了控制方式,也就有了在有限的空间内进行设计的指导方向。 接下来的要做的就是设计任务的确定。这是一个相对复杂的过程,在实现这一复杂过程的第一步是将设计要求明确的规定下来;第二步是按照设计要求制作机械传动简图,分析简图,制定动作流程表(图),初步确定传动功率、控制流程和方式;第三步是明确设计内容,设计步骤、攻克点、设计计算书、草图绘制,材料、加工工艺、控制程序、电路图绘制;第四步是综合审核各方面的内容,确认生产。 下面我将以六轴工业机器人作为设计对象来阐明这一设计过程: 在介绍机器人设计之前我先说一下机器人的应用领域。机器人的应用领域可以说是非常广泛的,在自动化生产线上的就有很多例子,如垛码机器人、包装机器人、转线机器人;在焊接方面也有很例子,如汽车生产线上的焊接机器人等等;现在机器人的发展是非常的迅速,机器人的应用也在民用企业的各个行业得以延伸。机器人的设计人才需求也越来越大。 六轴机器人的应用范筹不同,设计形式也各不相同。现在世界上生产机器人的公司也很多,结构各有特色。在中国应用最多的如:ABB、Panasonic、FANUK、莫托曼等国外进口的机器人。 既然机器人的应用那么广泛,在我国却没有知名的生产公司。对于作为中国机械工程技术人员来说是一个值得思考的问题!有关机器人技术方面探讨太少了从业人员还不能成群体虽然在很多地方可以看到机器的论术,可是却没有真正形成普及的东西。 即然是要说设计,那我就从头一点一点的说起。力求讲的通俗简明一些,讲得不对的地方还请各位指正! 六轴机器人是多关节、多自由度的机器人,动作多,变化灵活;是一种柔性技术较高的工业机器人,应用面也最广泛。那么怎样去从头开始的设计它呢工作范围又怎样去确定动作怎样去编排呢位姿怎样去控制呢各部位的关节又是有怎么样的要求呢等等。。。。。。让我们带着众多的疑问慢慢的往下走吧! 首先我们设定:机器人是六轴多自由度的机器人,手爪夹持二氧气体保护焊标准焊枪;完成点焊、连续焊等不同要求的焊接部件,工艺要求、工艺路线变化快的自动生线上。最大伸长量:1700mm;转动270度;底座与地平线水平固定;全电机驱动。 好了,有了这样的基本要求我们就可以做初步的方案的思考了。 首先是全电机驱动的,那么我们在考虑方案的时候就不要去考虑液压和气压的各种结构了,也就是传动机构只能用齿轮齿条、连杆机构等机械机构了。 机器人是用于焊接方面的,那么我们就去考察有人工行为下的各种焊接手法和方法。这里就有一个很复杂的东西在里面,那就是焊接工艺;即然焊艺定不下来,我们就给它区分一下,在常用焊接里有单点点焊、连续断点点焊、连续平缝焊接、填角焊接、立缝焊接、仰焊、环缝焊等等。。。。。。 搞清了各种焊方法,也就明白了要实现这些复杂的动作就要有一套可行的控制方式才行;在机械没有完全设计出来之前可以不做太多的控制方案思考,有一个大概的轮廓概念就行了,待机械结构做完,各方面的驱动功率确定下来之后再做详细的程序。 焊枪是用常用的标准的焊枪,也就是说焊枪是随时可以更换下来的,也就要求我们要做到对焊枪的夹持部分进行快速锁定与松开。

六自由度运动模拟器

基于模型的阻抗控制六自由度电液斯图尔平台 摘要—本文详细描述了一个以模型为基础的阻抗控制六自由度电液斯图尔平台,刚体和电液伺服阀模型,包括所用伺服阀模型和一套完整的系统方程,也包括摩擦和泄漏液压原件。所设计的控制器是采用系统动力学和液压模型产生伺服阀电流。控制规则包括反馈和前馈两个单独的部分。根据指定的特性阻抗过滤器会修改所需的轨迹,修改后的轨迹被送入系统模型,以减少非线性液压动力的影响。提出了模拟的典型期望轨迹,并得到了拥有良好性能的控制器。 1.导言 最早的6自由度(DOF)斯图尔特高夫平台是在1954年发明的。在1965年,样机的平行机构被用做一个具有六自由度运动平台的飞行模拟器。此后,许多关于这种机构以及相关研究被发表,该机构可以是电动也可以是液动。许多研究人员已经研究了斯图尔特平台的动力学和运动学。然而驱动力却没有被考虑完全。虽然电动斯图尔平台已被广泛运用,但是很少有研究是关于包括驱动和控制的完整动力学。 阻抗控制被认为是一种积极的兼容的运动控制,主要需要行业应用并于周围环境相互作用,例如数控机床,铣床等。这种控制器同时具有安全性和灵活性,相对而言是首选。 液压科学与控制相结合,得到了新的液压系统的应用。这也是为什么液压系统会被作为一些工业和移动式应用机电驱动的首选。包括它们大批量快速生产的能力,它们的耐久性和刚度,还有他们的响应速度,液压体系不同于机电体系,在液压体系中力或例句输出与执行器的电流是不成真比的,因此,液压执行器不能作为力矩的来源模仿,但是可以作为受控阻抗,所以,要设计出了控制机器人的控制器。驱动力/力矩的虚拟设置在这里始终不可行。 控制技术被用来补偿电动液压伺服系统的非线性。研究人员已经提出了关于液压伺服系统的非线性自适应控制技术的假设、反推以及方式。一个强力的控制器是在非线性定量反馈理论的基础上设计的,已被工业液力执行机构所实现,同时考虑了系统和环境的不确定性。一个电动机械手控制的统一方式适用于任何提案。运动学约束议案,以及机机械臂及其环境之间的动态交互研究已经通过审查。制定所需的机械臂阻抗技术和对一个给定应用程序选择适当的阻抗的技术的最优化理论已经被提出。这里有两种控制机电驱动高夫斯图尔特并行平台机械阻抗的空间几何方法,第一种基于球形位置函数,第二种则是利用指数映射关联有限位移与扭转位移平衡的平台。 一个基于模型的高性能的压接头液压伺服系统前馈反馈阻抗控制器已经被提出,在这里,一个阻抗根据在自由空间或空间接触的行为来调整过滤器所需的轨迹,类似已提交的工作,其中基于位置阻抗控制器工业液压机械手已开发。此外,阻抗控制器研究已在遥控轮式液压伺服系统和重型工程中实施。 在这篇论文中,提及了一种基于模型的六自由度电液伺服斯图尔特关节对称平台阻抗控制器,用于描述刚体斯图尔特平台和液压驱动系统,对比其它方法,这里有伺服模型和摩擦模型。先进的控制方案在分析方案时,应用了刚体、驱动力学和伺服阀的输入电流矢量。控制规律包括两个信号,反馈信号和前馈信号。根据指定的行为阻抗过滤器会修改所需的轨迹。修改后的轨迹被送入系统模型,以减少非线性液压动力的影响。现金控制器的性能说明使用了典型的轨迹。拟议的方法可以扩展到串行或闭链机器人和模拟器。 2系统建模 在本节中,研究了六自由度电液伺服斯图尔特平台的动态模型,这是一个由支架和六个线性驱动器组成的闭环运动体系,该体系的原理如图1所示:

