位移检测传感器应用

位移检测传感器应用
位移检测传感器应用

位移检测传感器的应用

实验课程:

实验名称:

姓名:

学号:

班级:

指导教师:

实验日期:

位移检测传感器应用

一、实验类型

综合性实验。

二、实验目的和要求

1.了解微位移、小位移、大位移的检测方法。

2.运用所学过的相关传感器设计三种位移检测系统。

3.对检测系统进行补偿和标定。

三、实验条件

本实验在没有加速度、振动、冲击(除非这些参数本身就是被测物理量)

及环境温度一般为室温(20±5℃)、相对湿度不大于85% ,大气压力为101±7kPa的情况下进行。

四、实验方案设计

为了满足实验要求,现使用电涡流,光纤,和差动三种传感器设计位移检测系统,电涡流取0.1mm为单位,光纤取0.5mm为单位,差动取0.2为单位。进行试验后,用MATLAB处理数据,分析结论。

(一):电涡流传感器测位移

电涡流式传感器是一种建立在涡流效应原理上的传感器。电涡流式传感器由传感器线圈和被测物体(导电体—金属涡流片)组成,如图所示。根据电磁感应原理,当传感器线圈(一个扁平线圈)通以交变电流(频率较高,一般为1MHz~2MHz)I1时,线圈周围空间会产生交变磁场H1,当线圈平面靠近某一导体面时,由于线圈磁通链穿过导体,使导体的表面层感应出呈旋涡状自行闭合的电流I2,而I2所形成的磁通链又穿过传感器线圈,这样线圈与涡流“线圈”形成了有一定耦合的互感,最终原线圈反馈一等效电感,从而导致传感器线圈的阻抗Z发生变化。我们可以把被测导体上形成的电涡等效成一个短路环,这样就可得到如图中的等效电路。

电涡流传感器原理图电涡流传感器等效电路图

图1

(二):光纤传感器测位移

实验原理:反射式光纤传感器工作原理如下图所示,光纤采用Y型结构,两束多模光纤合并于一端组成光纤探头,一束作为接受,另一束为光源发射,近红外二极管发出的近红外光经光源光纤照射至被测物,由被测物反射的光信号经接受光纤传输至光电转换器转换为电信号,反射光的强弱与反射物与光纤探头的距离成一定的比例关系,通过对光强的检测就可得知位置量的变化。

图2

(三):差动电感式传感器测位移

实验原理:差动动螺管式电感传感器由电感线圈的二个次级线圈反相串接而成,工作在自感基础上,由于衔铁在线圈中位置的变化使二个线圈的电感量发生变化,包括两个线圈在内组成的电桥电路的输出电压信号因而发生相应变化。下图为差动式位移检测传感器原理图。

图3

五、实验步骤

(一):电涡流传感器测位移

1.按下图2将电涡流传感器装好;

图4

2.在测微头端部装上铁质金属圆盘,作为电涡流传感器的被测体。调节测微头,使铁质金属圆盘的平面贴到电涡流传感器的探测端,固定测微头。

图5

3.传感器实验模块按图3连接,将电涡流传感器连接线接到模块上标有“电压

输出”的两端,再将实验模块输出端Uo与数显电压表单元输入端Ui相接。数显电压表量程切换开关选择电压20V档,模块电源用导线从实验台接入+15V电源。

4.打开实验台电源,记下数显表读数,然后每隔0.2mm读一个数,直到输出几乎不变为止。

表一

(二):光纤传感器测位移

1.安装光纤位移传感器,二束光纤插入实验板上光电变换座孔上。其内部已和发光管D及光电转换管T相接。

2、将光纤实验模板输出端V01与数显单元相连。

3、实验模板接入±15V电源,合上主控箱电源开关,调R W使数显表显示为零。4.将测微头起始位置调到14cm处,手动使反射面与光纤探头端面紧密接触,

固定测微头。

5.将模块输出“Uo”接到直流电压表(20V档),仔细调节电位器Rw使电压表显示为零。

6.旋动测微器,使反射面与光纤探头端面距离增大,每隔0.01mm读出一次输出电压U值,填入表二。

图6 光纤传感器安装示意图

图7 光纤传感器位移实验接线图

表二

(三):差动电感式传感器测位移

1、将差动变压器安装在差动变压器实验模块上,并将传感器引线插入实验模块插座中。

2、连接主机与实验模块电源线,按下图连线组成测试系统,两个次级线圈必须接成差动状态。

3、使差动电感传感器的铁芯偏在一边,使差分放大器有一个较大的输出,调节移相器使输入输出同相或者反相,然后调节电感传感器铁芯到中间位置,直至差分放大器输出波形最小。

4、调节Rw1和Rw2使电压表显示为零,当衔铁在线圈中左、右位移时,L2≠L3,电桥失衡,输出电压的大小与衔铁位移量成比例。

5、以衔铁位置居中为起点,分别向左、向右各位移5mm,记录V、X值并填入表三。

图8应变式传感器安装示意图

图9 全桥性能实验接线图

表三

六、原始数据记录

表一:电涡流传感器实验测量数据

七、数据整理、分析

(一)、电涡流传感器测位移

1、用matlab作出表一的拟合直线和正行程位移----电压曲线,用matlab编程,

其程序如下所示:

x1=5:0.2:11.8;

y1=[1.62 1.68 2.15 2.65 2.94 3.27 3.56 3.70 3.94 4.12 4.25 4.39 4.46 4.57

4.64 4.69 4.78 4.8 4.85 4.91 4.94 4.96 4.95 4.97 4.95 4.96 4.98 4.98

5.05

5.08 5.09 5.08 5.08 5.2 5.21];

x2=12:-0.2:5;

y2=[5.2 5.2 5.2 5.15 5.17 5.16 5.14 5.12 5.10 5.10 5.06 5.06 5.05 5.02 4.98 4.94 4.90 4.89 4.85 4.77 4.68 4.62 4.54 4.42 4.29 4.12 4.02 3.78 3.59

3.31 2.94 2.70 2.22 1.85 1.67];

k=polyfit(x1,y1,1) (%计算拟合直线的斜率b、截距a)

Y=polyval(k,x1) (%计算X数据点的拟合输出值)

hold

plot(x1,y1,'r-',x1,Y,'g-')

grid on

xlabel('正行程位移值(mm)')

ylabel('正行程位电压(V)')

axis([0,12,0,7])

title('电涡流传感器测位移')

运行程序结果如下图所示:

图10:电涡流传感器正行程测位移

设拟合直线的直线方程位p=bx+a (b为拟合直线的斜率,a为截距)则:b=0.4368 a= 0.7301

2、计算其灵敏度和线性度。

传感器的灵敏度定义为在稳态下输出的变化对输入变化的比值,对于线性传感器,它的灵敏度就是静态特性的斜率,即灵敏度S=y/x=K,K为一常数,所以灵敏度为

S=0.4368(1)另一个重要参数是非线性误差,定义为实际静态特性曲线与拟合直线之间的偏差,即为

L

δ=100?±FS

y

L

(2)

式中L 最大非线性绝对误差;FS y 一输出满量程。

利用matlab 计算非线性误差,程序如下:

y2=y1-Y

(3)

L=max(y2) (%计算最大非线性绝对误差) (4)

运行程序,得到 L=0.5835,进而由线性度的定义,可得其线性度为:

L

δ=±5.21000.5835=±11.2%

2、迟滞性

传感器在正行程(输入量增大)反行程(输入量减小)期间输出与输入特性曲

线不重合的程度即为迟滞误差。。用matlab 计算传感器的迟滞性的程序如下所示:

x1=5:0.2:11.8;

y1=[1.62 1.68 2.15 2.65 2.94 3.27 3.56 3.70 3.94 4.12 4.25 4.39 4.46 4.57 4.64 4.69 4.78 4.8 4.85 4.91 4.94 4.96 4.95 4.97 4.95 4.96 4.98 4.98 5.05 5.08 5.09 5.08 5.08 5.2 5.21]; x2=12:-0.2:5;

y2=[5.2 5.2 5.2 5.15 5.17 5.16 5.14 5.12 5.10 5.10 5.06 5.06 5.05 5.02 4.98 4.94 4.90 4.89 4.85 4.77 4.68 4.62 4.54 4.42 4.29 4.12 4.02 3.78 3.59 3.31 2.94 2.70 2.22 1.85 1.67];

plot(x1,y1,'r-',x2,y2,'g-'),axis([0,14,0,7]),title(‘迟滞特性图’), xlabel(‘位移值(mm)’),ylabel('输出电压(V )')

运行程序结果如下图所示:

图七:电涡流正反行程测位移(迟滞性)(红线为正行程,绿线为反行程)

(一)、光纤传感器测位移

1、用matlab作出表二的拟合直线和正行程位移----电压曲线,用matlab编程,其程序如下所示:

x1=3:0.5:15;

y1=[3.83 3.71 3.51 3.26 3.01 2.76 2.53 2.31 2.10 1.91 1.73 1.57 1.43 1.3 1.17 1.07 0.97 0.88 0.79 0.72 0.66 0.60 0.53 0.49 0.48];

k=polyfit(x1,y1,1) (%计算拟合直线的斜率b、截距a)

Y=polyval(k,x1) (%计算X数据点的拟合输出值)

hold

plot(x1,y1,'r-',x1,Y,'g-')

grid on

xlabel('正行程位移值(mm)')

ylabel('正行程位电压(V)')

axis([0,16,0,7])

title('光纤传感器测位移')

运行程序结果如下图所示:

图11

设拟合直线的直线方程位p=bx+a (b 为拟合直线的斜率,a 为截距)则:

b=-0.2794 a= 4.3452 -0.2878 4.3446

2、计算其灵敏度和线性度。

传感器的灵敏度定义为在稳态下输出的变化对输入变化的比值,即灵敏度S=y /x=K ,K 为一常数,所以灵敏度为 S =-0.2794

(1)

另一个重要参数是非线性误差,定义为实际静态特性曲线与拟合直线之间的偏差,即为

L

δ=100?±FS

y

L

(2)

式中L 最大非线性绝对误差;FS y 一输出满量程。

用matlab 计算非线性误差提供了强大的数值计算功能,程序如下: y2=y1-Y

(3)

L=max(y2) (%计算最大非线性绝对误差) (4)

运行程序,得到 L= 0.4868,进而由线性度的定义,可得其线性度为:

L

δ=±3.83000.4868

=±12.7%

2、迟滞性

传感器在正行程(输入量增大)反行程(输入量减小)期间输出与输入特性曲线不重合的程度即为迟滞误差。。用matlab 计算传感器的迟滞性的程序如下所示:

x1=0:0.5:15;

y1=[0 0.9 2.04 2.91 3.51 3.79 3.83 3.71 3.51 3.26 3.01 2.76 2.53 2.31 2.10 1.91 1.73 1.57 1.43 1.3 1.17 1.07 0.97 0.88 0.79 0.72 0.66 0.60 0.53 0.49 0.48]; x2=15:-0.5:0;

y2=[0.48 0.5 0.55 0.61 0.67 0.73 0.81 0.89 0.98 1.08 1.19 1.31 1.45 1.59 1.75 1.92 2.12 2.33 2.55 2.77 3.04 3.29 3.53 3.74 3.87 3.87 3.60 3.00 2.12 0.98 0.03]; plot(x1,y1,'r-',x2,y2,'g-'),axis([0,16,0,7]),title(‘迟滞特性图’), xlabel(‘位移值(mm)’),ylabel('输出电压(V )');

运行程序结果如下图所示:

图12:光纤正反行程测位移(迟滞性) (红线为正行程,绿线为反行程)

(三) 、差动电感式传感器测位移实验数据的处理:

用matlab 作出表三的拟合直线和正行程位移----电压曲线,用matlab 编程,其程序如下所示: x1=10.2:0.4:19.8

y1= [0.23 0.98 1.89 2.81 3.91 4.64 5.53 6.50 7.33 8.30 9.27 10.21 11.20 12.25 13.23 14.59 15.60 16.69 17.50 18.20 18.70 19.08 19.33 19.50 19.57] k=polyfit(x1,y1,1) (%计算拟合直线的斜率b 、截距a)

Y=polyval(k,x1) (%计算X数据点的拟合输出值)

hold

plot(x1,y1,'r-',x1,Y,'g-')

grid on

xlabel('正行程位移值(mm)')

ylabel('正行程位电压(V)')

axis([10,23,0,25])

title('差动电感式传感器测位移')

运行程序结果如下图所示:

图13:正行程位移

设拟合直线的直线方程位p=bx+a (b为拟合直线的斜率,a为截距)则:b=2.2203 a=-22.2227

3、计算其灵敏度和线性度。

传感器的灵敏度定义为在稳态下输出的变化对输入变化的比值,即灵敏度S=y/x=K,K为一常数,所以灵敏度为

S =2.2203

(1)

另一个重要参数是非线性误差,定义为实际静态特性曲线与拟合直线之间的

偏差,即为

L

δ=100?±FS

y

L

(2)

式中L 最大非线性绝对误差;FS y 一输出满量程。

用matlab 计算非线性误差,程序如下:

y1=y-Y (3)

L=max(y1) (%计算最大非线性绝对误差) (4) 运行程序,得到 L= 1.1678,进而由线性度的定义,可得其线性度为:

L

δ=±19.57001.1678 =±5.97%

2、迟滞性

用matlab 计算传感器的迟滞性的程序如下所示:

x1=10.2:0.4:19.8;

y1=[0.23 0.98 1.89 2.81 3.91 4.64 5.53 6.50 7.33 8.30 9.27 10.21 11.20 12.25 13.23 14.59 15.60 16.69 17.50 18.20 18.70 19.08 19.33 19.50 19.57]; x2=19.8:-0.4:10.2; y2=[19.57 19.52 19.39 19.23 18.93 18.54 18.07 17.38 16.38 15.44 14.40 13.31 12.30 11.35 10.34 9.42 8.43 7.5 6.63 5.67 4.80 3.84 2.99 2.15 1.27];

plot(x1,y1,'r-',x2,y2,'g-'),axis([10,30,0,20]),title(‘迟滞特性图’), xlabel(‘位移值(mm)’),ylabel('输出电压(V )');

运行程序结果如下图所示:

图14:差动正反行程测位移(迟滞性)

