电磁场与微波测量实验报告(一)

电磁场与微波测量实验报告(一)
电磁场与微波测量实验报告(一)

电磁场与微波测量实验报告(一)

学院:电子工程学院

班级:2015211205

组员一:李聪

学号:2015210926

组员二:陈孟

学号:2015210925

实验一:电磁波反射和折射实验

一,实验目的

1、熟悉S426型分光仪的使用方法。

2、掌握分光仪验证电磁波反射定律的方法。

3、掌握分光仪验证电磁波折射定律的方法。

二,实验设备与仪器

S426型分光仪

三,实验原理

电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的

金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵

循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。

验证均匀平面波在无耗媒质中的传播特性;均匀平面波垂直入射理想电

解质表面的传播特性。

四,实验内容与步骤

1、熟悉分光仪的结构和调整方法。

2、连接仪器,调整系统。

如下页图1所示,仪器连接时,两喇叭口面应互相正对,他们各自的轴线应在一条直线上。指示两喇叭的位置的指针分别指

于工作平台的90刻度处,将支座放在工作平台上,并利用平台

上的定位销和刻线对正支座(与支座上刻线对齐)拉起平台上四

个压紧螺钉旋转一个角度放下,即可压紧支座。

3、测量入射角和反射角

反射金属板放到支座上时,应使金属板平面与支座线面的小圆盘上的某一对刻线一致。而把带支座的金属反射板放到小平台

上时,应使圆盘上的这对与金属板平面一致的刻线与小平台上相

应90刻度的一对刻线一致。这时小平台上的0刻度就与金属板

的法线方向一致。

转动小平台,使固定臂指针指在某一角度处,这角度的读数就是入射角,然后转动活动臂在电流表上找到最大指示处,此时

活动臂的指针所指的刻度就是反射角。如果此时表头指示太呆或

太小,应调整衰减器、固态振荡器或晶体检波器,使表头指示接

近满量程。

4、注意:

做此项实验,入射角最好取30至65度之间。因为入射角太大接受喇叭有可能直接接受入射波。注意系统的调整和周围环境

的影响。

图1:反射实验仪器的布置

五,实验数据与处理

1,金属板实验:

实验数据及处理如下表

2,观察介质板(玻璃板)上的反射和折射实验:

实验数据及处理如下表

六,实验误差分析

根据电磁波在金属板与玻璃板反射实验结果可以看到,反射与折射大体上遵循反射和折射定律,但与理论值存在一定偏差,主要表现在:

各个角度的反射实验中反射角与入射角有一定差异;玻璃板的反射与折

射实验中反射、透射系数相加并不为1,有6组比1大,2组比1小,我们认为这些差异主要由于以下实验误差引起。

1.金属板的刻度不够准确,造成指针无法完全准确对其刻度;

2.读取电流值时指针的左右摆动,无法完全静止造成读数不准;

3.实验中其他实验组的仪器发射的电磁波进入我组仪器造成干扰;

4.实验过程中我们自己的肢体活动以及呼吸的气流影响带来一定干扰;

5.其他实验误差。

七,思考题

1.在衰减器旁边的螺钉有什么作用?

衰减器旁有两个螺钉,其中一个控制衰减程度,另一个调整喇叭天线高度。

2,电磁波的反射和激光的反射有何相同之处以及不同之处。

相同之处是两者都遵循电磁波的反射定律;不同之处在于电磁波的反射波聚拢度较低,分散较大,互相存在干扰,而激光的聚拢度很高,实验结果更为精确。

4,透射系数和反射系数相加是否等于1?为什么,进行误差分析。

不等于,大部分略大于1,少部分略小于1,主要是因为实验仪器的不精确以及测量过程中的各种误差造成的数据不精确,另一方面有一部分的入射波可能不经反射、折射直接被接收端接收,同时反射波、折射波的干涉可能会造成强度的偏差。

实验二:单缝衍射实验

一,实验目的

掌握电磁波的单缝衍射时衍射角对衍射波强度的影响。

二,实验设备与仪器

S426型分光仪

三,实验原理及内容步骤

图1为单缝衍射原理实验图,当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象。在缝后面出现的衍射波强度并不是

均匀的,中央最强,同时也最宽。在中央的两侧衍射波强度迅速减小,

直至出现衍射波强度的最小值,即一级极小,此时衍射角为φ

=Sin-1

min λ/a,其中λ是波长,a是狭缝宽度。两者取同一长度单位,然后,随

着衍射角增大,衍射波强度又逐渐增大,直至出现一级极大值,角度为

φmax=Sin-1(3/2*λ/a)。

图1单缝衍射原理

实验仪器布置如图2,仪器连接时,预先需要调整单缝衍射板的缝宽,当该板放到支座上时,应使狭缝平面与支座下面的小圆盘上的某一对刻线一致,此刻线应与工作平台上的90°刻度的一对线一致。转动小平台使固定臂的指针在小平台的180°处,此时小平台的0°就是狭缝平面的法线方向。这时调整信号电平使表头指示接近满度。然后从衍射角0°开始,在单缝的两侧使衍射角每改变2°读取一次表头读数,并记录下来,这时就可画出单缝衍射强度与衍射角的关系曲线,并根据微波波长和缝宽算出一级极小和一级极大的衍射角,并与实验曲线上求得的一级极小和极大的衍射角进行比较。