六轴运动机器人运动学求解分析_第九讲

六轴联动机械臂运动学及动力学求解分析 V0.9版 随着版本的不断更新,旧版本文档中的一些笔误得到了修正,同时文档内容更丰富,仿真程序更完善。 作者朱森光 Email zsgsoft@https://www.360docs.net/doc/805325846.html, 完成时间 2016-02-28

1引言 笔者研究六轴联动机械臂源于当前的机器人产业热,平时比较关注当前热门产业的发展方向。笔者从事的工作是软件开发,工作内容跟机器人无关,但不妨碍研究机器人运动学及动力学,因为机器人运动学及动力学用到的纯粹是数学和计算机编程知识,学过线性代数和计算机编程技术的人都能研究它。利用业余时间翻阅了机器人运动学相关资料后撰写此文,希望能够起到抛砖引玉的作用引发更多的人发表有关机器人技术的原创性技术文章。本文内容的正确性经过笔者编程仿真验证可以信赖。 2机器建模 既然要研究机器人,那么首先要建立一个机械模型,本文将以典型的六轴联动机器臂为例进行介绍,图2-1为笔者使用3D技术建立的一个简单模型。首先建立一个大地坐标系,一般教科书上都是以大地为XY平面,垂直于大地向上方向为Z轴,本文为了跟教科书上有所区别同时不失一般性,将以水平向右方向为X轴,垂直于大地向上方向为Y轴,背离机器人面向人眼的方向为Z轴,移到电脑屏幕上那就是屏幕水平向右方向为X轴,屏幕竖直向上方向为Y轴,垂直于屏幕向外为Z轴,之所以建立这样不合常规的坐标系是希望能够突破常规的思维定势训练在任意空间建立任意坐标系的能力。 图2-1 图2-1中的机械臂,底部灰色立方体示意机械臂底座,定义为关节1,它能绕图中Y轴旋转;青色长方体示意关节2,它能绕图中的Z1轴旋转;蓝色长方体示意关节3,它能绕图中的Z2轴旋转;绿色长方体示意关节4,它能绕图中的X3轴旋转;深灰色长方体示意关节5,它能绕图中的Z4轴旋转;末端浅灰色机构示意关节6即最终要控制的机械手,机器人代替人的工作就是通过这只手完成的,它能绕图中的X5轴旋转。这儿采用关节这个词可能有点不够精确,先这么意会着理解吧。 3运动学分析 3.1齐次变换矩阵 齐次变换矩阵是机器人技术里最重要的数学分析工具之一,关于齐次变换矩阵的原理很多教科书中已经描述在此不再详述,这里仅针对图2-1的机械臂写出齐次变换矩阵的生成过程。首先定义一些变量符号,关节1绕图中Y轴旋转的角度定义为θ0,当θ0=0时,O1点在OXYZ坐标系内的坐标是(x0,y0,0);关节2绕图中的Z1轴旋转的角度定义为θ1,图中的θ1当前位置值为+90度;定义O1O2两点距离为x1,关节3绕图中的Z2轴旋转的角度定义为θ2,图中的θ2当前位置值为-90度;O2O3两点距离为x2,关节4绕图中的X3轴旋转的角度定义为θ3, 图中的θ3当前位置值为0度;O3O4两点距离为x3,关节5绕图中的Z4轴旋转的角度定义为θ4, 图中的θ4当前位置值为-60度;O4O5两点距离为x4,关节6绕图中的X5轴旋转的角度定义为θ5, 图中的θ5当前位置值为0度。以上定义中角度正负值定义符合右手法则,所有角度定义值均为本关节坐标系相对前一关节坐标系的相对旋转角度值(一些资料上将O4O5两点重合在一起即O4O5两点的距离x4退化为零,本文定义x4大于零使得讨论时更加不失一般性)。符号定义好了,接下来描述齐次变换矩阵。 定义R0为关节1绕Y轴的旋转矩阵 =cosθ0 s0 = sinθ0 //c0 R0 =[c0 0 s0 0 0 1 0 0 0 c0 0 -s0 0 0 0 1] 定义T0为坐标系O1X1Y1Z1相对坐标系OXYZ的平移矩阵 T0=[1 0 0 x0 0 1 0 y0 00 1 0 0 0 0 1] 定义R1为关节2绕Z1轴的旋转矩阵 R1=[c1 –s1 0 0 s1 c1 0 0

