工业相机简介

工业相机简介
工业相机简介

一、工业相机类型简介

CCD 是60年代末期由贝尔试验室发明。开始作为一种新型的PC存储电路,很快CCD具有许多其他潜在的应用,包括信号和图像(硅的光敏性)处理。

CCD 是在薄的硅晶片上处理一系列不同的功能,在每一个硅晶片上分布几个相同的IC等可产生功能的元件,被选择的IC从硅晶片上切下包装在载体里用在系统上。总结下来,CCD 主要有以下几种类型:

1、面阵CCD:

允许拍摄者在任何快门速度下一次曝光拍摄移动物体。

2、线阵CCD:

用一排像素扫描过图片,做三次曝光——分别对应于红、绿、蓝三色滤镜,正如名称所表示的,线性传感器是捕捉一维图像。初期应用于广告界拍摄静态图像,线性阵列,处理高分辨率的图像时,受局限于非移动的连续光照的物体。3、三线传感器CCD:

在三线传感器中,三排并行的像素分别覆盖RGB滤镜,当捕捉彩色图片时,完整的彩色图片由多排的像素来组合成。三线CCD传感器多用于高端数码相机,以产生高的分辨率和光谱色阶。

4、交织传输CCD:

这种传感器利用单独的阵列摄取图像和电量转化,允许在拍摄下一图像时在读取当前图像。交织传输CCD通常用于低端数码相机、摄像机和拍摄动画的广播拍摄机。

5、全幅面CCD:

此种CCD 具有更多电量处理能力,更好动态范围,低噪音和传输光学分辨率,全幅面CCD 允许即时拍摄全彩图片。全幅面CCD由并行浮点寄存器、串行浮点寄存器和信号输出放大器组成。全幅面CCD 曝光是由机械快门或闸门控制去保存图像,并行寄存器用于测光和读取测光值。图像投摄到作投影幕的并行阵列上。此元件接收图像信息并把它分成离散的由数目决定量化的元素。这些信息流就会由并行寄存器流向串行寄存器。此过程反复执行,直到所有的信息传输完毕。接着,系统进行精确的图像重组。

二、工业相机参数简介

工业相机是机器视觉系统中的一个关键组件,其最本质的功能就是将光信号转变成为有序的电信号。选择合适的相机也是机器视觉系统设计中的重要环节,相机的不仅是直接决定所采集到的图像分辨率、图像质量等,同时也与整个系统的运行模式直接相关。

主要参数

1. 分辨率(Resolution):相机每次采集图像的像素点数(Pixels),对于数字相机机一般是直接与光电传感器的像元数对应的,对于模拟相机机则是取决于视频制式,PAL制为768*576,NTSC制为640*480。

2. 像素深度(Pixel Depth):即每像素数据的位数,一般常用的是8Bit,对于数字相机机一般还会有10Bit、12Bit等。

3. 最大帧率(Frame Rate)/行频(Line Rate):相机机采集传输图像的速

率,对于面阵相机机一般为每秒采集的帧数(Frames/Sec.),对于线阵相机机为每秒采集的行数(Hz)。

4. 曝光方式(Exposure)和快门速度(Shutter):对于线阵相机机都是逐行曝光的方式,可以选择固定行频和外触发同步的采集方式,曝光时间可以与行周期一致,也可以设定一个固定的时间;面阵相机机有帧曝光、场曝光和滚动行曝光等几种常见方式,数字相机机一般都提供外触发采图的功能。快门速度一般可到10微秒,高速相机机还可以更快。

5. 像元尺寸(Pixel Size):像元大小和像元数(分辨率)共同决定了相机机靶面的大小。目前数字相机机像元尺寸一般为3μm-10μm,一般像元尺寸越小,制造难度越大,图像质量也越不容易提高。

6. 光谱响应特性(Spectral Range):是指该像元传感器对不同光波的敏感特性,一般响应范围是350nm-1000nm,一些相机机在靶面前加了一个滤镜,滤除红外光线,如果系统需要对红外感光时可去掉该滤镜。

三、工业相机的工作原理

工业相机,工业摄像机,工业摄像头的选择如何选择工业相机,工业摄像机,工业摄像头

做图像处理,处理的对像是从工业相机来的图像,所以,工业相机的选择是不可缺少而且非常重要的一步。

首先要弄明白的是自己的检测任务,是静态拍照还是动态拍照、拍照的频率是多少、是做缺陷检测还是尺寸测量或者是定位、产品的大小(视野)是多少、需要达到多少精度、所用软件的性能、现场环境情况如何、有没有其它的特殊要求等。如果是动态拍照,运动速度是多少,根据运动速度选择最小曝光时间以及是否需要逐行扫描的相机;而相机的桢率(最高拍照频率)跟像素有关,通常分辨率越高桢率越低,不同品牌的工业相机的桢率略有不同;根据检测任务的不同、产品的大小、需要达到的分辨率以及所用软件的性能可以计算出所需工业相机的分辨率;现场环境最要考虑的是温度、湿度、干扰情况以及光照条件来选择不同的工业相机。8Vz!zY q0q-Coh>

举例说明:如我们的检测任务是尺寸测量,产品大小是18mm*10mm,精度要求是0.01mm,流水线作业,检测速度是10件/秒,现场环境是普通工业环境,不考虑干扰问题。首先我们知道是流水线作业,速度比较快,因此选用逐行扫描相机;视野大小我们可以设定为20mm*12mm(考虑每次机械定位的误差,将视野比物体适当放大),假如我们能够取到很好的图像(比如可以打背光),而且我们软件的测量精度可以考虑1/2亚像素精度,那么我们需要的相机分辨率就是20/0.01/2=1000pixcel(像素),另一方向是12/0.01/2=600pixcel,也就是说我们相机的分辨率至少需要1000*600pixcel,桢率在10桢/秒,因此选择1024*768像素(软件性能和机械精度不能精确的情况下也可以考虑1280*1024pixcel),桢率在10桢/秒以上的即可。

一般高速相机指的是数字工业相机,其一般安装在机器流水线上代替人眼来做测量和判断,通过数字图像摄取目标转换成图像信号,传送给专用的图像处理系统,图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果

来控制现场的设备动作。广泛应用于生产检测、制药、印刷、电子、电气制造、以及更高要求的行业。

四、工业相机的主要性能特点

图像感光芯片:以前工业相机都使用CCD芯片。这使得相机具有高灵敏度和低图像噪声。此外,CCD工业相机还具有以下三个主要特征:1、全局快门;

2、黑白与彩色两种型号;

3、长期都有库存。

与此同时,越来越多的CMOS感光芯片也被用于工业相机领域。由于它们成本较低,可以有效降低机器视觉应用的整体造价。但大多数CMOS相机的卷帘式快门限制了其应用领域。维视数字图像技术有限公司专业研发生产CCD和CMOS两种芯片的相机,以及机器视觉相关产品。

没有图象处理:数字感光芯片还将一些物理及化学方面的属性(如温度、酸度等)转换为数字信号。感光芯片不对这些属性进行任何分析处理,它们只是尽可能准确的将其转换为数字信号。工业相机本质上是将光子信号转换为数字信号的设备,而这里所谓的数字信号就是图像。这些图像不一定非得看起来如何美轮美奂,在工业机器视觉领域,只需要相机尽可能精确的将光信号转换为电信号。所以,工业相机不会美化它拍摄的画面,同理,机器视觉领域也应尽量避免压缩图像。

