碳纳米管薄膜晶体管中的接触电阻效应

碳纳米管薄膜晶体管中的接触电阻效应

碳纳米管纳米材料的应用要点

碳纳米管及其复合材料在储能电池中的应用 摘要碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,选择合适的方法制备出碳纳米管复合材料,可以使其各种物理化学性能得到增强, 因而在很多领域有着极大的应用前景,尤其是在储能电池中的应用。本文分析了碳纳米管及其复合材料的特点,总结了碳纳米管的储锂机理,对其发展趋势作了展望。 关键词碳纳米管复合材料储能电池应用 Abstract carbon nanotubes(CNTs) are nanometer-sized carbon materials with the characteristics of unique one-dimensional geometric structure,large surface area,high electrical conductivity,elevated mechanical strength and strong chemical inertness. Selecting appropriate methods to prepare carbon nanotube composites can enhance physical and chemical properties , and these composites have a great future in many areas,especially in energy storage batteries . In this paper, based on the analysis and comparison of the advantages and disadvantages of carbon nanotube composites,the enhancement mechanisms of the CNTs catalysts are introduced. Afterward,the lithium ion storage properties are summarized according to the preparation methods of composite materials. Finally, the prospects and challenge for these composite materials are also discussed. Keywords carbon nanotube; composite; energy storage batteries; application 1 引言 碳纳米管(CNTs)在2004 年被人们发现,是一种具有特殊结构的一维量子材料, 它的径向尺寸可达到纳米级, 轴向尺寸为微米级, 管的两端一般都封口, 因此它有很大的强度, 同时巨大的长径比有望使其制作成韧性极好的碳纤维。碳纳米管由于其独特的一维纳米形貌被作为锂离子电池负极材料广泛研究,通过对碳纳米管进行剪切,官能化及掺杂等方法进行改性处理,能有效的减少碳纳米管的首次不可逆容量,增加可逆的储锂比容量。此外,碳纳米管的中空结构也成为抑制高容量金属及金属氧化物体积膨胀理想复合基体。本文中,我们研究了碳纳米管的储锂性能,考察了碳纳米管作为锡类复合材料基体,其内部限域空间对高容量金属及金属氧化物的储锂性能促进的具体原因。该研究结果为碳纳米管以及其他具有限域空间的结构在锂离子电池中的应用提供了参考。 2 碳纳米管的储锂机理和应用 相比广泛应用的石墨类材料,碳纳米管在锂离子电池负极材料中有其独特的应用优势。首先,碳纳米管的尺寸在纳米级,管内及间隙空间也都处于纳米尺寸级,因而具有纳米材料的小尺寸效应,能有效的增加锂离子在化学电源中的反应活性空间;其次,碳纳米管的比表面积较大,能增加锂离子的反应活性位,并且随着

材料导论碳纳米管综述

姓名:欧阳一鸣学号:2013012532 班级:高材 1313

潜在的碳纳米管场效应晶体管的模拟电路 介绍 在集成电路晶体管的指数增长摩尔定律所描述的内容持续了近一个半世纪 里。然而,2010年的国际半导体技术发展路线图预测增长将减缓到2013年底。 这主要是因为互补金属氧化物半导体(CMOS的比例正迅速接近其物理限制带来了许多障碍,如更高的亚阈值传导,栅氧化层和结泄漏增加,低输出电阻和跨导,增加热量生产。这使得半导体行业探索不同的材料和设备更加超越摩尔定律(如通过创造ITRS)。在这些材料和器件研究,碳纳米管场效应晶体管(CNFET) 已经获得了,因为它们规模小,流动性高,近弹道输运,大电流密度和较低的固有电容。自推出CNFETs该研究已主要重点对他们的数字电路使用。甚至中等规模薄流明碳纳米管(CNT的集成电路已报告了灵活塑料基板。然而,开/关比(也称为噪声余量)通常很小对于目前制造CNFETs因为存在金属碳纳米管[, 因此需要更多的调查,他们用于数字电路。与此相反,CNFETs具有更多潜在用 于高性能模拟电路,其中所述晶体管不需要充分关闭。此外,特性perform-ANCE 度量类似物或RF晶体管是更适合材料和碳纳米管的设备性能和制造tol-era nces ,也可以更轻松得的。 CNFETS础知识 场效应管的结构和MOSFE样的CNFETs 在传统的MOSFET源区和漏区是由两个重掺杂区中的硅衬底形成,并且栅极由多晶硅材料,其是绝缘的形成从基板由薄的二氧化硅层。如果电压被施加到 栅极端,下方的连续信道栅极形成用于电流流动的源极和漏极之间。 另一方面为CNFETs栅极,源极和漏极接触由像铬或钨金属与 4.5电子伏特的功函数。H是金属接触的高度,L是长度。值得一提的是,出两种类型CNFETs 即肖特基势垒和MOSFE等的,选择后者,因为它具有较高的离子/IOFF比率,过渡频率f 低的,更低的寄生电容,更好的AC性能和更高的制造可行性。在MOSTFE样的CNFE■之间的电流源和漏接触使用碳纳米管。根据贝壳的数量形成管状结构这些碳纳米管可以作为折叠见石墨烯成管状结构,可以单壁和多壁。单壁碳

