减速器的结构设计

减速器的结构设计
减速器的结构设计

减速器的结构设计

1、确定箱体的结构和主要尺寸:减速器采用剖分式箱体,分别由箱座和箱盖两部分组成。用螺栓联接起来,组成一个完整箱体。剖分面与减速器内传动件轴心线平面重合。此方案有利于轴系部件的安装和拆卸。剖分接合面必须有一定的宽度,并且要求仔细加工。为了保证箱体刚度。在轴承座处设有加强肋。箱体底座要有一定宽度和厚度,以保证安装稳定性和刚度。减速器箱体用HT200制造。铸铁具有良好的铸造性能和切削加工性能,成本低。铸造箱体多用于批量生产。其主要尺寸如上表

2、减速器的润滑

润滑方式的选择:各级齿轮的圆周速度均小于12m/s ,所以采用浸油润滑。另外,传动件浸入油中的深度要求适当,既要避免搅油损失太大,又要充分的润滑。油池应保持一定的深度和储油量。两级大齿轮直径应尽量相近,以便浸油深 度相近。

润滑油牌号的选择:一般选用选用220工业齿轮油 油量计算:

以每传递1KW 功率所需油量为350--700cm 3,各级减速器需油量按级数成比例。该设计为双级减速器,每传递1KW 功率所需油量为700--1400cm 3。 实际储油量:

由高速级大齿轮浸油深度约0.7个齿高,但不小于10mm ;低速大齿轮浸油

深度在)(3

1

61--齿轮半径;大齿轮齿顶距箱底距离大于30—50mm 的要求得:(设

计值为50)

最低油深:411167.5

505063.956262d mm

?+=?+=

最高油深:411167.5

505077.93232

d mm ?+=?

+= 箱体内壁总长:L=314mm 箱体内壁总宽:b=280mm

设计油深度为50mm ,箱体有足够的储油量.

二级减速器箱体设计

1.箱体初步设计 二级齿轮减速器的箱体采用铸铁(HT200)制成,为了保证齿轮啮合的质量,采用剖分式结构,箱体上下部分采用 6 7 is H 配合。 (1)在机体外增加肋条,外轮廓为长方形,增强了轴承座的刚度 (2)考虑到机体内零件的润滑、密封和散热,采用浸油润滑,同时为了避免运行时沉渣溅起,齿顶到油池底面的距离H 大于40mm (3)为保证机座与机盖连接处密封,联接凸缘应该有足够的宽度,联接表面应精创,其表面粗糙度为 3.6。 (4)为保证机体结构有良好工艺性,铸件壁厚为9mm ,圆角半径R=5。机体外型较简单,拔模方便。 2.箱体附件设计 (1)检查孔及检查孔盖 在机盖顶部开有检查孔,能看到机体内部传动零件啮合区的未知,并保证有足够的空间,便于伸入进行操作。检查孔有盖板,用垫片加强密封,盖板用铸铁制成,紧固螺栓选用M6。 (2)油螺塞 放油孔位于油池最底部,并安排在减速器远离其他部件的一侧,以便放油,放油孔用螺塞堵住,因此油孔处的机体外壁应该凸起一块,由机械加工成螺塞头部的支承面,并用封油圈加以密封。 (3) 油标 油标设置在便于观察减速器油面并且油面稳定之处。油尺安置的位置不能太低,防止油进入油尺座孔从而溢出。 (4)通气孔 由于减速器运转时机体内温度升高,气压增大。为便于排气,在机盖顶部的检查孔改上安装通气器,以保证箱体内压力平衡。 (5)盖螺钉 启盖螺钉上的螺纹长度要大于机盖联结凸缘的厚度。钉杆端部要做成圆柱形状,以免破坏螺纹。 (6) 位销 为了保证剖分式机体的轴承座孔的加工及装配精度,在机体联结凸缘的长度方向各安装一个圆锥定位销,用以提高定位精度。 (7)吊钩 在箱座上直接铸出吊钩,用以搬运或起吊较重的物体。 3.箱体的结构尺寸 见《机械设计课程设计手册》表11-1,可知多级传动时,a 取低速级中心距,a=235mm 。

减速器箱体设计

第八章箱体的整体设计及其附件的选用 1、箱体的结构设计 1)箱体材料的选择与毛坯种类的确定 根据减速器的工作环境,可选箱体材料为灰铸铁HT2O0因为铸造箱体刚性好、外形美观、易于切削加工、能吸收振动和消除噪音,可米用铸造工艺获得毛坯。 2)箱体主要结构尺寸和装配尺寸见下表:单位:mm

2、减速器附件 (1)窥视孔和视孔盖 在传动啮合区上方的箱盖上开设检查孔,用于检查传动件的啮合情况和润滑情况等,还可以由该孔向箱内注入润滑油。 (2)通气器 安装在窥视孔板上,用于保证箱内和外气压的平衡,一面润滑油眼相体结合面、轴伸处及其他缝隙渗漏出来。 (3)轴承盖 轴向固定轴及轴上零件,调整轴承间隙。这里使用凸缘式轴承盖,因其密封性能好,易于调节轴向间隙。 (4)定位销 为了保证箱体轴承孔的镗削精度和装配精度,在减速器的两端分别设置一个定位销孔。 (5)油面指示装置 在箱座高速级端靠上的位置设置油面指示装置,用于观察润滑油的高度是否符合要求。 (6)油塞 用于更换润滑油,设在与设置油面指示装置同一个面上,位于最低处。 (7)起盖螺钉 设置在箱盖的凸缘上,数量为2个,一边一个。用于方便开启箱盖。 (8)起吊装置

在箱盖的两头分别设置一个吊耳,用于箱盖的起吊;而减速器的整体起吊使用箱座上的吊钩,在箱座的两头分别设置两个吊钩。 3、减速器润滑及密封形式的选择 高速轴的dn值为 dn 40 626.09 25043.6 1.5 105mm r min 故减速器所有轴承均采用润滑脂润滑。 高速级大齿轮的圆周速度为 d2n 237 139.13 「丿 v 2 1.7m s 12m s 60 1000 60 1000 故采用油池润滑。 对于二级圆柱齿轮减速器,因为传动装置属于轻型的,且传速较低,箱体内选用 SH0357-92中的50号润滑,装至规定高度。轴承盖处密封采用毛毡圈。箱盖与箱座之间的密封则采用涂水玻璃密封,涂水玻璃密封的方法能有效地减轻震动起到防震作用。