镜头:机器视觉技术的应用领域非常广泛。因此,大部分工业相机在发售时都不带镜头,但带有镜头基座。镜头接口有两种型号:C和CS。维视图像生产的工业相机支持这两种接口。此外,市场上还有显微镜、望远镜、内窥镜等其它基于这些装配接口标准的镜头。

数字I/O接口:机器视觉的定义不仅仅是捕捉到图像,还包括与机器的交互。为此,工业相机提供了数字I/O接口。其中用的最多的就是外触发输出。在外触发模式下,相机根据外界事件触发快门,捕捉图像。典型的应用就是传送带上安装光栅,然后将工业相机放置在旁边。当有目标物体经过光栅时,触发脉冲信号,进而让相机曝光。

编程界面:工业相机是数字化的图像感应设备。其信号即图像最终还是要由计算机进行分析。在进行图像分析前,首先需要设置相机参数和捕捉图像。通常,机器视觉需要相机控制、图象采集和图象分析这三部分整合为一个程序。工业相机的生产商一般也都会提供编程接口,用于相机控制和图象采集。通常,这些接口是专有的。

长期稳定性:机器视觉最早被应用在工业生产领域。在该领域的各类组件都必须跟上技术的潮流,但同时还得保证长期供应。因此,维视图像在生产工业相机时采用了模块化组件和标准化接口。这样一来,使得维视图像工业相机的性能保持稳定。

机器视觉(相机、镜头、光源 )全面概括

机器视觉(相机、镜头、光源)全面概括 分类:机器视觉2013-08-19 10:52 1133人阅读评论(0) 收藏举报机器视觉工业相机光源镜头 1.1.1视觉系统原理描述 机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 2.1.1视觉系统组成部分 视觉系统主要由以下部分组成 1.照明光源 2.镜头 3.工业摄像机 4.图像采集/处理卡 5.图像处理系统 6.其它外部设备 2.1.1.1相机篇 详细介绍: 工业相机又俗称摄像机,相比于传统的民用相机(摄像机)而言,它具有高的图像稳定性、高传输能力和高抗干扰能力等,目前市面上工业相机大多是基于CCD(Charge Coupled Device)或CMOS(Complementary Metal Oxide

Semiconductor)芯片的相机。CCD是目前机器视觉最为常用的图像传感器。它集光电转换及电荷存贮、电荷转移、信号读取于一体,是典型的固体成像器件。CCD的突出特点是以电荷作为信号,而不同于其它器件是以电流或者电压为信号。这类成像器件通过光电转换形成电荷包,而后在驱动脉冲的作用下转移、放大输出图像信号。典型的CCD相机由光学镜头、时序及同步信号发生器、垂直驱动器、模拟/数字信号处理电路组成。CCD作为一种功能器件,与真空管相比,具有无灼伤、无滞后、低电压工作、低功耗等优点。CMOS图像传感器的开发最早出现 在20世纪70 年代初,90 年代初期,随着超大规模集成电路(VLSI) 制造工艺技术的发展,CMOS图像传感器得到迅速发展。CMOS图像传感器将光敏元阵列、图像信号放大器、信号读取电路、模数转换电路、图像信号处理器及控制器集成在一块芯片上,还具有局部像素的编程随机访问的优点。目前,CMOS图像传感器以其良好的集成性、低功耗、高速传输和宽动态范围等特点在高分辨率和高速场合得到了广泛的应 用。、 分类: 任何东西分类一定有它自己的分类标准,工业相机也不例外,按照芯片类型可以分为CCD相机、CMOS相机;按照传感器的结构特性可以分为线阵相机、面阵相机;按照扫描方式可以分为隔行扫描相机、逐行扫描相机;按照分辨率大小可以分为普通分辨率相机、高分辨率相机;按照输出信号方式可以分为模拟相机、数字相机;按照输出色彩可以分为单色(黑白)相机、彩色相机;按照输出信号速度可以分为普通速度相机、高速相机;按照响应频率范围可以分为可见光(普通)相机、红外相机、紫外相机等。 区别: 1、工业相机的性能稳定可靠易于安装,相机结构紧凑结实不易损坏,连续工作时间长,可在较差的环境下使用,一般的数码相机是做不到这些的。例如:让民用数码相机一天工作24小时或连续工作几天肯定会受不了的。 2、工业相机的快门时间非常短,可以抓拍高速运动的物体。 例如,把名片贴在电风扇扇叶上,以最大速度旋转,设置合适的快门时间,用工业相机抓拍一张图像,仍能够清晰辨别名片上的字体。用普通的相机来抓拍,是不可能达到同样效果的。

工业相机选型方法

工业相机选型方法 工业相机,选择TEO. 工业相机选型方法 工业相机又被叫做摄像机,对比与传统的民用相机而言,工业相机在图像稳定性、抗干扰能力和传能能力方面有着更大更高的优势,是组成机器视觉系统的关键部分,工业相机的性能好坏决定着机器视觉系统的稳定性。那么我们在相机选型方面如何更好地选择工业相机呢, 第一、我们要明确我们需要什么样的工业相机,所以要先确定好所需要检测的产品的精度要求;确定好检测物体的速度包括它是动态的还是静态的;确定好工业相机取景的视野大小。 第二、我们要能确定好硬件的类型。工业相机的性能硬件参数影响非常大,所以在我们确定硬件类型前,我们先看下几个重要的参数: 1.相机传输方式。目前市面上相机传输方式有很多各有优缺点:(1)USB接口相机,优点:帧率高,性价比高,不需要占据PCI插槽,缺点就是太占CPU;(2)模拟相机,优点:稳定,性价比高,缺点就是帧率太低;(3)1394相机接口,优点:不占系统CPU的运行,帧频高,缺点是价格昂贵,还需要PCI插槽。 2.相面像素大小的确定。目前虽然市场上的软件在精度上一般是没有误差的,也就是我们所说的亚像素,但是在硬件方面的误差还是不可避免的。所以现在机器视觉系统在市场上都是保证误差保持在通过“精度=视野(长或宽)?相机像素(长或宽)”这样一个公式计算出来的一个像素数值上。 3.相机的触发方式选择。(1)软件触发模式:在对动态检测的时候以及产品通过连续运动触发信号的时候可以选择;(2)硬件触发模式:对高速动态检测以及产品通

过高速运动触发信号的时候选择;(1)连续采集模式:对静态检测以及产品连续运动不能够触发信号的时候可以选择。 工业相机有着多种多样的类别,所以如何选择工业相机非常重要。根据不同行业的不同应用,我们需要选购适合应用的工业相机。