位移传感器的工作原理都有哪些

电位器式位移传感器,位移传感器它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。电位器式位移传感器的可动电刷与被测物体相连。 下面笔者来跟大家讲一下位移传感器的工作原理都有哪些 由于作为确定位置的活动磁环和敏感元件并无直接接触,位移传感器因此传感器可应用在极恶劣的工业环境中,不易受油渍、溶液、尘埃或其它污染的影响,IP防护等级在IP67以上。此外,传感器采用了高科技材料和先进的电子处理技术,因而它能应用在高温、高压和高振荡的环境中。传感器输出信号为绝对位移值,即使电源中断、重接,数据也不会丢失,更无须重新归零。由于敏感元件是非接触的,就算不断重复检测,也不会对传感器造成任何磨损,可以大大地提高检测的可靠性和使用寿命。 磁致伸缩位移传感器,是利用磁致伸缩原理、通过两个不同磁场相交产生一个应变脉冲信号来准确地测量位置的。测量元件是一根波导管,波导管内的敏感元件由特殊的磁致伸缩材料制成的。测量过程是由传感器的电子室内产生电流脉冲,该电流脉冲在波导管内传输,从而在波导管外产生一个圆周磁场,当该磁场和套在波导管上作为位置变化的活动磁环产生的磁场相交时,由于磁致伸缩的作

用,波导管内会产生一个应变机械波脉冲信号,这个应变机械波脉冲信号以固定的声音速度传输,并很快被电子室所检测到。 磁致伸缩位移传感器是根据磁致伸缩原理制造的高精度、长行程绝对位置测量的位移传感器。它采用非接触的测量方式,由于测量用的活动磁环和传感器自身并无直接接触,不至于被摩擦、磨损,因而其使用寿命长、环境适应能力强,可靠性高,安全性好,便于系统自动化工作,即使在恶劣的工业环境下,也能正常工作。此外,它还能承受高温、高压和强振动,现已被广泛应用于机械位移的测量、控制中。 杭州奥仕通自动化系统有限公司成立于2011年,是一家专业提供塑料机械行业自动化系统解决方案的高科技技术企业。公司为意大利杰佛伦(GEFRAN)和法国赛德(CELDUC)在中国大陆地区的核心代理商,主要产品有塑料机械控制器(PLC)、伺服驱动器、位移传感器、压力传感器、注射力和合模力传感器、高温熔体压力传感器、固态继电器(SSR)、温控表等。

传感器的位移测量实验

位移测量实验报告 专业班级姓名实验仪器编号实验日期 一、实验目得 掌握常用得位移传感器得测量原理、特点及使用,并进行静态标定。 二、实验仪器 CSY10B型传感器系统实验仪。 三、实验内容 (一)电涡流传感器测位移实验· 1、测量原理 扁平线圈中通以交变电流,与其平行得金属片中产生电涡流。电涡流得大小影响线圈得阻抗Z。Z = f(ρ,μ,ω,x)。 不同得金属材料有不同得ρ、μ,线圈接入相应得电路中,用铁、铝两种不同得金属材料片分别标定出测量电路得输出电压U与距离x得关系曲线。 2、测试系统组建 电涡流线圈、电涡流变换器(包括振荡器、测量电路及低通滤波输出电路)、测微头、电压表、金属片。 3、试验步骤 4、数据分析与讨论 画出输入输出关系曲线,确定量程,非线性误差,在测量范围内计算灵敏度,进行误差分析。

(二)光纤传感器测位移实验 1、测量原理 反射式光纤传感器属于结构型, 工作原理如图。 反射式位移传感器原理 当发光二极管发射红外光线经光纤照射至反射体,被反射得光经接收光纤至光电元件。经光电元件转换为电信号。经相应得测量电路测出照射至光电元件得光强得变化。 2、组建测试系统 光纤、光电元件、发光二级管、光电变换测量电路、数字电压表、反射体(片)、测微头。 3、实验步骤 4、数据分析与讨论 画出输入输出关系曲线,确定量程,非线性误差,在测量范围内计算灵敏度,进行误差分析。 (三)电容式传感器测位移实验 1、测量原理

电容式传感器就是将被测物理量转换成电容量得变化来实现测量得。本实验采用得电容式传感器为二组固定极片与一组动极片组成二个差动变化得变面积型平行极板电容式传感器。。 电容式位移传感器测量系统方框图: 2、组建测试系统 需用器件与单元:机头中得振动台、测微头、电容传感器;显示面板中得电压表;调理电路面板传感器输出单元中得电容;调理电路单元中得电容变换器(包括了振荡电路、测量电路与低通滤波电路在内)、差动放大器。 3、实验步骤 1)、接线。调节测微头得微分筒使测微头得测杆端部与振动台吸合,再逆时针调节测微头得微分筒(振动台带动电容传感器得动片阻上升),直到电容传感器得动片组与静片组上沿基本平齐为止(测微头得读数大约为20mm左右)作为位移得起始点。 2)、检查接线无误后,合上主、副电源开关,读取电压表显示值为起始点得电压,填入下表中。 3)、仔细、缓慢地顺时针调节测微头得微分筒一圈△X=0、5mm电压表上读出相应得电压值,填入下表中,以后,每调节测微头得微分筒一圈△X=0、5mm读出相应得输出电压直到电容传感器得动片X(mm) U(V) X(mm) U(V) 4、数据分析与讨论 根据表得数据作出△X—U实验曲线,在实验曲线上截取线性比较好得线段作为测量范围并在测量范围内计算灵敏度S=△U/△X与线性度。实验完毕,关闭所有电源开关。 (四)霍尔片测位移实验(选做) 1、基本原理 如图,把一块宽为b,厚为d得P型半导体薄片垂直放在磁感应强度为B得磁场中,并纵向通以电流I ,此时在板得横向两侧面,之间就呈现出一定得电势差,这一现象称为霍尔效应。

传感器与自动检测技术课后习题答案余成波主编

读书破万卷下笔如有神 一、1.1什么是传感器?传感器特性在检测技术系统中起什么作用? 答:(1)能感受(或响应)规定的被测量,并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。(2)传感器是检测系统的第一个环节,其主要作用是将感知的被测非电量按一定的规律转化为某一种量值输出,通常是电信号。 1.2画出传感器系统的组成框图,说明各环节的作用。 答:(1)被测信息→敏感元件→转换元件→信号调理电路→输出信息 其中转换元件、信号调理电路都需要再接辅助电源电路;(2)敏感元件:感受被测量并输出与被测量成确定关系的其他量的元件;转换元件:可以直接感受被测量而输出与被测量成确定关系的电量;信号调理电路与转换电路:能把传感元件输出的电信号转换为便于显示、记录和控制的有用电路。 1.3什么是传感器的静态特性?它有哪些性能指标?如何用公式表征这些性能指标? 答:(1)指检测系统的输入、输出信号不随时间变化或变化缓慢时系统所表现出得响应特性。(2)性能指标有:测量范围、灵敏度、非线性度、回程误差、稳定度和漂移、重复性、分辨率和精确度。(3)灵敏度:s=&y/&x;非线性度=B/A*100%;回程误差=Hmax/A*100%;不重复性 Ex=+-&max/Yfs*100%;精度:A=&A/ Yfs*100%; 1.4什么是传感器的灵敏度?灵敏度误差如何表示? 答:(1)指传感器在稳定工作情况下输出量变化&y对输入量变化&x的比值;(2)灵敏度越高,测量精度就越大,但灵敏度越高测量范围就越小,稳定性往往就越差。 1.5什么是传感器的线性度?常用的拟合方法有哪几种? 答:(1)通常情况下,传感器的实际静态特性输出是条曲线而非直线,在实际工作中,为使仪器(仪表)具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线,线性度就是这个近似程度的一个性能指标。(2)方法有:将零输入和满量程输出点相连的理论直线作为一条拟合直线;将与特性曲线上个点偏差的平方和为最小理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。 二、2.1什么是测量误差?测量误差有几种表示方法?各有什么用途? 答:(1)由于测量过程的不完善或测量条件的不理想,从而使测量结果偏离其真值产生测量误差。(2)有绝对误差、相对误差、引用误差、分贝误差。(3)绝对误差用来评价相同被测量精度的高低;相对误差可用于评价不同被测量测量精度的高低;为了减少仪器表引用误差,一般应在满量程2/3范围以上进行测量。 2.2按测量手段分类有哪些测量方法?按测量方式分类有哪些测量方法? 答:(1)按测量手段分类:a、绝对测量和相对测量;b、接触测量和非接触测量;c、单项测量和综合测量;d、自动测量和非自动测量;e、静态测量和动态测量;f、主动测量和被动测量。(2)按测量方式分类:直接测量、间接测量和组合测量。 2.3产生系统误差的常见原因有哪些?常见减少系统误差的方法有哪些? 答:原因有:a、被检测物理模型的前提条件属于理想条件,与实际检测条件有出入;b、检测线路接头之间存在接触电动势或接触电阻;c、检测环境的影响;d、不同采样所得测量值的差异造成的误差;e、人为造成的误读等等。 2.4什么是准确度、精密度、精确度?并阐述其与系统误差和随机误差的关系? 答:测量的准确度是指在一定的实验条件下多次测定的平均值与真值相符合的程度,以误差来表示;它表示系统误差的大小。精密度是指在相同条件下,对被测量进行多次反复测量,测得值之间的一致程度。反映的是测得值的随机误差。精密度高,不一定正确度高。精确度是指被测量的测得值之间的一致程度以及与其真值的接近程度,即精密度与正确度的综合概念。从测量误差的