参考有机场效应晶体管和研究

有机场效应晶体管的研究 摘要:有机场效应晶体管(Organic Field Effect Transistors,OFETs)是以有机半导体材料作为有源层的晶体管器件。和传统的无机半导体器件相比,由于其可应用于生产大面积柔性设备而被人们广泛的研究,在有机发光、有机光探测器、有机太阳能电池、压力传感器、有机存储设备、柔性平板显示、电子纸等众多领域具有潜在而广泛的应用前景。文中对OFET结构和工作原理做了简要介绍,之后重点讨论了最近几年来OFET中有机材料和绝缘体材料的发展状况,接着总结了OFET制备技术,最后对OFET发展面临问题及应用前景做了归纳和展望。关键词:有机半导体材料;有机场效应晶体管;迁移率;绝缘体材料;柔性面板显示 0引言 场效应晶体管( Field Effect Transistor FET)是利用电场来控制固体材料导电 性能的有源器件。由于其所具有体积小、重量轻、功耗低、热稳定性好、无二次 击穿现象以及安全工作区域宽等优点,现已成为微电子行业中的重要元件之一。 目前无机场效应晶体管已经接近小型化的自然极限,而且价格较高,在制备 大表面积器件时还存在诸多问题。因此,人们自然地想到利用有机材料作为FET 的活性材料。自1986年报道第一个有机场效应晶体管( OFET )以来,OFET研究 得到快速发展,并取得重大突破。由于OFET具有以下突出特点而受到研究人员 的高度重视:材料来源广,工作电压低,可与柔性衬底兼容,适合低温加工,适 合大批量生产和低成本,可溶液加工成膜等。从使用共扼低聚物成功地制造出第 一个有机场效应晶体管,到全有机全溶液加工的光电晶体管的诞生,这些突破性 进展对有机半导体材料的发展无论从理论上还是工业生产上都起到了巨大的推 动作用。 1器件结构、工作原理及性能评定 1. 1有机场效应晶体管基本结构 传统的有机场效应晶体管的主要包括底栅和顶栅两种结构,其中底栅和顶栅 结构又分别包括顶接触和底接触两种结构,如图1所示。

南洋理工大学材料科学与工程学院研.doc

南洋理工大学材料科学与工程学院研究领域详解学校名称: 新加坡南洋理工大学 Nanyang Technological University 所在位置:新加坡 创建时间:1991

QS排名:55 在您在材料科学与工程学院的日子里,你将会有丰富的知识和技能。我们的目标是让每个学生充分利用材料科学与工程学院的每一项资源,成为具备未来所需技能的领导者,跟着一起来了解一下该学院的研究领域吧。 一、专业纵览

你将会有:材料领域的专业知识;清晰的心灵解决任何问题;精明地传达思想和想法;燃烧激情,实现超越已知能力;在不懈的进步中怜悯。最后一个属性可以完成材料科学与工程学院教育,这就是为了达到你想要的目标而采取的行动。在材料科学与工程学院,我们将为您提供学习的机会。通过您的主动性,参与度和愿望,您可以从经验中获得最大收益。 二、学院使命和愿景 通过不同学科的广泛教育培养创意和企业家领导者成为一所以科学技术为基础的伟大的全球性大学;为了与大学的使命和愿景保持一致,材料科学与工程学院学院制定了以下使命和愿景。 十年来,教育和激励全球联系和跨学科培训的材料科学家和工程师。创造智力价值,激发基于需求的研究,并将科学和技术转化为市场。成为全球领先的材料科学与工程机构。 成为全球领先的材料科学与工程机构,十年来,教育和激励全球联系和跨学科培训的材料科学家和工程师,创造知识价值,激发基于需求的研究,并将科学和技术转化为市场。

三、研究纵览 材料科学与工程学院(材料科学与工程学院)为员工和学生提供了一个充满活力和培养的环境,以便在以下关键领域开展跨学科研究:生物材料和生物医学设备;计算材料科学;国防材料;功能材料和复合材料;可持续发展材料;纳米电子学,纳米材料和多铁学,材料科学与工程学院配备了各种类型的设备和设备,用于教学和广泛的研究用途。 以下是我们的实验室和设施:生物材料;光伏联合实验室;仿生传感器科学中心;电子空间和电子学习工作室;级表征,测试和模拟设施;无机材料表征;材料加工;纳米材料;生物医学实验室;有机材料服务实验室;太阳能燃料实验室。 四、研究领域 研究是材料科学与工程学院最重要的支柱。它将推动我们的增长数量和质量。我们强调对所有教职员工的研究,并鼓励我们的本科生在他们任职的早期参与研究课程。我们通过与世界一流机构的交流课程和联合学位课程,继续寻找

碳纳米管基薄膜材料报告

碳纳米管基薄膜材料报告 引言: 碳纳米管是典型的一维纳米材料,自1991年被发现以来,由于其优异的力学性能、电学特性、极高的热导率、良好的热稳定性和化学稳定性等特点,都使其在纳米结构及功能复合材料、场效应晶体管、透明电极、锂离子电池、超级电容器等诸多领域中具有广阔的应用前景,受到人们的广泛关注。其具有特异的物理和化学性能,是由石墨层片卷曲后形成的无缝管,在范德华力作用下可形成2种不同的晶体结构:单壁碳纳米管和多壁碳纳米管。研究表明,只有将碳纳米管组装成宏观材料,如薄膜,才能充分发挥碳纳米管的优越性能,实现其潜在应用。因此,如何连续制备碳纳米管薄膜并保持单根碳纳米管的优良性能就成为了科学界和产业界人士的共同梦想。 一、制备方法 碳纳米管可以通过电弧法、化学气相沉积法和激光烧蚀法等方法直接在各种衬底上生长。在实际应用上,需将碳纳米管在低温情况下沉积到诸如ITO 玻璃、柔性透明薄膜上以实现大面积制备。这种需求可以通过溶液法将碳纳米管沉积到衬底上来实现场致电子发射的冷阴极也可以通过溶液法制备。但碳纳米管和衬底 间的附着力较差,从而成为阻碍溶液法制备均匀碳纳米管薄膜的一个关键问题。单壁碳纳米管 多壁碳纳米管