路基支挡

(8)路基支挡结构 1)钢筋混凝土挡墙 ①混凝土挡土墙施工顺序 测量放线→基槽土石方开挖→人工检底、验槽→模板、脚手架→隐蔽检查→混凝土浇筑→混凝土养生→反滤层铺筑→沉降缝处理→回填。 ②施工方法 1、测量放线 A根据建立的平面控制网,以墙顶外边缘为墙体施工及测量依据控制线,控制线起点,终点均用坐标定位。定位时,先定起点,后定起点至终点方向及终点。使用全站仪正倒镜极坐标法定出。 B根据建立的高程控制网,测设临时水准点,作为高程控制依据,使用DS3水准仪往返测,误差不大于2mm。 C根据已测定控制线,用S3水准仪抄测现状地面标高,用抬杆法测定现状地面横断面,将测量成果报监理工程师批复。根据设计标高,计算基槽土石方挖方量,确定施工机具及所需时间。 D按照设计挡墙基础几何尺寸及开挖深度,在现场用白灰放出基槽开挖边线。 2、基础开挖 A土石方开挖前,确定开挖线,基槽开挖以人工、机械结合施工,石方地段基槽采用切割机切割,破碎机破碎,人工检底成型,确保岩基整体性。

B基槽放坡根据土质情况确定,保证临时边坡稳定,一般情况下按1:0.75-1:1进行放坡,若遇岩石地段,边坡比为1:0.1。 C在基槽开挖前及过程中,均应作好降水、排水工作,如采用截水沟及集水井方法,避免地表水流入基槽内浸泡地基,影响地基承载力。若开挖过程中,遇地下水,则采取在基槽两侧设置排水盲沟及集水井,将基槽的地下水有效排除,确保基槽不受水浸泡,保证地基承载力满足设计要求。 D基础坑槽人工凿打成型后,检测地基承载力是否满足设计要求,测量人员重新勘校挡墙基础标高、轴线,待自检合格后报监理工程师验收。及时封闭,避免基底风化,及时进行挡土墙基础施工。 3、模板及脚手架 挡墙模板采用覆膜胶合板。由于挡墙墙身较薄,为了使模板稳定不变形,采用外撑内拉的方式进行模板加固。外侧采用双排脚手架支撑,模板内部采用Φ12钢筋加工成对拉丝杆进行对拉,间距600×700mm。为便于对拉丝杆拆卸,在丝杆上外套Φ16PVC管;为防止漏浆,在拉杆上设橡胶止水片。外撑脚手架上下排间距1.0,竖杆间距1.0米,离地200mm 设扫地杆,剪刀撑设置间距5m,斜撑杆在每根立杆处设置,后端置于坚实地面,由下至上间距300~600逐渐加大。为防止模板拼逢不严漏浆,在模板接缝处,采用双面贴胶带进行嵌缝。模板使用前必须清理干净,并涂刷脱模剂。模板安装完成并支撑牢固后,报请监理工程师进行隐蔽验收。

6米厢式运输车设计规范修改

厢式运输车设计规范 编号: 编制: 审核: 批准: 2018年X月

厢式运输车设计规范 1、术语和定义 GB/T 3730.3规定的术语和定义适用于本规范。 2、规范性引用文件 下列文件对本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本标准。 GB 1589 道路车辆外廓尺寸、轴荷及质量限值 GB/T 3730.3 汽车和挂车的术语及其定义 GB 3847 车用压燃式发动机和压燃式发动机汽车排气烟度排放限值及测量方法 GB 4094 汽车操纵件、指示器及信号装置的标志 GB 4785 汽车及挂车外部照明和信号装置的安装规定 GB 7258 机动车运行安全技术条件 GB 11564 机动车回复反射器 GB 11567.1 汽车和挂车侧面防护要求 GB 11567.2 汽车和挂车后下部防护要求 GB 12676 汽车制动系统结构、性能和试验方法 GB 15084 机动车辆后视镜的性能和安装要求 GB 17691 车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段) GB/T 18411 道路车辆产品标牌 GB 23254 货车及挂车车身反光标识 JB/T 5943 工程机械焊接件通用技术条件 QC/T 252 专用汽车定型试验规程 QC/T 453 厢式运输车 QC/T 484 汽车油漆涂层 QC/T 518 汽车用螺纹紧固件紧固扭矩 QC/T 625 汽车用涂镀层和化学处理层 QC/T 900 汽车整车产品质量检验评定方法 QC/T 29058 载货汽车车箱技术条件

减速器的箱体结构设计

减速器的箱体结构及设计 一、概述 图1-2-4所示为单级圆柱齿轮卧式减速器的典型箱体结构。 单级圆柱齿轮减速器的箱体广泛采用剖分式结构。卧式减速器一般只有一个剖分面,即沿轴线平面剖开、分为箱盖、箱座两部分(大型立式减速器才采用两个剖分面)。 箱体一般用灰铸铁HT150或HT200制造。对于重型减速器也可以采用球墨铸铁或铸钢 制造。在单件生产中,特别是大型减速器,可采用焊接结构,以减轻重量,缩短生产周期。 二、箱体结构的设计要点 减速器的箱体是支持和固定轴及轴上零件并保证传动精度的重要零件,其重量一般约占减速器总重量的40%~50%,因此,箱体结构对减速器的性能、制造工艺、材料消耗、重量和成本等影响很大,设计时务必综合考虑,认真对待。 减速器箱体的设计要点如下: 1、箱体应具有足够的刚度 (1)轴承座上下设置加强筋(参见图1-2-4)。 (2)轴承座房设计凸台结构(图1-2-4、图1-2-5)。凸台的设置可使轴承座旁的联接 螺栓靠近座孔,以提高联接的刚性。 设计凸台结构要注意下列几个问题: ①轴承座旁两凸台螺栓距离S应尽可能靠近,如图1-2-6所示。对无油构箱体(轴承采