工业相机

机器视觉光学镜头的技术指标作者:Gregg Fales, Edmund Industrial Optics 机器视觉的集成和设计面临各种来自硬件、软件和电子方面问题的挑战,如果忽视光学性能规格,不了解如何评估光学器件,用户挑选合适的机器视觉镜头将会面临挑战。通过了解10项镜头规格,可以帮助集成商和用户挑选镜头,来优化或评估各自系统的性能。视觉系统光学性能的4项最基本参数是视野(field of view)、分辨率resolution、工作距离working distance 和景深depth of field(见图)。需要考虑的更高级的集成规格参数包括焦距(f)、maximum chip format、失真(distortion)、变焦/聚焦特点(zoom/focus)、design conjugate、聚焦远心(telecentricity)。四大参数视野简单而言,视野应该是你需要检查的物体的尺寸。很多从事机器视觉系统规格的工程师是从放大倍数的角度来思考的。然而,放大倍数是一种相对规格,依赖于图像传感器的尺寸和显示器件的尺寸。从视野或分辨率的角度来说,它没有真正意义。例如,一种具备50 倍放大倍数的系统可能具有5.3 毫米的视野(假如该系统使用的是1/2 英寸CCD 和13 英寸显示器)或15.2 毫米的视野(1 英寸CCD、19 英寸显示器)。你必须规定视野,以确保视觉系统能够检验你感兴趣的整个区域。分辨率只有规定视野而不是规定放大倍数,才能确保系统将具有合适的分辨率。分辨率是系统可以测到的受检验物体上的最小可分辨特征尺寸。在多数情况下,视野越小,分辨率越好。系统的分辨率是由光学器件的调制传递函数(modulation transfer function, MTF)、摄像机、电缆和显示硬件等多个参数决定的。MTF 限定了部件在分辨率和对比度方面的总体成像性能。光学器件的MTF 常常被忽略,而仅仅根据基本放大倍数和摄像机像素数量来计算系统的分辨率是。这种近似计算假定光学器件是完美的,往往导致镜头规格偏低,并使系统性能降低。如果了解镜头把来自物体的数据传递到摄像机芯片的精确度,集成商就可以使系统的视野达到最大,同时为手头的工作维持适当的分辨率。工作距离有时,各种机械限制支配光学限制。工作距离是从镜头前部到受检验物体的距离。需要的工作距离越长,保持小视野的难度和成本就越高。通常,人们会出于需要而规定小视野,同时出于方便而规定相当长的工作距离。然而,这种配置会极大地增加成本,往往会降低分辨率,并削弱光学器件的采光能力,从而不必要地降低了系统的总体成像性能。当存在机械限制时(比如在真空箱内部获取某反应的图像),这种配置也许是必要的。不过,假如长工作距离不是必需的,那就不要把事情搞得过于复杂。景深假如成像的物体是三维的,那么你还必须考虑景深。镜头的景深是物体离最佳焦点较近或较远时,镜头保持所需分辨率的能力。大的景深能够简化各种安装限制,这是因为不需要进行精确的移动来使物体定位于镜头的额定工作距离。不过要记住,虽然镜头会在规定的景深上保持最小分辨率,但它们不一定会在该景深上保持相同视野。放大倍数的这种变化可能对机器视觉测量应用造成灾难性后果。远心镜头可以把该问题减小到最低程度。四大参数已经定义机器视觉系统的性能,选择和优化另外六个参数,可以减少设备的设置费用、系统的故障时间,并优化设备的可靠性和可重复性。 图像知识—图像词汇[转帖] Algebraic operation 代数运算一种图像处理运算,包括 两幅图像对应像素的和、差、积、商Aliasing 走样(混叠)当图象像素间距和图像细节相比太大时产生的一种人工痕迹Arc 弧图的一部分,表示一曲线一段的相连的像素集合Binary image 二值图象只有两级灰度的数字图像(通常为0和1,黑和白)Blur 模糊由于散角、低通滤波、摄像机运动等引起的图像清晰度的下降Border 边框一幅图像的首、末行或列Border chain code 边界链码定义一个物体的边界的方向序列Boundary pixel 边界像素至少和一个背景像素相邻接的内部像素Boundary tracking 边界跟踪一种图像分割技术,通过沿弧从一个像素顺序探索到下一个像素将弧检测出Brightness 亮度和图像一个点相关的值,表示从该点的物体发射或反射的光的量Change detection 变化检测通过相减等操作将两幅匹配图像的像素加以比较从而检测出其中物体差别的技术Closed

航空数码相机的种类与发展

航空数码相机的种类与发展 随着CCD传感器技术的发展,数字航空摄影已呈现明显的优势,航空数码相机面临着前所未有的发展机遇。在2000年国际摄影测量与遥感学会(ISPRS)阿姆斯特丹大会上,航空数码相机开始出现。在2004年的ISPRS伊斯坦布尔大会上,航空数码相机成为一个热点。国外已经出现相关产品,我国对航空数码相机的研制也已初见端倪。航空数码相机主要以两种方式发展:一种是基于线阵(Linear Array)的传感器方式,代表产品有ADS40;另一种是基于面阵(Plane Array)的传感器方式,代表产品有DMC、UCD、SWDC等。 ADS40 ADS40(Airborne Digital Sensor)航空数码相机由Leica公司2000年推出,能够同时获取立体影像和彩色多光谱影像。它采用线阵列推扫成像原理,能同时提供3个全色与4个多光谱波段数字影像。该相机全色波段的前视、下视和后视影像可以构成3个立体像对。彩色成像部分由R、G、B和近红外4个波段,经融合处理获得真彩色影像和彩红外多光谱影像。ADS40集成了POS系统(GPS和惯性测量装置(IMU)),其焦距(f)为62mm,像元尺寸为6.5μm,全色波段线阵为212000像素,RGB和NIR为12000像素,FOV视场角为460。 图1 ADS40航空相机 DMC DMC(Digital Mapping Camera)是Z/I公司推出的面阵航空数码相机。DMC由4台黑白影像的全色相机和4台多光谱相机组成,摄影时相机同时曝光。4台全色相机倾斜安装,互成一定的角度,影像间有1%的重叠度,提供用户的是经过辐射与几何纠正的、拼接成的有效(Virtual)影像。DMC的像元尺寸为12μm,焦距为120mm,视场角为69.30/420,影像尺寸为7680×13824,最大连拍速度为2秒/幅,波段为黑白全色+多光谱。 图2 DMC航空相机 UCD UCD(UltraCAM-D)是Vexcel公司2003年推出的面阵航空相机。UCD相机由8个独立的相机构成,类同DMC,4台黑白影像的全色相机和4台多光谱相机组成,但摄影时,是