图2单缝衍射实验仪器的布置

四,实验数据处理

实验中分别使用缝宽a=70mm、50mm、20mm的单缝衍射板进行实验,电磁波的波长均为32mm。实验数据表格如下表。

(1)a=70mm时

(a)一级极大值对应角度值左侧32度,右侧38度一级极小值对应角度值左侧22度,右侧22度(b)衍射曲线

(c)根据公式计算出一级极大和一级极小的衍射角和实验数据的比较

如下表

(2)a=50mm时

(a)一级极大值对应角度值左侧26度,右侧50度

一级极小值对应角度值左侧22度,右侧36度

(b)衍射曲线

(c)根据公式计算出一级极大和一级极小的衍射角和实验数据的比较

如下表

(3)a=20mm时

(a)一级极大值对应角度值左侧10度,右侧14度

一级极小值对应角度值左侧6度,右侧8度

(b)衍射曲线

(c)根据公式计算出一级极大和一级极小的衍射角和实验数据的比较

(3)实验误差分析

从比较结果中可以看到,实验数据总体上可以和理论值相符合,主要的误差还是来自于实验仪器的不精确,造成的实验测量结果的误

差,以及来自于其他组仪器的电磁波干扰。另外,a=20mm时的理论

值根据公式算不出来,也就是不存在。

五,实验总结

通过本次实验,我们了解掌握了S426型分光仪的原理与使用,并通过自己亲自动手测量验证了反射和折射定律,虽然实验结果与理论值有一定的差距,

这主要是因为实验仪器自身的不够精确以及我们自己测量时的各种误差造成的,另外,我们还掌握了电磁笔的单缝衍射的规律,了解了衍射角度和衍射强度的

大致规律,虽然也有一定的误差干扰,但整体上还是符合理论规律,且误差在

整体可接受范围内。通过本次实验,进一步培养了我们的实践动手能力以及科

学严谨的实验精神,学到了很多东西。

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

北邮电磁场与微波测量实验实验七无线信号场强特性

电磁场与微波测量实验报告 学院:电子工程学院 班级:2011211204 执笔人: 学号:2011210986 组员:

实验目的 1. 掌握在移动环境下阴影衰落的概念以及正确的测试方法; 2. 研究校园内各种不同环境下阴影衰落的分布规律; 3. 掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念; 4. 通过实地测量,分析建筑物穿透损耗随频率的变化关系; 5. 研究建筑物穿透损耗与建筑材料的关系。 实验原理 1. 电磁波的传播方式 无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等 于接收机的灵敏度。因此基站的覆盖区的大小,是无线工程师所关心的。决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。 电磁场在空间中的传输方式主要有反射、绕射、散射三种模式。当电磁波传播遇到比波长大 很多的物体时,发生反射。当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。当 电波传播空间中存在物理尺寸小于电波波长的物体、且这些物体的分布较密集时,产生散射。散射波产生于粗糙表面,如小物体或其它不规则物体、树叶、街道、标志、灯柱。 2. 尺度路径损耗 在移动通信系统中,路径损耗是影响通信质量的一个重要因素。大尺度平均路径损耗: 用于测量发射机与接收机之间信号的平均衰落,即定义为有效发射功率和平均接受功率之间 的(dB)差值,根据理论和测试的传播模型,无论室内或室外信道,平均接受信号功 率随距离对数衰减,这种模型已被广泛的使用。对任意的传播距离,大尺度平均路径损耗 表示为: PL d dB PL dO 10nlog d/d0 即平均接收功率为: Pr d dBm Pt dBm PL dO 10nlog d/dO Pr dO dBm 10nlog d /dO 其中,定义n为路径损耗指数,表明路径损耗随距离增长的速度,dO为近地参考距离, d为发射机与接收机之间的距离。公式中的横杠表示给定值d的所有可能路径损耗的综合平均。坐标为对数-对数时,平均路径损耗或平均接收功率可以表示为斜率1OndB /1O倍程的 直线。n依赖于特定的传播环境,例如在自由空间,n为2;当有阻挡物时,n比2大。 决定路径损耗大小的首要因素是距离,此外,它与接受点的电波传播条件密切相关。为此,我们引进路径损耗中值的概念,中值是使实验数据中一半大于它而另一半小于它的一个数值 (对于正态分布中值就是均值)。 人们根据不同放入地形地貌条件,归纳总结出各种电波传播模型。下边介绍几种常用的 描述大尺度衰落的模型。常用的电波传播模型:

北邮电磁场与微波技术实验实验一

实验一网络分析仪测量振子天线输入阻抗 一,实验目的 1.掌握网络分析仪矫正方法; 2.学习网络分析仪测量振子天线输入阻抗的方法; 3.研究振子天线输入阻抗随振子电径变化的情况。 二,实验步骤 1.设置仪表为频域模式的回损连接模式后,矫正网络分析仪; 2.设置参数并加载被测天线,开始测量输入阻抗; 3.调整测试频率寻找天线的两个谐振点并记录相应阻抗数据; 4.更换不同电径(Φ1,Φ3,Φ9)的天线,分析两个谐振点的阻抗变化情况。 三,实验原理 当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。这时可以采用镜像法来分析。天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。 由于使用坡印廷矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一半。当h<<λ时,可认为 R≈40(πh)2 。由于天线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一λ ?1] 倍,则天线的平均特征阻抗也为等臂长对称振子天线的一半,为W=60[ln2h a 四,实验数据 试验参数:BF=600,ΔF=25,EF=2600,n=81 1.短路时矫正,阻抗点分布:

2.开路时矫正,阻抗点分布: 3.选择电径为Φ1=1mm的天线,阻抗点分布:

由图及数据表可知其谐振点频率约为1225MHz,第二谐振点频率约为2450MHz,即第二次谐振时频率约为第一次两倍。 4.选择电径为Φ3=3mm的天线,阻抗点分布:

电磁场与微波技术实验天线部分实验二

信息与通信工程学院 电磁场与微波实验天线部分报告 XXX班 XXXX 学号:XXXXX 实验二 网络分析仪测试八木天线方向图 一、实验目的: 1.掌握网络分析仪辅助测试方法 2.学习测量八木天线方向图方法 3.研究在不同频率下的八木天线方向图特性 二、实验步骤: (1)调整分析仪到轨迹(方向图)模式 (2)调整云台起点位置270° (3)寻找归一化点(最大值点) (4)旋转云台一周并读取图形参数 (5)坐标变换、变换频率(F=600MHz、900MHZ、1200MHZ),分析八木天线方向图三、实验原理 实验中用的是七单元八木天线,包括一个有源振子,一个反射器,五个引向器(在此图中再加2个引向器即可) 八木天线原理图