用油脂润滑)取S〈D2,应注意凸台联接螺栓(d1)与轴承盖联接螺钉(d3)不要互相干涉;对有油沟箱体(轴承采用润滑油润滑),取S≈D2〉,应注意凸台螺栓孔(d1)不要与油沟相通,以免漏油。D2则为轴承座凸缘的外径。 ②凸台高度h的确定应以保证足够的螺母搬手空间为准则。搬手空间根据螺栓直径的 大小由尺寸C1和C2确定。 ③凸台沿轴向的宽度同样取决于不同螺栓直径所确定的C1+ C2之值,以保证足够的搬 手空间。但还应小于轴承座凸缘宽度3~5mm..,以便于凸缘端面的加工。 (3)箱座的内壁应设计在底部凸缘之内如图1-2-7a所示。 (4)地脚螺栓孔应开在箱座底部凸缘与地基接触的部位;不能悬空,如图1-2-7b所示。(5)箱座是受力的重要零件,应保证足够的箱座壁厚,且箱座凸缘厚度可稍大于箱盖凸缘厚度。 2、确保箱体接合面的密封、定位和内部传动零件的润滑。 为保证箱体轴承座孔的加工和装配的准确性,在接合面的凸缘上必须设置两个定位用的圆锥销。定位销d=(0.7~0.8)d2(d2为凸缘联接螺栓直径),两锥销距离应远一些,一般宜放在对角位置。对于结构对称的箱体,定位销不宜对称布置,以免箱盖盖错方向。 为保证箱盖、箱座的接合面之间的密封性,接合面凸缘联接螺栓的间距不宜过大,一般不大于150~180mm,并尽量对称布置。 如果滚动轴承靠齿轮飞溅的润滑油润滑时,则箱座凸缘上应开设集油沟,集油沟要保证润滑油流入轴承座孔内,再经过轴承内外圈间的空隙流回箱座内部,而不应有漏油现象发生,如图1-2-8所示。

路基路面课程设计沥青路面结构设计

《路基路面工程》 课程设计 沥青路面结构设计 姓名 班级土木121 指导教师 完成日期 课设成绩□优秀□良好□中等□及格□不及格大连交通大学土木与安全工程学院铁道教研室

《路基路面工程》课程设计考核体系及评分参考标准 评价指标 优秀良好中等及格不及格100~90分89~80分79~70分69~60分60分以下 一 平时表现①学习态度 遵守纪律,认 真设计 遵守纪律, 认真设计 纪律较好, 较认真 纪律一般, 不太重视 纪律松散经常 缺席 ②主动性 积极思考,独 立完成 积极讨论, 完成任务 参与讨论, 完成主要 工作 应付,有时 参与讨论 很少参与讨论③工作量 完成全部设 计工作 完成89% ~80%的设 计工作 完成79% ~70%的设 计工作 完成79% ~60%的设 计工作 完成少于60% 的设计工作 二 设计说明书①基本概念概念清晰概念清楚 概念比较 清楚 了解设计 过程 概念不清 ②理论计算计算准确计算正确 计算比较 正确 计算无原 则性错误 计算错误多 ③说明书 结构层次分 明,文字精 炼,书写认 真,撰写格式 符合规范化 要求 结构层次 较分明,文 字通顺,书 写认真,撰 写格式符 合规范化 要求 问题叙述 基本清楚, 书写比较 认真,书写 认真,撰写 格式基本 符合规范 化要求 能够说明 问题,书写 尚可,撰写 格式基本 符合规范 化要求 条理不清思路 混乱书写潦草 雷同,撰写格式 不符合规范化 要求 三 答辩情况①自述 叙述条理清 晰 叙述表达 清楚 叙述表达 比较清楚 表达基本 清楚 思路混乱表达 不清楚 ②回答问题完整、准确 较完整、正 确 大多数问 题比较完 整 少数问题, 无大错误 回答错误

悬臂梁支挡结构课程设计

悬臂式挡土墙 ————成都市三环路与铁路立交工程 (一)基础资料 K23+385.728~K23+486.726右幅快车道填方最大高度5m ,因为地处城郊, 且地基承载力设计值[δ]=150kpa ,原考虑设计路肩挡土墙,经验算,墙身圬工太大,且石料需远运,故设计成悬臂式挡土墙,墙身设计高度H=2~5m ;填土的标 准重度3/18m KN =γ,内摩擦角? =35?,底板与地基摩擦系数3.0=f ,均布荷载10kpa , 墙身采用C20钢筋混凝土,墙背填料采用非膨胀土填筑,墙身后土压力未考虑浸水作用, 设计后的挡土墙断面尺寸如图。 (二)土压力计算 由于墙灯高度大于 1.0m ,故路基面上荷载及填料所产生的土压力均按库仑主动土压力计算。 ?=÷=÷=?6677.40)55.305.3arctan()arctan(21H B ?=? ?=?=5.27235- 452 - 45? θ ∴>?θ 会出现第二破裂面 5869.0) 245cos() 245(tan 2=+?-?= ? ? k

1210 1=+ =H h k KN K K H E 5136.8415869.041821 21212=????=??=γ KN E E y 9645.74)sin(=+?=?θ KN E E x 0240.39)cos(=+?=?θ (x=2.434m y=1.1833m) (三)全墙稳定性及基础承载力验算 下面计算中的力系均向墙趾简化。钢筋混凝土的重度为3 /25m kN G =γ。 趾板重力: kN H B N G 625.52545.050.013=??=??=γ趾 趾板稳定力矩: m kN B N M y ?=? =40625.12趾趾 立壁重力:()kN H B H B N G 0125.3525.0211222=???? ????+?+=γ立 立壁稳定力矩: m kN M y ?=?-?????-++????++ -+???=272.26)23) 25.043.0(5.0(252155.3)25.043.0()5.043.021(2543.045.0)225.025.043.05.0(2555.325.0壁 踵板重力; kN H B N G 3125.342545.005.311=??=??=γ踵 踵板稳定力矩:m kN M y ?=++?=2372.84)205.343.05.0(3125.34踵 第二破裂面与挡土墙立壁,踵板之间的竖向力及稳定力矩: kN G 8514.13518)55.3202.12 1 55.3848.1(=??+??= m kN W ?=++???++++????=8446.2792202 .143.05.01855.3202.13848.1202.143.05.0182155.3848.1)()()( 土压力竖向分力y E 对墙趾的稳定力矩Ey M : m kN M Ey ?=++?=1806.252)434.243.05.0(9645.74 土压力竖向分力x E 对墙趾的颠覆力矩0M : m kN M ?=?=1771.461833.1024.390

