高速永磁电机转子结构与强度分析

高速永磁电机转子结构与强度分析
高速永磁电机转子结构与强度分析

2019年第1期

第54 ( 206期)(EXPLOSION-PROOF ELECTRIC MACHINE)

高速永磁电机转子结构与强度分析

王雨

(中国石油吉林石化分公司乙烯厂,吉林吉林132000)

摘要分析了高速永磁电机的转子结构、材 性能 关系,并转子的强度计算进行

详细介绍,并 了高速永磁电机转子支撑、转结构、表 转 度以及内置式转子强度

的分析方法。

关键词咼速永磁电机;转子支撑技术;转子结构;转子强度分析

DOI $ 10.3969/J. ISSN. 1008-7281.2019.01.09

中图分类号:T M351 文献标识码:A文章编号:1008-7281 (2019)01 -0030-003

Structure and Strength Analy s es of High-S peed

Permanent-Magnet Motor Rotor

Wang Yu

(Ethylene Plant,Jilin Petrochemical Branch of CNPC,Jilin 132000,China)

A bstra c t This paper analyzes the relationship am ong structure,m aterial and perform ance

of high-speed perm anent-m agnet m otor rotor,introduces the strengtli calculation of rotor in tail,and puts forw ard the analysis m etliods of rotor supporting technology,rotor structure,sur-

face-m ounted rotor strengtli and built-in rotor strengtli of h igh-sjD eed perm anent-m agnet m otor.

K e y w ords H igh-sjD eed perm anent-m agnet m otor;rotor supporting technology;rotor struc-

ture;rotor stren g th i analysis

0引言

高速永磁电机具有功率密度高、可靠、运行成

本低等优点,在石化工领域应用 ,然而由

于电机转 承受很大的离 较大 ,

因此转子的设 关键。本文 此情况

了转子离、电机散热面积、功 度大所带来的 的分析与计算,这对转子结构与强度非。

1转子支撑技术

转子支撑技术关键是轴承技术的研究,只有 到长期稳定运行,才能够在高速永磁电机 :行 用,目前主要有两大类,第一类是高速滚 珠轴承,第二类是磁 空气轴承。

图1为速轴承,成低、,技术成熟,这是应用最为 的轴承,其速运行的主性能指标B V值,由轴承内径B(mm)与转速 @( r/min)的乘积表示,普通值在50 以下,速值在100 以⑴。

30

图1滚珠轴承

图2为空气轴承,利用的是轴承与轴 的

支撑转子,分为动 两种,优点是 用磁场即可。这样在电磁环境求高的 ,空气轴承显示出很大优,是空气轴承间隙小,精度要求尚。图3为磁 轴承,分为主动和被动两种磁 轴承,主动磁 轴承优点无 滑油,能够实现无接,而 成本低,是刚度较低,技术尚未成熟,应用 受到局限制。

图2

空气轴承

Ansys转子动力学

基于ANSYS的转子动力学分析 1、题目描述 如图1-1所示,利用有限原原理计算转子临界转速以及不平衡响应。 图 1-1 转子示意图及尺寸 2、题目分析 采用商业软件ANSYS进行分析,转子建模时用beam188三维梁单元,该单元基于Timoshenko梁理论,考虑转动惯量与剪切变形的影响。每个节点有6个(三个平动,三个转动)或7各自由度(第七个自由度为翘曲,可选)。 轴承用combine214单元模拟。该单元可以模拟交叉刚度和阻尼。只能模拟拉压刚度,不能模拟弯曲或扭转刚度。该单元如图2-1所示,其有两个节点组成,一个节点在转子上,另一个节点在基础上。

图 2-1 combine214单元 对于质量圆盘,可以用mass21单元模拟,该单元有6个自由度,可以模拟X,Y,Z 三个方向的平动质量以及转动惯性。 3、计算与结果分析 3.1 转子有限元模型 建模时,采用钢的参数,密度取37800/kg m ,弹性模量取112.1110pa ,泊松比取0.3。轴承刚度与阻尼如表1所示,不考虑交叉刚度与阻尼,且为各项同性。 Kxx Kyy Cxx Cyy 4e7N/m 4e7N/m 4e5N.s/m 4e5N.s/m 将转子划分为93个节点共92个单元。有限元模型如图3-1所示。

图 3-1 转子有限元模型 施加约束时,由于不考虑纵向振动与扭转振动,故约束每一节点的纵向与扭转自由度,同时约束轴承的基础节点。施加约束后的模型如3-2所示。 图 3-2 施加约束后的有限元模型 3.1 转子临界转速计算 在ANSYS中可以很方便的考虑陀螺力矩的影响。考虑陀螺力矩时,由于陀螺矩阵是反对称矩阵,所以求取特征值时要用特殊的方法。本文考虑陀螺力矩的影响,分析了在陀螺力矩的影响下,转子涡动频率随工作转速的变化趋势,其Campell图如图3-3所示。同时给出了转子的前四阶正进动涡动频率与反进动涡动频率以及固有频率。如表3-2所示。