引向器略短于二分之一波长,主振子等于二分之一波长,反射器略长于二分之一波长,两振子间距四分之一波长。此时,引向器对感应信号呈“容性”,电流超前电压90°;引向器感应的电磁波会向主振子辐射,辐射信号经过四分之一波长的路程使其滞后于从空中直接到达主振子的信号90°,恰好抵消了前面引起的“超前”,两者相位相同,于是信号叠加,得到加强。反射器略长于二分之一波长,呈感性,电流滞后90°,再加上辐射到主振子过程中又滞后90°,与从反射器方向直接加到主振子上的信号正好相差了180°,起到了抵消作用,一个方向加强,一个方向削弱,便有了强方向性。发射状态作用过程亦然。 3.实验步骤 四、实验测量图 不同频率下的测量图如下: 600MHz: 最大增益方向:73度,幅度:1 3dB点:55度,幅度:0.715 3dB点:97度,幅度:0.703 主瓣宽度: 97-55=42度

北邮电磁场与微波实验天线部分实验报告二

北邮电磁场与微波实验天线部分实验报告二

信息与通信工程学院电磁场与微波实验报告

实验二网络分析仪测试八木天线方向图 一、实验目的 1.掌握网络分析仪辅助测试方法; 2.学习测量八木天线方向图方法; 3.研究在不同频率下的八木天线方向图特性。 注:重点观察不同频率下的方向图形状,如:主瓣、副瓣、后瓣、零点、前后比等; 二、实验步骤: (1) 调整分析仪到轨迹(方向图)模式; (2) 调整云台起点位置270°; (3) 寻找归一化点(最大值点); (4) 旋转云台一周并读取图形参数; (5) 坐标变换、变换频率(f600Mhz、900MHz、1200MHz),分析八木天线方向图特性; 三、实验测量图 不同频率下的测量图如下: 600MHz:

900MHz:

1200MHz:

四、结果分析 在实验中,分别对八木天线在600MHz、900MHz、1200MHz频率下的辐射圆图进行了测量,发现频率是900MHz的时候效果是最好的,圆图边沿的毛刺比较少,方向性比较好,主瓣的面积比较大。 当频率为600 MHz的时候,圆图四周的毛刺现象比较严重,当频率上升到1200MHz时,辐射圆图开始变得不规则,在某些角度时出现了很大的衰减,由对称转向了非对称,圆图边缘的毛刺现象就非常明显了,甚至在某些角度下衰减到了最小值。 从整体来看,八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候周围的人应该避免走动,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 由实验结果分析可知:最大辐射方向基本在90°和270°这条直线上,图中旁瓣均较小,及大部分能量集中在主瓣。 八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候应当尽量保持周边环境参数一定,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 五、实验总结

北邮电磁场与微波技术实验天线部分实验一

北邮电磁场与微波技术实验天线部分实验一最新

————————————————————————————————作者:————————————————————————————————日期:

信息与通信工程学院 电磁场与微波实验报告 实验题目:网络分析仪测量振子天线输入阻抗 班级:2011211106 姓名:吴淳 学号:2011210180 日期:2014年3月

实验一网络分析仪测量阵子天线 输入阻抗 一、实验目的 1. 掌握网络分析仪校正方法; 2. 学习网络分析仪测量振子天线输入阻抗的方法; 3. 研究振子天线输入阻抗随阵子电径变化的情况。 注:重点观察谐振点与天线电径的关系。 二、实验原理 当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。这时可以采用镜像法来分析。天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。 图1 实验原理图

由于使用坡印亭矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一 半。当h<<λ时,可认为R≈40 。由于天线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一倍,则天线的平均特征阻抗也为等臂长对称振子天线的一半,为=60[ln(2h/a)-1]。 三、实验步骤: 1. 设置仪表为频域模式的回损连接模式后,校正网络分析仪; 2. 设置参数并加载被测天线,开始测量输入阻抗; 3. 调整测试频率寻找天线的两个谐振点并记录相应阻抗数据; 4. 更换不同的电径(对应1mm, 3mm, 9mm)的天线,分析两个谐振点的阻抗 变化情况; 5. 设置参数如下: BF=600MHz,△F=25MHz,EF=2600MHz,n=81. 6. 记录数据:在smith圆图上的输入阻抗曲线上,曲线的左端输入阻抗虚部 为0的点为二分之一波长谐振点,曲线的右端输入阻抗虚部为0的点为四分之一波长谐振点。记录1mm,3mm,9mm天线的半波长和四分之一波长的谐振点。 四、实验数据: 1. 直径=1mm时: 第一谐振点处频率约为(取最接近点)F=1250MHz,电阻R=41.88ohm, SWR=1.193, RL=-20.0dB。 第二谐振点处频率约为(取最接近点)F=2450MHz,电阻R=626.8ohm, SWR=12.54,

电磁场和微波技术znjn

——电磁场与微波技术实验报告 班级:06 姓名:张妮竞男 学号:84 序号:31# 日期:2014年5月31日 邮箱: 实验二:分支线匹配器 一、实验目的 1、掌握支节匹配器的工作原理 2、掌握微带线的基本概念和元件模型 3、掌握微带分支线匹配器的设计与仿真 二、实验原理 1、支节匹配器 随着工作频率的提高及相应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。因此,在频率高达以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。 支节匹配器分单支节、双支节和三支节匹配。这类匹配器是在主传输线并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。此电纳或电抗元件常用一终端短路或开路段构成。 2、微带线 从微波制造的观点看,这种调谐电路是方便的,因为不需要集总元件,而且并联调谐短截线特别容易制成微带线或带状线形式。微带线由于其结构小巧,可用印刷的方法做成平面电路,易于与其它无源和有源微波器件集成等特点,被广泛应用于实际微波电路中。