车辆工程毕业设计31基于ProE及ANSYS的载货汽车主减速器结构设计与有限元分析

第1章绪论 1.1研究目的和意义 轻型货车在汽车行业中占有较大的比重,而主减速器是轻型货车的一个重要部件,其设计的成功与否决定着车辆的动力性、舒适性、经济性等多方面的设计要求。这就对主减速器设计人员提出较高的要求。在我国传统的设计方式中以手工绘图或采用AutoCAD 绘制二维平面图,做出成品进行试验为主,无法满足快速设计的需求,造成产品开发周期长、设计成本高。利用PRO/E及ANSYS软件对主减速器的主要零件进行建模和分析校核,能够大大提高设计的效率和质量,为轻型货车的研发缩短了宝贵的时间。同时,选择轻型货车减速器设计作为毕业设计题目,可以对大学四年所学的基础课程和专业课程进行一次系统的复习,更最重要的是培养了我们综合分析问题、理论联系实际的能力,培养我们调查研究,正确熟练运用国家标准、手册、图册等资料、工具的能力, 锻炼自己的设计计算、数据处理、编写技术资料、绘图等独立工作能力,为以后的工作打下基础。 1.2 国内外主减速器研究现状 改革开放以来,中国的汽车工业得到了长足发展,尤其是加入WTO以后,我国的汽车市场对外开发,汽车工业逐渐成为世界汽车整体市场的一个重要组成部分。同样,车用减速器也随着整车的发展不断成长和成熟起来。 随着高速公路网状况的改善和国家环保法规的完善,环保、舒适、快捷成为客车和货车市场的主旋律。对整车主要总成之一的驱动桥而言,小速比、大扭矩、传动效率高、成本低逐渐成为客车和货车主减速器技术的发展趋势。 产品上,国内卡车市场用户主要以承载能力强、齿轮疲劳寿命高、结构先进、易维护等特点的产品为首选。目前己开发的产品,如陕西汉德引进德国公司技术的485单级减速驱动桥,一汽集团和东风公司的13吨级系列车桥为代表的主减速器技术,都是在有效吸收国外同类产品新技术的基础上,针对国内市场需求开发出来的高性能、高可靠性、高品质的车桥产品。这些产品基本代表了国内车用减速器发展的方向。通过整合和平台化开发,目前国内市场形成了457、460、480、500等众多成型稳定产品,并被用户广泛认可和使用。设计开发上,设计软件先后应用于主减速器的结构设计和齿轮加工中,有限元分析、数模建立、虚拟试验分析等也被采用;齿轮设计也初步实现了计算机编程的电算化。新一代减速器设计开发的突出特点是:不仅在产品性能参数上

第四章_货车车身结构及其设计

第4章货车车身结构及其设计 §4-1 概述 货车即载货汽车,人们也称之为卡车,是指一种主要为载运货物而设计和装备的商用车辆,它能否牵引一挂车均可。近年来,随着我国高速公路网的加快建设与不断完善,公路运输行业迎来了大变革、大发展的时代,货车已经从载运货物这一单一功能向可代表物流准时化的物流服务的运输工具这一方向发展,成为了一种社会化的服务工具,因此,货车车身的设计也需要紧跟时代的步伐,满足当今社会的需求。 货车车身包括驾驶室和车箱两部分。在高度追求运输效率的今天,货车通常是昼夜不停地行驶,驾驶员轮换驾驶,驾驶室作为驾驶员和乘员工作和休息的空间,其设计既要满足实用性、耐用性、空气动力性、安全性等基本性能要求,也要具有良好的人机工程环境。货车车箱根据不同的需要可以设计成多种形式,其结构也各不相同,在设计时需考虑的有车箱结构强度、车箱尺寸及容量、前后轴载荷分配等因素,对于厢式车箱还要考虑空气动力性能。 由此可见,在设计货车车身结构时,需要综合地考虑货车的实用性、耐用性、安全性、舒适性以及其他各方面相关的因素。 4.1.1、货车的分类 货车的种类繁多,形式各异,各国的分类标准有所不同,在我国国家标准GB/T 3730.1-2001《汽车和挂车类型的术语和定义》中,将货车分为普通货车、多用途货车、全挂牵引车、越野货车、专用作业车和专用货车六大类,具体形式及定义见表4-1。 货车分类定义示意图 普通货车 一种在敞开(平板式)或封闭(厢式) 载货空间内载运货物的货车。 多用途货车在其设计和结构上主要用于载运货物,但在驾驶员座椅后带有固定或折叠式座椅,可运载3个以上的乘客的货车。 全挂牵引车一种牵引牵引杆式挂车的货车。 它本身可在附属的载运平台上运载货物。

土木工程路基路面课程设计

路基路面课程设计 目录 一、课程设计任务书 二、水泥路面工程设计 沥青路面设计 三、路基挡土墙设计

路基路面课程设计指导书 1.课程设计的目的 路基路面课程设计是对路基路面工程一个教学环节,通过路基路面课程设计使同学们能更加牢固地掌握本课程的基本理论、基本概念及计算方法,并通过设计环节把本课程相关的知识较完整地结合起来进行初步的应用,培养同学的分析、解决工程实际问题的能力。同时,通过课程设计,使同学对相关《设计规范》有所了解并初步应用。 2. 课程设计的内容 (1)重力式挡土墙设计:挡土墙土压力计算;挡土墙断面尺寸的确定; 挡土墙稳定性验算;挡土墙排水设计;绘制挡土墙平面、立面、断面图。(2)沥青混凝土路面设计:横断面尺寸的确定;路面结构层材料的选择; 路面结构层厚度的拟定及计算;路面结构层厚度的验算;分析各结构 层厚度变化时对层底弯拉应力的影响;绘制路面结构图。要求至少拟定 2个方案进行计算。 (3)水泥混凝土路面设计:横断面尺寸的确定;水泥混凝土路面结构层材料的选择;路面结构层厚度的拟定及层底拉应力的验算;确定水泥混凝土 路面板尺寸及板间连接形式;绘制水泥混凝土纵、横缝平面布置图和 水泥混凝土路面结构组合设计图。 3. 课程设计原始资料