永磁同步电机的原理及结构

. . . . 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

模具结构强度分析方法

模具結構強度分析方法 當我們在進行模具設計時,首先進行的動作便是結構確定.模具結構的合理性,對模具的承載能力有很大的影響,不合理的結構可能引起嚴重的應力集中或過高的工作溫度,從而惡化模具的工作條件,降低模具壽命,造成生產成本增加. 為確定合理的模具結構,以下幾點我們必須要有一些初步的了解: 一模具的失效形式及原因: 在正常情況下,模具的失效主要過程為:損傷--->局部失效--->失效 模具損傷的基本形式有五種:塑性變形,磨損,疲勞,冷熱疲勞(主要出現在熱作模具),斷裂及開裂. 1沖壓模具的結構對損傷過程的影響: 1>模具的沖裁間隙是一個重要的結構參數,對模具刃口的應力水平以及 其磨損速度有很大的影響. (1)沖裁間隙過小在沖頭的刃口和凹模刃口處易產生裂紋.此時,被 沖下的材料外形大于凹模刃口的內徑,板料上沖孔的直徑小于沖 頭的直徑.當進行沖壓工作時沖頭和凹模刃口的側面將受到劇烈 的磨擦,使磨損加劇. (2)沖裁間隙過大間隙過大時,板料變形量增大,使刃口和板料的接 觸面積減少,刃口端面的壓應力急劇增大,加速了刃口的塑性變形 (鈍化). 2>模具鋼的力學性能指標及治金質量對模具的失效形式及壽命有很大的 影響. 3>模具的熱處理是非常重要的工序,模具要通過此工序賦予其所需要的 性能,才能保障模具的壽命. 二模具結構強度分析方法: 模具結構強度分析方法到目前為止還未有統一的標準,大體上依據: (1)應力分析(塑性變形抗力,斷裂抗力,疲勞抗力,耐磨性,韌性 或沖擊韌度ak), (2)材料在復雜應力狀態下的強度分析(例如建立有限元模型, 利用速度和加速度傳感器進行模擬分析), (3)材料疲勞的工程分析; (4)工程斷裂分析; 不同的試驗研究單位有各自的試驗方法,由於試驗方法不同,結果也不相同.並且此類方法也不適應目前的模具結構強度分析, 此類試驗研究尚停留在材料或模型分析過程,無法適應現在的模具設計進度要求.但是此類的研究對設計人員預防模具早期失效有很大的幫助,對提高模具的承載能力有極大的潛力. 三模具局部結構強度改善 模具工作部份的幾何形狀,決定于沖壓產品的外形,模具非工作部份的幾何形

《航空发动机结构分析》思考题

《航空发动机结构分析》 课后思考题答案 第一章概论 1.航空燃气涡轮发动机有哪些基本类型?指出它们的共同点、区别和应用。 答: 2.涡喷、涡扇、军用涡扇分别是在何年代问世的? 答:涡喷二十世纪三十年代(1937年WU;1937年HeS3B); 涡扇 1960~1962 军用涡扇 1966~1967 3.简述涡轮风扇发动机的基本类型。 答:不带加力,带加力,分排,混排,高涵道比,低涵道比。 4.什么是涵道比?涡扇发动机如何按涵道比分类? 答:(一)B/T,外涵与内涵空气流量比; (二)高涵道比涡扇(GE90),低涵道比涡扇(Al-37fn) 5.按前后次序写出带加力的燃气涡轮发动机的主要部件。 答:压气机、燃烧室、涡轮、加力燃烧室、喷管。 6.从发动机结构剖面图上,可以得到哪些结构信息? 答: a)发动机类型 b)轴数 c)压气机级数 d)燃烧室类型 e)支点位置 f)支点类型 第二章典型发动机 1.根据总增压比、推重比、涡轮前燃气温度、耗油率、涵道比等重要性能指标,指出各代涡喷、涡扇、军用涡扇发动机的性能指 标。 答:涡喷表2.1 涡扇表2.3 军用涡扇表2.2

2.al-31f发动机的主要结构特点是什么?在该机上采用了哪些先进技术? 答:AL31-F结构特点:全钛进气机匣,23个导流叶片;钛合金风扇,高压压气机,转子级间电子束焊接;高压压气机三级可调静子叶片九级环形燕尾榫头的工作叶片;环形燃烧室有28个双路离心式喷嘴,两个点火器,采用半导体电嘴;高压涡轮叶片不带冠,榫头处有减振器,低压涡轮叶片带冠;涡轮冷却系统采用了设置在外涵道中的空气-空气换热器,可使冷却空气降温125-210*c;加力燃烧室采用射流式点火方式,单晶体的涡轮工作叶片为此提供了强度保障;收敛-扩张型喷管由亚声速、超声速调节片及蜜蜂片各16式组成;排气方式为内、外涵道混合排气。 3.ALF502发动机是什么类型的发动机?它有哪些有点? 答:ALF502,涡轮风扇。优点: ●单元体设计,易维修 ●长寿命、低成本 ●B/T高耗油率低 ●噪声小,排气中NOx量低于规定 第三章压气机 1.航空燃气涡轮发动机中,两种基本类型压气机的优缺点有哪些? 答:(一)轴流压气机增压比高、效率高单位面积空气质量流量大,迎风阻力小,但是单级压比小,结构复杂; (二)离心式压气机结构简单、工作可靠、稳定工作范围较宽、单级压比高;但是迎风面积大,难于获得更高的总增压比。 2.轴流式压气机转子结构的三种基本类型是什么?指出各种转子结构的优缺点。 答 3.在盘鼓式转子中,恰当半径是什么?在什么情况下是盘加强鼓? 答:(一)某一中间半径处,两者自由变形相等联成一体后相互没有约束,即无力的作用,这个半径称为恰当半径;(二)当轮盘的自由变形大于鼓筒的自由变形;实际变形处于两者自由变形之间,具体的数值视两者受力大小而定,对轮盘来说,变形减少了,周向应力也减小了;至于鼓筒来说,变形增大了,周向应力增大了。 4.对压气机转子结构设计的基本要求是什么? 答:基本要求:在保证尺寸小、重量轻、结构简单、工艺性好的前提下,转子零、组件及其连接处应保证可靠的承受载荷和传力,具有良好的定心和平衡性、足够的刚性。 5.转子级间联结方法有哪些 答:转子间:1>不可拆卸,2>可拆卸,3>部分不可拆部分可拆的混合式。 6.转子结构的传扭方法有几种?答: a)不可拆卸:例,wp7靠径向销钉和配合摩擦力传递扭矩; b)可拆卸:例,D30ky端面圆弧齿传扭; c)混合式:al31f占全了;cfm56精制短螺栓。 7.如何区分盘鼓式转子和加强的盘式转子?