W为微带线导体带条的宽度;εr为介质的相对介电常数;T为导体带条厚度;H为介质层厚度,通常H远大于T。L为微带线的长度。微带线的严格场解是由混合TM-TE波组成,然而,在绝大多数实际应用中,介质基片非常薄(H<<λ),其场是准TEM波,因此可以用传输线理论分析微带线。 微带线的特性阻抗与其等效介电常数εr、基片厚度H和导体宽度W有关,计算公式较为复杂,故利用txline来计算。 微带线元件模型 3、元器件库里包括有: MLIN:标准微带线 MLEF:终端开路微带线 MLSC:终端短路微带线 MSUB:微带线衬底材料 MSTEP:宽度阶梯变换 MTEE:T型接头 MBENDA:折弯 微带线的不均匀性 上述模型中,终端开路微带线MLEF、宽度阶梯变换MSTEP、T型接头MTEE 和折弯MBENDA,是针对微带线的不军训性而专门引入的。一般的微带电路元件都包含着一些不均匀性,例如微带滤波器中的终端开路线;微带变阻器的不同特性阻抗微带段的连接处,即微带线宽度的尺寸跳变;微带分支线电桥、功分器等则包含一些分支T型接头;在一块微带电路板上,为使结构紧凑及适应走线方向的要求,时常必须使微带弯折。由此可见,不均匀性在微带电路中是必不可少的。由于微带电路是分布参数电路,其尺寸已可与工作波长相比拟,因此其不均匀性必然对电路产生影响。从等效电路来看,它相当于并联或串联一些电抗元件,或是使参考面发生一些变化。在设计微带电路时,必须考虑到不均匀性所引起的影响,将其等效参量计入电路参量,否则将引起大的误差。 三、实验内容 已知:输入阻抗Zin=75欧 负载阻抗Zl=(64+j35)欧 特性阻抗Z0=75欧 介质基片εr=2.55,H=1mm 假定负载在2G赫兹时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=四分之一波长,两分支线之间的距离为d2=八分之一波长。画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz至2.2GHz的变化

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告 实验五极化实验 学院:电子工程学院 班号:2011211204 组员: 执笔人: 学号:2011210986

一、实验目的 1.培养综合性设计电磁波实验方案的能力 2.验证电磁波的马吕斯定理 二、实验设备 S426型分光仪 三、实验原理 平面电磁波是横波,它的电场强度矢量E 和波长的传播方向垂直。如果E 在垂直于传播方向的平面沿着一条固定的直线变化,这样的横电磁波叫线极化波。在光学中也叫偏振波。偏振波电磁场沿某一方向的能量有一定关系。这就是光学中的马吕斯定律: 2 0cos I I θ = 式中I 为偏振波的强度,θ为I 与I0间的夹角。 DH926B 型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度围,每隔5度有一刻度,所以接收喇叭的转角可以从此处读到。 四、实验步骤 1.设计利用S426型分光仪验证电磁波马吕斯定律的方案; 根据实验原理,可得设计方案:将S426型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度围,每隔5度有一刻度,接收喇叭课程从此处读取θ(以10度为步长),继而进行验证。 2.根据设计的方案,布置仪器,验证电磁波的马吕斯定律。 实验仪器布置 通过调节,使A1取一较大值,方便实验进行。 然后,再利用前面推导出的θ,将仪器按下图布置。

五、实验数据 I(uA) θ° 0 10 20 30 40 50 60 70 80 90 理论值90 87. 3 79. 5 67. 5 52. 8 37. 2 22. 5 10. 5 2.7 0 实验值90 88 82 69 54 37 20 8 2 0.2 相对误差% 0 0.8 0.6 2.2 2.3 0.5 11. 1 14. 3 25. 9 - 1、数据分析: 由数据可看出,实验值跟理论值是接近的,相对误差基本都很小,在误差允许围,所以可以认为马吕斯定律得到了验证。 2、误差分析: 实验中可能存在仪器仪表误差,人为误差以及各组互相影响造成的误差等。但是角度比较大的时候,相对误差都比较小,也比较精准。角度比较小的时候,由于理论值较小,相对误差会大一点,但是从整体趋势来看,结果也是合理的。所以不影响我们对马吕斯定律进行验证。 六、思考题 1、垂直极化波是否能够发生折射?为什么?给出推导过程。 答:不能。 A1

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告 实验五极化实验 学院:电子工程学院 班号:2011211204 组员: 执笔人: 学号:2011210986

一、实验目的 1.培养综合性设计电磁波实验方案的能力 2.验证电磁波的马吕斯定理 二、实验设备 S426型分光仪 三、实验原理 平面电磁波是横波,它的电场强度矢量E 和波长的传播方向垂直。如果E 在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波叫线极化波。在光学中也叫偏振波。偏振波电磁场沿某一方向的能量有一定关系。这就是光学中的马吕斯定律: 2 0cos I I θ = 式中I 为偏振波的强度,θ为I 与I0间的夹角。 DH926B 型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,所以接收喇叭的转角可以从此处读到。 四、实验步骤 1.设计利用S426型分光仪验证电磁波马吕斯定律的方案; 根据实验原理,可得设计方案:将S426型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,接收喇叭课程从此处读取θ(以10度为步长),继而进行验证。 2.根据设计的方案,布置仪器,验证电磁波的马吕斯定律。 实验仪器布置 通过调节,使A1取一较大值,方便实验进行。 然后,再利用前面推导出的θ,将仪器按下图布置。