怎么选择合适的工业相机

怎么选择合适的工业相机 工业自动化给我们带来了很大的作用,不论是从产量效率还是从质量上都有了很大的提高,例如工业相机,那么我们在购买工业相机的时候,需要注意哪些问题?怎么才能选择一台合适的工业相机?怎么选呢?小编整理了以下几点: 【第一】相机的接口要与镜头匹配。 【第二】传感器的尺寸与类型。相机的传感器尺寸应小于等于镜头支持的尺寸。CCD 的成像质量优于CMOS,但是其成本也远高于CMOS。同样分辨率的传感器,优先选择传感器尺寸大的,有利于成像质量的提高;如果要求拍摄的物体是运动的,要处理的对象也是实时运动的物体,那么当然选择CCD芯片的相机为最适宜。但有的厂商生产的CMOS相机如果采用帧曝光的方式的话,也可以当作CCD来使用的。又假如物体运动的速度很慢,在我们设定的相机曝光时间范围内,物体运动的距离很小,换算成像素大小也就在一两个像素内,那么选择CMOS相机也是合适的。因为在曝光时间内,一两个像素的偏差人眼根本看不出来(如果不是做测量用的话),但超过2个像素的偏差,物体拍出来的图像就有拖影,这样就不能选择CMOS相机了。 【第三】合适的分辨率,根据系统的需求来选择相机分辨率的大小,通常系统的像素精度等于视场(长或宽)除以相机分辨率(长或宽)。如视场为10mm×7.5mm,使用130万像素的相机,则相机分辨率为1280×960Pixel,则像素精度为10mm÷1280Pixel=0.0078mm/Pixel;下面以一个应用案例来分析。假设检测一个物体的表面划痕,要求拍摄的物体大小为10*8mm,要求的检测精度是0.01mm。首先假设我们要拍摄的视野范围在12*10mm,那么相机的最低分辨率应该选择在:(12/0.01)*(10/0.01)=1200*1000,约为120万像素的相机,也就是说一个像素对应一个检测的缺陷的话,那么最低分辨率必须不少于120万像素,但市面上常见的是130万像素的相机,因此一般而言是选用130万像素的相机。但实际问题是,如果一个像素对应一个缺陷的话,那么这样的系统一定会极不稳定,因为随便的一个干扰像素点都可能被误认为缺陷,所以我们为了提高系统的精准度和稳定性,最好取缺陷的面积在3到4个像素以上,这样我们选择的相机也就在130万乘3以上,即最低不能少于300万像素,通常采用300万像素的相机为最佳。

工业相机接口介绍

工业相机接口标准详解 来源:本站作者:admin 点击:517 面对市面上出现的越来越多的工业相机品牌,各相机厂商都给出了大量的相机参数,例如:相机接口、芯片类型、量子效应、帧率等。一般非行业内人士,在面对这些参数时往往会无所适从。湖南科天健光电技术有限公司根据长期的相机使用经验,同时结合这么多年和客户接触的情况,为大家总结出目前使用比较广泛的工业相机接口知识! 目前,工业相机数据传输接口方式有很多种,包括CoaxPress、CameraLink接口、USB接口、Gige接口等。 其主要性能比较如下表所示:

USB2.0 USB 即“Universal Serial Bus ”,中文名称为通用串行总线。这是近几年逐步在PC 领域广为应用的新型接口技术。USB2.0则可以达到速度480Mbps,并且可以向下兼容USB1.1。 这几年,随着大量支持USB的个人电脑的普及,USB逐步成为个人电脑的标准接口已经是大势所趋。在主机端,最新推出的个人电脑几乎100%支持USB;而在外设端,使用USB接口的设备也与日俱增,例如数码相机、扫描仪、游戏杆、磁带和软驱、图像设备、打印机、键盘、鼠标等等。 2000年制定的USB 2.0标准是真正的USB 2.0,被称为USB 2.0的高速(High-speed)版本,理论传输速度为480 Mbps,即60 MB/s,但实际传输速度一般不超过30 MB/s,采用这种标准的USB设备也比较多。USB电缆的长度在不加级连装置的情况下为小于5m。 USB3.0 USB3.0 ——也被认为是SuperSpeedUSB——为那些与PC或音频/高频设备相连接的各种设备提供了一个标准接口。只是个硬件设备,计算机内只有安装USB3.0相关的硬件设备后才可以使用USB3.0相关的功能!从键盘到高吞吐量磁盘驱动器,各种器件都能够采用这种低成本接口进行平稳运行的即插即用连接,用户基本不用花太多心思在上面。新的USB 3.0在保持与USB 2.0的兼容性的同时,还提供了下面的几项增强功能: (1)极大提高了带宽——高达5Gbps全双工(USB2.0则为480Mbps半双工) (2)实现了更好的电源管理 (3)能够使主机为器件提供更多的功率,从而实现USB——充电电池、LED照明和迷你风扇等应用。 (4)能够使主机更快地识别器件

数码相机常用感元件尺寸对照表

数码相机常用感光元件尺寸对照表 (2013-02-17 15:51:38) 转载▼ 标签: 分类:杂文 娱乐 随着数码技术的发展,出现了新的传感器画幅标准(如刚刚发布的尼康1系列V1/J1、索尼RX100都采用了1英寸的CX画幅),一些单反传感器的尺寸也悄悄的出现了“缩水”。比如当时的佳能30D的CMOS 是22.5×15mm,到了7D/60D变成了22.3×14.9mm,尼康D70s的CCD是23.7×15.6mm,到了D7000/5100变成了23.6×15.6mm。为了适应新的数码相机传感器的尺寸标准,特将目前最新型号数码相机/数码单反经常采用的成像传感器尺寸按比例制作成图片、表格进行对比。 数码相机的感光元件CCD/CMOS相当于传统相机的底片。家用小数码相机(DC)的CCD尺寸通常有1/2.5英寸、1/1.8英寸、2/3英寸等,它们有什么不同?这一尺寸会影响到数码相机的什么功能?

数码相机规格表中的CCD/CMOS一栏经常写着“1/2.5、1/1.8英寸CCD等。这里的“1/2.5英寸”就是CCD的尺寸,实际上就是CCD对角线的长度。不过,这里的1英寸并不等于25.4mm,而是1英吋CCD Size = 长12.8mm×宽9.6mm = 对角线为16mm之对应面积。也就是说1英寸相当于16mm。 因为在CCD/CMOS成像元件问世之前,电视摄像机中采用的是真空管成像元件,那时的传感器尺寸指的是真空管的外径,即包含了外层玻璃管的尺寸,1英吋真空管的内径(成像圆直径)为16mm,已经成了一种行业“规范”,因此,到了CCD/CMOS成像元件问世后,也就沿用了这个“规范”。 真空管影像传感器 有了固定单位的CCD 尺寸就不难了解余下CCD 尺寸比例定义了,例如: 1/2" CCD的对角线就是1"的一半为8mm,面积约为1/4,1/4" 就是1"的1/4,对角线长度即为4mm。 目前市面上消费型数码相机的数量几乎占掉了总产量的7成,这一类型的特色多是轻薄短小,使用感光器件的长宽比皆为4:3,并且清一色都是1" 以下的设计;比较常见的有:1/2.7"、1/2.5"、1/2.3"、1/1.8"、2/3"等。数码单反(DSLR)的CCD 或CMOS 因为所使用的长宽比由4:3改成3:2,就不以对角线“英吋”作为表达方式,而改为与135相机(底片尺寸36×24mm)相同的直接称呼,比这小一号的或称为APS (25.1×16.7mm)/APS-C 尺寸(23.7×15.6mm)也是同样的道理。为了补足APS-C 以下的CCD 尺寸空间,由日本Olympus 主导的4/3 系统(比一般消费型数码相机的1吋型CCD 再大上1/3 (22.5 ÷ 16mm)),但比例不是3:2 而是4:3 ,是故沿用“英吋”的称法,命名为4/3 或是1又1/3 。