(1)挡土墙设计资料 丹通高速公路(双向4车道)K28+156~ K28+260段拟修建重力式挡土墙,墙体采用浆砌片石,重度为22kN/m3。墙背填土为砂性土,重度为18kN/m3。地基为岩石地基,基底摩擦系数为0.5。结合地形确定挡土墙墙高(H)5m (K28+250),墙后填土高度(a)6m,边坡坡度1:1.5,墙后填土的内摩擦角为Φ=32o,墙背与填土摩擦角δ=Φ/2。 (1)新建水泥混凝土路面设计资料 1)交通量资料:据调查,起始年交通组成及数量见表;公路等级为一级公路,双向4车道;预计交通量增长率前5年为7%,之后5年为为6.5%,最后5年为4%;方向不均匀系数为0.5 2)自然地理条件:公路地处V3区,设计段土质为粘质土,填方路基 高3m,地下水位距路床3.5m。 润交通组成及其他资料 车型分类代表车型数量(辆/天) 小客车桑塔娜2000 2400 中客车江淮AL6600 330 大客车黄海DD680 460 轻型货车北京BJ130 530 中型货车东风EQ140 780 重型货车太脱拉111 900 铰接挂车东风SP9250 180 4.设计参考资料 (1)《公路沥青路面设计规范》 (2)《水泥混凝土路面设计规范》 (3)《公路路基设计规范》

16立方混凝土搅拌运输车罐体结构设计

16立方混凝土搅拌运输车罐体结构设计 我公司设计的16立方混凝土搅拌车在江淮8*4重卡格尔发底盘上进行设计开发,与我公司之前设计的所有系列搅拌车罐体结构均不同。 8—14立方混凝土搅拌运输车罐体结构:罐体直径为2300mm,罐体形状为梨形,除封头外由筒体1、筒体2、筒体3、活动圈、筒体4、叶片总成、导料筒组成,如图1所示: 1—封头2—筒体1 3—叶片总成4—筒体2 5—筒体3 6—活动圈7—筒体4 8—导料筒 由于该结构罐体直径较小,封头直径为1704mm,罐体封头厚度为6mm,其余筒体厚度为5mm。不同容量的搅拌运输车根据底盘可利用长度来设计罐体安装倾角和罐体中筒体2长度,从而实现客户要求的容积量。对于大立方混凝土搅拌车,罐体长度需较长,但与底盘可利用长度相矛盾,整车无法布置。 设计人员根据底盘状态和经验,将16立方搅拌车罐体直径设计成2470mm,结构如图2所示: 1—封头2—叶片总成3—筒体1 4—筒体2 5—筒体3 6—筒体4 7—活动圈8—筒体5 9—导料筒该16立方结构罐体直径较大,封头直径为1900mm,罐体总容积为25立方,在相同长度下比罐体直径为2300mm的容积大5立方,由于罐体直径加大,叶片螺旋距增大,为了增加强度,在封头内部增加6个加强筋,封头厚度增加到8mm,其余筒体厚度增加到6mm。整车设计出来后通过装水试验,静态下装载16.5立方水不洒水。在罐体转动过程中,我们

继续加水到17立方,发现当水转到尾部时由于惯性会有水从导料筒尾部溢出,为了让客户装载更多而不出现溢料现象,我们将导料筒割8个直径80mm的孔(每边四个),试验证明:当水转到尾部时,水会沿着孔又重新掉进罐体内部,有效阻止溢料现象发生。

货车主减速器结构设计

工程技术大学 课程设计 题目:中型货车主减速器结构设计 班级:汽车 学号: 姓名: 指导教师: 完成日期: 2011.12.25

一、设计题目 中型货车主减速器结构设计 二、设计参数 驱动形式:4*2后驱最高车速:98km/h 轴距: 4700mm 最大爬坡度:30% 轮距: 1900mm/1900mm 汽车长宽高: 7000mm/2000mm/2300mm 整备质量:3650kg 变速器传动比:5.06 4.016 3.09 1.71 1 4.8 额定载质量:4830kg 轮胎型号: 8.25-16 前后轴负荷: 1900kg/1750kg 3060kg/5420kg 离地间隙:300mm 前后悬架长度:1100mm/1200mm 三、设计要求 (1)总装图1张(2)零件图2张(3)课程设计说明书(5000~8000字)1份 四、进度安排(参考) (1)熟悉相关资料和参考图2天(2)确定基本参数和主要结构尺寸2天(3)设计计算3天(4)绘制总装配草图4天(5)绘制总装配图2天(6)绘制零件图2天(7)编写说明书3天(8)准备及答辩3天 五、指导教师评 成绩: 指导教师 日期

摘要 主减速器是汽车驱动桥的重要组成部分,本设计通过对国内外汽车主减速器结构和特点的分析和根据给定数据的计算,从发动机的最大功率和最大转矩入手,估算主减速器的传动比并选定减速器的类型。设计主减速器齿轮,校核其强度并选定减速器主动锥齿轮、差速器半轴齿轮和行星齿轮等。通过理论的计算和对主减速器实际工作情况的分析,设计了能够满足中型货车使用要求的单级主减速器。 关键词:主减速器;锥齿轮;减速装置;差速器;驱动桥

路基路面工程课程设计(+心得)

《路基路面工程》课程设计

沥青路面设计 方案一: (1)轴载换算及设计弯沉值和容许拉应力计算 序号车型名称前轴重(kN) 后轴重(kN) 后轴数后轴轮组数后轴距(m) 交通量 1 三菱T653B 29.3 48 1 双轮组2000 2 日野KB222 50.2 104. 3 1 双轮组1000 3 东风EQ140 23.7 69.2 1 双轮组2000 4 解放CA10B 19.4 60.8 5 1 双轮组1000 5 黄河JN163 58. 6 114 1 双轮组1000 设计年限12 车道系数 1 序号分段时间(年) 交通量年增长率 1 5 6 % 2 4 5 % 3 3 4 % 当以设计弯沉值为指标及沥青层层底拉应力验算时: 路面竣工后第一年日平均当量轴次: 4606 设计年限一个车道上累计当量轴次: 2.745796E+07 当进行半刚性基层层底拉应力验算时: 路面竣工后第一年日平均当量轴次: 4717 设计年限一个车道上累计当量轴次: 2.811967E+07 公路等级二级公路 公路等级系数 1.1 面层类型系数 1 基层类型系数 1 路面设计弯沉值: 21.5 (0.01mm) 层位结构层材料名称劈裂强度(MPa) 容许拉应力(MPa) 1 细粒式沥青混凝土 1 .28 2 粗粒式沥青混凝土.8 .21 3 石灰水泥粉煤灰土.8 .3 4 天然砂砾 (2)新建路面结构厚度计算 公路等级: 二级公路 新建路面的层数: 4 标准轴载: BZZ-100 路面设计弯沉值: 21.5 (0.01mm)