同步电机转子结构

高强度永磁同步电机的转子结构 —北京明正维元电机技术有限公司专利 本实用新型涉及一种高强度永磁同步电机的转子结构,它由中心轴,铁芯和附着在其外圆表面上的至少1对圆弧面形的磁钢构成圆辊状结构,各相邻两磁钢侧面之间留有气隙,各磁钢通过相应的锁紧件与铁芯构成锁紧联结结构,它解决了现有技术强度差、磁钢易被甩出,易出现事故的问题,用于制作各型永磁同步电机。 交流永磁同步调速电梯电机之特性 石正铎路子明 我国电梯性能随着计算机控制技术和变频技术的发展有很大的提高,但是异步变频电动机存在低频低压低速时的转矩不够平稳进而影响低速段运行不理想的缺点。用永磁同步调速电机替代交流异步电机,用同步变频替代异步变频可以解决低速段的缺点和启动及运行中的抖动问题,使电梯运行更平稳、更舒适,同时减小电机的体积,降低噪音。采用有齿轮电梯曳引机,当电梯制动器失灵、轿厢产生自由落体时,可利用永磁同步电机的电流制动功能保证轿厢低速溜车,为电梯安全增加了一道安全屏障。 一、永磁同步电机与异步电机的主要区别及特点 由于异步电机是靠电机定子电流为电机转子励磁的,而永磁电机转子是用永磁体直接产生磁场不需要电励磁。因此永磁同步电机具有结构简单、运行可靠、体积小、重量轻、效率高、形状和尺寸灵活多样等特点。 二、交流永磁同步调速电梯电机的主要优点 1、结构简单运行可靠,由于永磁电机转子不需要励磁,省去了线圈或鼠笼,简化了结构,实现了无刷,减少了故障,维修方便简单,维修复杂系数大大降低。 2、低温升、小体积永磁同步电机与感应电机相比,因为不需要无功励磁电流,而具备: (1)、功率因数高近于1。 (2)、反电势正弦波降低了高次谐波的幅值,有效的解决了对电源的干扰。 (3)、减小了电机的铜损和铁损。 同步电机发温升小(约38K),电机外形小,体积与异步电机相比,降低一至两个机座号。 3、高效率超节能,因为功率因数高(可近似为1),又省去电励磁,减少了定子电流和定子转子电阻的损耗,效率高(94~96%),满载起动电流比异步减少一半,所以节能效果明显,用于电梯时,同步电机可节能40%以上(用户实际使用后测试结果),轻载电流小,只相当于异步电机的10%,如11KW异步电机轻载时异步电机电流10A,而同步电机轻载电流只有0.7A。 4、调速范围宽,可达1:1000甚至于更高(异步电机只有1:100),调速精度极高,可大大提高电梯的品质。

高速永磁电机转子结构与强度分析

2019年第1期 第54 ( 206期)(EXPLOSION-PROOF ELECTRIC MACHINE) 高速永磁电机转子结构与强度分析 王雨 (中国石油吉林石化分公司乙烯厂,吉林吉林132000) 摘要分析了高速永磁电机的转子结构、材 性能 关系,并转子的强度计算进行 详细介绍,并 了高速永磁电机转子支撑、转结构、表 转 度以及内置式转子强度 的分析方法。 关键词咼速永磁电机;转子支撑技术;转子结构;转子强度分析 DOI $ 10.3969/J. ISSN. 1008-7281.2019.01.09 中图分类号:T M351 文献标识码:A文章编号:1008-7281 (2019)01 -0030-003 Structure and Strength Analy s es of High-S peed Permanent-Magnet Motor Rotor Wang Yu (Ethylene Plant,Jilin Petrochemical Branch of CNPC,Jilin 132000,China) A bstra c t This paper analyzes the relationship am ong structure,m aterial and perform ance of high-speed perm anent-m agnet m otor rotor,introduces the strengtli calculation of rotor in tail,and puts forw ard the analysis m etliods of rotor supporting technology,rotor structure,sur- face-m ounted rotor strengtli and built-in rotor strengtli of h igh-sjD eed perm anent-m agnet m otor. K e y w ords H igh-sjD eed perm anent-m agnet m otor;rotor supporting technology;rotor struc- ture;rotor stren g th i analysis 0引言 高速永磁电机具有功率密度高、可靠、运行成 本低等优点,在石化工领域应用 ,然而由 于电机转 承受很大的离 较大 , 因此转子的设 关键。本文 此情况 了转子离、电机散热面积、功 度大所带来的 的分析与计算,这对转子结构与强度非。 1转子支撑技术 转子支撑技术关键是轴承技术的研究,只有 到长期稳定运行,才能够在高速永磁电机 :行 用,目前主要有两大类,第一类是高速滚 珠轴承,第二类是磁 空气轴承。 图1为速轴承,成低、,技术成熟,这是应用最为 的轴承,其速运行的主性能指标B V值,由轴承内径B(mm)与转速 @( r/min)的乘积表示,普通值在50 以下,速值在100 以⑴。 30 图1滚珠轴承 图2为空气轴承,利用的是轴承与轴 的 支撑转子,分为动 两种,优点是 用磁场即可。这样在电磁环境求高的 ,空气轴承显示出很大优,是空气轴承间隙小,精度要求尚。图3为磁 轴承,分为主动和被动两种磁 轴承,主动磁 轴承优点无 滑油,能够实现无接,而 成本低,是刚度较低,技术尚未成熟,应用 受到局限制。 图2 空气轴承