如何合理地选择工业相机

如何合理地选择工业相机 在机器视觉、工业影像等实际应用中应该如何选择工业相机呢? 1、模拟相机&&数字相机 模拟相机必须带数字采集卡,标准的模拟相机分辨率很低,另外帧率也是固定的。这个要根据实际需求来选择。另外模拟相机采集到的是模拟信号,经数字采集卡转换为数字信号进行传输存储。模拟信号可能会由于工厂内其他设备(比如电动机或高压电缆)的电磁干扰而造成失真。随着噪声水平的提高,模拟相机的动态范围(原始信号与噪声之比)会降低。动态范围决定了有多少信息能够被从相机传输给计算机。数字相机采集到的是数字信号,数字信号不受电噪声影响,因此,数字相机的动态范围更高,能够向计算机传输更精确的信号。 2、相机分辨率 根据系统的需求来选择相机分辨率的大小,下面以一个应用案例来分析。 应用案例:假设检测一个物体的表面划痕,要求拍摄的物体大小为10*8mm,要求的检测精度是0.01mm。首先假设我们要拍摄的视野范围在12*10mm,那么相机的最低分辨率应该选择在:(12/0.01)*(10/0.01)=1200*1000,约为120万像素的相机,也就是说一个像素对应一个检测的缺陷的话,那么最低分辨率必须不少于120万像素,但市面上常见的是130万像素的相机,因此一般而言是选用130万像素的相机。但实际问题是,如果一个像素对应一个缺陷的话,那么这样的系统一定会极不稳定,因为随便的一个干扰像素点都可能被误认为缺陷,所以我们为了提高系统的精准度和稳定性,最好取缺陷的面积在3到4个像素以上,这样我们选择的相机也就在130万乘3以上,即最低不能少于300万像素,通常采用300万像素的相机为最佳(我见过最多的人抱着亚像素不放说要做到零点几的亚像素,那么就不用这么高分辨率的相机了。比如他们说如果做到0.1个像素,就是一个缺陷对应0.1个像素,缺陷的大小是由像素点个数来计算的,试问0.1个像素的面积怎么来表示?这些人以亚像素来忽悠人,往往说明了他们的没有常识性)。换言之,我们仅仅是用来做测量用,那么采用亚像素算法,130万像素的相机也能基本上满足需求,但有时因为边缘清晰度的影响,在提取边缘的时候,随便偏移一个像素,那么精度就受到了极大的影响。故我们选择300万的相机的话,还可以允许提取的边缘偏离3个像素左右,这就很好的保证了测量的精度。

数码相机入门教程(一)(版)

数码相机分类 产品类型可以理解为数码相机的“人为”分类,根据数码相机最常用的用途可以简单分为:单反相机,卡片相机,长焦相机和家用相机。 单反数码相机指的是单镜头反光数码相机,这是单反相机与其它数码相机的主要区别。卡片数码相机在业界内没有明确的概念,仅指那些小巧的外形、相对较轻的机身以及超薄时尚的设计是衡量此类数码相机的主要标准。长焦数码相机指的是具有较大光学变焦倍数的机型,而光学变焦倍数越大,能拍摄的景物就越远。传统对家用机定义不是很清楚,一般对成像没有特别高的要求,主要用来拍摄人物的都可称作家用机。 单反相机: 单反数码相机指的是单镜头反光数码相机,即Digital数码、Single单独、Lens镜头、Reflex 反光的英文缩写DSLR。目前市面上常见的单反数码相机品牌有:尼康、佳能、宾得、富士等。 工作原理: 在单反数码相机的工作系统中,光线透过镜头到达反光镜后,折射到上面的对焦屏并结成影像,透过接目镜和五棱镜,我们可以在观景窗中看到外面的景物。与此相对的,一般数码相机只能通过LCD屏或者电子取景器(EVF)看到所拍摄的影像。显然直接看到的影像比通过处理看到的影像更利于拍摄。 在DSLR拍摄时,当按下快门钮,反光镜便会往上弹起,感光元件(CCD或CMOS)前面的快门幕帘便同时打开,通过镜头的光线便投影到感光原件上感光,然后后反光镜便立即恢复原状,观景窗中再次可以看到影像。单镜头反光相机的这种构造,确定了它是完全透过镜头对焦拍摄的,它能使观景窗中所看到的影像和胶片上永远一样,它的取景范围和实际拍摄范围基本上一致,十分有利于直观地取景构图。 主要特点: 单反数码相机的一个很大的特点就是可以交换不同规格的镜头,这是单反相机天生的优点,是普通数码相机不能比拟的。 另外,现在单反数码相机都定位于数码相机中的高端产品,因此在关系数码相机摄影质量的感光元件(CCD或CMOS)的面积上,单反数码的面积远远大于普通数码相机,这使得单反数码相机的每个像素点的感光面积也远远大于普通数码相机,因此每个像素点也就能表现出更加细致的亮度和色彩范围,使单反数码相机的摄影质量明显高于普通数码相机。 卡片相机: 卡片相机在业界内没有明确的概念,仅指那些小巧的外形、相对较轻的机身以及超薄时尚的设计是衡量此类数码相机的主要标准。其中索尼T系列、奥林巴斯AZ1和卡西欧Z系列等都应划分于这一领域。 主要特点: 卡片数码相机可以不算累赘地被随身携带;而在正式场合把它们放进西服口袋里也不会坠得外衣变形;女士们的小手包再也不难找到空间挤下它们;在其他场合把相机塞到牛仔裤口袋或者干脆挂在脖子上也是可以接受的。 虽然它们功能并不强大,但是最基本的曝光补偿功能还是超薄数码相机的标准配置,再加上区域或者点测光模式,这些小东西在有时候还是能够完成一些摄影创作。至少你对画面的曝光可以有基本控制,再配合色彩、清晰度、对比度等选项,很多漂亮的照片也可以来自这些被“高手”们看不上的小东西。 卡片相机和其他相机区别: 优点:时尚的外观、大屏幕液晶屏、小巧纤薄的机身,操作便捷。 缺点:手动功能相对薄弱、超大的液晶显示屏耗电量较大、镜头性能较差。 长焦相机:

工业相机的原理及选择

工业相机的原理及选择 随着工业4.0的到来,机器视觉系统在智能制造领域的应用越来越广泛,相机、镜头是机器视觉的重要组成部分,合适的相机和镜头决定了系统应用的好坏。因此,选择合适的工业相机与镜头非常重要,本文主要介绍如何选择合适的工业相机和对应的镜头。 小孔成像原理 由光源A发出的一束光线通过一个小孔后,在孔后面的屏幕上就会留下一个光斑。同理光源B也会在屏幕上形成一个光斑,如果A和B离得足够远,它们在屏幕上的光斑也分开比较远,这就得到了物体AB的一个比较清晰的像。 凸透镜成像原理

由光源发出的一束光线,经过透镜的折射作用后方向和发散度都出现变化,在像平面上形成一个新的交点,即像点。 工业相机结构和成像过程 被摄物通过镜头汇聚光线,使机身内部的感光材料(就是传统的胶片,或者说现在数码时代说的ccd、cmos)感知光线,然后通过相应的光电或者化学反应,让影像清晰的留在感光材料上,并通过光电技术存储在存储卡上。光线通过镜头后,在机身内有一个五棱镜,光线通过反复折射后,将影像还原成了正的。如下图所示。 工业相机的选择步骤: 步骤一,需要先知道系统精度要求和工业相机分辨率; 步骤二,需要知道系统速度要求与工业相机成像速度; 步骤三,需要将工业相机与图像采集卡一并考虑,因为这涉及到两者的匹配; 步骤四,价格的比较。 选择工业相机应注意什么?