位移传感器的工作原理

位移传感器又称为线性传感器,它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器. 该位移传感器是一种属于金属感应的线性器件,接通电源后,在开关的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量的变化来完成无接触检测物体的目的。 该位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。位移传感器主要应用在自动化装备生产线对模拟量的智能控制。 磁致伸缩线性位移传感器的工作原理 磁致伸缩线性位移传感器的工作原理:当工作时,由电子仓内电子电路产生一起始脉冲,此起始脉冲在波导丝中传输时,同时产生了一沿波导丝方向前进的旋转磁场,当这个磁场与磁环或浮球中的永久磁场相遇时,产生磁致伸缩效应,使波导丝发生扭动,这一扭动被安装在电子仓内的拾能机构所感知并转换成相应的电流脉冲,通过电子电路计算出两个脉冲之间的时间差,即可精确测出被测的位移和液位。该产品主要应用于要求测量精度高、使用环境较恶劣的位移和液位测量系统中。具有精度高、重复性好、稳定可靠、非接触式测量、寿命长、安装方便、环境适应性强等特点。它的输出信号是一个真正的绝对位置输出,而不是比例的或需要再放大处理的信号,所以不存在信号漂移或变值的情况,因此不必像其它液位传感器一样需要定期重标和维护;正是因为它的输出信号为绝对值,所以即使电源中断重新接通也不会对数据接收构成问题,更无须重新归回零位。与其它液位变送器或液位计相比有明显的优势,它可广泛应用于石油、化工、制药、食品、饮料等行业,对各种液罐的液位进行计量和控制。作为位移传感器,它不但可以测量运动物体的直线位移,而且还可同时给出运动物体的速度模拟信号。 电涡流传感器是由DJ型前置放大器和电涡流探头组合构成,它是一种趋近式传感系统。由于其长期工作可靠性好,灵敏度高,抗干扰能力强,采用非接触测量,响应速度快,耐高温,能在油、汽、水等恶劣环境下长期连续工作,检测不受油污、蒸汽等介质的影响,已广泛应用于电力、石化、冶金、钢铁、航空航天等大中型企业,对各种旋转机械的轴位移、振动、转速、胀差、偏心、油膜厚度等进行在线监测和安全保护,为精密诊断系统提供了全息动态特性,有效地对设备进行保护。电涡流位移传感器系统主要包括探头、延伸电缆(可选)、前置器和附件。线性范围宽、动态响应好、抗干扰能力强。 电涡流传感器是以高频电涡流效应为原理的非接触式位移传感器。前置器内产生的高频电流从振荡器流入探头线圈中,线圈就产生了一个高频电磁场。当被测金属的表面靠近该线圈时,由于高频电磁场的作用,在金属表面产生感应电流,即电涡流。该电流产生一个交变磁场,方向与线圈磁场相反,这二个磁场相互迭加就改变了原线圈的阻抗。所以探头与被测金属表面距离的变化可通过探头线圈阻抗的变化来测量。前置器根据探头线圈阻抗的变化输出一个与距离成正比的直流电压。 此下为电阻式位移传感器:

位移传感器的主要分类

位移传感器的主要分类 根据运动方式 直线位移传感器: 直线位移传感器的功能在于把直线机械位移量转换成电信号。 为了达到这一效果,通常将可变电阻滑轨定置在传感器的固定部位,通过滑片在滑轨上的位移来测量不同的阻值。传感器滑轨连接稳态直流电压,允许流过微安培的小电流,滑片和始端之间的电压,与滑片移动的长度成正比。将传感器用作分压器可最大限度降低对滑轨总阻值精确性的要求,因为由温度变化引起的阻值变化不会影响到测量结果。 角度位移传感器: 角度位移传感器应用于障碍处理:使用角度传感器来控制你的轮子可以间接的发现障碍物。原理非常简单:如果马达角度传感器构造运转,而齿轮不转,说明你的机器已经被障碍物给挡住了。此技术使用起来非常简单,而且非常有效;唯一要求就是运动的轮子不能在地板上打滑(或者说打滑次数太多),否则你将无法检测到障碍物。一个空转的齿轮连接到马达上就可以避免这个问题,这个轮子不是由马达驱动而是通过装置的运动带动它:在驱动轮旋转的过程中,如果惰轮停止了,说明你碰到障碍物了。 根据材质 电位器式位移传感器:它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。图1中的电位器式位移传感器的可动电刷与被测物体相连。物体的位移引起电位器移动端的电阻变化。阻值的变化量反映了位移的量值,阻值的增加还是减小则表明了位移的方向。通常在电位器上通以电源电压,以把电阻变化转换为电压输出。线绕式电位器由于其电刷移动时电阻以匝电阻为阶梯而变化,其输出特性亦呈阶梯形。如果这种位移传感器在伺服系统中用作位移反馈元件,则过大的阶跃电压会引起系统振荡。因此在电位器的制作中应尽量减小每匝的电阻值。电位器式传感器的另一个主要缺点是易磨损。它的优点是:结构简单,输出信号大,使用方便,价格低廉。 霍耳式位移传感器:它的测量原理是保持霍耳元件(见半导体磁敏元件)的激励电流不变,并使其在一个梯度均匀的磁场中移动,则所移动的位移正比于输出的霍耳电势。磁场梯度越大,灵敏度越高;梯度变化越均匀,霍耳电势与位移的关系越接近于线性。图2中是三种产生梯度磁场的磁系统:a系统的线性范围窄,位移Z=0时,霍耳电势≠0;b系统当Z<2毫米时具有良好的线性,Z=0时,霍耳电势=0;c系统的灵敏度高,测量范围小于1毫