驱动电机转子结构优化分析

龙源期刊网 https://www.360docs.net/doc/808043270.html, 驱动电机转子结构优化分析 作者:屈新田章国光史建鹏 来源:《汽车科技》2013年第02期 摘要:对某电动车的驱动电机转子进行了结构强度分析,针对强度分析结果进行结构拓扑优化和形状优化分析,优化后方案与原方案相比减重18.8%。仿真和试验结果表明优化后的电机转子各项性能满足设计要求。 关键词:转子;拓扑优化;形状优化 中图分类号:U469.72 文献标志码:A 文章编号:1005-2550(2013)02-0043-03 世界汽车技术正朝着节能、环保、安全等方向发展,汽车的能量消耗与汽车自身质量成正比,因此,要想减少不必要的能量消耗,应在保证安全的前提下尽量减轻汽车自身质量。对于电动汽车来说,电池、电机和车身结构件所占整车质量的比例较高,从电池、电机和车身结构入手减轻质量,对电动汽车整车的轻量化效果十分显著。 本文针对某自主设计电动车的驱动电机转子进行结构强度仿真分析,在保证结构强度满足设计要求的前提下,对转子结构进行拓扑优化和形状优化,优化后的电机转子通过了试验验证,满足设计目标要求。 1 电机转子结构强度分析 1.1 仿真分析说明 内嵌式永磁电机采用转子冲片内嵌磁钢块且磁极表面对称分布的方式,不仅使电机反电动势波形得到优化,而且有效的抑制了电机齿槽力矩和负载力矩扰动。电机转子结构如图1所示。在电机高速运转时,电机转子结构主要承受离心力、电磁力和永磁体吸引力的作用,研究结果表明,离心力是影响电机转子结构强度的主要因素。本文在进行电机转子结构强度分析时,主要考虑电机转子在离心力作用下的结构强度。 1.2 结构强度分析结果 转子冲片结构采用壳单元模拟,单元尺寸为0.5 mm,能够较好的反映转子的几何特征。在分析过程中,电机转子单个冲片处于自由状态,对结构施加电机最高转速12 000转/分钟,采用惯性释放的方法,考虑永磁体与冲片之间的接触关系,利用Abaqus求解器计算,分析结果如图2所示。 电机转子的最大应力为137.4 MPa,采用材料的屈服强度为395 MPa,安全系数为2.9,存在较大的设计优化空间。

ANSYS中的转子动力学计算

ANSYS 中的转子动力学计算 安世亚太 许明财 转子动力学是固体力学的一个重要分支,它主要研究旋转机械的“转子-支承”系统在旋转状态下的振动、平衡和稳定性问题,其主要研究内容有几个方面:临界转速、动力响应、稳定性、动平衡技术和支承设计。在旋转机械研究设计中,转子动力学的性能分析是极其重要的一个方面。 旋转机械广泛应用于以下领域: y 涡轮机械 y 能量站 y 机械工具 y 汽车 y 家用器械 y 航空领域 y 船舶推进系统 y 医疗器械 y 计算机设备 传统的转子动力学分析采用传递矩阵方法进行,由于将大量的结构信息简化为极为简单的集中质量—梁模型,不能确保模型的完整性和分析的准确度;而有限元在处理转子动力学问题时,可以很好地兼顾模型的完整性和计算的效率,但多年来转子的“陀螺效应”一直是 制约转子动力学有限元分析的“瓶颈”问题。 ANSYS 很好地解决了动力特性分析中“陀螺效应”影响的问题,而且陀螺效应的考虑不受计算模型上的限制,使得转子动力学有限元分析变得简单高效。 本文对ANSYS 的转子动力学计算功能进行简要介绍。 1 ANSYS 转子动力学的理论基础 ANSYS 转子动力学分析中,两种参考坐标系可供选择:静止坐标系和旋转坐标系。空间点P 在静止坐标系(其原点在O′)下的位置矢量为r′,在旋转坐标系(其原点在O)下的位置矢量为r。 在静止坐标系下转子的动力方程为: [][][]{}F {u}K }u ]){gyr [C C (}u {M =+++&&& 式中:为陀螺效应矩阵 ]gyr [C

在旋转坐标系下转子的动力方程为: [][][]{}F }r ]){u spin [K K (}r u ]){cor [C C (}r u {M =?+++&&& 式中:为哥氏效应矩阵, 为旋转软化效应刚度矩阵 ]cor [C ]spin [K 2 ANSYS 转子动力学的计算功能和新技术 ANSYS 转子动力学计算包含如下功能: y 无阻尼临界转速分析 y 不平衡响应分析 y 阻尼特征值分析 y 涡动和稳定性预测 典型的应用包括: y 轴的弯曲变形 y 扭转振动 y 转子轴未对准 y 旋转部分的平衡 y 流制振动 为了分析时计入哥氏效应、陀螺效应和支承的影响,ANSYS 发展了下列新技术单元: SHELL181 4节点有限应变壳单元 PLANE182 二维4节点结构实体单元 PLANE183 二维8节点结构实体单元 SOLID185 三维8节点结构实体单元 SOLID186 三维20节点结构实体单元 SOLID187 三维10节点四面体结构实体单元 BEAM188 三维一次有限应变梁单元 BEAM189 三维二次有限应变梁单元 SOLSH190 三维8节点层合实体-壳单元 COMBIN214 二维轴承单元(可变刚度和阻尼) ANSYS 考虑陀螺效应时没有计算模型上的限制,故可选择一维(梁、管)、二维(轴对称)和三维复杂计算模型进行分析。同时,ANSYS 还提供了一系列功能以完善转子动力学的计算,包括: y CMOMEGA 可以通过组(component CM_NAME)对多个转子指定不同的转速 y CORIOLIS 可以考虑哥氏效应在不同参考坐标系下的影响 y PLCAMP 可绘制坎贝尔图,为临界转速的确定提供了方便 y PRCAMP 可打印固有频率和临界转速 y CAMPB 可绘制预应力结构的坎贝尔图。 y PRORB 可打印出转子涡动幅值 y PLORB 可绘制转子不同截面的涡动轨迹 y SYNCHRO 可以指定激励频率是否与结构速度同步 y 多轴转子 y 正向/反向旋转和不稳定性 3 实例 实例1:梁单元与实体单元比较

永磁同步电机的原理和结构

WORD文档可编辑 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是其在异步转矩、永磁发电制动转矩、由转子磁路不对称而引等一系列的因素共同作用 起的磁阻转矩和单轴转 矩 下而引起的,所以在这个过程中转速是振荡着上升的。在起动过程中,质的转矩, 只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