1、根据应用的不同来决定是需要选用CCD还是CMOS相机。CCD工业相机主要应用在运动物体的图像提取,如贴片机,当然随着CMOS技术的发展,许多贴片机也在选用CMOS工业相机。用在视觉自动检查的方案或行业中一般用CCD工业相机比较多。CMOS工业相机由成本低,功耗低也应用越来越广泛。 2、分辨率的选择,首先考虑待观察或待测量物体的精度,根据精度选择分辨率。其次看工业相机的输出,若是体式观察或机器软件分析识别,分辨率高是有帮助的;若是VGA输出或USB输出,在显示器上观察,则还依赖于显示器的分辨率,工业相机的分辨率再高,显示器分辨率不够,也是没有意义的;利用存储卡或拍照功能,工业相机的分辨率高也是有帮助的。 3、与镜头的匹配,传感器芯片尺寸需要小于或等于镜头尺寸,C或CS安装座也要匹配(或者增加转接口); 4、相机帧数选择,当被测物体有运动要求时,要选择帧数高的工业相机。但一般来说分辨率越高,帧数越低。

工业相机安装使用说明书

工业相机 安装使用说明书文件版本:V1.2

目录 1产品简介 (3) 2程序的安装 (4) 3演示软件的使用方法 (8) 3.1菜单栏 (9) 3.2工具栏 (9) 3.3视频预览区 (11) 3.4状态栏 (12) 4相机DirectShow接口的使用方法 (13) 5相机TWAIN接口的使用方法 (17) 在Photoshop中使用TWAIN接口捕获图像 (17) 在Scope photo中使用TWAIN接口捕获图像 (19) 在Image-Pro Plus中使用TWAIN接口捕获图像 (21) 6相机Halcon接口的使用方法 (22) 7相机Labview接口的使用方法 (27) 8如何使用相机SDK进行二次开发 (29)

1产品简介 我公司工业相机有如下特点: 1,统一的SDK接口。我公司USB2.0、USB3.0、千兆网、1394接口的CCD、CMOS相机,都使用同一套SDK、演示平台,您无需关心不同型 号、接口的相机带来的差异。 2,完美支持一台电脑接多个相机。用户或者开发人员可以在配置界面中方便修改指定相机的名称,用来区分多相机,相机名称修改后,无论接在哪台 电脑、无论是使用DSHOW、TWAIN、还是SDK接口,都会显示为您修改 后的名字,您无需再为一台电脑接多个相机难以区分而烦恼。 3,相机支持4组参数保存与加载,同时,支持从文件中加载参数,方便量产。支持多种不同的参数加载模式,可以按照相机的名称、唯一序列号、 或者型号来进行加载,以满足您不同的使用场合需求。 4,提供丰富的图像处理接口,算法关键部分采用硬件加速功能,有效提升图像质量的同时降低CPU占用率。 5,支持多种第三方软件接口。目前已经支持的接口有DirectShow、 TWAIN、Halcon、Labview、OpenCV、OCX。 6,所有相机均支持时间戳功能,能够准确记录图像采集的时间点,录像文件能够准确还原拍摄时的时间。 7,提供中英文两个版本,可动态切换。 8,人性化的相机配置界面。相机配置按功能归类,方便操作,并且不同的软件接口下都采用同样的配置界面,无论您使用哪种软件接口,都能快速的 熟悉相机的操作。 9,提供OEM、ODM服务,支持软件定制(PID,VID,设备名,文件名等),支持硬件PCB定制、增加输入、输出IO等,同时承接各种CMOS、CCD相 机的订制开发。

工业相机的选型规则

工业相机的选型规则 工业相机是机器视觉系统中的一个关键组件,其最本质的功能就是将光信号转变成AFT-808小型高清工业相机为有序的电信号。选择合适的相机也是机器视觉系统设计中的重要环节,相机不仅是直接决定所采集到的图像分辨率、图像质量等,同时也与整个系统的运行模式直接相关。 在机器视觉系统应用中,工业相机、工业镜头、图像采集卡、机器视觉光源、机器视觉系统平台软件,在选择过程中存在很多问题,那么今天就工业相机、工业CCD摄像头的选择,给大家介绍一些经验。 1、选择工业相机的信号类型 工业相机从大的方面来分有模拟信号和数字信号两种类型。 模拟相机必须有图像采集卡,标准的模拟相机分辨率很低,一般为768*576,另外帧率也是固定的,25帧每秒。另外还有一些非标准的信号,多为进口产品,那么成本就是比较高了,性价比很低。所以这个要根据实际需求来选择。另外模拟相机采集到的是模拟信号,经数字采集卡转换为数字信号进行传输存储。模拟信号可能会由于工厂内其他设备(比如电动机或高压电缆)的电磁干扰而造成失真。随着噪声水平的提高,模拟相机的动态范围(原始信号与噪声之比)会降低。动态范围决定了有多少信息能够被从相机传输给计算机。工业数字相机采集到的是数字信号,数字信号不受电噪声影响,因此,数字相机的动态范围更高,能够向计算机传输更精确的信号。 2、工业相机的分辨率需要多大。 根据系统的需求来选择相机分辨率的大小,下面以一个应用案例来分析。 应用案例:假设检测一个物体的表面划痕,要求拍摄的物体大小为10*8mm,要求的检测精度是0.01mm。首先假设我们要拍摄的视野范围在12*10mm,那么相机的最低分辨率应该选择在:(12/0.01)*(10/0.01)=1200*1000,约为120万像素的相机,也就是说一个像素对应一个检测的缺陷的话,那么最低分辨率必须不少

工业相机概述.docx

工业摄像机,选择TEO 工业相机概述 工业相机是机器视觉系统中的一个关键组件,其最本质的功能就是将光信号转变成为有序的电信号。选择合适的相机也是机器视觉系统设计中的重要环节,相机的不仅是直接决定所采集到的图像分辨率、图像质量等,同时也与整个系统的运行模式直接相关好的工业相机应具有高精度、高清晰度、色彩还原好、低噪声等特点,而且通过计算机可以编程控制曝光时间、亮度、增益等参数,另外图像窗口无级缩放,带有外触发输入,带有闪光灯控制输出等功能。 工业相机机器视觉系统中的一个关键组件,其最基础功能就是将光信号转变成为有序的电信号。选择合适的工业相机也是机器视觉系统设计中的重要环节,工业相机不仅是直接决定所采集到的图像分辨率、图像质量等,同时也与整个系统的运行模式直接相关。国内知名的工业相机生产销售商西安艾菲特光电技术有限公司,生产多种型号的工业相机,其产品量好,价格优,是各个企业首要之选。