六自由度机械手重载搬运机器人本体结构设计(全套CAD图纸)

全套设计通过答辩优秀CAD图纸QQ 36396305 XX学院 毕业设计说明书(论文) 作者: 学号: 学院(系): 专业: 题目: 重载搬运机器人本体结构设计【六自由 度机械手】 2015 年5月

全套设计通过答辩优秀CAD图纸QQ 36396305 毕业设计说明书(论文)中文摘要 机械手是一种典型的机电一体化产品,搬运机械手是机械手研究领域的热点。研究搬运机械手需要结合机械、电子、信息论、人工智能、生物学以及计算机等诸多学科知识,同时其自身的发展也促进了这些学科的发展。 本文对一种使用在搬运机械手的结构进行设计,并完成总装配图和零件图的绘制。要求对机械手模型进行力学分析,估算各关节所需转矩和功率,完成电机和减速器的选型。其次从电机和减速器的连接和固定出发,设计关节结构,并对机构中的重要连接件进行强度校核。 关键词:结构设计,机器臂,关节型机械手,结构分析

毕业设计说明书(论文)外文摘要

目录 1 绪论 (1) 1.1 引言 (2) 1.2 搬运机械手研究概况 (3) 1.2.1 国外研究现状 (3) 1.2.2 国内研究现状 (4) 1.4 搬运机械手的总体结构 (5) 1.5 主要内容 (5) 2 总体方案设计 (6) 2.1 机械手工程概述 (6) 2.2 工业机械手总体设计方案论述 (7) 2.3 机械手机械传动原理 (8) 2.4 机械手总体方案设计 (8) 2.5 本章小结 (10) 3 机械手大臂结构设计 (1) 3.1 大臂部结构设计的基本要求 (1) 3.2 大臂部结构设计 (2) 3.3 大臂电机及减速器选型 (2) 3.4 减速器参数的计算 (3) 3.5承载能力的计算 (7) 3.5.1 柔轮齿面的接触强度的计算 (7) 3.5.2 柔轮疲劳强度的计算 (7) 3.6 轴的计算校核 (8) 3.7 大臂的平衡设计 (11) 3.7.1 弹簧的受力分析 (11) 3.7.2 弹簧的设计计算 (14) 4机械手小臂结构设计 (18) 4.1 腕部设计 (18) 4.2 小臂部结构设计 (31)

六自由度机器人说明书

六自由度机器人说明书 专业:机械制造与自动化 班级: 成员:

目录 一、打开气源 二、机器人的快速操作入门 1、坐标系的选择 2、手动速度调整 3、伺服电源接通 4、接通主电源 5、接通伺服电源 三、伺服电源切断 1、切断伺服电源 2、切断主电源 四、轴操作

一、打开气源 请确认系统进气气源已进行供气,未供气或气压不足将会导致系统无法正常工作,系统运行中如断开气源,可能导致设备损坏,甚至造成人员伤害。 打开下图气泵,将开关拨到“I”,再打开气阀

拨到“开”,即 “Ⅰ” 往上拨,打开气阀

二、机器人的快速操作入门 1、坐标系的选择 在示教模式下,选择机器人运动坐标系:按手持操作示教器上的【坐标系】键,每按一次此键,坐标系按以下顺序变化,通过状态区的显示来确认。 2、手动速度调整 示教模式下,选择机器人运动速度:按手持操作示教器上【高速】键或【低速】键,每按一次,手动速度按以下顺序变化,通过状态区的速度显示来确认。 ?按手动速度【高速】键,每按一次,手动速度按以下顺序变化:微动1%→微动2%→低5%→低10%→中25%→中50%→高75%→高100%。 ?按手动速度【低速】键,每按一次,手动速度按以下顺序变化:高100%→高75%→中50%→中25%→低10%→低5%→微动2%→微动1%。 3、伺服电源接通 打开上电控柜上的主电源开关时,应确认在机器人动作 范围内无任何人员。

忽视此提示可能会发生与机器人的意外接触而造成人身伤害。如有任何问题发生,应立即按动急停键,急停键位于 电控柜前门的右上方。 4、接通主电源 ●把电控柜侧板上的主电源开关扳转到接通(ON) 的位置,此 时主电源接通。 ●按下电控柜面板上的绿色伺服启动按钮。

六自由度摇摆平台

大黄蜂机器人六自由度摇摆台 大黄蜂机器人有限公司的六自由度平台系统由采用Stewart机构的六自由度运动平台、计算机控制系统、驱动系统等组成。六自由度运动平台(如下图)的下平台安装在地面上,上 平台为运动平台,它由六只电动缸支承,运动平台与电动缸采用六个虎克铰连接,电动缸与固定基座采用六个虎克铰连接,六只电动缸采用伺服电机驱动的电动缸。计算机控制系统通过协调控制电动缸的行程,实现运动平台的六个自由度的运动,即笛卡尔坐标系内的三个平移运动和绕三个坐标轴的转动。