为了克服此缺陷,在沉积碳纳米管之前,需要在衬底上覆盖一层缓冲层来提高碳纳米管与衬底之间的粘附性。 目前制备碳纳米管薄膜的方法有很多,主要有:化学气相沉积法、电泳沉积法、电弧放电法、浇铸法、层-层吸附自组装法、电化学沉积法、自组装成膜法、浸渍涂布法、改性表面吸附法、过滤-转移法和LB技术等方法。 但是这些方法在制备过程中需要高温作用、表面活性剂、催化剂,设备昂贵,制备过程较为复杂。所以本文主要介绍一种由喷涂和旋涂相结合的方法,在优化工艺参数的条件下,可以制备出透明导电碳纳米管薄膜,成本低廉,制备工艺简洁,为其在场发射器件、透明导电薄膜、电磁屏蔽材料等方面的应用提供了有效的理论依据。 1.碳纳米管溶液的制备 取20mg碳纳米管,溶于100 mL无水乙醇中,在室温下,置于超声波清洗器中(通冷却循环水)分散24 h,得到高浓度的分散均匀的碳纳米管溶液,分别配置成不同浓度(0.008、0.010、0.012、0.014mg/mL)的碳纳米管溶液,待用。 2.碳纳米管薄膜的制备 用去离子水、丙酮(分析纯)、无水乙醇(分析纯)依次清洗石英基片,然后在真空干燥箱中烘干备用;用手持式喷雾器将碳纳米管分散液喷洒在石英玻璃衬底上(或采用匀胶机对其进行旋涂),待分散剂自然挥发干燥后,再进行第二层喷涂(或旋涂),如此反复多次,得到不同厚度的碳纳米管薄膜。 3.碳纳米管薄膜的表征 碳纳米管的透射电镜测试:JEM-2010 F 型高分辨率透射电子显微镜. 薄膜的导电性能测试:RTS-8型四探针电阻测试仪. 薄膜的透光率测试:UV-2550型紫外可见分光光度计. 二、实验原理 旋转涂膜是在衬底旋转时利用离心力的作用成膜的。影响薄膜性能的溶液性质主要是流变性能和表面张力,如溶液的粘度、浓度、触变性和表面张力等。影响薄膜厚度的因素也比较复杂。Emslie,Bonner和Pecr等人认为,在简化条件

薄膜晶体管

薄膜晶体管的定义: Thin Film Transistor (薄膜场效应晶体管),是指液晶显示器上的每一液晶象素点都是由集成在其后的薄膜晶体管来驱动。从而可以做到高速度高亮度高对比度显示屏幕信息。TFT属于有源矩阵液晶显示器。 补充:TFT(ThinFilmTransistor)是指薄膜晶体管,意即每个液晶像素点都是由集成在像素点后面的薄膜晶体管来驱动,从而可以做到高速度、高亮度、高对比度显示屏幕信息,是目前最好的LCD彩色显示设备之一,其效果接近CRT显示器,是现在笔记本电脑和台式机上的主流显示设备。TFT的每个像素点都是由集成在自身上的TFT来控制,是有源像素点。因此,不但速度可以极大提高,而且对比度和亮度也大大提高了,同时分辨率也达到了很高水平。 TFT ( Thin film Transistor,薄膜晶体管)屏幕,它也是目前中高端彩屏手机中普遍采用的屏幕,分65536 色及26 万色,1600万色三种,其显示效果非常出色。 平板显示器种类: 经过二十多年的研究、竞争、发展,平板显示器已进入角色,成为新世纪显示器的主流产品,目前竞争最激烈的平板显示器有四个品种: 1、场致发射平板显示器(FED); 2、等离子体平板显示器(PDP); 3、有机薄膜电致发光器(OEL); 4、薄膜晶体管液晶平板显示器(TFT-LCD)。 场发射平板显示器原理类似于CRT,CRT只有一支到三支电子枪,最多六支,而场发射显示器是采用电子枪阵列(电子发射微尖阵列,如金刚石膜尖锥),分辨率为VGA(640×480×3)的显示器需要92.16万个性能均匀一致的电子发射微尖,材料工艺都需要突破。目前美国和法国有小批量的小尺寸的显示屏生产,用于国防军工,离工业化、商业化还很远。 等离子体发光显示是通过微小的真空放电腔内的等离子放电激发腔内的发光材 料形成的,发光效应低和功耗大是它的缺点(仅1.2lm/W,而灯用发光效率达80lm/ W以上,6瓦/每平方英寸显示面积),但在102~152cm对角线的大屏幕显示领域有很强的竞争优势。业内专家分析认为,CRT、LCD和数字微镜(DMD)3种投影显示器可以与PDP竞争,从目前大屏幕电视机市场来看,CRT投影电视价格比PDP便宜,是PDP最有力的竞争对手,但亮度和清晰度不如PDP,LCD和DMD投影的象素和价格目前还缺乏竞争优势。尽管彩色PDP在像质、显示面积和容量等方面有了明显提高,但其发光效率、发光亮度、对比度还达不到直观式彩色电视机的要求,最重要的是其价格还不能被广大家用消费者所接受,这在一定程度上制约了彩色PDP 市场拓展。目前主要在公众媒体展示场合应用开始普遍起来。 半导体发光二极管(LED)的显示方案由于GaN蓝色发光二极管的研制成功,从而一举获得了超大屏幕视频显示器市场的绝对控制权,但是这种显示器只适合做户外大型显示,在中小屏幕的视频显示器也没有它的市场。 显示器产业的专家一直期望有机薄膜电致发光材料能提供真正的象纸一样薄的 显示器。有机薄膜电致发光真正的又轻又薄,低功耗广视角,高响应速度(亚微妙)