路面设计层层位: 4 设计层最小厚度: 10 (cm) 层位结构层材料名称厚度(cm) 抗压模量(MPa) 抗压模量(MPa) 容许应力(MPa) (20℃) (15℃) 1 细粒式沥青混凝土 3 1500 1600 1.2 2 粗粒式沥青混凝土7 1200 1300 .8 3 石灰水泥粉煤灰土25 900 900 .4 4 天然砂砾? 250 250 5 土基32 按设计弯沉值计算设计层厚度: LD= 21.5 (0.01mm) H( 4 )= 80 cm LS= 22.2 (0.01mm) H( 4 )= 85 cm LS= 21.5 (0.01mm) H( 4 )= 85 cm(仅考虑弯沉) 按容许拉应力验算设计层厚度: H( 4 )= 85 cm(第1 层底面拉应力验算满足要求) H( 4 )= 85 cm(第2 层底面拉应力验算满足要求) H( 4 )= 85 cm(第3 层底面拉应力验算满足要求) 路面设计层厚度: H( 4 )= 85 cm(仅考虑弯沉) H( 4 )= 85 cm(同时考虑弯沉和拉应力) 验算路面防冻厚度: 路面最小防冻厚度50 cm 验算结果表明,路面总厚度满足防冻要求. 通过对设计层厚度取整, 最后得到路面结构设计结果如下: 细粒式沥青混凝土 3 cm 粗粒式沥青混凝土7 cm 石灰水泥粉煤灰土25 cm 天然砂砾85 cm 土基 (3)竣工验收弯沉值和层底拉应力计算 公路等级: 二级公路 新建路面的层数: 4 标准轴载: BZZ-100 层位结构层材料名称厚度(cm) 抗压模量(MPa) 抗压模量(MPa) 计算信息 (20℃) (15℃) 1 细粒式沥青混凝土 3 1500 1600 计算应力

车辆工程毕业设计65YC1090货车驱动桥的结构设计

YC1090货车驱动桥的设计 目录 1前言 (1) 2 总体方案论证 (2) 2.1非断开式驱动桥 (2) 2.2断开式驱动桥 (3) 2.3多桥驱动的布置 (3) 3 主减速器设计 (5) 3.1主减速器结构方案分析 (5) 3.2主减速器主、从动锥齿轮的支承方案 (6) 3.3主减速器锥齿轮设计 (7) 3.4主减速器锥齿轮的材料 (10) 3.5主减速器锥齿轮的强度计算 (10) 3.6主减速器锥齿轮轴承的设计计算 (12) 4 差速器设计 (17) 4.1差速器结构形式选择 (17) 4.2普通锥齿轮式差速器齿轮设计 (17) 4.3差速器齿轮的材料 (19) 4.4普通锥齿轮式差速器齿轮强度计算 (19) 5 驱动车轮的传动装置设计 (21) 5.1半轴的型式 (21) 5.2半轴的设计与计算 (21) 5.3半轴的结构设计及材料与热处理 (24) 6 驱动桥壳设计 (25) 6.1桥壳的结构型式 (25) 6.2桥壳的受力分析及强度计算 (25) 7 结论 (27) 参考文献 (28) 致谢 (29)

1前言 本课题是对YC1090货车驱动桥的结构设计。故本说明书将以“驱动桥设计”内容对驱动桥及其主要零部件的结构型式与设计计算作一一介绍。 驱动桥的设计,由驱动桥的结构组成、功用、工作特点及设计要求讲起,详细地分析了驱动桥总成的结构型式及布置方法;全面介绍了驱动桥车轮的传动装置和桥壳的各种结构型式与设计计算方法。 汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。另外,汽车驱动桥在汽车的各种总成中也是涵盖机械零件、部件、分总成等的品种最多的大总成。例如,驱动桥包含主减速器、差速器、驱动车轮的传动装置(半轴及轮边减速器)、桥壳和各种齿轮。由上述可见,汽车驱动桥设计涉及的机械零部件及元件的品种极为广泛,对这些零部件、元件及总成的制造也几乎要设计到所有的现代机械制造工艺。因此,通过对汽车驱动桥的学习和设计实践,可以更好的学习并掌握现代汽车设计与机械设计的全面知识和技能。 课题所设计的货车最高车速V≥85km/h,发动机标定功率(3000r/min)99kW,最大扭矩(1200~1400r/min)430 Nm。 他有以下两大难题,一是将发动机输出扭矩通过万向传动轴将动力传递到后轮子上,达到更好的车轮牵引力与转向力的有效发挥,从而提高汽车的行驶能力。二是差速器向两边半轴传递动力的同时,允许两边半轴以不同的转速旋转,满足两边车轮尽可能以纯滚动的形式作不等距行驶,减少轮胎与地面的摩擦。 本课题的设计思路可分为以下几点:首先选择初始方案,YC1090属于中型货车,采用后桥驱动,所以设计的驱动桥结构需要符合中型货车的结构要求;接着选择各部件的结构形式;最后选择各部件的具体参数,设计出各主要尺寸。 所设计的YC1090货车驱动桥制造工艺性好、外形美观,工作更稳定、可靠。该驱动桥设计大大降低了制造成本,同时驱动桥使用维护成本也降低了。驱动桥结构符合YC1090货车的整体结构要求。设计的产品达到了结构简单,修理、保养方便;机件工艺性好,制造容易的要求。 目前我国正在大力发展汽车产业,采用后轮驱动汽车的平衡性和操作性都将会有很大的提高。后轮驱动的汽车加速时,牵引力将不会由前轮发出,所以在加速转弯时,司机就会感到有更大的横向握持力,操作性能变好。维修费用低也是后轮驱动的一个优点,尽管由于构造和车型的不同,这种费用将会有很大的差别。如果你的变速器出了故障,对于后轮驱动的汽车就不需要对差速器进行维修,但是对于前轮驱动的汽车来说也许就有这个必要了,因为这两个部件是做在一起的。 所以后轮驱动必然会使得乘车更加安全、舒适,从而带来可观的经济效益。