各主要部分简述如下: 本设备主要由以下部分组成:运动上平台、下平台(基座)、电动缸及伺服 电机、驱动器系统、综合控制及监测系统。 各自功能如下: 上平台:是有效载荷的安装基面,提供六自由度的摇摆运动。 下平台:是六自由度摇摆台的安装基面,需要承受足够大的冲击力。 电动缸及伺服电机:通过控制电动缸活塞杆的行程,实现运动平台台体的六自由度运动,共6套。 驱动器系统:接收用户控制指令,通过控制伺服电机的输入,对伺服电机的输出转速和转角进行控制,达到控制电动缸活塞杆出速度和行程的目的,共6套。 综合控制监测系统:硬件为用户计算机,软件为研制方配合开发;同时,它 还对平台的运动过程进行监测,预防和处理系统的异常情况。

平台总体运动能力指标如上表,具体表述如下: a.平台定位精度及重复定位精度为0.5mm及0.1mm; b.平台转动精度及重复转动精度为0.1°及0.05°; c.行程回差小于0.2mm; d.平台X方向运动速度可从0mm/s到250mm/s连续变化;YZ方向运动 速度可从0mm/s到250mm/s连续变化; e.单支杆可承受轴向力不小于700N; f.单支杆的运动速度可从0m/s到250mm/s连续变化; g.平台中位位置固有频率:不小于40Hz; h.机械组件需具有开放性,可拆卸组装; i.机械设计安全系数不小于 2.0,驱动裕度不小于 3.0; j.额定载荷下,全行程往复工作寿命不小于1×104次,存储寿命不小于48月;

(完整版)六自由度机器人结构设计

六自由度机器人结构设计、 运动学分析及仿真 学科:机电一体化 姓名:袁杰 指导老师:鹿毅 答辩日期: 2012.6 摘要 近二十年来,机器人技术发展非常迅速,各种用途的机器人在各个领域广泛获 得应用。我国在机器人的研究和应用方面与工业化国家相比还有一定的差距,因此 研究和设计各种用途的机器人特别是工业机器人、推广机器人的应用是有现实意义 的。 典型的工业机器人例如焊接机器人、喷漆机器人、装配机器人等大多是固定在 生产线或加工设备旁边作业的,本论文作者在参考大量文献资料的基础上,结合项 目的要求,设计了一种小型的、固定在AGV 上以实现移动的六自由度串联机器人。 首先,作者针对机器人的设计要求提出了多个方案,对其进行分析比较,选择

其中最优的方案进行了结构设计;同时进行了运动学分析,用D-H 方法建立了坐标变换矩阵,推算了运动方程的正、逆解;用矢量积法推导了速度雅可比矩阵,并计算了包括腕点在内的一些点的位移和速度;然后借助坐标变换矩阵进行工作空间分析,作出了实际工作空间的轴剖面。这些工作为移动式机器人的结构设计、动力学分析和运动控制提供了依据。最后用ADAMS 软件进行了机器人手臂的运动学仿真,并对其结果进行了分析,对在机械设计中使用虚拟样机技术做了尝试,积累了 经验。 第1 章绪论 1.1 我国机器人研究现状 机器人是一种能够进行编程,并在自动控制下执行某种操作或移动 作业任务的机械装置。 机器人技术综合了机械工程、电子工程、计算机技术、自动控制及 人工智能等多种科学的最新研究成果,是机电一体化技术的典型代表,是当代科技发展最活跃的领域。机器人的研究、制造和应用正受到越来越多的国家的重视。近十几年来,机器人技术发展非常迅速,各种用途的机器人在各个领域广泛获得应用。 我国是从 20 世纪80 年代开始涉足机器人领域的研究和应用的。1986年,我国开展了“七五”机器人攻关计划。1987 年,我国的“863”计划将机器人方面的研究列入其中。目前,我国从事机器人的应用开发的主要是高校和有关科研院所。最初我国在机器人技术方面的主要

六自由度机械手设计说明书

六自由度机械手设计说明书

设计参数

摘要 随着现代科技和现代工业的发展,工业的自动化程度越来越高。工业的自动化中机械手发挥了相当大的作用,小到机床的自动换刀机械手,大到整个的全自动无人值守工厂,无一不能看到机械手的身影。 机械手在工业中的应用可以确保运转周期的连贯,提高品质。另外,由于机械手的控制精确,还可以提高零件的精度。机械手在工业中的应用十分广泛,如:一、以提高生产过程中的自动化程度 应用机械手有利于实现材料的传送、工件的装卸、刀具的更换以及机器的装配等的自动化的程度,从而可以提高劳动生产率和降低生产成本。 二、以改善劳动条件,避免人身事故 在高温、高压、低温、低压、有灰尘、噪声、臭味、有放射性或有其他毒性污染以及工作空间狭窄的场合中,用人手直接操作是有危险或根本不可能的,而应用机械手即可部分或全部代替人安全的完成作业,使劳动条件得以改善。 在一些简单、重复,特别是较笨重的操作中,以机械手代替人进行工作,可以避免由于操作疲劳或疏忽而造成的人身事故。 三、可以减轻人力,并便于有节奏的生产 应用机械手代替人进行工作,这是直接减少人力的一个侧面,同时由于应用机械手可以连续的工作,这是减少人力的另一个侧面。因此,在自动化机床的综合加工自动线上,目前几乎都设有机械手,以减少人力和更准确的控制生产的节拍,便于有节奏的进行工作生产。 应用前景 工业机械手是近几十年发展起来的一种高科技自动化生产设备。工业机械手的是工业机器人的一个重要分支。它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。 机械手是在机械化,自动化生产过程中发展起来的一种新型装置。在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术邻域内,迅速发殿起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用