并五苯有机薄膜晶体管的制备

并五苯有机薄膜晶体管的制备 作为半导体材料中的佼佼者,基于pentacene的OTFT器件有着较高的载流子迁移率,并且有研究者已经发现基于pentacene的OTFT对水蒸气、某些气体正戊醇蒸气都有着很好的响应能力。实验采用基于pentacene作为器件的有机层,价格低廉的PMMA为绝缘层,Au作为源漏电极。OTFT制作工艺流程如图4-1所示。所用的设备主要包括超声波清洗器、匀胶机、OLED-V型有机多功能高真空成膜设备和微控数显电热板,型号为LadTech EH35B。 基板清洗绝缘层成膜 退火处理 器件测试 有机层成膜 源漏电极 图4-1OTFT制作工艺流程图 4.1.1基片清洗 实验中采用的衬底为玻璃基片,定制的玻璃基片已经溅射有ITO薄膜,上面残留有很多污渍,平整度和洁净度都较低,对OTFT器件整体性能有着极其重要的影响,所以需要对玻璃基片进行清洗。本论文中所制备的OTFT器件的尺寸为3.1cm×3.1cm,如图4-2所示,中间部分为溅射的ITO薄膜作为栅极,黑色的部分为利用掩膜版制备的源漏电极。

图4-2实验室制备有机薄膜晶体管结构示意图 主要清洗步骤如下: (1)首先选择高度平整的已刻蚀有栅极ITO玻璃基片,利用沾有清洗剂的无尘布擦洗基片,然后在清洗剂溶液中超声10min。 (2)取出装有玻璃基片的清洗架,在丙酮溶液中超声10min,再用沾有丙酮溶液的无尘布擦洗基片,然后在去离子水中超声10min。 (3)取出装有玻璃基片的清洗架,用去离子水冲洗,最后在无水乙醇中超声清洗10min后。清洗后用高纯氮气吹干基片。 4.1.2绝缘层薄膜制备 本实验制备的OTFT器件为底栅底接触型结构,典型器件结构如图4-3所示,首先制备绝缘层。PMMA具有良好的热稳定性,高电阻率,尤其可采用工艺简单的旋涂法成膜。Puigdollers等人采用不同的绝缘层(PMMA和SiO2)制备了OTFT器件,观察到基于PMMA为绝缘层的晶体管性能优于以SiO2为绝缘层的晶体管性能,有着更高的迁移率,发现是由于PMMA表面比SiO2更有利于形成大的薄膜颗粒。实验中,首先PMMA溶解于氯仿中,配成浓度为7%wt的溶液,将配置好的溶液的小玻璃瓶放在磁力搅拌器底盘的正中间,搅拌12个小时。如图所示KW-4A旋涂仪器,首先将匀胶机低转速设定为400rpm,旋转时间为5s,高转速设置为2000rmp,旋转时间为1min。将基片置于旋转载物台上,启动机械泵后,然后将PMMA溶液滴涂在基片上旋涂,先以低速运转,使溶液摊开,然后自动变到高速运转成薄膜。然后在150℃温度下,将器件退火1h。经过测试,PMMA厚度为520nm,绝缘层介电常数为5.1nF/cm2。

碳纳米管在场发射显示器中的应用及影响

碳纳米管在场发射显示器中的应用及影响 陈凯 06006311 前言: 显示技术作为多学科交叉的综合技术,已经渗透到当今民用和军用的各个领域,发挥着重要的作用。尤其在以网络和无线通讯为标志的信息时代,上下“信息高速公路”均需以显示器作为平台,因而对显示技术的期望值更高。显示技术的产业化将在信息时代得到进一步的发展,并将创造更大的社会财富。 在阴极射线管(CRT)、薄膜晶体管液晶(LCD)、等离子体(PDP)、有机电致发光等诸多显示器件中,CRT器件目前最为成熟,在全球市场上占据主导地位,它具有高亮度、高分辨率、全视角等优点,人们已广泛接受了其色彩和画质,因而它也成为人们衡量其他显示质量的一个无形标准。但CRT存在着体积庞大、笨重、功耗高等缺点。如何保留CRT的色彩与画质,并使CRT数字化、薄型化是科技界与产业界十分关注的问题。而场致发射显示器(FED),则因为其发光原理上与CRT较为相似,故在是唯一的图像质量可与CRT相媲美的平板显示器,最符合电视特性,并且更易制备出较大显示面积。 然而,经过多年的努力,商品化的场发射显示器仍然难以进于市场。究其原因,在于就场发射显示器的关键技术:阴极电子发射材料而言,传统的尖锥冷阴极加工工艺复杂,使得成品率难以提高,成本很难降低。而碳纳米管阴极的出现,为这一显示技术提供了新的突破点。 一、FED显示器的原理及结构 场发射电极理论最早是在1928年由R.H.Eowler与L.W.Nordheim共同提出,不过真正以半导体制程技术研发出场发射电极组件,开启运用场发射电子做为显示器技术,则是在1968年由C.A.Spindt提出,随后吸引后续的研究者投入研发。 其工作原理是:众多的阴极发射体以阵列状排列,每一个像素对应于一个或若干个发射体。在强电场作用下,阴极材料表面势垒高度降低,势垒宽度变窄,阴极发射体中的电子通过隧道效应穿透势垒发射到真空中,并轰击阳极上的荧光粉层而发光。 其基本结构如图1所示,主要由平面电子源场发射阵列(阴极)、栅极和阳极荧光屏构成,再加上辅助部分如消气剂、绝缘支柱,最后真空封装构成。阴阳两极采用透明导电膜(通常是ITO),其上涂敷荧光粉。阳极、阴极和栅极由各自的引线电极与外围的驱动电路相连。阴极和栅极互相垂直,利用栅极和阴极实现矩阵选址。每个阴极和栅极的交叉点对应于—个像素点。固定阳极电压,调节栅极电压,当两种叠加电场超过材料的阈值电场时,阴极的微尖发射,该像素被点亮,否则像素点被截止不发光。 以此,FED利用平面冷电子源代替热阴极的电子源,节省庞大的电子枪空间。同