A1 五、实验数据 I(uA ) 0 10 20 30 40 50 60 70 80 90 θ° 理论值90 87.3 79.5 67.5 52.8 37.2 22.5 10.5 2.7 0 实验值90 88 82 69 54 37 20 8 2 0.2 相对误差% 0 0.8 0.6 2.2 2.3 0.5 11.1 14.3 25.9 - 1、数据分析: 由数据可看出,实验值跟理论值是接近的,相对误差基本都很小,在误差允许 范围内,所以可以认为马吕斯定律得到了验证。 2、误差分析: 实验中可能存在仪器仪表误差,人为误差以及各组互相影响造成的误差等。但 是角度比较大的时候,相对误差都比较小,也比较精准。角度比较小的时候, 由于理论值较小,相对误差会大一点,但是从整体趋势来看,结果也是合理的。 所以不影响我们对马吕斯定律进行验证。 六、思考题 1、垂直极化波是否能够发生折射?为什么?给出推导过程。 答:不能。 垂直极化波入射在两种媒质的分界面上,反射系数和折射系数分别为:

考研专业介绍:电磁场与微波技术

非统考专业介绍:电磁场与微波技术 一、专业介绍 电磁场与微波技术隶属于电子科学与技术一级学科。 1、研究方向 目前,各大院校与电磁场与微波技术专业相关的研究方向都略有不同的侧重点。以西安电子科技大学为例,该专业研究方向有: 01电磁兼容、电磁逆问题、计算微波与计算电磁学 04计算电磁学、智能天线、射频识别 07宽带天线、电磁散射与隐身技术 08卫星通信、无线通信、智能天线、信号处理 09天线理论与工程及测量、新型天线 10电磁散射与微波成像 11天线CAD、工程与测量 13移动卫星通信天线 14天线理论与工程 16电磁散射与隐身技术 17电磁兼容、微波测量、信号完整性分析 20移动通信中的相控阵、共形相控阵天线技术 21计算微波与计算电磁学、微波通信、天线工程、电磁兼容 22电阻抗成像、电磁兼容、非线性电磁学 23天线工程与CAD、微波射频识别技术、微波电路与器件 24电磁场、微波技术与天线电磁兼容 25天线测量技术与伺服控制 26天线理论与工程技术 27天线近远场测试技术及应用、无线网络通讯技术 28天线工程及数值计算 29微波电路与微波工程 30近场辐射及散射测量理论与技术 31微波系统和器件设计、电磁场数值计算 32电磁新材料、计算电磁学、电磁兼容 33计算电磁学、电磁兼容、人工合成新材料 34计算电磁学 35电磁隐身技术、天线理论与工程 36宽带小型化天线及电磁场数值计算 37射频识别、多天线技术 38天线和微波器件的宽带设计、小型化设计 2、培养目标 本专业培养德、智、体全面发展,在电磁信号(高频、微波、光波等)的产生、交换、发射、传输、传播、散射及接收等有关的理论与技术和信息(图像、语音、数据等)的获取、处理及传输的理论与技术两大方面具有坚实的理论基础和实验技能,了解本学科发展前沿和动态,具有独立开展本学科科学研究工作能力的高层次人才。 3、专业特色

电磁场与微波技术实验指导书(新)

电磁场与微波技术实验指导书 XXXXXXXXXXXXXXXXXXX XXXXX

注意事项 一、实验前应完成各项预习任务。 二、开启仪器前先熟悉实验仪器的使用方法。 三、实验过程中应仔细观察实验现象,认真做好实验结果记录。 四、培养踏实、严谨、实事求是的科学作风。自主完成实验和报告。 五、爱护公共财产,当发生仪器设备损坏时,必须认真检查原因并按规 定处理。 六、保持实验室内安静、整洁和良好的秩序,实验后应切断所用仪器的 电源 ,并将仪器整理好。协助保持实验室清洁卫生, 带出自己所产生的赃物。 七、不迟到,不早退,不无故缺席。按时交实验报告。 八、实验报告中应包括: 1、实验名称。 2、实验目的。 3、实验内容、步骤,实验数据记录和处理。 4、实验中实际使用的仪器型号、数量等。 5、实验结果与讨论,并得出结论,也可提出存在问题。 6、思考题。

实验仪器 JMX-JY-002电磁波综合实验仪 一、概述 电磁波综合实验仪,提供了一种融验证与设计为一体的电磁波实验的新方法和装置。它能使学生通过应用本发明方法和装置进行电磁场与电磁波实验,透彻地了解法拉第电磁感应定律、电偶极子、天线基本结构及其特性等重要知识点,使学生直观形象地认识时谐电磁场,深刻理解电磁感应的原理和作用,深刻理解电偶极子和电磁波辐射原理,掌握电磁场和电磁波测量技术的原理和方法,帮助学生建立电磁波的形象化思维方式,加深和加强学生对电磁波产生、发射、传输和接收过程及相关特性的认识,培养学生对电磁波分析和电磁波应用的创新能力。《JMX-JY-002电磁波综合实验仪》在001型基础上,添加了对天线不同极化角度的测量,学生通过测量,可绘制不同极化天线的方向图,使得学生对电磁波的感受更加深刻。 二、特点 1、理论与实践结合性强 2、直接面向《电磁场与波》的课程建设与改革需要,紧密配合教学大纲,使课堂环节与实验环节紧密结合。 3、针对重要知识点“电磁场与电磁波”课堂教学环节长期存在难于直观表达的困难,形象地体验抽象的知识。 4、实验内容的设置,融综合性、设计性与验证性与一体,帮助学生建立一套电磁波的形象化思维方式,加深和加强对电磁波产生、发射、传输、接收过程及相关特性的认识。 5、培养学生对电磁波分析和电磁波应用的创新能力。 三、系统配置及工作原理 (1)系统配置 1、JMX-JY-002电磁波教学综合实验仪主机控制系统:通过常规控制仪表与微波功率信号发生器、功率信号放大器构成电磁波教学综合实验仪主机控制系统,实现了对被控电磁场与波信号发射控制。 2、测试支架平台:包括支撑臂、测试滑动导轨、测量尺、天线连接杆件、感应器连接杆件、反射板连接杆件、微安表等组件。 3、测试套件:包括多极化天线(垂直极化、水平极化、左右螺旋极化)、射频连接电缆套件、感应器、感应器连接电缆、极化尺、标准测试天线板、反射板等构成测试套件。 (2)工作原理 实验仪主机控制系统的微波信号源产生微波信号,经由微波功率放大器放大后输出至OUTPUT端口,通过射频电缆将输出信号传送给发射天线向空间发射电磁波信号作为实验测试