六自由度运动平台方案设计报告

编号 密级内部阶段标记 C 会签 校对 审核 批准六自由度运动平台 方案设计 名称

内容摘要: 针对YYPT项目在原理样机出现的问题,对YYPT原理样机从结构设计、伺服系统等方面进行优化设计,以满足设计及使用要求。 主 YYPT 优化 题 词 更改单号更改日期更改人更改办法 更 改 栏

1概述 YYPT原理样机用原库房留存的345厂的直流电机作为动力源,直流驱动器及工控机作为控制系统元件,采用VB软件进行控制软件的编制,因设计及器件选型的原因,导致YYPT原理样机,在速度、精度、运动规律上等几个技术指标无法满足原规定的指标要求,现在此基础上进行优化方案的设计。 2 原理样机技术状态 2.1 原理样机方案 2.1.1 组成 原理样机采用工控机作为系统的控制单元,工控机内配有研华PCI1716和PCI1723作为A/D和D/A模拟量卡,驱动器采用AMC公司的型号为12A8的伺服驱动器,并配有直流可调电源其输出电流可达到150A,采用KH08XX(3)电动缸作为运动平台的六条支腿,电动缸上安装有电阻尺作为位置反馈器件,上平台与电动缸连接采用球笼联轴器,下平台与电动缸连接采用虎克铰链方式。具体产品组成表见表2.1。 序号产品名称型号厂家数量备注 1 电动缸KH08XX(3)西安方元明 6 安装345厂电机 2 电阻尺LTS-V1-375 上海徳测 6 3 驱动器50A8 AMC 6 3 A/D卡PCI1716 研华 1 4 D/A卡PCI1723 研华 1 5 工控机610H 研华 1 6 直流电源 1 2.1.2 结构方案 六自由度运动平台是由六条电动缸通过虎克铰链和球笼万向节联轴器将上、下两个平台连接而成,下平台固定在基础上,借助六条电动缸的伸缩运动,完成上平台在三维空间六个自由度(X,Y,Z,α,β,γ)的运动,从而可以模拟出各种空间运动姿态。

六自由度工业机器人实验指导书

六自由度工业机器人实验指导书 前言 机器人已广泛应用于汽车与汽车零部件制造业、机械加工行业、电子电器行业、橡胶及塑料工业、食品工业、木材与家具制造业等领域。在工业生产中,弧焊机器人,点焊机器人,喷涂机器人及装配机器人等都被大量使用。 机器人系统由机器人和作业对象及环境共同组成的,其中包括机器人机械系统、驱动系统、控制系统和感知系统四部分组成,其实际上是一个典型的机电一体化系统,其工作原理为:控制系统发出动作指令,控制驱动器动作,驱动器带动机械系统运动,使末端操作器到达空间某一位置和实现某一姿态,实施一定的作业任务。末端操作器在空间的实时位姿由感知系统反馈给控制系统,控制系统把实际位姿与目标位姿相比较,发出下一个动作指令,如此循环,直到完成作业任务为止。 首钢莫托曼机器人有限公司生产的SG—MOTOMAN—UP6工业机器人,为6轴垂直多关节型,具有节省空间、高速动作时的轨迹精度高、轨迹流畅、动作速度高、动作范围广、安全可靠等特点,在工业上可进行弧焊、点焊、切割、搬运等。 实验项目机器人示教编程与再现控制 一、实验目的 通过本次试验,掌握六自由度工业机器人的工具坐标系及工件坐标系的标定方法、示教编程与再现控制。 二、实验内容 实验前请仔细阅读MOTOMAN-UP6机器人使用说明书、Y ASNAC XRC使用说明书及操作要领书相关内容。 2.1 示教的基本步骤 开始示教前,请做以下准备: 1.开启电源,接通XRC控制柜的控制按钮; 2.确认急停键是否可以正常工作; 3.设置示教锁定: 按下再现操作盒的[TEACH]按钮(指示灯点亮),使机器人工作在示教模式。

● 2.2 输入程序名 ●在示教编程器显示画面中下拉菜单选择【程序】→选择【新建程序】→输入程序名 →按【回车】键→选择【执行】。 2.3 示教 2.3.1 示教任务 机器人卸料作业如下图所示,当自动输送线的卸料工位有工件且运料小车到位时,机器人从卸料工位上抓取工件,堆放到运料箱中(运料箱中可存储工件4×6个),当工件堆满后,机器人停止作业,直到下一个空运料箱到位,重复堆垛工作。 机器人卸料作业示意图 2.3.2 示教要求 1. 画出机器人工作流程图; 2. 完成工具坐标系、工件坐标系的标定 3. 完成机器人卸料作业的示教程序的编写,要求对通用I/O地址、变量进行定义, 实现卸料工位是否有工件、运料小车是否到位等状态检测、堆料工件的计数、启动平移功能时移动量的设定、夹爪的夹紧/松开等等功能。 4. 在再现模式下验证所编写程序的正确性。 2.4 实验报告要求 1. 以小论文的形式完成书面实验报告。 2. 对卸料作业任务要求进行分析,提出机器人卸料的解决方案,并画出机器人的 工作流程。 3. 完成机器人卸料作业所必需的参数设定及坐标系的标定、程序设计等。

六自由度机器人

本科毕业设计(论文) FINAL PROJECT/THESIS OF UNDERGRADUATE (2014届) 六自由度机器人机械机构设计 学院机械工程学院 专业机械设计制造及其自动化学生姓名** 学号 指导教师*** 完成日期2014年5月

承诺书 本人郑重承诺:所呈交的毕业论文“六自由度机器人机械结构设计”是在导师的指导下,严格按照学校和学院的有关规定由本人独立完成。文中所引用的观点和参考资料均已标注并加以注释。论文研究过程中不存在抄袭他人研究成果和伪造相关数据等行为。如若出现任何侵犯他人知识产权等问题,本人愿意承担相关法律责任。 承诺人(签名):______________________ 日期:年月日