碳纳米管薄膜制备及应用研究进展

1 碳纳米管薄膜的制备 1.1 高密度高取向碳纳米管膜的制备 由浮动催化化学气相沉积制备方法(FCCVD)所制备的薄膜具有良好的取向性,但密度较低。然而,制备出的碳纳米管的丝带聚集在一起用乙醇溶液进行喷雾致密,当乙醇蒸发后形成一层疏松的碳纳米管膜,然后将疏松的碳纳米管薄膜从主轴上剥离出来放在两个光滑的压力为100N的压力板之间挤压,即可以获得高取向、高密度的CNT薄膜[1-2]。如图1所示,为高密度、高取向碳纳米管薄膜的制备过程。其中,图1(a)为高密度高取向碳纳米管薄膜的制备过程,图1(b)、图1(c)、图1(d)分别为碳纳米管丝带、疏松碳纳米管薄、高密度高取向碳纳米管薄膜膜宏观图像。 图1 高密度高取向碳纳米管薄膜的制备过程 1.2 浮动化学气相沉积法制备高强度薄膜 王健农教授课题组创新性地利用浮动化学气相沉积法连续制备出碳纳米管宏观筒状物,并在开放大气环境下将 CNT 薄膜,图2(b)为拉伸曲线,图2(c)为端口形貌。 图2 所制备CNT薄膜、拉伸曲线和端口形貌综上所述可以看出,直接合成机械性能优异、高密度、高取向度的碳纳米管薄膜的研究工作还处于实验研究阶段。要想获得可应用的具有优越性能的碳纳米管纤维和早日将其应用于实际生活,还需要做很多研究工作。 2 碳纳米管薄膜的应用 2.1 碳纳米管长度优化制备透明导电薄膜基板 初始长度为10~15μm多壁碳纳米管经过30min、60min和120min的回流,其长度分别降低到1200nm、205nm、168nm。然后,将多壁纳米管分别在285℃退火24小时,所得碳纳米管薄膜的电气和光学性能将大大提高。薄膜的光学和电气性能强烈依赖于碳纳米管的长度。制备薄膜的多壁碳纳米管回流30min所得到的薄膜光学透过率分别高于回流60min和120min薄膜的2.6%和6.6%。多壁碳纳米管回流30min所得的样品薄膜的薄层电阻也降低了45%和80%。此时,薄膜还具有最小粗糙度[5-10]。图3为透明导电薄膜基板。 2.2 碳纳米管薄膜在应力传感器中的应用 单壁碳纳米管兼具极优异的导电性、稳定性、柔韧性以及拉伸强度,因此在应力传感器方面有着巨大的应用潜力。传统的碳纳米管应力传感器基于碳纳米管的电阻值变化监测外部应力的大小。国家纳米科学中心孙连峰研究员小组的刘政在攻读博士期间发现,基于单壁碳纳米管薄膜两端的开路电压可以构建成功高性能的应力传感器。他们利用极性液滴在悬空碳纳米管薄膜和液滴之间产生毛细管 摘 要:膜状碳纳米管保留了碳纳米管微观性状,也保留了优异的导电能力。它具有良好的机械性能、独特的形貌与结构特征,在储能电池技术、人工肌肉、智能材料以及电子显示屏中的应用越来越普遍。本文介绍碳纳米管薄膜的特点,对几种碳纳米管薄膜制备方法做了简要介绍说明。通过对当前碳纳米管薄膜几大应用方向如超级电容、柔性电池以及场发射装置等的分析,展示了碳纳米管薄膜的巨大应用潜力。 关键词:碳纳米管薄膜 制备 超级电容 柔性电池

国产5nm碳纳米管研究新突破

国产5nm 碳纳米管研究新突破 北京大学信息科学技术学院彭练矛-张志勇课题组在碳 纳米管电子学领域进行了十多年的研究,发展了一整高性能碳纳米管CMOS 晶体管的无掺杂制备方法,通过控制电极功函数来控制晶体管的极性。集成电路发展的基本方式在于晶体管的尺寸缩减,从而性能和集成度,得到更快功能更复杂的芯片。目前主流CMOS 技术即将发展到10 纳米技术节点,后续发展将受到来自物理规律和制造成本的限制,很难继续提升,“摩尔定律”可能面临终结。20 多年来,科学界和产业界一直在探索各种新材料和新原理的晶体管技术,以望替代硅基CMOS 技术。但是到目前为止,并没有机构能够实现10 纳米的新型CMOS 器件,而且也没有新型器件能够在性能上真正超过最好的硅基CMOS 器件。碳纳米管被认为是构建亚10 纳米晶体管的理想材料,其原子量级的管径保证了器件具有优异的栅极静电控制能力,更容易克服短沟道效应;超高的载流子迁移率则保证器件具有更高的性能和更低的功耗。理论研究表明碳管器件相对于硅基器件来说具有5-10 倍的速度和功耗优势,有望满足后摩尔时代集成电路的发展需求。但是已实现的最小碳纳米管CMOS 器件仅停滞在20nm 栅长(2014 年IBM ),而且性能远远低于预期。 北京大学信息科学技术学院彭练矛-张志勇课题组在碳纳米