电磁场与微波实验指导书实验一

电磁场与微波实验指导 书实验一 Revised as of 23 November 2020

实验一微波基础计算器与MWO软件熟悉 一、实验目的 1.掌握传输线(长线)基本理论; 2.熟练掌握Smith圆图的工作原理; 3.熟练使用微波技术基础计算器计算单枝节线匹配。 4.熟悉MWO软件界面和基本操作。 二、实验原理 微波技术基础计算器是以微波计算为基础的进行专业计算的工具。实现了微波技术基础理论中长线(传输线)理论、Smith圆图、网络理论等部分的计算。此计数器共包括:长线上任意点输入阻抗、反射系数、行波系数、驻波比的计算;smith圆图的绘制;任意长线和负载的单枝节匹配;双口网络S、Z、Y、A参数的相互转换。 1、长线理论 基础知识回顾:--微波传输线(长线)理论 (Q1: 传输线理论中基本物理量是什么) 电压波与电流波(入射与反射)关系: 理想(无耗)均匀传输线的传输特性归结为两个实数:传播常数和特性阻抗。传输线理论三套参量:输入阻抗in,反射系数,驻波参量(驻波系数和最小距离l min) 三套参量间的换算关系: 三套参量同时一个单位圆内表示

1)由横坐标表示反射系数实部,纵坐标表示反射系数虚部,构成反射系数复平面; 2)对于一个无耗均匀传输线,其反射系数的模是不变的,变化的是位相(位置)构成反射系数同心圆;以负载为参考面向源移动时,位相角减少,顺时针转动 3)驻波系数在反射系数复平面上也是同心圆, 4) 阻抗在反射系数复平上表示时要归一化;某一点的阻抗由经过该点的等电阻圆与等电抗弧线确定。 2、并联单枝节传输线匹配 1) 终端短路传输线相当于一个纯电抗 2) 在主传输线上并联一个短路面位置可调的支路传输线,相当并联一个可变电抗。 3) 由于并联枝节,进行匹配设计时用导纳方法表示更为方便。 三、 微波基础计算器的使用 有了这些基本概念之后,我们就可以学习微波计算器的使用方法。这个计算器实际上就是利用以上的公式,编成、作图完成的,国内外也还有很多类似的软件。微波计算器的主界面如图1所示。 图1 微波计算器主界面 选择图1中所示的“长线”工具。出现如图2所示的窗口。 开路 匹配

电磁场与微波测量实验报告(三)

电磁场与微波测量实验报告(三) 学院: 班级: 组员一: 学号: 组员二: 学号:

实验一:微波测量系统的使用和信号源波长功率的测量 一,实验目的 (1)学习微波的基本知识; (2)了解微波在波导中传播的特点,掌握微波基本测量技术; (3)学习用微波作为观测手段来研究物理现象。 二,实验原理 本实验接触到的基本仪器室驻波测量线系统,用于驻波中电磁场分布情况的测量。该系统由以下几个部分组成: 检波指示器 1,波导测量线装置 2,晶体检波器 微波测量中,为指示波导(或同轴线)中电磁场强度的大小,是将它经过晶体二极管检波变成低频信号或直流电流,用直流电流表的电流来读数的。 3,波导管 本实验所使用的波导管型号为BJ-100。 4,隔离器 位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。 5,衰减器

把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量 的大小。衰减器起调节系统中微波功率从以及去耦合的作用。 6,谐振式频率计(波长表) 电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输。 当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的 阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输 出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度, 通过查表可得知输入微波谐振频率。 7,匹配负载 波导中装有很好地吸收微波能量的电阻片或吸收材料,它几乎能全部吸收入射功率。 8,环形器 它是使微波能量按一定顺序传输的铁氧体器件。主要结构为波导Y 型接头,在接头中心放一铁氧体圆柱(或三角形铁氧体块),在接头外 面有“U”形永磁铁,它提供恒定磁场H0。 9,单螺调配器 插入矩形波导中的一个深度可以调节的螺钉,并沿着矩形波导宽壁中心的无辐射缝作纵向移动,通过调节探针的位置使负载与传输线达到 匹配状态。调匹配过程的实质,就是使调配器产生一个反射波,其幅度 和失配元件产生的反射波幅度相等而相位相反,从而抵消失配元件在系 统中引起的反射而达到匹配。 10,微波源 提供所需微波信号,频率围在8.6-9.6GHz可调,工作方式有等幅、方波、外调制等,实验时根据需要加以选择。 11,选频放大器 用于测量微弱低频信号,信号经升压、放大,选出1kHz附近的信号,经整流平滑后输出级输出直流电平,由对数放大器展宽供给指示电路检 测。 三,实验容和实验步骤