六自由度机器人机械结构设计 摘要 机械手是模仿人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置,其主要由执行机构、驱动机构、控制机构以及位置检测装置等所组成。本论文围绕机器人本体结构设计,进行机器人静力学分析及研究极限位置下关节力矩情况,并以此为依据为机器人机构改进奠定理论基础,主要设计内容如下:(1)阐述六自由度工业机器人当前发展现状,对比现有机械手传动方式及空间布局,分析其技术特点。 (2)根据预期假定机器人工作运动范围及有效负载,参考目前应用较广泛的本体结构,在solidworks环境下先设计简单机器人初期模型。通过静力学分析得出关节所受负载,进行伺服电机、减速机选型以及确定同步齿形带相关参数,完成机械手内部空间整体布局,确定传动方式并能达到相关目标要求完成理论作业。 (3)建立考虑约束及质量等效转换的机械手模型,分析典型工况下各关节的运动情况。对关键零件及手部轴承通过施加约束、负载完成相应应力分析,验证不同电机、减速机选型的合理性,完成机器人结构校核与优化。 关键词:六自由度传动方式静力学分析 i

六自由度机器人运动分析及优化

本科毕业论文(设计) 题目(中文)六自由度机器人运动分析及优化 (英文) Motionanalysis and optimization of 6-DOF robot 学院信息与机电工程学院院 年级专业 2013级汽车服务工程(中德)) 学生姓名吴子璇正 学号 130154494 7 指导教师安康安 完成日期 2017 年 3 月

摘要 当今世界,工业化日趋成熟,机器人被广泛的应用于各行各业,最常用到的有四自由度,六自由度机器人。其中,自动化水平较高的汽车制造业和电子装配业经常常常要使用到六自由度机器人。因此对其实施运动学分析,是进行科学设计的基础,也是降低机器人生产成本,优化机器人运动轨迹的前提。此外,运动分析过程有效的模拟了机器人运动的真实情况,有助于提供有效可行的优化方案。本文主要探讨六自由度机器人的运动分析,基于经典运动学以及动力学的研究方法概念,首先通过solidworks做出机械臂各部分零件的三维图,然后通过SolidWorks装配出六自由度机器人机械臂的三维模型。通过该模型,选取其中一个关节和底座,并用SolidWorks进行运动学分析,对六自由度机器人的运动学和动力学计算方法进行了仿真验证。最后得到六自由度机器人的其中一个自由度的运动仿真实例。通过对该运动仿真实例的分析,得出最佳优化方案,优化机器人的运动轨迹提高机器人的工作效率,降低机器人生产成本。 关键词:六自由度机器人;运动分析;运动学;动力学;

目录 摘要................................................. I Abstract ............................... 错误!未定义书签。 1 绪论 (1) 1.1 课题背景及研究的目的和意义 (1) 1.2机器人国内外发展现状及前景展望--------------------------1 2 六自由度机器人运动学分析 (4) 2.1六自由度机器人的结构-------------------------------------1 2.2运动学分析----------------------------------------------1 3 六自由度机器人动力学分析 (6) 3.1综述----------------------------------------------------3 3.2机器人动力学研究方法------------------------------------3 3.2.1几项假设-------------------------------------------3 3.2.2目标-----------------------------------------------4 3.2.3数学工具-------------------------------------------5 3.3动力学原理----------------------------------------------3

六自由度

物体在空间具有六个自由度,即沿X、Y、Z三个直角坐标轴方向的移动自由度和绕这三个坐标轴的转动自由度。因此,要完全确定物体的位置,就必须清楚这六个自由度。 六自由度运动平台是由六支作动筒,上、下各六只万向铰链和上、下两个平台组成,下平台固定在基础上,借助六支作动筒的伸缩运动,完成上平台在空间六个自由度(X,Y,Z,α,β,γ)的运动,从而可以模拟出各种空间运动姿态。可广泛应用到各种训练模拟器如飞行模拟器、舰艇模拟器、海军直升机起降模拟平台、坦克模拟器、汽车驾驶模拟器、火车驾驶模拟器、地震模拟器以及动感电影、娱乐设备等领域,甚至可用到空间宇宙飞船的对接,空中加油机的加油对接中。在加工业可制成六轴联动机床、灵巧机器人等。由于六自由度运动平台的研制,涉及机械、液压、电气、控制、计算机、传感器,空间运动数学模型、实时信号传输处理、图形显示、动态仿真等等一系列高科技领域,因而六自由度运动平台的研制变成了高等院校、研究院所在液压和控制领域水平的标志性象征。 空间运动的目标是实现平台在空间运动的三个姿态角度和三个平动位移,即俯仰、滚转、偏航、上下垂直运动、前后平移和左右平移,及六个姿态的复合运动姿态。而空间目标是通过六个液压缸的行程实现的,这就需要一个空间的运动模型完成空间运动的转换,假设空间运动的目标俯仰、滚转、偏航、上下垂直位移、前后平移和左右平移用α,β,γ,X,Y,Z表示,六个油缸的行程用 L(i), (i=1、2、3、4、5、6)表示。整个运动模型如下: L(i)=TT(α,β,γ,X,Y,Z) 其中,TT是一个空间转换矩阵模型。由此实时算出每一运动时刻液压油缸的行程。液压油缸的理论行程再通过D/A接口的转换,给出实际行程值。 多自由度运动控制 多自由度控制系统中,自由度最多为六自由度,并且六自由度运动控制难度最大,设备及系统最复杂,下面主要介绍我公司设计、生产的六自由度运动台。 六自由度运动平台是由六支直线伺服电动缸,上、下各六只万向铰链和上、下两个平台组成,下平台固定在基础上,借助六只伺服电动缸)执行器)的伸缩运动,完成上平台在空间六个自由度(X,Y,Z,α,β,γ)的运动,从而可以模拟出