无刷直流电机结构

1. 磁回路分析法 图1-4 (摘自Freescale PZ104文档) 在图1-4中,当两头的线圈通上电流时,根据右手螺旋定则,会产生方向指向右的外加磁感应强度B(如粗箭头方向所示),而中间的转子会尽量使自己内部的磁力线方向与外磁力线方向保持一致,以形成一个最短闭合磁力线回路,这样内转子就会按顺时针方向旋转了。 “当转子磁场方向与外部磁场方向垂直时,转子所受的转动力矩最大”。注意这里说的是“力矩”最大,而不是“力”最大。诚然,在转子磁场与外部磁场方向一致时,转子所受磁力最大,但此时转子呈水平状态,力臂为0,当然也就不会转动了。 当转子转到水平位置时,虽然不再受到转动力矩的作用,但由于惯性原因,还会继续顺时针转动,这时若改变两头螺线管的电流方向,如下图所示,转子就会继续顺时针向前转动,见图1-5所示: 图1-5 (摘自Freescale PZ104文档) 如此不断改变两头螺线管的电流方向,内转子就会不停转起来了。改变电流方向的这一动作,就叫做换相(commutation)。注意:何时换相只与转子的位置有关,而与转速无关。 以上是两相两级无刷电机的工作原理,,下面我们来看三相两极无刷电机的构造。 2. 三相二极内转子电机结构 定子三相绕组有星形联结方式和三角联结方式,而“三相星形联结的二二导通方式”最常用。

图1-6 (修改自Freescale PZ104文档) 图1-6显示了定子绕组的联结方式(转子未画出),三个绕组通过中心的连接点以“Y”型的方式被联结在一起。整个电机就引出三根线A, B, C。当它们之间两两通电时,有6种情况,分别是AB, AC, BC, BA, CA, CB,图1-7(a)~(f)分别描述了这6种情况下每个通电线圈产生的磁感应强度的方向(红、兰色表示)和两个线圈的合成磁感应强度方向(绿色表示)。 在图(a)中,AB相通电,中间的转子(图中未画出)会尽量往绿色箭头方向对齐,当转子到达图(a)中绿色箭头位置时,外线圈换相,改成AC相通电,这时转子会继续运动,并尽量往图(b)中的绿色箭头处对齐,当转子到达图(b)中箭头位置时,外线圈再次换相,改成BC相通电,再往后以此类推。当外线圈完成6次换相后,内转子正好旋转一周(即360°)。再次重申一下:何时换相只与转子位置有关,而与转速无关。 图1-8中画出了换相前和换相后合成磁场方向的比较与转子位置的变化。一般来说,换相时,转子应该处于,比与新的合成磁力线方向垂直的位置不到一点的钝角位置,这样可以使产生最大的转矩的垂直位置正好处于本次通电的中间时刻。 (a) AB相通电情形(b) AC相通电情形 (c) BC相通电情形(d) BA相通电情形 (e) CA相通电情形(f) CB相通电情形

转子发动机的结构原理

摘要 目前在商品汽车上普遍使用往复式活塞发动机。还有一种知名度很高,但应用很少的发动机,这就是三角活塞旋转式发动机。转子发动机又称为米勒循环发动机。它采用三角转子旋转运动来控制压缩和排放,与传统的活塞往复式发动机的直线运动迥然不同。这种发动机由德国人菲加士·汪克尔发明,在总结前人的研究成果的基础上,解决了一些关键技术问题,研制成功第一台转子发动机。 本文将简要介绍转子发动机的发展历史、结构、工作原理、以及其特点和发展方向。

目录 第一章转子发动机的发展历程 第一节转子发动机的发明 第二节转子发动机的应用 第二章转子发动机的主要结构 第一节转子发动机总成 第二节转子发动机的主要零件 第三章转子发动机的工作原理 第一节转子发动机的工作过程 第二节转子发动机与传统发动机的比较 第四章转子发动机的特点及发展方向第五章结论

第一章转子发动机的发展历程 发动机是汽车最为关键的部分,是决定车子性能的最重要的因素,犹如人的心脏。大部分人都知道我们日常用的是活塞往复式发动机,又分为两冲程发动机和四冲程发动机,但是还有一种不为大部分人所熟知应用很少的发动机,那就是转子发动机,又叫汪克尔发动机。这种发动机的结构紧凑轻巧,运转宁静畅顺,也许会取替传统的活塞式发动机。 第一节转子发动机的发明 1959年,世界上第一台转子发动机才由德国工程师菲利克斯·汪克尔发明出来,第一台转子发动机名为KKM400型转子发动机。 汪克尔于1902年出生在德国,1921年到1926年受雇于海德堡一家科技出版社的销售部。在1924年,汪克尔在海德堡建立了自己的公司,他花了大量的时间在那里进行转子发动机的研制,在1927年,诸如气密性和润滑等的一系列技术问题的攻克终于有了眉目。60年初在德国生产出第一辆装配了转子发动机的小跑车。 实际上在过去的400年中,许多发明家和工程师一直都想开发一种连续运转的内燃机。人们希望有朝一日往复活塞式内燃机将被优雅的原动力引擎所取代,它的运动轨迹应该非常接近人类伟大的发明之一:轮子。 在十六世纪末期,在出版物中首次出现"连续运转内燃机"的说法。连杆和曲柄机构的发明人詹姆斯.沃特(James Watt, 1736-1819),也曾研究转子式内燃机。特别是在过去的150年里,发明者提出了许多关于转子发动机结构的提案。直到1959年汪克尔博士通过研究和分析各种转子发动机类型的可行性,找到了旋轮线壳体的最佳形状。他对飞机发动机上所用的回转阀以及增压器的气密性密封机构具有深刻的了解,这些机构在其设计中的使用,使汪克尔型转子发动机得以实用化。

结构分析复习总结

1、第三,四代发动机的基本特点 第三代战斗机所用发动机大多是七十年代以后开始研制的,发动机推重比大于8.0;其主要特点是,起初的性能指标选取的偏高,在工艺过程中使用了大量新技术、新材料和新结构,缺少相应的可靠性、耐久性验证。致使在使用中出现了大量可靠性问题甚至影响到飞机的飞行。使第三代发动机的研制、改型时间较长。在近三十年的使用过程中出现了大量的改进型号,同时也使航空发动机的设计标准和方法有了质的变化。 第四代发动机特点:具有超音速巡航能力;推重比大于10.0,采用矢量喷管,为飞机提供短距起落和非常规机动能力;具有隐身能力;加力推重比提高20%典型战机:F-22“猛禽”;EFA2000(EFA) 2、高涵道比涡扇发动机未来发展方向和主要特征 主要特征:高涵道比的涡扇发动机具有耗油率低、噪声低、排气污染小的特点,所以十分适合在大型民航客机上使用。然而,高涵道比也会带来一些缺陷,主要是排气速度和单位推力的下降,引起发动机迎风面积增加,推重比降低,这样就会影响飞机的机动性。 发展方向:提高发动机性能、可靠性与耐久性,提高发动机动力,多公司合作研制,进行大量严格的试验,追求高的经济性,留有大的温度裕度,广泛应用先进技术。 在大涵道比风扇发动机风扇设计要求是什么?现代发动机上是如何设计的? 设计要求:1)较好的抗外物打伤能力;2)抗腐蚀性能好;3)风扇的整体重量不能太大;4)风扇产生的噪音不能太大;5)较好的包容措施;6)防止低压轴折断、风扇飞出措施;7)抗振动,特别是抗颤振性能好;8)较好的强度设计。如:GE90;GE90的风扇是当前世界上直径最大的。1)叶片采用宽弦设计,有助