电磁场与微波技术专业(080904)研究生培养方案

电磁场与微波技术专业(080904)研究生培养方案 一、培养目标 1、硕士研究生: 牢固树立爱校、爱国、爱中华民族的思想,具备坚持真理、献身科学的勇气和品质以及科学职业道德、敬业精神、团结合作精神。 具备电磁场与微波技术方面扎实的理论基础和宽厚的知识面。掌握与本专业相关的实验技能,对与本学科相邻及相关学科的知识有一定的了解。具备灵活应用所学知识分析和解决实际问题的能力。有独立从事科学研究的能力。 掌握一到二门外国语,能用英语阅读专业书籍、文献并撰写科学论文。 2、博士研究生: 牢固树立爱校、爱国、爱中华民族的思想,具备坚持真理、献身科学的勇气和品质以及科学职业道德、敬业精神、团结合作精神。 在硕士研究生培养目标所达到的要求基础之上,不仅要掌握本专业理论和实验的专业知识,还要掌握与本学科相邻及相关学科的知识,在独立从事科研工作中,具备综合、分析能力,在开展所从事研究方面的前沿研究工作中,具备创新和发展的能力。熟悉所从事研究方向的科学技术发展新动向。 掌握一至二门外语,能用英语熟练阅读专业书籍、文献,并能撰写并在国际会议上宣读科学论文。 二、学科介绍 1、电磁场与微波技术学科的主要研究方向 (1) 极高频段电磁资源的开发与利用; (2) 人工电磁材料及在无线电技术中的应用; (3) 射频、微波及光电子器件与应用。 2、师资力量和科研水平 本学科师资力量较雄厚,有中国科学院院士、“长江学者奖励计划”特聘教授和讲座教授以及教育部“新世纪优秀人才”等一批优秀学者,成为本学科的学术带头人和学术骨干。目前有教授9人、博士生导师9人、副教授和高工4人。 在科学研究方面,以电子学、物理学的基本理论方法和现代实验技术作为手段,探索新型电子材料,研究其中有关物理过程和电磁现象的基本规律,据以开发新型的微波和太赫兹电子器件和系统,并在实际中推广应用。目前,本学科不仅开展了大量国际前沿性的研究工作,取得了突出的成果,享有很高的国际声誉,同时也开展应用和工程化研究,为我国国民经济和国防现代化做出了重要贡献。 3、近期承担科研项目和重大课题 本学科承担了大量国家973计划、国家863计划、国家自然科学基金等重大科技计划项目,以及省、部级科研项目和横向合作的研发项目,产生了较大的社会效益和经济效益。近期主要科研项目和重大课题有: 科技部973项目子课题:太赫兹辐射的高灵敏检测技术基础研究; 科技部973项目子课题:超导结型器件的物理、工艺及应用基础研究; 科技部973项目子课题:磁性复合材料以及光子共振介质中负折射特性研究;

北邮电磁场与微波实验报告

信息与通信工程学院电磁场与微波实验报告 实验题目:微波器件设计与仿真 班级: 姓名: 学号: 日期:2016.5.18

实验二分支线匹配器 一、实验目的 1.掌握支节匹配器的工作原理 2.掌握微带线的基本概念和元件模型 3.掌握微带分支线匹配器的设计与仿真 二、实验原理 1.支节匹配器 随着工作频率的提高及相应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。因此,在频率高达以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。 支节匹配器分单支节、双支节和三支节匹配。这类匹配器是在主传输线并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。此电纳或电抗元件常用一终端短路或开路段构成。 2. 微带线 从微波制造的观点看,这种调谐电路是方便的,因为不需要集总元件,而且并联调谐短截线特别容易制成微带线或带状线形式。微带线由于其结构小巧,可用印刷的方法做成平面电路,易于与其它无源和有源微波器件集成等特点,被广泛应用于实际微波电路中。 三、实验内容 已知:输入阻抗 Zin=75Ω 负载阻抗 Zl=(64+j75)Ω 特性阻抗 Z0=75Ω 介质基片面性εr=2.55 ,H=1mm 假定负载在2GHz时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离 d1=λ/4,两分支线之间的距离为d2=λ/8。画出几种可能的电路图并且比较输入端反射系数幅值从 1.8GHz至2.2GHz的变化。 四、实验步骤

电磁场与微波技术实验

实验三对称天线和天线阵的方向图 实验目的:1、熟悉对称天线和天线阵的概念; 2、熟悉不同长度对称天线的空间辐射方向图; 3、理解天线阵的概念和空间辐射特性。 实验原理:天线阵就是将若干个单元天线按一定方式排列而成的天线系统。排列方式可以是直线阵、平面阵和立体阵。实际的天线阵多用相似元组成。所谓相似元,是指各阵元的类型、尺寸相同,架设方位相同。天线阵的辐射场是各单元天线辐射场的矢量和。只要调整好各单元天线辐射场之间的相位差,就可以得到所需要的、更强的方向性 方向图乘积定理 f(θ,φ)=f1(θ,φ)×fa(θ,φ) 上式表明,天线阵的方向函数可以由两项相乘而得。第一项f1(θ,φ)称为元因子(Primary Pattern),它与单元天线的结构及架设方位有关;第二项fa(θ,φ)称为阵因子(Array Pattern),取决于天线之间的电流比以及相对位置,与单元天线无关。方向函数(或方向图)等于单元天线的方向函数(或方向图)与阵因子(或方向图)的乘积,这就是方向图乘积定理。 已知对称振子以波腹电流归算的方向函数为 实验步骤:1、对称天线的二维极坐标空间辐射方向图 (1)建立对称天线二维极坐标空间辐射方向函数的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中不同长度对称天线的空间辐射特性 E面方向函数: 2、天线阵—端射阵和边射阵 (1)建立端射阵和边射阵空间辐射方向函数的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中两种天线阵的空间辐射特性 实验报告要求:(1)抓仿真程序结果图 (2)理论分析与讨论 1、对称天线方向图 01)clc clear lambda=1;%自由空间的波长 L0=1; %改变L0值,得到不同长度对称阵子的方向图 L=L0*lambda; %分别令 L=λ/4,λ/2,3λ/4,λ,3λ/2,2λ k=2*pi/lambda;%自由空间的相移常数theta0=[0.0001:0.1:360]; theta=theta0*pi/180; 90 270 0 L=λ时对称阵子天线的方向图