传感器与检测技术期末考试试卷及答案

传感器与自动检测技术 一、填空题(每题3分) 1、传感器通常由直接响应于被测量的敏感元件、产生可用信号输出的转换元件、以及相应的信号调节转换电路组成。 2、金属材料的应变效应是指金属材料在受到外力作用时,产生机械变形,导致其阻值发生变化的现象叫金属材料的应变效应。 3、半导体材料的压阻效应是半导体材料在受到应力作用后,其电阻率发生明显变化,这种现象称为压阻效应。 4、金属丝应变片和半导体应变片比较其相同点是它们都是在外界力作用下产生机械变形,从而导致材料的电阻发生变化。 5、金属丝应变片和半导体应变片比较其不同点是金属材料的应变效应以机械形变为主,材料的电阻率相对变化为辅;而半导体材料则正好相反,其应变效应以机械形变导致的电阻率的相对变化为主,而机械形变为辅。 6、金属应变片的灵敏度系数是指金属应变片单位应变引起的应变片电阻的相对变化叫金属应变片的灵敏度系数。 7、固体受到作用力后电阻率要发生变化,这种现象称压阻效应。 8、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器。 9、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器。 10、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器,传感器由在弹性元件上粘贴电阻敏感元件构成,弹性元件用来感知应变,电阻敏感元件用来将应变的转换为电阻的变化。 11、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器,传感器由在弹性元件上粘贴电阻敏感元件构成,弹性元件用来感知应变,电阻敏感元件用来将应变的转换为电阻的变化。 12、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器,传感器由在弹性元件上粘贴电阻敏感元件构成,弹性元件用来感知应变,电阻敏感元件用来将应变的转换为电阻的变化。 13、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器,传感器由在弹性元件上粘贴电阻敏感元件构成,弹性元件用来感知应变,电阻敏感元件用

激光位移传感器

随着21 世纪的到来,人们开始进入了以知识经济为特征的信息时代, 微电子技术、计算机技术、通讯网络技术及自动化技术高速发展的同时, 作为工业自动化技术工具的自动化仪表及装置也向数字化、智能化、网络化发展。传感器技术、计算机技术和通讯技术一起构成了现代信息的三大基石。 而非接触检测可以克服接触式检测的不足,对于各种测量目标都可以 提供高灵敏度、高精度、高效率的数据采集,从而实现对被测物各种参 数的非接触测量。它不会造成被测表面的划伤和损坏,对各种材料制成 的工件皆可实现测量。非接触检测的最大优点是在被检测物体加工过程 中便可实现测量。非接触检测的最大优点是在被测物体加工过程中便可 对其进行测量,即在线实时检测,从而实现对加工过程的控制,降低废 品率,可大大节省检测时间,提高生产效率,这是接触式检测方式所无 法比拟的。 目前,非接触检测主要以激光检测和红外探测为为代表,而激光检 测技术是最先进应用最广泛的检测技术之一。可实现高精度、高效率、 非接触在线检测。对于解决国防及民用工业生产中的产品零件检测难题 起到了及其重要的作用。 传感器是利用某种转换原理, 将物理的、化学的、生物的等外界信号变成可以直接测量的电信号的装置。在实现生产自动化的过程中,采用适当的传感器(能满足系统要求的长期稳定性、可靠性、精确度 等性能指标) 是十分重要的。传感器是现代检测与控制系统中必不可少的组成部分,它的好坏直接关系到整个系统的成败。在传感器测量技术中, 越来越广泛地运用了超声、微波、激光等声、光、电技术来解决不同工业领域中遇到的特殊测量问题和提高性能的要求。激光器作为一种新型光源, 与普通光源有显著的不同。他利用受激发射原理和激光腔的滤波效应,使所发光波具有一系列新的特点。激光检测技

位移传感器的安装方法

位移传感器的功能是将机械的位移量转换成电信号,在我们选择位移传感器的时候需要考虑的有安装方式线性精度和供电情况,同样需要知道你的大概测量范围去选择更加合适的位移传感器。 首先我们在选择位移传感器规格范围时需留有余量,一般情况下最好是在实际行程的基础上选大一规格的即可。同样还需要注意的是你选择的是电涡流位移传感器,拉线位移传感器还是滑块位移传感器。如果你的位移传感器不便于进行对中调整的场合使用的话,最好是使用滑块位移传感器。而就位移的量程而言,大量程的建议使用的拉线位移传感器,电涡流位移传感器只是相对精度比较高的去测量。滑块位移传感器可以减少调整对中性的工作量,但辅助加长杆不能取消,否则,会出现由于对中性不好而导致稳定性和使用寿命,所以类似的位移传感器安装要是相当严格的。 位移传感器的安装要求根据你测量的是振动和位移,如果是轴的径向振动测量就得要求轴的直径大于探头直径的三倍以上。每个测点应同时安装两个传感器探头,两个探头应分别安装在轴承两边的同一平面上相隔90度。轴的径向振动测量时探头的安装位置应该尽量靠近轴承。探头中心线应与轴心线正交,探头监测的表面必须是无裂痕或其它任何不连续的表面现象。 如果是轴的轴向位移测量测量面应该与轴是一个整体,这个测量面是以探头的中心线为中心,宽度为1.5倍的探头圆环。探头安装距离距止推法兰盘不应超过305mm,否则测量结果不仅包含轴向位移的变化,而且包含胀差在内的变化,这样测量的不是轴的真实位移值。对于位移传感器的测量方式不一样,对应的安装就需要有不一样的要求。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/8110996032.html,。

角度位移传感器的结构及应用

导电塑料位移传感器使用时一般按分压器原理以电压输出或转换电流输出(4~20ma)与轴旋转角度或直线位移成高精度的线性关系。其特点是高精度、高寿命、高平滑性、高分辨率。可用作位置反馈、位置检测、电平调节等。通常用于工业自动化、精密仪器仪表、电动执行器、纺织、注塑、数控的机床设备、医疗器械、汽车、火车、飞机、军舰、导弹等领域中的自动控制系统、伺服系统、信息反馈系统。 传感器结构主要是由电阻元件、轴、电刷、壳体、盖等组成,另加位移变送器或数字显示器。旋转式传感器有单联、双联二种,它们安装形式相同,分为螺母固定(如wdj27—1型)、螺钉固定(如wdj36—1型)和压板固定(wdj36—4型)三种,电信号引出一般采用接线柱形式。直滑式传感器的安装形式一般采用螺钉固定,电信号引出有三种形式:接线桩式(如:wdm14系列)、插座式(如cfy电子尺系列)和导线式(如cwy系列)。 三个接线柱或红、黄、蓝三根线对应标牌标记1、2、3分别表示:1是输入端;2是输出端;3是接地。(请注意:如果引出端2接错线会烧坏传感器)轴从1端到3端角度旋转或直线位移时阻值发生变化,由2端按线性规律高精度输出,同时通过变换电路将阻值变化转换为信号显示。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/8110996032.html,。

位移传感器原理及应用课程设计[1]

题目:位移传感器的设计设计人员: 学号: 班级: 指导老师:许晓平、高宏才、陈焰日期:

位移传感器—光栅的原理和应用 一、概述 位移是和物体的位置在运动过程中的移动有关的量,位移的测量方式所涉及的范围是相当广泛的。小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。其中光栅传感器因具有易实现数字化、精度高(目前分辨率最高的可达到纳米级)、抗干扰能力强、没有人为读数误差、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用(1)。 二、原理 计量光栅是利用光栅的莫尔条纹现象来测量位移的。“莫尔”原出于法文Moire,意思是水波纹。几百年前法国丝绸工人发现,当两层薄丝绸叠在一起时,将产生水波纹状花样;如果薄绸子相对运动,则花样也跟着移动,这种奇怪的花纹就是莫尔条纹。一般来说,只要是有一定周期的曲线簇重叠起来,便会产生莫尔条纹。计量光栅在实际应用上有透射光栅和反射光栅两种;按其作用原理又可分为幅射光栅和相位光栅;按其用途可分为直线光栅和圆光栅。下面以透射光栅为例加以讨论。透射光栅尺上均匀地刻有平行的刻线即栅线,a为刻线宽,b 为两刻线之间缝宽,W=a+b称为光栅栅距。目前国内常用的光栅每毫米刻成10、25、 50、100、250条等线条。光栅的横向莫尔条纹测位移,需要两块光栅。一块光栅称为主光栅,它的大小与测量范围相一致;另一块是很小的一块,称为指示光栅。为了测量位移,必须在主光栅侧加光源,在指示光栅侧加光电接收元件。当主光栅和指示光栅相对移动时,由于光栅的遮光作用而使莫尔条纹移动,固定在指示光栅侧的光电元件,将光强变化转换成电信号。由于光源的大小有限及光栅的衍射作用,使得信号为脉动信号。如图1,此信号是一直流信号和近视正弦的周期信号的叠加,周期信号是位移x的函数。每当x变化一个光栅栅距W,信号就变化一个周期,信号由b点变化到b’点。由于bb’=W,故b’点的状态与b点状态完全一样,只是在相位上增加了2π(2)。由图1可得光电信号为 u0=U平均+Umsin(π/2+2πX/W) 式中u0—光电元件输出的电压信号;

位移测量传感器

西南科技大学城市学院 City College of Southwest University Of Science and Technology 目录

一.为什么选择这篇论文 二.单片机LVDT位移测量传感器摘要 1.总体方案设计 2.传感器的工作原理 3. 设计总结 4.位移传感器的优点 三.心得体会 四.该论文的优缺点 1.论文的优点 2.论文的缺点

一.为什么选择这篇论文 原本想找一篇关于纺织机(即电脑横机)上的传感器来写实训报告的,结果度娘告诉我纺织机上面的传感器太多了!!!!所以就选了个感兴趣的又不难的来完成实训任务。 选择‘位移测量传感器’来做我的实训报告是因为一方面上学期学过自动检测技术,对于传感器并不陌生。另一方面是因为位移传感器的应用范围很广,同时也适合于纺织机并且位移传感器在纺织机设备中起到非常重要的反馈作用,。 同时因为我自己本身平时也接触过纺织机,看见过这几代纺织机的变化,从原始的全手工,到半自动,直到现在实现真正的全自动。以前的手工纺织机差不多就和《花木兰》里面的“唧唧复唧唧,木兰当户织”一样传统的纺织机织出来的衣服慢,花样少,而且一人只能操作一台机器。半自动化的纺织机是加入了电动机由激光传感器来计算一件衣服所需要的转数,但是当一件有花样的衣服还是需要较多的手工操作,一个人最多可以看管四台纺织机。全自动的纺织机能够织出整件服装版型并且同时无需人员看管就能够自动完成花样。 那全自动纺织机和我的论文有什么关系呢? 答案是必然并且有非常重要的关系因为位移传感器,在全自动纺织机织花样(花样是指衣服上的各种图案,像小熊啊!花朵啊!还有树之类的图案!)时位移传感器能够使机头准确的停在我们所需花样的准确位置。能够使纺织机机头在配置的电脑上及时的报告他所处的位置。因为在在整台纺织机运行中,可以通过位移传感器进行反馈传回来的的数值进行调整变频电机的速度。进而调整整台纺织机相关运转。对控制电机的运转或停止有极大的帮助 并且位移传感器在纺织机上有非常广阔的应用前景近年来,随着技术进步和纺织行业客户的要求的提高,对纺织机械装备技术水平的要求也越来越高!纺织机械设备的产业升级也在不断进行中,所以传感器就在纺织机上应用的越来越频繁,从而提高了生产效率!所以综上选择这篇论文

《传感器与自动检测技术》课后习题答案(余成波_主编)

一、1.1什么是传感器?传感器特性在检测技术系统中起什么作用? 答:(1)能感受(或响应)规定的被测量,并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。(2)传感器是检测系统的第一个环节,其主要作用是将感知的被测非电量按一定的规律转化为某一种量值输出,通常是电信号。 1.2画出传感器系统的组成框图,说明各环节的作用。 答:(1)被测信息→敏感元件→转换元件→信号调理电路→输出信息 其中转换元件、信号调理电路都需要再接辅助电源电路; (2)敏感元件:感受被测量并输出与被测量成确定关系的其他量的元件;转换元件:可以直接感受被测量而输出与被测量成确定关系的电量;信号调理电路与转换电路:能把传感元件输出的电信号转换为便于显示、记录和控制的有用电路。 1.3什么是传感器的静态特性?它有哪些性能指标?如何用公式表征这些性能指标?答:(1)指检测系统的输入、输出信号不随时间变化或变化缓慢时系统所表现出得响应特性。(2)性能指标有:测量范围、灵敏度、非线性度、回程误差、稳定度和漂移、重复性、分辨率和精确度。(3)灵敏度:s=&y/&x;非线性度=B/A*100%;回程误差=Hmax/A*100%;不重复性Ex=+-&max/Yfs*100%;精度:A=&A/ Yfs*100%; 1.4什么是传感器的灵敏度?灵敏度误差如何表示? 答:(1)指传感器在稳定工作情况下输出量变化&y对输入量变化&x的比值;(2)灵敏度越高,测量精度就越大,但灵敏度越高测量范围就越小,稳定性往往就越差。 1.5什么是传感器的线性度?常用的拟合方法有哪几种? 答:(1)通常情况下,传感器的实际静态特性输出是条曲线而非直线,在实际工作中,为使仪器(仪表)具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线,线性度就是这个近似程度的一个性能指标。(2)方法有:将零输入和满量程输出点相连的理论直线作为一条拟合直线;将与特性曲线上个点偏差的平方和为最小理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。 二、2.1什么是测量误差?测量误差有几种表示方法?各有什么用途? 答:(1)由于测量过程的不完善或测量条件的不理想,从而使测量结果偏离其真值产生测量误差。(2)有绝对误差、相对误差、引用误差、分贝误差。(3)绝对误差用来评价相同被测量精度的高低;相对误差可用于评价不同被测量测量精度的高低;为了减少仪器表引用误差,一般应在满量程2/3范围以上进行测量。 2.2按测量手段分类有哪些测量方法?按测量方式分类有哪些测量方法? 答:(1)按测量手段分类:a、绝对测量和相对测量;b、接触测量和非接触测量;c、单项测量和综合测量;d、自动测量和非自动测量;e、静态测量和动态测量;f、主动测量和被动测量。(2)按测量方式分类:直接测量、间接测量和组合测量。 2.3产生系统误差的常见原因有哪些?常见减少系统误差的方法有哪些? 答:原因有:a、被检测物理模型的前提条件属于理想条件,与实际检测条件有出入;b、检测线路接头之间存在接触电动势或接触电阻;c、检测环境的影响;d、不同采样所得测量值的差异造成的误差;e、人为造成的误读等等。 2.4什么是准确度、精密度、精确度?并阐述其与系统误差和随机误差的关系? 答:测量的准确度是指在一定的实验条件下多次测定的平均值与真值相符合的程度,以误差来表示;它表示系统误差的大小。精密度是指在相同条件下,对被测量进行多次反复测量,测得值之间的一致程度。反映的是测得值的随机误差。精密度高,不一定正确度高。精确度是指被测量的测得值之间的一致程度以及与其真值的接近程度,即精密度与正确度的综合概念。从测量误差的角度来说,精确度(准确度)是测得值的随机误差和系统误差的综合反映。正确度是指被测量的测得值与其真值的接近程度。反映的是测得的系统误差。