管电子学领域进行了十多年的研究,发展了一整高性能碳纳 米管 CMOS 晶体管的无掺杂制备方法,通过控制电极功函 数来控制晶体管的极性。 彭练矛教授(左)和张志勇教授 (右) 5nm 技术节点实现突破近年来, 该课题组通过优化器件结构 和制备工艺,首次实现了栅长为 10 纳米的碳纳米管顶栅 CMOS 场效应晶体管(对应于 5纳米技术节点),P 型和n 型器件的亚阈值摆幅( subthreshold swing, SS )均为 70 mV/DEC 。器件性能不仅远远超过已发表的所有碳纳米管器 件,并且更低的工作电压(0.4V )下,P 型和n 型晶体管性 能均超过了目前最好的( Intel 公司的 14 纳米节点)硅基 CMOS 器件在 0.7V 电压下工作的性能。 特别碳管 CMOS 晶 体管本征门延时达到了 0.062Ps ,相当于 14 纳米硅基 CMOS 器件( 0.22Ps )的 1/3 。图 1:10 纳米栅长碳纳米管 CMOS 器件。 A : n 型和 P 型器件截面图和栅堆垛层截面图; P 型和 n 型碳管器件的转移曲线以及与硅基 CMOS 器件 (Intel, 14nm, 22nm )的对比。D:碳管器件的本征门延时与 14nm 硅基 CMOS 对比。课题组进一步探索 5nm 栅长(对 应3 纳米技术节点)的碳管晶体管。采用常规结构制备的栅 长为 5 纳米的碳管晶体管容易遭受短沟道效应和源漏直接隧 穿电流影响,即使采用超薄的高 k 栅介质(等效氧化层厚度 0.8纳米),器件也不能有效地关断,SS 一般大于 课题组采用石墨烯作为碳管晶体管的源漏接触,有效地抑制B-C: 100mV/Dec 。

自组装半导体碳纳米管薄膜的光电特性

[Article] www.whxb.pku.edu.cn 物理化学学报(Wuli Huaxue Xuebao ) Acta Phys.-Chim.Sin.2014,30(7),1377-1383 July Received:February 26,2014;Revised:May 6,2014;Published on Web:May 9,2014.? Corresponding author.Email:shengwang@pku.edu.cn;Tel:+86-136********. The project was supported by the National Key Basic Research Program of China (973)(2011CB933002,2011CB933001)and National Natural Science Foundation of China (61370009,61271051,61321001). 国家重点基础研究发展规划项目(973)(2011CB933002,2011CB933001)和国家自然科学基金(61370009,61271051,61321001)资助 ?Editorial office of Acta Physico-Chimica Sinica doi:10.3866/PKU.WHXB201405093 自组装半导体碳纳米管薄膜的光电特性 赵青靓1 刘旸1,2魏楠1王胜1, * (1北京大学电子学系,纳米器件物理与化学教育部重点实验室,北京100871; 2 北京大学前沿交叉学科研究院,北京100871) 摘要:采用自组装的方法制备99%高纯度半导体碳纳米管平行阵列条带,以金属钯和钪为非对称接触电极制 备碳纳米管(CNT)薄膜晶体管(TFTs)器件.主要研究不同沟道长度碳纳米管薄膜晶体管器件的电输运特性和红外光电响应特性,分析了其中的载流子输运和光生载流子分离的物理机制.我们发现薄膜晶体管器件的电学性能和光电性能依赖于器件沟道长度(L )和碳纳米管的平均长度(L CNT ).当沟道长度小于碳纳米管的平均长度时,器件开关比最低;当沟道长度超过碳纳米管平均长度时,随着沟道长度的增加,器件开关比增加,光电流减小.相关研究结果为高纯碳纳米管薄膜晶体管器件在红外光探测器方面的进一步应用提供参考依据.关键词: 碳纳米管; 自组装;非对称接触;光电响应; 红外; 沟道长度;薄膜晶体管 中图分类号: O649 Photoelectric Characteristics of Self-Assembled Semiconducting Carbon Nanotube Thin Film s ZHAO Qing-Liang 1 LIU Yang 1,2 WEI Nan 1 WANG Sheng 1,* (1Key Laboratory for the Physics and Chemistry of Nanodevices,Department of Electronics,Peking University, Beijing 100871,P .R.China ;2Academy for Advanced Interdisciplinary Studies,Peking University,Beijing 100871,P .R.China ) Abstract:We used the self-assembly method to form high purity (99%)semiconducting carbon nanotube (CNT)aligned arrays.Thin-film transistors (TFTs)were fabricated with asymmetric Pd and Sc electrodes.We studied the electronic transport characteristics and infrared photoelectronic properties of the TFTs with different channel lengths.The physical mechanism of carrier transport and the dissociation of photoexcited carries are also discussed.We found that the electronic and photoelectronic properties of the TFTs were dependent on the channel length and the average length of the CNTs.The on/off ratio of the device was the lowest when the channel length of the device (L )was less than the average length of the CNTs (L CNT ),and it increased with increasing L when L was larger than L CNT .In addition,the short circuit current of the device also decreased.These results provide an effective reference for further infrared detector applications based on high-purity semiconducting carbon nanotube TFTs. Key Words:Carbon nanotube;Self-assembly;Asymmetric contact; Photoelectric response; Infrared;Channel length;Thin film transistor 1引言 碳纳米管(CNTs)自1991年被发现以来,1在纳 米电子和光电应用领域以其优异的性能和广阔的应用潜力得到了广泛的关注.在电学方面,半导体 1377