六自由度机器人控制系统设计

1前言 1.1 焊接机器人的发展历史与现状 现代机器人的研究始于20世纪中期,其技术背景是计算机和自动化的发展,以及原子能的开发利用。美国原子能委员会下属的阿尔贡研究所为解决可代替人进行放射性物质的处理问题,在1947年研制了遥控式机械手臂;1948年又相继开发了电气驱动式的主从机械手臂,从而解决了对放射性物质的进行远距离操作的问题。1954年,美国科学家戴沃尔最先提出工业机器人的概念,并申请了新的专利。其主要特点是借助伺服技术来控制机器人的关节,并利用人手对机械手臂进行动作示教,机械手臂能实现人物动作的记录和再现。这就是示教再现机械臂,现在所用的机械手臂差不多都采用这种控制方式。伴随着现代社会的发展,为了提高生产效率,稳定和提高产品的质量,加快实现工业生产机械化,改善工人劳动条件,已经大大改进了机械手臂的性能,并大量应用于实际生产中,尤其是在高压、高温、多粉尘、高噪音和重度污染的场合。焊接机器人的诞生可以追溯到上世纪70年代,是由日本发那科(FANUC)公司生产的小型机器人改进的,受限于当时的技术手段以及高昂的造价,使得当时的焊接机器人不能得到很好的应用。机械手臂是一种工业机器人,它由控制器、操作机、检测传感装置和伺服驱动系统组成,是一种可以自动控制、仿人手操作、可以重复编程、可以在三维空间进行各种动作的自动化生产设备。机械手臂首先是在汽车制造工业中使用的,它一般可进行焊接、上下料、喷漆以及搬运。它可代替人们进行从事繁重、单调的重复劳动作业,并且能够大大改善劳动生产率,提高产品的质量[1]。 到了90年代初,随着计算机技术、微电子技术、网络技术等的快速发展,机器人技术也得到了飞速发展。工业机器人的制造水平、控制速度和控制精度、可靠性等不断提高,而机器人的制造成本和价格却不断下降。在西方国家,由于劳动力成本的提高为企业带来了不小的压力,而机器人价格指数的降低又恰巧为其进一步推广应用带来了契机,采用机器人的利润显然要比采用人工所带来的利大,使得焊机机器人得到了推广,同时技术的进步也使得焊机机器人技术得到很大提高。 进入新世纪之后,由于各国对焊接机器人的不断重视,使得焊接机器人技术取得了很大的进步。同时由于其焊机精度及更低的生产成本,也使得它得到了越来越多的应用。目前,焊接机器人主要用于装卸、搬运、焊接、铸锻以及热处理等方面,无论数量、品种和性能方面都还不能满足工业生产发展需要。在一些特殊的行业,使用它来代替人工操作的,主要是在危险作业、多粉尘、高温、噪声、工作空间小等的不适于人工作业的环境。 1.2 焊接机器人发展趋势

六轴运动机器人运动学求解分析_第一讲

六轴联动机械臂运动学求解分析 第一讲 作者朱森光 Email zsgsoft@https://www.360docs.net/doc/805325846.html,

1引言 笔者研究六轴联动机械臂源于当前的机器人产业热,平时比较关注当前热门产业的发展方向。笔者工作主要从事软件开发跟机器人毫无关系,利用业余时间研究整理机器人技术相关的文章,希望能够起到抛砖引玉的作用引发更多的人发表有关机器人技术的原创性技术资料。本系列文章的所有文字、图片及相关资料均为原创,内容正确性经过笔者亲自编程仿真验证可以信赖。 2机器建模 2.1坐标系 既然要研究机器人,那么首先要建立一个机械模型,本文将以典型的六轴联动机器臂为例进行介绍,图2-1为笔者使用3D技术建立的一个简单模型。首先建立一个大地坐标系,一般教科书上都是以大地为XY平面,垂直于大地向上方向为Z轴,本文为了跟教科书上有所区别同时不失一般性,将以水平向右方向为X轴,垂直于大地向上方向为Y轴,背离机器人面向人眼的方向为Z轴,移到电脑屏幕上那就是屏幕水平向右为X轴,屏幕水平向上为Y轴,垂直于屏幕向外为Z轴,之所以建立这样不合常规的坐标系是希望能够突破常规的思维定势训练在任意空间建立任意坐标系的能力。 图2-1 图2-1中的机械臂,灰色立方体为机械臂底座,定义为关节1,它能绕图中Y轴旋转;青色为关节2,它能绕图中的Z1轴旋转;蓝色为关节3,它能绕图中的Z2轴旋转;绿色为关节4,它能绕图中的X3轴旋转;红色为关节5,它能绕图中的Z4轴旋转;黄色为关节6,它能绕图中的X5轴旋转。 2.2齐次变换矩阵 齐次变换矩阵是机器人技术里最重要的数学分析工具之一,关于齐次变换矩阵的原理很多教科书中已经描述在此不再详述,这里仅针对图2-1的机械臂写出齐次变换矩阵的生成过程。首先定义一些变量符号,关节1绕图中Y轴旋转的角度定义为θ0,当θ0=0时,O1点在OXYZ坐标系内的坐标是(x0,y0,0);关节2绕图中的Z1轴旋转的角度定义为θ1,图中的θ1当前位置值为+90度;定义O1O2两点距离为x1,关节3绕图中的Z2轴旋转的角度定义为θ2,图中的θ2当前位置值为-90度;O2O3两点距离为x2,关节4绕图中的X3轴旋转的角度定义为θ3, 图中的θ3当前位置值为-60度;O3O4两点距离为x3,关节5绕图中的Z4轴旋转的角度定义为θ4, 图中的θ4当前位置值为-60度;O4O5两点距离为x4,关节6绕图中的X5轴旋转的角度定义为θ5, 图中的θ5当前位置值为+60度。以上定义中角度正负值定义符合右手法则。符号定义好了,接下来描述齐次变换矩阵。 定义R0为关节1绕Y轴的旋转矩阵 cosθ0 s0 = sinθ0 = //c0 R0=[c0 0 s0 0 0 1 0 0 0 c0 0 -s0 0 0 0 1] 定义T0为坐标系O1X1Y1Z1相对坐标系OXYZ的平移矩阵 T0=[1 0 0 x0 0 1 0 y0 00 1 0 0 0 0 1] 定义R1为关节2绕Z1轴的旋转矩阵 R1=[c1 –s1 0 0