角度位移传感器原理及其应用实例

角度位移传感器原理及其应用实例 时间:2012-02-08 17:10:54 来源:作者: 角度位移传感器是利用角度变化来定位物体位置的电子元件。适用于汽车,工程机械,宇宙装置、导弹、飞机雷达天线的伺服系统以及注塑机,木工机械,印刷机,电子尺,机器人,工程监测,电脑控制运动器械等需要精确测量位移的场合。本文介绍角度位移传感器原理及其应用实例。 角度位移传感器原理 角度传感器用来检测角度的。它的身体中有一个孔,可以配合乐高的轴。当连结到RCX 上时,轴每转过1/16圈,角度传感器就会计数一次。往一个方向转动时,计数增加,转动方向改变时,计数减少。计数与角度传感器的初始位置有关。当初始化角度传感器时,它的计数值被设置为0,如果需要,你可以用编程把它重新复位。 角度位移传感器实例 如果把角度传感器连接到马达和轮子之间的任何一根传动轴上,必须将正确的传动比算入所读的数据。举一个有关计算的例子。在你的机器人身上,马达以3:1的传动比与主轮连接。角度传感器直接连接在马达上。所以它与主动轮的传动比也是3:1。也就是说,角度传感器转三周,主动轮转一周。角度传感器每旋转一周计16个单位,所以16*3=48个增量相当于主动轮旋转一周。现在,我们需要知道齿轮的圆周来计算行进距离。幸运地是,每一个LEGO齿轮的轮胎上面都会标有自身的直径。我们选择了体积最大的有轴的轮子,直径是81.6CM(乐高使用的是公制单位),因此它的周长是81.6×π=81.6×3.14≈256.22CM。现在已知量都有了:齿轮的运行距离由48除角度所记录的增量然后再乘以256。我们总结一下。称R为角度传感器的分辨率(每旋转一周计数值),G是角度传感器和齿轮之间的传动比率。我们定义I为轮子旋转一周角度传感器的增量。即: I=G×R 在例子中,G为3,对于乐高角度传感器来说,R一直为16.因此,我们可以得到:I=3×16=48 每旋转一次,齿轮所经过的距离正是它的周长C,应用这个方程式,利用其直径,你可以得出这个结论。 C=D×π 在我们的例子中:

位移传感器应用在哪些领域

众所周知,位移传感器是将感应到的电信号转换成信息传出,供人们了解位移距离的元件,由于其类型不同,所应用的领域也存在差异。 常用的有应变式位移传感器,磁致伸缩位移传感器,光栅位移传感器,激光位移传感器,角度位移传感器等。 磁致伸缩位移传感器的应用 注塑机、压铸机、吹瓶机、液压机、鞋机、橡胶机、轮胎硫化机、压延机、五金机械(监控模具厚度变化和平衡)、钢厂轧辊调节、盾构机、液压伺服系统、液位检测和控制。 激光位移传感器的应用 激光传感器常用于长度、距离、振动、速度、方位等物理量的测量,还可用于探伤和大气污染物的监测等。 角度位移传感器的应用 地理: 山体滑坡,雪崩 民用: 大坝,建筑,桥梁,玩具,报警,运输 工业:吊车,吊架,收割机,起重机,称重系统的倾斜补偿,沥青机.铺路机等 火车:高速列车转向架和客车车厢的倾斜测量 海事:纵倾和横滚控制,油轮控制,天线位置控制 钻井:精确钻井倾斜控制 机械:倾斜控制,大型机械对准控制,弯曲控制,起重机

军用:火炮和雷达调整,初始位置控制,导航系统,军用着陆平台控制 直线位移传感器(电子尺)的应用领域 注塑机、压铸机、吹瓶机、液压机、鞋机、砖机、砌垛机、陶瓷机械、列车轨距监测、橡胶机、轮胎硫化机、压延机、五金机械(监控模具厚度变化和平衡)、皮革机械、比例阀、长行程钻管机、弹簧机械、木工机械、板材设备、印刷机械(刷辊运动、裁纸等)、钢厂轧辊调节、机械手、自动门(列车及大厅)、裁床(裁钢管、木板、线材等)、桥梁监测、煤炭设备(掘进机、坑道支架、塌方监测等)、地质监测(如:塌方、溃堤)。 拉绳/拉线位移传感器的应用领域 舞台屏幕设备、皮革机械、盾构机、长行程钻管机、弹簧机械、木工机械、板材设备、印刷机械(刷辊运动、裁纸等)、机械手、自动门(列车及大厅)、裁床(裁钢管、木板、线材等)、桥梁监测、电梯平层、升降机、水闸开度、水库水位、行车、工程车、龙门吊、港口设备、煤炭设备(掘进机、坑道支架、塌方监测等)、水处理液位、仓储设备、地质监测(如:塌方、溃堤)、石油钻探设备、探矿设备等。 以上就是相关内容的介绍,希望对大家了解这一问题会有更多的帮助,同时如有这方面的兴趣或需求,可以咨询了解一下南京凯基特电气有限公司。

传感器的位移测量实验

传感器的位移测量实验 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

位移测量实验报告 专业班级姓名实验仪器编号实验日期一、实验目的 掌握常用的位移传感器的测量原理、特点及使用,并进行静态标定。 二、实验仪器 CSY10B型传感器系统实验仪。 三、实验内容 (一)电涡流传感器测位移实验· 1、测量原理 扁平线圈中通以交变电流,与其平行的金属片中产生电涡流。电涡流的大小影响线圈的阻抗Z。 Z = f(ρ,μ,ω,x)。 不同的金属材料有不同的ρ、μ,线圈接入相应的电路中,用铁、铝两种不同的金属材料片分别标定出测量电路的输出电压U与距离x的关系曲线。 2、测试系统组建 电涡流线圈、电涡流变换器(包括振荡器、测量电路及低通滤波输出电路)、测微头、电压表、金属片。 3、试验步骤 ①安装传感器测微头;②连接电路;③依次用铁片、铝片进行位移测量。

4、数据分析与讨论 画出输入输出关系曲线,确定量程,非线性误差,在测量范围内计算灵敏度,进行误差分析。

(二)光纤传感器测位移实验 1、测量原理 反射式光纤传感器属于结构型, 工作原理如图。 反射式位移传感器原理 当发光二极管发射红外光线经光纤照射至反射体,被反射的光经接收光纤至光电元件。经光电元件转换为电信号。经相应的测量电路测出照射至光电元件的光强的变化。 2、组建测试系统 光纤、光电元件、发光二级管、光电变换测量电路、数字电压表、反射体(片)、测微头。 3、实验步骤 ①观察光纤结构;②安装光纤探头、反射片;③连接电路;④旋动测微仪测位移。 X(mm) U(V)`` X(mm) U(V)`` X(mm) U(V)`` X(mm) U(V)`` 4、数据分析与讨论

角位移传感器(详细介绍)