碳纳米管器件原理和应用

碳纳米管器件原理和 应用 姓名:郭天凯 专业:应用物理 学号:2012437019

摘要: 纳米材料被誉为是21 世纪的重要材料,它将构成未来智能社会的四大支柱之一。碳纳米管在纳米材料中最富有代表性,并且是性能最优异的材料。碳纳米管具有独特的结构形态和优异的电学、力学等性能,碳纳米管的独特结构和优异的物理力学性能使它成为纳米科技领域中构筑纳尺度器件和系统的重要基础,为纳米科技领域的创新提供着持续强劲的原动力。碳纳米管在各种应用领域中的巨大应用前景,包括高强度复合材料、微机械、信息存储、纳米电子器件、平板场致发射显示器以及碳纳米管微操作等,碳纳米管独特的结构和优良性能使其在纳米技术和纳米电子学领域扮演着愈来愈重要的角色,本文综述了碳纳米管器件的原理和应用。 关键词:碳纳米管器件、场效应管、单电子晶体管、电磁屏蔽复合材料、聚合物基吸波复合材料、超电容器电极材料、储氢材料、催化剂载体 正文: 一、碳纳米管器件的制备原理 碳纳米管的生长和制备是场致发射显示器研制中关键的一个环节。目前,人们可以利用激光轰击法、化学汽相沉积法、辉光放电法、直流电弧放电法、气体燃烧法、催化剂高温热解法等多种方法制备碳纳米管。在这些技术当中,直流电弧放电法的生产工艺简单,可以大批量生产。虽然目前已经有很多种制备碳纳米管的方法,但是碳纳米管的大量制备仍然是以电弧放电法和高温催化热解法为主。其中电弧

放电法可以获得具有较高程度石墨化结构的碳纳米管,十分适用于理论研究的需要。C.Journet等人采用电弧法的工艺过程如下:在氩气气氛下,利用阴阳两个电极之间的大量放电现象来实现碳纳米管材料的生长。阴极是一个长约100mm、直径大约6mm的石墨棒,上面刻蚀了一个4mm深、3.5mm直径大小的孔洞,利用金属催化剂和石墨粉末的混合物进行填充。利用大约为100A的高电流来产生电弧放电,通过不断移动阳极,同时保持阴极和阳极之间的间距为常数(大约为 3mm)来实现的。典型的生长时间为2min。从SEM的结果看,存在着大量的、相互缠绕的碳纤维材料均匀地分布在至少为几个平方毫米的衬底表面上,碳纳米管的直径为10~20nm,而两个缠绕点之间的平均距离在几个微米左右,但是看不出碳纳米管的顶端。估计碳纳米管的产量在百分之八十左右。 碳纳米管的电学性能,单壁碳纳米管既可表现为金属性,又可表现为半导体性;电子在碳纳米管中可实现弹道式传输,无电子散射发生,无能量损失;碳纳米管的通流能力可以达到109? 1010A/cm2,并在较高的温度下稳定地存在而没有电迁移现象;碳纳米管的电流传输具有螺旋特征,使其磁场分布主要集中在碳管的内部;碳纳米管的场发射特性具有相对低的开启电压和阈值电压、良好的场发射稳定性和长的发射周期;碳纳米管的微波介电特性使其表现出较强的宽带微波吸收性能。碳纳米管的力学性能,比重为钢的1/6,强度为钢的100 倍,杨氏模量可达1000 GPa,比金刚石高好几倍,弹性模量可达 1 TPa;具有高弹性,高的韧性;通过材料的响应,直接把电能转化为机械能。

场效应晶体管

场效应晶体管中英文介绍(field-effect transistor,缩写:FET) 场效应晶体管是一种通过电场效应控制电流的电子元件。它依靠电场去控制导电沟道形状,因此能控制半导体材料中某种类型载流子的沟道的导电性。场效应晶体管有时被称为单极性晶体管,以它的单载流子型作用对比双极性晶体管(bipolar junction transistors,缩写:BJT)。尽管由于半导体材料的限制,以及曾经双极性晶体管比场效应晶体管容易制造,场效应晶体管比双极性晶体管要晚造出,但场效应晶体管的概念却比双极性晶体管早。 历史 场效应晶体管于1925年由Julius Edgar Lilienfeld和于1934年由Oskar Heil分别发明,但是实用的器件一直到1952年才被制造出来(结型场效应管,Junction-FET,JFET)。1960年Dawan Kahng发明了金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-effect transistor, MOSFET),从而大部分代替了JFET,对电子行业的发展有着深远的意义。 基本信息 场效应管是多数电荷载体的设备。该装置由一个活跃的信道,通过该多数载流子,电子或空穴,从源到流向漏极。源极和漏极端子导体被连接到半导体通过欧姆接触。的通道的导电性的栅极和源极端子之间施加的电位是一个函数。 FET的三个端子是: 源极(S),通过其中的多数载流子输入通道。进入该通道,在S点的常规的电流被指定由IS。漏极(D),通过其中的多数载流子离开的通道。常规电流在D通道进入指定的ID。漏源电压VDS。 栅极(G),调制的通道的导电性的端子。通过施加电压至G,一个可以控制的ID。 场效应晶体管的类型 在耗尽模式的FET下,漏和源可能被掺杂成不同类型至沟道。或者在提高模式下的FET,它们可能被掺杂成相似类型。场效应晶体管根据绝缘沟道和栅的不同方法而区分。FET的类型有: DEPFET(Depleted FET)是一种在完全耗尽基底上制造,同时用为一个感应器、放大器和记忆极的FET。它可以用作图像(光子)感应器。 DGMOFET(Dual-gate MOSFET)是一种有两个栅极的MOSFET。 DNAFET是一种用作生物感应器的特殊FET,它通过用单链DNA分子制成的栅极去检测相配的DNA链。 FREDFET(Fast Recovery Epitaxial Diode FET)是一种用于提供非常快的重启(关闭)体二极管的特殊FET。 HEMT(高电子迁移率晶体管,High Electron Mobility Transistor),也被称为HFET(异质结场效应晶体管,heterostructure FET),是运用带隙工程在三重半导体例如AlGaAs中制造的。完全耗尽宽带隙造成了栅极和体之间的绝缘。 IGBT(Insulated-Gate Bipolar Transistor)是一种用于电力控制的器件。它和类双极主导电沟道的MOSFET的结构类似。它们一般用于漏源电压范围在200-3000伏的运行。功率MOSFET仍然被选择为漏源电压在1到200伏时的器件.