结构强度的分析

第三节结构与稳定性 一、新课内容: 结构的稳定性是指结构在负载的作用下,维持原有平衡状态的能力。 台风过后,部分结构却完好无损,这又说明,有的结构稳定,有的结构不稳定。 想一想: 结构的稳定性与什么因素有关? 填表说明下表中的物体有可能因受哪些力的作用而出现不稳定现象,并根据你的生活经验,简要说明原因。(P012) (一)影响结构稳定性的主要因素: [实验探究1]: 学生拿一本书,让它直立在桌面上,它马上倾倒了,显然,其稳定性不好。 同样的一本书,把它的下端各书页展开一定的角度,仍旧将它直立在桌面上,它就能很好的挺立住。 因素一:支撑面积的大小 1. 稳定性与支撑面积的大小有关

支撑面越大越稳定,越小越不稳定。 A.落地电风扇或者宾馆里的落地灯,它们都有一个比较大的底座。 [引导学生得出结论]:结构的底座,结构与地面接触所形成的 B:为什么大坝的横截面总是建成梯形? 生:思考回答 师:大坝需要承受很大的力的作用,如自身的重力,水的冲击力、压力等等,要起到防洪的作用,大坝必须要求非常稳固。大坝建成梯形,增大了与地面接触所形成的支撑面,支撑面越大越坚实,稳定性就越好。 C.为什么许多课桌椅的支撑脚要做成往外倾斜? 生:思考回答 师:这是为了进一步增大与地面接触所形成的支撑面积,增加稳定性。从而引导学生得出结论:结构的稳定性与支撑面积大小有关。 注意:支撑面≠接触面。(接触面是物体与地面接触形成的面。支撑面是物体与地面接触形成支撑点的连线与地面构成的面。)

[实验探究2]:显示落地扇的图片 师:落地扇为什么不易倾倒? 生:思考回答 师:落地扇的底座采用较重的材料,风扇比底座轻很多,使落地扇的重心降低。 因素二:重心位置 2.结构的稳定性与重心位置有关。 物体重心越低,越稳定。 A.不倒翁为什么不倒?如果在它脖子上挂上一定数量的铁环,它还会不倒吗? 师:研究不倒翁的结构,发现不倒翁的重心很低,就在它与地面的接触点上,所以不倒,如果往它的脖子挂上铁环,它的重心位置升高了,当铁环达到一定数量时,不倒翁就不在是不倒翁了。 [引导学生得出结论]:重心的高低影响结构的稳定性。重心越低,稳定性越好;重心越高,稳定性越差。 B.以前的农作物个子高,遭遇暴风骤雨容易倾覆,造成减产;现在的农作物普遍个子矮。就是利用了重心低结构稳定的原理。 C.屏幕显示比萨斜塔的图片,比萨斜塔为什么不倒塌?(简单介绍比萨斜塔。) 通过分析长方体重心的垂线位置与稳定性示意图,使学生容易理解,比萨斜塔不倒的原因是它的重心所在点的垂线落在塔的底面的范围内。当塔倾斜到一定程度,重心的垂线不再落在塔的底面时,塔就会倾倒。 [引导学生得出结论]:结构的稳定性与重心位置有关。

ANSYS_中的转子动力学计算

ANSYS 中的转子动力学计算 雷先华 安世亚太 转子动力学是固体力学的一个重要分支,它主要研究旋转机械的“转子-支承”系统在旋转状态下的振动、平衡和稳定性问题,其主要研究内容有几个方面:临界转速、动力响应、稳定性、动平衡技术和支承设计。在旋转机械研究设计中,转子动力学的性能分析是极其重要的一个方面。 传统的转子动力学分析采用传递矩阵方法进行,由于将大量的结构信息简化为极为简单的集中质量—梁模型,不能确保模型的完整性和分析的准确度;而有限元在处理转子动力学问题时,可以很好地兼顾模型的完整性和计算的效率,但多年来转子的“陀螺效应”一直是制约转子动力学有限元分析的“瓶颈”问题。ANSYS 很好地解决了动力特性分析中“陀螺效应”影响的问题,而且陀螺效应的考虑不受计算模型上的限制,使得转子动力学有限元分析变得简单高效。 本文对ANSYS 的转子动力学计算功能进行简要介绍。 1 ANSYS 转子动力学的理论基础 ANSYS 转子动力学分析中,两种参考坐标系可供选择:静止坐标系和旋转坐标系。空间点P 在静止坐标系(其原点在O ′)下的位置矢量为r ′,在旋转坐标系(其原点在O )下的位置矢量为r 。 在静止坐标系下转子的动力方程为: [][][]{}{}([]){}{}M u C C u K u F gyr +++=&&& []C gyr 为陀螺效应矩阵。 在旋转坐标系下转子的动力方程为: [][][]{}{}([]){}([]){}M u C C u K K u F cor spin r r r +++?=&&& []C cor 为哥氏效应矩阵,[]K spin 为旋转软化效应刚度矩阵。 2 ANSYS 转子动力学的计算功能和新技术 ANSYS 转子动力学计算包含如下功能: – 无阻尼临界转速分析 – 不平衡响应分析 – 阻尼特征值分析