路基支挡结构施工方案

路基支挡施工方案 一、编制依据 1、现行的国家有关方针政策及国家和铁道部有关标准、规范、验标及施工技术指南等; 2、业主有关合同文件; 3、兰渝铁路公司相关文件要求; 4、中交一公局兰渝铁路LYS-12标项目部总体施工组织设计、总体施工进度计划; 5、中交一公局兰渝铁路LYS-12标四分部工程现场踏勘调查; 6、类似工程的施工经验。 二、编制原则 1、严格遵守招标文件中的安全、质量、工期、环保、文明施工等的规定及铁路建设工程施工合同条款内容; 2、严格执行国家、铁道部的有关法律、法规以及业主、监理工程师的工程指令和文件; 3、坚持科学性、先进性、经济性、合理性与实用性相结合原则。 4、健全安全保证体系,坚持预防为主的原则,运用现代科学技术,采用先进可靠的安全预防措施,确保施工生产和人身安全; 5、健全质量保证体系,制定切实可行的施工方案和创优规划、质量保证措施,推广“四新”技术,确保工程质量; 6、强力推行标准化文明施工建设,重视环境保护,力创安全文明施工标准化工地。

三、编制范围及工程概况 1、编制范围 本施工方案适用于中交一公局兰渝铁路LYS-12标第四分部管段(DK851+047~DK881+500)路基支挡工程施工。 2、工程概况 新建兰州至重庆铁路广元至重庆段LYS-12标项目部第四分部全长30.453km,路线起讫桩号为DK851+047~DK881+500。路基长度为14938米,路基主要施工内容有:路基土石方,软基处理,路基支挡、边坡防护、绿化工程及其它附属工程。 四、临时设施 根据现场情况,本着合理、美观、实用的原则进行各种设备、材料及临时设施的布置。 1、施工便道:路基支挡结构所施工段落施工便道全部贯通,尽量利用路基土石方施工已修好的便道。需要新建便道时,经过经济比选后确定便道方案。 2、办公、生活设施:路基支挡结构施工时间较短,且作业面比较分散。现场办公、生活住房就近租用当地民房或搭建活动板房。 3、临时用电:施工临时用电由工点附近设置的变压器供电,并配备发电机应急。 4、施工用水:施工用水需经过试验室检测合格并经监理同意后从邻近沟河取水至蓄水池。 五、施工组织机构及主要人员、机械配备 (一)组织机构设置及主要人员配备 根据本工程的规模、结构特点和复杂程度设置精干高效的职能部门,人员的配备力求精干。坚持合理分工与密切协作相结合,使之便于指挥和管理,分工明确,责权具体。

基于ProE及ANSYS的载货汽车主减速器结构设计与有限元分析

摘要 汽车主减速器作为汽车重要的部件之一,它的性能的好坏直接影响整车性能,而对于轻型卡车显得尤为重要。当采用大功率发动机输出大的转矩以满足目前轻型卡车的快速、重载的高效率、高效益的需要时,必须要搭配一个高效、可靠的主减速器。所以采用传动效率高的单级减速驱动桥已成为未来重载汽车的发展方向。 本文参照传统主减速器的设计方法进行了轻型卡车主减速器的设计。首先,确定了主减速器的结构形式;其次,根据所给汽车参数合理的分配主减速器主、从动齿轮模数、齿数,计算出主减速器的相关参数,并对主减速器齿轮进行强度校核;然后选择适合该汽车使用的差速器类型,并对行星齿轮和半轴齿轮模数、齿数进行合理的分配并计算校核,最后,利用Pro/E建模ANSYS软件对主减速器的主要零件进行分析校核,设计出符合该汽车使用的主减速器,并绘制出装配图和零件图。 关键词:轻型货车;单级主减速器;弧齿锥齿轮;ANSYS;Pro/E

ABSTRACT As one of the important parts of the car,automobile final drive has a direct impact on the whole performance,especially for the light track.We must complete with an efficient and reliability final drive when using the high power output torque engine to meet current light trucks of fast, reliable final drive. So with high transmission efficiency of single-stage reduction drive axle have become overloaded vehicles in the future direction of development. The design of the Light Truck final drive is refer to the traditional final drive. First,make sure the structure of the mian reducer form; Secondly, according to the given automobile parameters reasonable distribution of main reducer Lord, driven gear module, gear, calculate the primary reducer, and the relevant data of main reducer gear check intensity; Then choose appropriate use of the car, and the differential type planetary gear and half shaft pinion gear module, reasonable distribution and calculation, finally, check using ANSYS software, Pro/E of main reducer modeling analysis the main parts, design that meets the check the main reducer, cars and plot the assembly and detail drawings. Key words: Light Goods Gehicle (LGV); Single-stage Final Grive; The spiral bevel gear; ANSYS; Pro/E

路基路面设计

1.1道路工程 1)道路等级:城市次干路 2)设计车速:40km/h 3)路面结构设计荷载:BZZ-100型标准轴载 4)路面结构设计基准期:15年 5)交通流量设计年限:15年 1.2路基处理 1)一般路基处理 (1)设计标准 道路路基压实度标准见下表,如压实度不能合理过渡路段,应相应进行反开挖回填处理,增加压实度过渡层。原槽应满足90%压实度要求。设计采用城市次干路重型压实标准控制。 表1-1 路基压实度要求(重型) 填挖类型路槽底面以下深度(cm)填料最小强度 (CBR)(%) 压实度(%) 填方0~30 6 95 30~80 4 95 80~150 3 94 >150 2 92 零填及挖方0~30 6 95 30~80 4 95 路床顶部回弹模量需满足不小于30MPa。 (2)原槽处理 拟建场地位于长兴岛镇西区,根据邻近工程初勘报告,场地土层分布较稳定,土层自上而下可划分为四大层及5个亚层、1个夹层,其中①层为填土,②~⑤为全新世Q4沉积层,沿线主要软弱土层分布在埋深15m以下的④层灰色淤泥质软土,对一般路段影响较小。因此本工程主要针对表层填土松散以及地下水位埋深较浅的特点,进行一般路基设计。