工业摄像机,选择TEO 好的工业相机应具有高精度、高清晰度、色彩还原好、低噪声等特点,而且通过计算机可以编程控制曝光时间、亮度、增益等参数,另外图像窗口无级缩放,带有外触发输入,有闪光灯控制输出等功能。若你想了解更多关于工业相机的知识。 工业相机主要参数 1. 分辨率(Resolution):相机每次采集图像的像素点数(Pixels),对于工业数字相机一般是直接与光电传感器的像元数对应的,对于工业数字模拟相机则是取决于视频制式,PAL制为768*576,NTSC制为640*480。 2. 像素深度(Pixel Depth):即每像素数据的位数,一般常用的是8Bit,对于工业 数字相机一般还会有10Bit、12Bit等。 3. 最大帧率(Frame Rate)/行频(Line Rate):相机采集传输图像的速率,对于面阵相机一般为每秒采集的帧数(Frames/Sec.),对于线阵相机机为每秒采集的行 数(Hz)。

如何选择合适工业相机来完成机器视觉图像采集

如何选择合适工业相机来完成机器视觉图 像采集 整理:视清科技 在一个完整的机器视觉系统中,图像采集的意义非常大,因为通过图像采集后,视频信号就可以转换为计算机使用的数字格式。以下是为机器视觉系统选择工业相机时需要注意的几个方面: 1. 提高分辨率的优缺点 虽然高分辨率工业相机有助于提高精确度,但是通过分析更清晰的,更精细的图像,就会降低了速度。工业数字相机传输图像数据是由一系列代表像素值的数字组成的。一个分辨率为200×100的相机具有20000个像素,因此,20000个数字值会被发送到采集系统。如果工业相机工作在25MHz的数据速率下,它每40纳秒传送一个值。这造成一幅整个图像需要大约0.0008秒,相当于1250帧/秒。而当分辨率提高到640×480会有307200个像素,大约是上面的15倍。使用同样的25MHz数据速率,采集整幅图像需要0.012288秒,或相当于81.4帧/秒。这些值都是期望值,实际的相机帧率会较低,因为我们不得不添加曝光和调整次数,但是工业相机分辨率的增加会导致工业相机帧率成比例的下降。虽然各种工业相机输出配置会在不牺牲帧率的情况下提高工业相机分辨率,但是这也需要增加复杂性和更高的成本。 2. 速度和曝光 在选择一款工业数字相机时,物体成像的速度必须充分考虑好。例如,假设在拍摄过程中,物体在曝光中没有移动,可用相对简单和便宜的工业相机;对于静止或缓慢移动的物体,面阵工业相机最适合于对静止或移动缓慢的物体成像。因为整个面阵区域必须一次曝光,在曝光时间当中任何的移动会导致图像的模糊,但是,运动模糊可以通过减少曝光时间或使用闪光灯来控制;对于快速移动的物体,当对运动的物体使用一个面阵工业相机时,需要考虑在曝光时间当中处于工业相机当中的运动对象数量,还需要考虑物体上能用一个像素表征的最小特征,也就是对象分辨率,在采集运动物体的图像的拇指规则就是曝光必须发生在采集物体移动量小于一个像素的时间内。如果你采集的物体是在以1厘米/秒的速度匀速移动,而且物体分辨率已经设置为1 pixel/mm,那么需要的最大曝光时间是1/10每秒。因为物体移动一个距离恰好等于相机传感器中的一个像素,当使用最大曝光时间时这里会有一定数量的模糊。在这种情况下,一般倾向于将曝光时间设置的比最大值要快,比如1/20每秒,就能保持物体在移动半个像素内成像。如果同样的物体以1厘米/秒的速度移动,物体分辨率为1 pixel/微米,那么一秒中所需要的最大曝光是1/10000.曝光设置的对快取决于所采用的相机,还有你是否能够给物体足够的光来获得一幅好的图像。 3. 帧率

数码相机的简介

数码相机的简介 数码相机分类 根据数码相机用途可以简单分为:单反相机,卡片相机,长焦相机和家用相机。 单反相机:单反数码相机指的是单镜头反光数码相机,这是单反相机与其它数码相机的主要区别。即digital数码、single单独、lens镜头、reflex反光的。目前市面上常见的单反数码相机品牌有:尼康、佳能、宾得、富士等等。 主要特点:单反数码相机的一个很大的特点就是可以交换不同规格的镜头,这是单反相机天生的优点,是普通数码相机不能比拟的。 另外,现在单反数码相机都定位于数码相机中的高端产品,因此在关系数码相机摄影质量的感光元件(ccd或cmos)的面积上,单反数码的面积远远大于普通数码相机,这使得单反数码相机的每个像素点的感光面积也远远大于普通数码相机,因此每个像素点也就能表现出更加细致的亮度和色彩范围,使单反数码相机的摄影质量明显高于 普通数码相机。 卡片相机:卡片数码相机在业界内没有明确的概念,仅指那些小巧的外形、相对较轻的机身以及超薄时尚的设计是衡量此类数码相机的主要标准。

主要特点:卡片数码相机可以不算累赘地被随身携带;而在正式场合把它们放进西服口袋里也不会坠得外衣变形;女士们的小手包再也不难找到空间挤下它们;在其他场合把相机塞到牛仔裤口袋或者干脆挂在脖子上也是可以接受的。虽然它们功能并不强大,但是最基本的曝光补偿功能还是超薄数码相机的标准配置,再加上区域或者点测光模式,这些小东西在有时候还是能够完成一些摄影创作。至少你对画面的曝光可以有基本控制,再配合色彩、清晰度、对比度等选项,很多漂亮的照片也可以来自这些被“高手”们看不上的小东西。 卡片相机和其他相机区别:优点:时尚的外观、大屏幕液晶屏、小巧纤薄的机身,操作便捷。缺点:手动功能相对薄弱、超大的液晶显示屏耗电量较大、镜头性能较差。 长焦相机:长焦数码相机指的是具有较大光学变焦倍数的机型,而光学变焦倍数越大,能拍摄的景物就越远。主要特点:长焦数码相机主要特点其实和望远镜的原理差不多,通过镜头内部镜片的移动而改变焦距。当我们拍摄远处的景物或者是被拍摄者不希望被打扰时,长焦的好处就发挥出来了。另外焦距越长则景深越浅,和光圈越大景深越浅的效果是一样的,浅景深的好处在于突出主体而虚化背景,相信很多fans在拍照时都追求一种浅景深的效果,这样使照片拍出来更加专业。一些镜头越长的数码相机,内部的镜片和感光器移动空间更大,所以变焦倍数也更大。 如今数码相机的光学变焦倍数大多在3倍-12倍之间,即可把10米以外的物体拉近至5-3米近;也有一些数码相机拥有10倍的光学变焦效果。家用摄录机的光学变焦倍数在10倍-22倍,能比较清楚的拍到70米外的东西。使用增倍镜能够增大摄录机的光学变焦倍数。如果光学变焦倍数不够,我们可以在镜头前加一增倍镜,其计算方法是这样的,一个2