汽轮机转子及构成

汽轮机转子及构成 1转子定义 汽轮机所有转动部件的组合体称为转子(图13)。它主要包括:主轴、叶轮(转鼓)、叶片、联轴器等部件。 图13 转子 转子的作用:汇集各级动叶栅所得到的机械能,并传给发电机。 转子受力分析:传递扭矩、离心力引起的应力、温度不均匀引起的热应力、轴系振动所产生的振动应力。 汽轮机转子在高温蒸汽中高速旋转,不仅要承受汽流的作用力和由叶片、叶轮本身离心力所引起的应力,而且还承受着由温度差所引起的热应力。 此外,当转子不平衡质量过大时,将引起汽轮机的振动,转子要承受轴系振动所产生的振动应力。因此,转子的工作状况对汽轮机的安全、经济运行有着很大的影响。 2转子的分类 根据汽轮机的分类,转子分为两种:轮式转子、鼓式转子。前者用于冲动式汽轮机,后者用于反动式汽轮机,鼓式转子上的动叶直接安装在转鼓上。 按临界转速是否在运行转速范围内,分为刚性转子和柔性转子。在启动过程中,刚性转子启动就很方便,不存在跨临界区域,而柔性转子因需要快速的跨临界,故要求用户在实际启动过程中,要充分暖机,为快速跨临界作好准备。 1、轮式转子 轮式转子根据转子结构和制造工艺的不同,可分为:套装转子、整段转子、焊接转子以及组合转子。

1-油封环2-轴封套3-轴4-动叶栅5-叶轮6-平衡槽 图14 套装转子示意图 (1)套装转子 套装转子的叶轮、轴封套、联轴器等部件和主轴是分别制造的,然后将它们热套在主轴上,各部件与主轴之间采用过盈配合,并用键传递力矩。主轴加工成阶梯形,中间直径大。 适用性:只适用于中、低参数的汽轮机和高参数汽轮机的中、低压部分,其工作温度一般在400℃以下。不宜用于高温高压汽轮机的高、中压转子。 ①优点:加工方便,材料利用合理,质量容易得到保证。 ②缺点:轮孔处应力较大,转子刚性差,高温下套装处易松动。 (2)整锻转子 叶轮和主轴及其他主要零部件由整体毛坯加工制成,没有热套部件。主轴的中心通常钻有中心孔,其作用是: ①去掉锻件中残留的杂质及疏松部分; ②用来检查锻件的质量; ③减轻转子的重量。 其缺陷在于: ①使转子工作应力增大,制造成本增加; ②运行中易出现中心孔进油、进水、腐蚀,引起转子不明的振动; ③检修、动平衡复杂。 随着锻造、热处理及探伤技术水平的提高,无中心孔的转子结构应运而生。 ①优点:不会出现零件松动问题,结构紧凑,强度、刚度高,适合高温、高应力环境下工作; ②缺点:贵重材料消耗大,对加工工艺要求高。 适用性:中小型汽轮机的高压转子、大型汽轮机的任何转子(高参数或超高参数机组的高压转子)。

船舶结构强度分析.

船舶结构强度分析 近几年来,国内船舶修理公司如雨后春笋般出现,修理任务急剧扩张,修理的船型也是多种多样,涵盖整个船舶市场。而对船体结构的修理也是首当其冲,由于船厂的技术水平和工人技能等多方面原因,对于结构修理过程中拆换结构也会出现不同的修理方案,导致船舶结构在修理后出现异常情况。因此对于船舶结构强度分析的提出是相当重要的。其主导思想是在船舶修理的船体拆换强度分析的应用中,运用的基本计算原理和方法,是以船舶原理和船舶结构力学为理论基础。在以往的工程实际中,修船工程技术人员往往忽略或者不重视将这些理论的知识与船舶修理工程充分地结合起来。为了很好地说明这些基础理论在修船工程实际中的应用,本文将以船舶原理和船舶结构力学的基本理论,来阐述在船舶修理工程中的基本强度理论和基本计算原理及方法。 一、船舶结构力学 在船舶工程传统意义上,船舶结构力学研究和解决船体结构在静力响应,即在给定的外力作用下如何确定船体结构(局部和整体)中的应力、变形情况。在船舶修理工程中,因船舶在设计建造时已经对船舶的强度进行了计算和设计,所以要解决的问题就是强度计算,概括来讲,就是在船体结构尺寸已知的条件下,在给定的外载荷或工况下,计算出结构的应力和变形,并与许用值比较,从而判断船体结构的强度是否足够。船体结构强度的计算是依据船舶原理的基本设计理念,运用理论力学和材料力学的力学基本理论来对船舶的结构强度进行计算和校核的。 二、力学模型和船体模型 在船舶修理工程中的结构强度计算中,为了便于计算,须对实际的结构进行简化,在简化模型的基础上,施加外载荷,再运用船舶结构力学的基本理论和方法来计算船体结构的应力和变形情况。为了满足计算的需要,可以将在船舶修理工程实际情况下的船体结构的简化模型分成两个类型,一是基于传统船舶结构力学基础上的“力学模型”,二是在便于现代计算机计算和有限元理论分析的“船体模块”,这两个类型有渐进的关系。 “力学模型”的建立是根据实际结构的受力特征、结构之间的相互影响以及对计算精度的要求等各个方面的因素来确定的。 在船舶修理工程中,船体“力学模型”的简化一般有以下几种形式: 一是船体中的受压或者拉压的板,可以把四周由纵横骨架支持的这种受压或者拉压的板看作具有矩形周界的平板模型。在甲板纵骨被局部割断后,在未断纵骨和框架之间的主甲板就可以简化成这样的模型,在舱口围横梁被拆断后,舱口围板就成为受压板结构了,同样可以简化成这一类的力学模型结构。 二是船体结构中解除部分约束条件的骨架可以看作力学中的“杆系系统”。连续梁、刚架和板架结构是“杆系系统”中典型的结构。因舷侧板需换新,在拆除后,相应位置的肋骨因支撑板约束的解除而成为受压杆件。至于船体的双层底结构,在实际的计算处理中一般可以简化为刚架和板架结构。 而“船体模块”是为了便于计算机的计算方便,将船体的结构进行离散处理,化成小的能够表达结构的所有特征的子结构。“船体模块”的确定既要考虑到该结构的几何形状,又要考虑其结构载荷的特点,同时又必须采取适合有限元方法的计算特点来进行。 三、强度分析与计算 与船舶设计建造中的结构强度计算一样,船舶修理实际的工程中,对船体结构的改变(拆装或新加),同样是应用力法、位移法、能量法和矩阵法等方法。但与船舶设计不同的是,船舶修理是在原有结构被拿掉后,产生新的外载荷和新的边界条件,这时要对新情况下的强度进行计算和校核,确定在新的外载荷和边界条件下的结构应力和变形。下面以某船的局部构件换新为例,来探讨力法、位移法、能量法和矩阵法在船舶修理工程中的应用。