表层填土主要为灰黄、灰色粉土性、粘性土混合组成,局部表层为杂填土,主要为低液限粉性土和低液限粘性土,结构较松散,在未作处理的情况下施工一般很难达到压实度要求,造成路基填料强度较低。因此,路基施工填土前,须清除原地面上杂草、树根、农作物残根、腐殖土、垃圾等30cm耕植土。对路基底部原槽底采用30cm碎石换填,碾压密实后作为施工操作面。 (3)一般路基填料 结合长兴岛当地工程经验,目前已建江南大道,潘圆公路,合作路等多条道路均采取二灰砂(石灰:粉煤灰:长江砂1:3:6)作为路基填料,是利用改良后长江砂代替一般路基填料使用,目前使用效果良好。综合考虑长兴岛缺少土源,大批工程同步建设造成路基土方稀缺,应尽量采用当地筑路材料来解决难题。因此,本工程设计一般路基填筑采用二灰砂(石灰:粉煤灰:长江砂1:3:6)作为路基填料,外侧采用1m素土包边。 二灰砂填料需至少保证30cm上路床及20cm过渡层,不足处需反开挖,分层回填压实。 2)浜塘路段路基处理 本工程范围内浜塘均为暗浜,必须采取适当处理措施,浜和渠底的淤泥必须清除,清淤至原状土后再用30cm碎石回填河底,并加铺土工布,然后用二灰分层回填,回填至原地面,在路基坡脚范围内浜塘顶面铺设两层土工隔栅。填浜处理范围为红线外5米。 原地面以上采用与一般路基相同的处理方式。 3)路基防护 本工程一般路段采用1:1.5放坡,植草防护处理,待地块实施开发时再结合处理。 1.3路面结构 根据交通流量及轴载组成情况分析,本工程为城市次干路,路面主要考虑因素为造价及施工控制难易程度、与周围环境的协调等。考虑到目前发展的趋势和沥青混凝土路面越来越显现出的优势,本工程推荐采用沥青混凝土路面。针对路面结构及材料选择详见下述:

路基与支挡结构作业及答案

《路基与支挡结构》作业 第一章路基工程概述与路基构造 复习思考题: 1 路基工程包括哪些方面? 2 什么是路基横断面?基本形式有哪些? 3 路基本体组成包括哪些?路肩的作用是什么? 4 在什么条件下路基需作个别设计? 第二章路基基床 一、选择题 1我国Ⅰ、Ⅱ、Ⅲ级铁路基床厚度标准(TB10001-99)分别是:(1)3.0m、2m、1.2m;(2)2.5m、2m、1.2m;(3)2.5m、2m、1.5m;(4)2.5m、1.5m、1.2m。 2下列土中不宜用作Ⅰ、Ⅱ、Ⅲ级铁路基床表层填料的是:(1)中砂;(B)砾砂;(3)硬块石;(4)易风化软块石。 3 基床容易发生翻浆冒泥的是:(1)粘性土填土基床;(2)无路拱的全风化砂岩路堑基床;(3)深路堑基床;(4)高路堤基床。 (答案:1(3)2(4)3(1)) 二、简答题 1 如何确定基床表层厚度? 2 基床填料与压实度要求如何? 3 常见基床病害有哪些?如何整治? 第三章路基边坡的稳定分析方法 一、思考题: 1.简述直线破裂法、瑞典圆弧法、瑞典条分法和折线滑动面法的适用条件方法与分析步骤。 2.如何对浸水路基边坡和地震条件下边坡稳定性进行评价? 二、计算题 根据下图求整个路堑边坡的剩余下滑力,滑动土体的γ=18.0kN/m3,内摩擦角φ=10°,C=2kN/m2,安全系数K=1,滑体分块重量: Q1=122.4kN, L1=5.7m, Q2=472.9kN, L2=8.0m, Q3=690.2kN, L3=9.2m, Q4=688.5kN, L4=9.2m.

第四章一般路基设计、施工与养护 一、选择题: 1.当路堤或路堑的土质为非渗水性土或多雨地区易风化的泥质岩石时, 路基面作成路拱:(1)路拱的形状为三角形或梯形,单线路拱高0.15m,一次修筑的双线路拱高为0.2m。(2)路拱的形状为三角形或梯形,单、双线路拱高都为0.2m。(3)路拱的形状为三角形,单、双线路拱高都为0.15m。(4) 路拱的形状为三角形,单线路拱高0.15m,一次修筑的双线路拱高为0.2m。 2. 无路拱地段的路肩实际高程应比其设计高程:(1)相同;(2)降低;(3)抬高;(4)有时抬高,有时降低。 3.无路拱与有路拱一端的土质路基连接处:(1)应向土质路基方向用渗水土作过渡段,过渡段的长度一般不小于10m,(2)应向土质路基方向用非渗水土作过渡段,过渡段的长度一般不小于10m,(3)应向土质路基方向用非渗水土作过渡段,过渡段的长度一般不大于10m,(4)应向土质路基方向用渗水土作过渡段,过渡段的长度一般不大于10m。 4.Ⅰ、Ⅱ、Ⅲ级铁路路堑的路肩宽度在任何情况下不得小于:(1)) 0.8m;(2)0.6m;(3) 0.4m;(4)视铁路等级不同而不同。 5.缓和曲线范围内的路基面宽度:(1)不设置曲线加宽;(2)按圆曲线设置加宽;(3)由圆曲线向直线递增设置加宽;(4)由圆曲线向直线递减设置加宽。 6.路肩标高:(1)以路肩边缘的标高表示;(2)以路肩标高加路拱高表示;(3)以路肩与道床边坡交点标高表示;(4)以路基边坡与地面交点标高表示。 7. 不得用于Ⅰ、Ⅱ、Ⅲ级铁路基床表层填料的是:(1)角砾土;(2)粘土;(3)中砂;(4)漂石土。 8.当用粗粒土(粘砂、粉砂除外)作路堤填料时,填土质量控制指标应采用:(1)相对密度或地基系数;(2)地基系数;(3)压实系数和地基系数;(4)压实系数和相对密度。 9.最优含水量是指指填土在一定的压实功能下:(1)最易施工的含水量;(2)填土施工许可的最大含水量;(3)产生填土最大密实度的含水量;(4)填土施工许可的最小含水量。 10.粘性土路堤边坡高18m,其设计边坡可采用:(1)1:1.5;(2)1:1.75;(3)8m 以上用1:1.5,8m以下用1:1.75;(4)按个别设计通过边坡稳定性检算确定。 11.按折线滑动面法检算陡坡路堤稳定性时,当计算某条块所得剩余下滑力为负值时,(1)该负值计入下一条块;(2)不计入下一条块,从下一条块开始往下计算剩余下滑力;(3)该负值乘以安全系数计入下一条块;(4)按一定比例计入下一条块。

相关文档
最新文档