工业相机类型简介

工业相机类型简介 一、工业相机类型简介 CCD 是60年代末期由贝尔试验室发明。开始作为一种新型的PC存储电路,很快CCD具有许多其他潜在的应用,包括信号和图像(硅的光敏性)处理。 CCD 是在薄的硅晶片上处理一系列不同的功能,在每一个硅晶片上分布几个相同的IC等可产生功能的元件,被选择的IC从硅晶片上切下包装在载体里用在系统上。总结下来,CCD 主要有以下几种类型: 1、面阵CCD工业相机: 允许拍摄者在任何快门速度下一次曝光拍摄移动物体。 2、线阵CCD工业相机: 用一排像素扫描过图片,做三次曝光——分别对应于红、绿、蓝三色滤镜,正如名称所表示的,线性传感器是捕捉一维图像。初期应用于广告界拍摄静态图像,线性阵列,处理高分辨率的图像时,受局限于非移动的连续光照的物体。 3、三线传感器CCD工业相机: 在三线传感器中,三排并行的像素分别覆盖RGB滤镜,当捕捉彩色图片时,完整的彩色图片由多排的像素来组合成。三线CCD传感器多用于高端数码相机,以产生高的分辨率和光谱色阶。 4、交织传输CCD工业相机: 这种传感器利用单独的阵列摄取图像和电量转化,允许在拍摄下一图像时在读取当前图像。交织传输CCD通常用于低端数码相机、摄像机和拍摄动画的广播拍摄机。 5、全幅面CCD工业相机: 此种CCD 具有更多电量处理能力,更好动态范围,低噪音和传输光学分辨率,全幅面CCD 允许即时拍摄全彩图片。全幅面CCD由并行浮点寄存器、串行浮点寄存器和信号输出放大器组成。全幅面CCD 曝光是由机械快门或闸门控制去保存图像,并行寄存器用于测光和读取测光值。图像投摄到作投影幕的并行阵列上。此元件接收图像信息并把它分成离散的由数目决定量化的元素。这些信息流就会由并行寄存器流向串行寄存器。此过程反复执行,直到所有的信息传输完毕。接着,系统进行精确的图像重组。

工业相机的参数及选型

工业相机的参数及选型 分辨率(Resolution):相机每次采集图像的像素点数(Pixels),对于数字相机一般是直接与光电传感器的像元数对应的,对于模拟相机机则是取决于视频制式,PAL制为768*576,NTSC制为640*480,模拟相机已经逐步被数字相机代替,且分辨率已经达到6576*4384。 像素深度(Pixel Depth):即每像素数据的位数,一般常用的是8Bit,对于数字相机机一般还会有10Bit、12Bit、14Bit等。 最大帧率(Frame Rate)/行频(Line Rate):相机采集传输图像的速率,对于面阵相机一般为每秒采集的帧数(Frames/Sec.),对于线阵相机为每秒采集的行数(Lines/Sec.)。 曝光方式(Exposure)和快门速度(Shutter):对于线阵相机都是逐行曝光的方式,可以选择固定行频和外触发同步的采集方式,曝光时间可以与行周期一致,也可以设定一个固定的时间;面阵相机有帧曝光、场曝光和滚动行曝光等几种常见方式,数字相机一般都提供外触发采图的功能。快门速度一般可到10微秒,高速相机还可以更快。 像元尺寸(Pixel Size):像元大小和像元数(分辨率)共同决定了相机靶面的大小。数字相机像元尺寸为3μm~10μm,一般像元尺寸越小,制造难度越大,图像质量也越不容易提高。 光谱响应特性(Spectral Range):是指该像元传感器对不同光波的敏感特性,一般响应范围是350nm-1000nm,一些相机在靶面前加了一个滤镜,滤除红外光线,如果系统需要对红外感光时可去掉该滤镜。 接口类型:有Camera Link接口,以太网接口,1394接口、USB接口输出,目前最新的接口有CoaXPress接口。

工业相机的应用及基础知识

工业相机的应用及基础知识 随着科技的飞速发展,工业数字相机在机器视觉、工业检测、图像处理、模式识别、人脸识别等等方面有着非常广泛的应用,现整理工业数字相机的相关基础知识做一分类整理与大家共享。 1、工业相机的主要参数。 ①分辨率② 速度(帧频/行频)③噪声④信噪比⑤动态范围⑥像元深度 ⑦光谱响应⑧光学接口 2、工业相机分辨率的定义。 分辨率是相机最基本的参数,由相机所采用的芯片分辨率决定,是芯片靶面排列的像元数量。通常面阵相机的分辨率用水平和垂直分辨率两个数字表示,如:1920(H)x 1080(V),前面的数字表示每行的像元数量,即共有1920个像元,后面的数字表示像元的行数,即1080行。现在相机的分辨率通常表示多少K,如1K(1024),2K(2048), 3K(4096)等。在采集图像时,相机的分辨率对图像质量有很大的影响。在对同样大的视场(景物范围)成像时,分辨率越高,对细节的展示越明显。 3、工业相机的帧频和行频的概念 相机的帧频/行频表示相机采集图像的频率,通常面阵相机用帧频表示,单位fps(Frame Per second),如30fps,表示相机再1秒钟内最多能采集30帧图像;例如:MV-VD078SC 这个型号的相机,线阵相机通常用行频便是单位KHz,如12KHz表示相机再1秒钟内最多能采集12000行图像数据。速度是相机的重要参数,在实际应用中很多时候需要对运动物体成像。相机的速度需要满足一定要求,才能清晰准确的对物体成像。相机的帧频和行频首先受到芯片的帧频和行频的影响,芯片的设计最高速度则主要是由芯片所能承受的最高时钟决

定。 4、工业相机噪声的概念 工业相机的噪声是指成像过程中不希望被采集到的,实际成像目标外的信号。根据欧洲相机测试标准EMVA1288中,定义的相机中的噪声从总体上可分为两类:一类是由有效信号带来的符合泊松分布的统计涨落噪声,也叫散粒噪声(shot noise),这种噪声对任何相机都是相同的,不可避免,尤其确定的计算公式。(就是:噪声的平方=信号的均值)。第二类是相机自身固有的与信号无关的噪声,它是由图像传感器读出电路、相机信号处理与放大电路等带来的噪声,每台相机的固有噪声都不一样。另外,对数字相机来说,对视频信号进行模拟转换时会产生量化噪声,量化位数越高,噪声越低。 5、工业相机信噪比的概念 相机的信噪比定义为图像中信号与噪声的比值(有效信号平均灰度值与噪声均方根的比值),代表了图像的质量,图像信噪比越高,图像质量越好。 6、工业相机的动态范围。 相机的动态范围表明相机探测光信号的范围,动态范围可用两种方法来界定,一种是光学动态范围,指饱和时最大光强与等价于噪声输出的光强的比值,由芯片的特性决定。另一种是电子动态范围,他指饱和电压和噪声电压之间的比值。对于固定相机其动态范围是一个定值,不随外界条件变化而变化。在线性响应去,相机的动态范围定义为饱和曝光量与噪声等效曝光量的比值: 动态范围=光敏元的满阱容量/等效噪声信号 动态范围可用倍数、dB或Bit等方式来表示。动态范围大,则相机对不同的光照强度有更强的适应能力。 7、工业相机里的像元深度。

相关文档
最新文档