基于ANSYS的电机转子的动力学分析

现代工业上旋转机械单机容量在不断增大,而转子直径不可能随其容量的增大而按比例增大。高转速轻结构是近代高速旋转机械的发展和设计趋势。本文使用ansys研究了电机转子动力学问题,得出ansys可以计算转子动力学问题。 1 引言 转子动力学的研究,最早可追溯到十九世纪六十年代。一个多世纪以来,随着大工业的发展,转子系统被广泛地应用于包括燃气轮机、航空发动机、工业压缩机等机械装置中,在电力、航空、机械、化工、纺织等领域中起着非常重要的作用。因而,转子动力学有着极强的工程应用背景,其相关的研究工作也越来越受到人们的重视。 由于材质的不均匀,制造、加工及安装误差等,转子系统不可避免的存在着质量偏心,同时转子在工作过程中还可能产生热变形以及磨损和介质的姑附等现象,这些因素或多或少都会导致转子不平衡的增大从而使转子的不平衡振动增大。由过大的不平衡量引起的转子系统的振动是十分有害的,它使机械的效率降低、载荷增加,使一些零部件易于磨损、疲劳而缩短寿命,较大的振动还会恶化操作人员的劳动环境,甚至会导致发生机毁人亡的严重事故。消除或者减小转子系统的振动首先考虑是对转子进行平衡。 现代工业上旋转机械单机容量在不断增大,而转子直径不可能随其容量的增大而按比例增大。高转速轻结构是近代高速旋转机械的发展和设计趋势。转子设计和发展的这种趋势对转子的质量不平衡提出了严格的限制。这种情况下,转子的动力学变得更加突出和重要。本文使用ansys研究了某电机转子的动力学问题,为转子动力学设计找到了一个新的途径。 2 模型的建立及计算 如图1所示,为电子转子的有限元模型,使用BEAM188单元模拟转子的轴,使用MASS21单元模拟转子,使用单元COMBI214模拟轴承。 图1 电机转子的有限元模型(不显示单元)图2 电机转子的有限元模型 (显示单元) 图3给出了Beam188 单元的几何简图。Beam188单元适合于分析从细长到中等粗短的梁结构,该单元基于铁木辛哥梁结构理论,并考虑了剪切变形的影

新能源汽车用永磁电机转子结构分析

新能源汽车技术I EMCA違权控刹名阄2019,46 (2)新能源汽车用永磁电机转子结构分析 陈"香,潘敬涛,孙宁 (沈阳工业大学国家稀土永磁电机工程技术研究中心,辽宁沈阳110870) 摘要:针对新能源汽车用永磁电机,通过有限元法分析了V型、V—型、双弧型、U—型4种不同转子结构电机的交直轴电感、电磁转矩、磁阻转矩等性能,分析了不同转子结构的弱磁扩速能力及影响弱磁扩速能 力的因素,仿真给出了不同转子结构的效率云图。通过综合分析,得出不同转子结构的特点,总结了不同转子 结构 用的新能源汽车用 电机的类型。 关键词!永磁同步电机"新能源汽车用电机"交直轴电感"弱磁扩速 中图分类号:TM 351 文献标志码!A 文章编号:1673-6540(2019)02-0114-06 R o t o r S t r u c t u r e A n a l y s i s o f P e r m a n e n t M a g n e t M o t o r f o r N e w E n e r g y A u t o m o b i l e CHENLixiang,PANJingtao,SUN Ning (N ational E n gin eerin g R e se a rch C en ter for R E P M E le ctrica l M a c h in e,Shenyan g U niversity o f T e c h n o lo g y, Shenyan g 110870,C h in a) Abstract: The p ermanent magnet motor for new energy automobile was introduced. The quadrature-direct axis inductance,electromagnetic torque a nd magnetic resistance torque properties were analyzed by finite element method for four kinds of motors with different rotor structures: “V” type,(V—,’ type,double-arc type,and ( U—,’ t The flux weakening capability and the factors influencing flux weakening capability were a maps of different rotor structures were given by simulation. By comparing and analyzing the characteristics of different rotor structures,it was concluded that different rotor magnetic circuit structures were suitable for different new energy automobile applications. Key words :permanent magnet synchronous motor ( PMSM )*new energy automobile motor * quadrature-direct axis inductance; flux weakening 0引言 永磁同步电机(P M S M)具有结构简单、转矩 密度高、效率高、功率因数高、高效率 盖宽、 振动噪声低、动态响应快 对简单等,新能源汽车 电机 用 [1_2]。 永磁 转子 的不同分类, P M S M— 分为3种转子磁路结构:、内 。3种转子磁路结构 转子磁路结构应用较为 ,转子的永磁体 转子的 ,转子磁路不对 生的磁阻转矩 高电动机的过载能力 率 , 弱磁扩速[3]。有 的特性,转子磁路结构P M S M为汽车驱电机的 ,P rius 2003电机永磁体采用一型结构,P rius 2004和P rius 2010电机永磁体采用V型结构,P rius 2015驱动 电机采用V—型转子磁路结构,丰田公司2008 L exus L S600H电机采用了双层V—型永磁体结构,的A ctiv e E.电机采用 作者简介:陈丽香(1973—),女,硕士,高级工程师,研究方向为永磁电机设计及关键技术潘敬涛(1992—),男,硕士研究生,研究方向为永磁电机关键技术。 孙宁(1980—),男,硕士,工程师,研究方向为永磁电机设计及关键技术。—114 —

相关文档
最新文档