新型碳纳米管导电薄膜

新型碳纳米管导电薄膜 手指在手机屏幕上滑动点按,就能翻转页面、接听电话、打字、玩游戏,这些便利都得益于触摸屏。而这生活中随处可见的触摸屏的奥秘,实际上都在这一张薄薄的导电膜上。传统发光器件的导电薄膜多采用ITO薄膜,但其在沉积时要求真空度高,生产成本较高,柔性差,并且粘附性能不好,刚性易碎,限制了其在柔性显示领域的广泛应用。碳纳米管(CNT)导电薄膜作为性能更好的替代品,在导电、透光,强度和柔性方面都呈现良好的特性,少量的CNT就可以形成一层随机的网络结构的CNT柔性透明导电薄膜,可以代替传统的ITO薄膜应用在未来的柔性可穿戴设备当中。据微特克纳米科技从天津工业大学获悉,天津工业大学材料学院耿宏章教授与他的科研团队,经过多年的深入研究,对柔性碳纳米管透明导电薄膜制备进行技术创新,使其产业化生产成为可能,该项目荣获“纺织之光”2016年度中国纺织工业联合会科学技术奖二等奖。与当前国内外同类研究、同类技术的综合比较,这一技术已达到了国际先进水平。 天津工大耿宏章教授团队研发出的可穿戴用柔性光电薄膜制备技术,用一种简易快速喷涂与酸处理技术相结合的技术以及棒涂法与酸处理优化技术相结合,可以大面积快速制备碳纳米管柔性透明导电薄膜,能够克服ITO薄膜的很多缺点,在保持高透光率的前提下提高柔性碳纳米管导电薄膜的导电性能,降低面电阻,降低成本,以期将其更好的应用于光电器件等领域。据微特克纳米科技了解CNT薄膜应用于触屏手机的触摸感应器层,就其柔韧性这一点来说,可以应用于可弯曲、柔性的触摸屏,就其高导电性能的这一点来说,它能够大幅提高触屏手机多点触控的灵敏性,其光学性质稳定,高透光率的特点则会让你的手机屏幕画质更加清晰,色彩逼真。这种薄膜会成为未来应用在可穿戴设备上的最有发展前景的材料之一。 根据NanoMarket公司公布的预测,仅平板显示器、薄膜太阳能电池与有机发光显示等高端应用对透明导电膜的需求到2017年将达到5亿平方米。据微特克纳米科技了解透明导电膜的市场将由2010年的24亿美元增长到2017年的76亿美元,年增长率为45%。特别是在柔性显示领域,碳纳米管薄膜性能优异、环境友好,具有强大的市场竞争力,随着柔性显示器、触摸屏、发光器件等需求的急速增长,碳纳米管薄膜的市场份额逐渐增加,市场前景将非常大,将产生巨大的经济效益。

薄膜晶体管-调研报告

“薄膜晶体管的制备及电学参数”调研报告 (青岛大学物理科学学院,应用物理系) 摘要:20世纪平板显示技术的出现,把人类带入了信息社会,人类社会从此发生了质的飞跃。而平板显示的核心元件就是薄膜晶体管TFT(nlin Film Transistor),一种在掺杂硅片或玻璃基底上通过薄膜工艺制作的场效应晶体管器件。将半导体氧化物作为有源层来制作TFT用于平板显示中,不仅能获得较高迁移率,器件性能优越,而且制造工艺简单、低温下可以获得,显示出了巨大的应用前景。本文综述了薄膜材料的制备方法,薄膜晶体管的发展历程与应用以及其结构、工作原理和测试表征方法。 关键词:薄膜材料,薄膜晶体管,制备,表征方法 Abstract:In the 20th century,the emergence of the flat panel display technology has brought human beings into the information society.Since then the human society happened a qualitative leap.The core component of flat panel display is the thin film transistor(TFT),it is a field effect transistor device produced by thin film technology on the doped-silicon or glass.If we use the semiconductor oxide as the active layer,not only we can get a higher mobility,bu also the device performance call be enhanced.And the manufacturing process is simple,low temperatures also can be obtained,which shows a great prospect.The preparation method of thin film materials is reviewed in this paper, the development and application of thin film transistor and its structure, working principle and test method are characterized, Keywords: Thin film materials, thin film transistor, manufacture, characterization methods 前言 薄膜材料是指厚度介于单原子分子到几毫米间的薄金属或有机物层。当固体或液体的一维线性尺度远远小于它的其他二维尺度时,我们称这样的固体或液体为膜。薄膜材料具有良好的韧性、防潮性和热封性能,应用非常广泛。例如:双向拉伸聚丙烯薄膜(BOPP)、低密度聚乙烯薄膜(LDPE)、聚酯薄膜(PET)、镀铝薄膜、半导体氧化物薄膜等等。近几年来,以氧化锌、氧化铟、氧化锡等半导体氧化物及其合金为有源层的透明薄膜晶体管备受关注,并已取得了突破性进展。这些氧化物是优异的光电材料,具有高光学透过率、生长温度低、击穿电压高、电子迁移率高等优点,从而可以获得更好、成本更低的薄膜晶体管,并且也为新型薄膜晶体管的发展带来了契机。氧化物薄膜晶体管作为极具发展潜力的新型薄膜晶体管,具备了许多传统TFT无法比拟的优点,但是也存在诸多问题有待进一步解决。例如,如何解决外界环境对器件性能的影响,优化工艺从而降低成本,如何制作出性能优越、具有实用价值的器件等,这些都是现在研究面临的问题。本文的主要调研对象,包括氧化锌以及有机薄膜作为有源层的薄膜晶体管。 薄膜晶体管的发展历程 1925年,Julius Edger Lilienfeld首次提出结型场效应晶体管(Field

相关文档
最新文档