六自由度KUKA机器人编程与操作

. . 开放性实验项目指导书 实验项目名称六自由度KUKA机器人的编程与操作 学院(中心):现代工程训练中心 实验室名称:工程认知与文化馆1-202和1-203 指导教师:李全城 面向专业:机械、电气、计算机、自动化等

. . 2016 年03月08日 实验:六自由度KUKA机器人的编程与操作 一、实验目的 1)了解机器人在智能制造中的作用; 2)学习KUKA机器人的简单编程及调试; 3)掌握KUKA机器人的手动和自动操作。 二、实验设备 1)六自由度KUKA机器人一台; 2)柔性制造线相关设备; 3)轴类、盘类坯料若干。 三、实验内容 工业机器人是面向工业领域的多关节机械手或多自由度的机器装置,它能自动执行工作,是靠自身动力和控制能力来实现各种功能的一种机器。工业机器人的典型应用包括焊接、刷漆、组装、采集和放置(例如包装、码垛和SMT)、产品检测和测试等,所有的工作的完成都具有高效性、持久性和准确性。工业机器人技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。 给定一台机器人和相关任务要求,要求学生在教师的指导下,自己编写并调试相关机器人程序。要求程序编写正确,且机器人可按要求安全自动地运行,最后作总结。

. . 图1 KUKA机器人图2 柔性制造线现场布局图 四、实验步骤 1. 学习机器人的手动操作。 (1)将示教器上方黑色旋钮由竖向旋为横向。如图3所示。 (2)选择模式中的第一个,T1模式(内部自动),如图 4所示。 图3 机器人示教器模式选择图4 机器人四种模式 (3)按下底部的伺服ON,点动控制机器人,如图5。 (4)按下方向键,移动机器人,如图 6。 图5 机器人示教器底部伺服启动按键图6 机器人示教器方向键 2. 编写并调试相关机器人程序。 3. 机器人的自动运行操作。 (1)将示教器上方黑色旋钮由竖向旋为横向。如图3。

六自由度搬运机器人设计毕业设计(论文)

毕业设计 题目六自由度搬运机器人设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

六自由度运动平台设计方案

六自由度运动平台设计 方案 1概述 YYPT原理样机用原库房留存的345厂的直流电机作为动力源,直流驱动器及工控机作为控制系统元件,采用VB软件进行控制软件的编制,因设计及器件选型的原因,导致YYPT原理样机,在速度、精度、运动规律上等几个技术指标无法满足原规定的指标要求,现在此基础上进行优化方案的设计。 2 原理样机技术状态 2.1 原理样机方案 2.1.1 组成 原理样机采用工控机作为系统的控制单元,工控机内配有研华PCI1716和PCI1723作为A/D和D/A模拟量卡,驱动器采用AMC公司的型号为12A8的伺服驱动器,并配有直流可调电源其输出电流可达到150A,采用KH08XX(3)电动缸作为运动平台的六条支腿,电动缸上安装有电阻尺作为位置反馈器件,上平台与电动缸连接采用球笼联轴器,下平台与电动缸连接采用虎克铰链方式。具体产品组成表见表2.1。 序号产品名称型号厂家数量备注 1 电动缸KH08XX(3)西安方元明 6 安装345厂电机 2 电阻尺LTS-V1-375 上海徳测 6 3 驱动器50A8 AMC 6 3 A/D卡PCI1716 研华 1 4 D/A卡PCI1723 研华 1 5 工控机610H 研华 1

6 直流电源 1 2.1.2 结构方案 六自由度运动平台是由六条电动缸通过虎克铰链和球笼万向节联轴器将上、下两个平台连接而成,下平台固定在基础上,借助六条电动缸的伸缩运动,完成上平台在三维空间六个自由度(X ,Y ,Z ,α,β,γ)的运动,从而可以模拟出各种空间运动姿态。 图1 六自由度平台外形图 a )球笼联轴器(如图2所示) 采用球笼铰链与上平面连接。球笼铰链结构简单、体积小、运转灵活、易于维护。 初选球笼铰链型号BJB (JB/T6139-1992),公称转矩Tn=2000N/m ,工作角度40度,外径D=68mm ,轴孔选用圆柱孔d=24mm ,总长度L1=148mm ,转动惯量为0.00008kg.m 2,重量5kg 。 球笼联轴器 电动缸 虎克铰链 上动平台 下静平台

相关文档
最新文档