北邮电磁场与微波实验天线部分实验报告二

. . . . 信息与通信工程学院 电磁场与微波实验报告

实验二网络分析仪测试八木天线方向图 一、实验目的 1.掌握网络分析仪辅助测试方法; 2.学习测量八木天线方向图方法; 3.研究在不同频率下的八木天线方向图特性。 注:重点观察不同频率下的方向图形状,如:主瓣、副瓣、后瓣、零点、前后比等; 二、实验步骤: (1) 调整分析仪到轨迹(方向图)模式; (2) 调整云台起点位置270°; (3) 寻找归一化点(最大值点); (4) 旋转云台一周并读取图形参数; (5) 坐标变换、变换频率(f600Mhz、900MHz、1200MHz),分析八木天线方向图特性; 三、实验测量图 不同频率下的测量图如下: 600MHz:

900MHz:

1200MHz: 四、结果分析 在实验中,分别对八木天线在600MHz、900MHz、1200MHz频率下的辐射圆图进行了测量,发现频率是900MHz的时候效果是最好的,圆图边沿的毛刺比较少,方向性比较好,主瓣的面积比较大。 当频率为600 MHz的时候,圆图四周的毛刺现象比较严重,当频率上升到1200MHz时,辐射圆图开始变得不规则,在某些角度时出现了很大的衰减,由对称转向了非对称,圆图边缘的毛刺现象就非常明显了,甚至在某些角度下衰减到了最小值。 从整体来看,八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候周围的人应该避免走动,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 由实验结果分析可知:最大辐射方向基本在90°和270°这条直线上,图中旁瓣均较小,及大部分能量集中在主瓣。 八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候应当尽量保持周边环境参数一定,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。

电磁场与电磁波实验报告

电磁场与电磁波实验报告 班级: 学号: 姓名:

实验一:验证电磁波的反射和折射定律(1学时) 1、实验目的 验证电磁波在媒质中传播遵循反射定理及折射定律。 (1)研究电磁波在良好导体表面上的全反射。 (2)研究电磁波在良好介质表面上的反射和折射。 (3)研究电磁波全反射和全折射的条件。 2、实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 3、实验结果: 入射角25°30°35°40°45°50°55°60° 折射角149 143 135 131 133 128 124 118 图1.1 电磁波在介质板上的折射 入射角25°30°35°40°45°50°55°60° 反射角32°34°36°44°47°52°37°61° 图1.2 电磁波在良导体板上的反射

实验二:电磁波的单缝衍射实验、双缝干涉实验。 1、实验目的 (1)研究当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象。在缝后面出现的衍射波强度不是均匀的,中央最强; (2)研究当一平面波垂直入射到一金属板的两条狭线上,则每一条狭缝就是次级波波源。由两缝发出的次级波是相干波,因此在金属板的背后面空间中,将产生干涉现象。 2、实验原理 单缝衍射实验原理见下图 5:当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象。在缝后面将出现的衍射波强度不是均匀的,中央最强,同时也最宽,在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,即一级极小,此时衍射角为 ,其中n波长,n狭缝宽度。两者取同一长度单位,然后,随着衍射角增大, 衍射波强度又逐渐增大,直至一级极大值,角度为: 图 5 单缝衍射实验原理图 如图 8:当一平面波垂直入射到一金属板的两条狭缝上时,则每一条狭缝就是次级波波源,由于两缝发出的次级波是相干波,因此在金属板的背后面空间中,将产生干涉现象。当然电磁波通过每个缝也有狭缝现象。因此实验将是衍射和干涉两者结合的结果。为了只研究主要是由于来自双缝的两束中央衍射波相互干涉的结果,令双缝的缝宽α接近入,例如: ,这时单缝的一级极小接近53°。因此取较大的b,则干涉强受 单缝衍射影响大。干涉加强的角度为:干涉减弱的角度 为:

电磁场与微波测量实验报告(一)

电磁场与微波测量实验报告(一) 学院:电子工程学院 班级:2015211205 组员一:李聪 学号:2015210926 组员二:陈孟 学号:2015210925

实验一:电磁波反射和折射实验 一,实验目的 1、熟悉S426型分光仪的使用方法。 2、掌握分光仪验证电磁波反射定律的方法。 3、掌握分光仪验证电磁波折射定律的方法。 二,实验设备与仪器 S426型分光仪 三,实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的 金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵 循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 验证均匀平面波在无耗媒质中的传播特性;均匀平面波垂直入射理想电 解质表面的传播特性。 四,实验内容与步骤 1、熟悉分光仪的结构和调整方法。 2、连接仪器,调整系统。 如下页图1所示,仪器连接时,两喇叭口面应互相正对,他们各自的轴线应在一条直线上。指示两喇叭的位置的指针分别指 于工作平台的90刻度处,将支座放在工作平台上,并利用平台 上的定位销和刻线对正支座(与支座上刻线对齐)拉起平台上四 个压紧螺钉旋转一个角度放下,即可压紧支座。 3、测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座线面的小圆盘上的某一对刻线一致。而把带支座的金属反射板放到小平台 上时,应使圆盘上的这对与金属板平面一致的刻线与小平台上相 应90刻度的一对刻线一致。这时小平台上的0刻度就与金属板 的法线方向一致。

转动小平台,使固定臂指针指在某一角度处,这角度的读数就是入射角,然后转动活动臂在电流表上找到最大指示处,此时 活动臂的指针所指的刻度就是反射角。如果此时表头指示太呆或 太小,应调整衰减器、固态振荡器或晶体检波器,使表头指示接 近满量程。 4、注意: 做此项实验,入射角最好取30至65度之间。因为入射角太大接受喇叭有可能直接接受入射波。注意系统的调整和周围环境 的影响。 图1:反射实验仪器的布置 五,实验数据与处理 1,金属板实验: 实验数据及处理如下表

相关文档
最新文档