角位移传感器 角位移传感器的概念 角位移传感器是把对角度测量转换成其他物理量的测量,它采用非接触式专利设计,与同步分析器和电位计等其它传统的角位移测量仪相比,有效地提高了长期可靠性。下图所示为是角位移传感器的一种型号: 角位移传感器的原理 有以下三种情况: (1)将角度变化量的测量变为电阻变化测量的变阻器式角位移传感器, (2)将角度变化量的测量变为电容变化的测量的面积变化型电容角位移传感器, (3)将角度变化量的测量变为感应电动势变化量的测量的磁阻式角位移传感器等等. 它的设计独特,在不使用诸如滑环、叶片、接触式游标、电刷等易磨损的活动部件的前提下仍可保证测量精度。如下图所示: 角位移传感器简化原理图 角位移传感器特点: 该传感器采用特殊形状的转子和线绕线圈,模拟线性可变差动传感器(LVDT)的线性位移,有较高的可靠性和性能,转子轴的旋转运动产生线性输出信号,围绕出厂预置的零位移动±60(总共120)度。此输出信号的相位指示离开零位的位移方向。转子的非接触式电磁耦合使产品具有无限的分辨率,即绝对测量精度可达到零点几度。

角位移传感器的应用 从力学分类来看,有一种在静态下工作的角位移传感器,例如吊车和塔吊的吊臂上就用重锤方式角位移传感器,只能用于没有加速度运动的环境,通俗的理解就是不能在运动剧烈的环境上应用,只能用在静态的场合,是地球重力场直接作用下的倾斜仪器,类似的有气泡水准仪器,例如在经纬仪,全站仪,装修行业上使用,水平联通管也是类似的原理。 角位移传感器标准的测量方法是在旋转编码器上加重锤,重锤是产生重力作用的元件,在车辆运动环境下,就要用空气阻尼、油池阻尼、电磁阻尼来抑制重锤的晃动以至振荡,就必然使角位移传感器的灵敏度下降,响应速度下降。 角位移传感器也有非绝对编码,是增量输出的,如果没有起始脉冲专门信道,就要用自己外加初始定位传感器,一般是用红外的标准产品,缺点是精度低。 使用地磁角位移传感器基本上不受环境振动影响,又受电磁干扰影响,比赛车辆自身的电动机就要磁屏蔽。 航海、航空和航天器使用一种红外角位移传感器,对环境的可见光或红外辐射进行立体的比较,最简单的是求出运载工具相对太阳的姿态,是广角和立体摄影和图像处理技术的综合,最简单地要分辨地平线;在比赛的空间,要受到小环境的光线干扰。 角位移传感器的主要技术参数: 1.旋转位移,工作温度范围大,自带信号调节 2.免接触型传感器,适应不良环境(振动、冲击、潮湿、盐雾等,出色的温度稳定性) 3.线性(100%行程):0.25~0.5 4.多种范围、直流输出 5.CE认证 电容式角位移传感器原理分析 电容式角位移传感器用于测量固定部件(定子)与转动部件(转子)之间的旋转角度,因其具有结构简单,测量精度高,灵敏度高,适合动态测量等特点,而被广泛应用于工业自动控制、汽车、航天及军事等角度定位监测领域。 一般来说,电容式角位移传感器由一组或若干组扇形固定极板和转动极板组成,为保证传感器的精度和灵敏度,同时避免因环境温度等因素的改变导致介电常数、极板形状等的间

LVDT位移传感器原理及应用—信为科技

LVDT位移传感器原理及应用 作者:鲍亚子(高级工程师) 深圳市信为科技发展有限公司 一.概述 随着我国国民经济的高速发展,自动化程度的不断提高,传感器的用量越来越大,开发高新技术位移传感器产品具有广阔的前景。 该产品具有精度高,动态特性好,工作可靠,使用方便等特点。 差动变压器式位移传感器(LVDT)可广泛应用于航天航空、机械、建筑、纺织、铁路、煤炭、冶金、塑料、化工以及科研院校等国民经济各行各业,用来测量伸长、振动、物体厚度、膨胀等的高技术产品。 深圳市信为科技发展有限公司是专业生产位置传感器的高科技公司,我公司生产的LVDT有分体式,回弹式,气动式,耐压式,及各种定制产品, 具有测量精度高,性能稳定,防水,抗冲击能力强,适合较恶劣环境下使用, ,是客户安全放心的选择. 二、工作原理 LVDT(Linear.Variable.Differential.Transformer)是线性可变差动变压器缩写。工作原理简单地说是铁芯可动变压器。它由一个初级线圈、两个次级线圈、铁芯、线圈骨架、外壳等部件组成。当铁芯由中间向两边移动时,次级两个线圈输出电压之

差与铁芯移动成线性关系。 当初级线圈P1,P2之间供给一定频率的交变电压时,铁芯在线圈内移动改变了空间的磁场分布,从而改变了初、次级线圈之间的互感量,次级线圈S11,S22之间就产生感应电动势,随着铁心的位置不同,互感量也不同,次级产生的感应电动势也不同,这样就将铁芯的位移量变成了电压信号输出,由于两个次级线圈电压极性相反,参见图1,输出电压为差动电压。 图1:LVDT原理图 当铁芯往右移动时,次级线圈2感应的电压大于次级线圈1;当铁芯往左移动时,次级线圈1感应的电压大于次级线圈2,两线圈输出的电压差值大小随铁芯位移而成线性变化。图2中的虚线范围内是传感器的量程,当铁芯移动行程大于100%时(虚线之外段),两次级线圈输出电压的差值与铁芯位移线性关系变差。零点两边的实线段一般是对称的测量范围,两者都是交流信号而相位差180度。实际的LVDT线圈通常与壳体紧固为一体,铁芯与测杆紧固为另一体,当两体间发生相对位移时,就产生位移电压输出。

传感器与自动检测技术实验指导书.

传感器与自动检测技术验 指导书 张毅李学勤编著 重庆邮电学院自动化学院 2004年9月

目录 C S Y-2000型传感器系统实验仪介绍 (1) 实验一金属箔式应变片测力实验(单臂单桥) (3) 实验二金属箔式应变片测力实验(交流全桥) (6) 实验三差动式电容传感器实验 (9) 实验四热敏电阻测温实验 (12) 实验五差动变压器性能测试 (14) 实验六霍尔传感器的特性研究 (17) 实验七光纤位移传感器实验 (21)

CSY-2000型传感器系统实验仪介绍 本仪器是专为《传感器与自动检测技术》课程的实验而设计的,系统包括差动变压器、电涡流位移传感器、霍尔式传感器、热电偶、电容式传感器、热敏电阻、光纤传感器、压阻式压力传感器、压电加速度计、压变式传感器、PN结温度传感器、磁电式传感器等传感器件,以及低频振荡器、音频震荡器、差动放大器、相敏检波器、移相器、低通滤波器、涡流变换器等信号和变换器件,可根据需要自行组织大量的相关实验。 为了更好地使用本仪器,必须对实验中使用涉及到的传感器、处理电路、激励源有一定了解,并对仪器本身结构、功能有明确认识,做到心中有数。 在仪器使用过程中有以下注意事项: 1、必须在确保接线正确无误后才能开启电源。 2、迭插式插头使用中应注意避免拉扯,防止插头折断。 3、对从各电源、振荡器引出的线应特别注意,防止它们通过机壳造成短路,并 禁止将这些引出线到处乱插,否则很可能引起一起损坏。 4、使用激振器时注意低频振荡器的激励信号不要开得太大,尤其是在梁的自振 频率附近,以免梁振幅过大或发生共振,引起损坏。 5、尽管各电路单元都有保护措施,但也应避免长时间的短路。 6、仪器使用完毕后,应将双平行梁用附件支撑好,并将实验台上不用的附件撤 去。 7、本仪器如作为稳压电源使用时,±15V和0~±10V两组电源的输出电流之和 不能超过1.5A,否则内部保护电路将起作用,电源将不再稳定。 8、音频振荡器接小于100Ω的低阻负载时,应从LV插口输出,不能从另外两个 电压输出插口输出。

相关文档
最新文档