微生物制药

微生物制药
微生物制药

一.名词解释

1、HV琼脂:是以土壤腐殖质为唯一C源N源的培养基,只有放线菌可以利用。

2、诱变育种:是指用物理、化学因素诱导动植物的遗传特性发生变异,再从变异群体中

选择符合人们某种要求的单株/个体,进而培育成新的品种或种质的育种方法。它是继选择育种和杂交育种之后发展起来的一项现代育种技术。

3、滤膜法:是检测水样中大肠细菌群的方法。将一定量水样注入已灭菌的微孔薄膜的滤

器中,经过抽滤,细菌被截留在滤膜上,将滤膜贴于品红亚硫酸钠培养基上,经培养后计数和鉴定滤膜上生长的大肠菌群菌落,依据过滤水样计算每升或每100毫升水样中的大肠菌群数。操作简单、快速,主要适用于杂质较少的水样。

4、高通量筛选法:是指以分子水平和细胞水平的实验方法为基础,以微板形式作为实验工

具载体,以自动化操作系统执行试验过程,以灵敏快速的检测仪器采集实验结果数据,以计算机分析处理实验数据,在同一时间检测数以千万的样品,并以得到的相应数据库支持运转的技术体系,它具有微量、快速、灵敏和准确等特点。简言之就是可以通过一次实验获得大量的信息,并从中找到有价值的信息。

5、菌种保藏:使菌种的生命得以延续,首先使它们不至于死亡绝种,同时使菌种的

遗传性状保持不变,以备再实践。一是菌种的保持,保持其存活不受污染,二是菌种的储存,便于在相当长的时间维持其遗传潜力,保持优良性状。

6、生长因子:具有刺激细胞生长活性的细胞因子。一类通过与特异的、高亲和的细胞膜受体

结合,调节细胞生长与其他细胞功能等多效应的多肽类物质。

7、初级代谢产物:指微生物通过代谢活动所产生的、自身生长和繁殖所必需的物质,如氨

基酸、核苷酸、多糖、脂类、维生素等。通过初级代谢,能使营养物转化为结构物质、具生理活性物质或为生长提供能量,通常都是机体生存必不可少的物质。

8、生源:把构成次级代谢产物的基本结构单位称为生源(biogen)。生源直接或间接来源于

次级代谢过程的中间产物或初级代谢产物。构建单位包括聚酮体、甲羟戊酸、糖类、不常见的氨基酸(如D-氨基酸、β-氨基酸等)、环多醇和氨基环多醇等。

二.简答

1.如何分离放线菌,分离放线菌时要考虑哪些问题?

答:(1)可利用其孢子和细菌细胞及不同属间放线菌孢子的耐受性差异,用理化方法除去细菌及非目的放线菌;另外可利用花粉为诱饵、增加特定放线菌的分出率。

①温度法:采用不同的温度和不同的处理时间可依次分离出不同的放线菌。

②化学试剂处理:a.SDS-酵母浸膏处理法:SDS对放线菌孢子基本无害,酵母浸膏以及

温和的热休克可以促进放线菌孢子的出芽,用此法可使细菌数明显减少,HV平板上出现的55%~95%菌落为放线菌。b.风干-CaCO3法:风干土壤+CaCO3,26℃培养7-9d。原理是风干减少了细菌生长,CaCO3不利于真菌而利于放线菌。

③物理方法处理: a.由于M菌株大小有别,经离心处理后可以选择性地分离一部分M。如

1600g,离心20min,上清液中主要是放线菌的孢子,沉淀中含有细菌和真菌的孢子。b.超声波处理后收集耐性孢子,可分离到小单孢菌和链霉菌。

(2)分离培养基:通常分离放线菌多采用合成培养基。

a几丁质培养基分离放线菌的最佳培养基,只有放线菌可用。但出现的放线菌菌落小、成白色,不易观察,应转接到适于产生可溶性色素的培养基上来加以区分。

b HV琼脂:是以土壤腐殖质为唯一C源N源的培养基,只有放线菌可以利用。

(3)抑制剂的选用:例如:分离放线菌可加入抗真菌试剂(如制霉菌素、放线菌酮)使真菌形成小菌落(rose bengan),同时加入抗细菌的抗生素(如青霉素和链霉素)抑制真菌和细菌的生长,增加放线菌的分出率。

(4)分离方法:可以采用稀释法、滤膜法或孢子飞扬法等,将预处理后的样品中的M接种到适当的分离培养基上。

2.菌种退化的原因是什么,如何防止菌种退化?

答:菌种退化的原因:(1)自然突变和回复突变:基因突变是菌种退化的一个主要原因之一。突变多在繁殖过程中发生的或表现出来的,因此传代次数愈多产生的突变的几率愈高。接种传代是菌种退化决定性的因素。

(2)链霉菌遗传的不稳定性:链霉菌遗传物质的转位、扩增可能是遗传不稳定发生的原因。

(3)细胞本身自我调节和修复:微生物的理化因素的DNA损伤都可以得到修复,调节和修复的结果有两种结果:回复突变的发生或新负变产生失去高产能力,还可以使高产稳定。

(4)环境条件的影响:环境条件:培养基成分、温度、湿度、pH和通气条件等。环境素对酶的影响实例很多。

防止菌种退化措施:(1)单孢子的分离:当看到群体发生衰退时,也要看到其中还有未退化的个体存在,而且这些没有退化的个体往往是经过环境的选择,更具有生命力的部分,因此常采取分离单细胞菌株这一措施使衰退的菌种复壮。

(2)减少传代次数:传代容易引起菌落表型的变化以及抗生素合成的质粒脱落。其变化本质是核基因突变和异核体菌落出现,从而导致形态变化和生产力的降低。因此要减少传代次数。

(3)创造良好的培养条件:改变培养基成分,寻找有利于形成孢子或芽孢的条件。例如赤霉菌的复壮可以用0.1~0.2%的谷氨酰胺或天冬氨酸。

(4)稳定链霉菌性状:在菌种保藏过程中,在培养基中添加抗诱变剂如嘌呤核苷酸、锰离子、

精胺、咖啡因。

(5)采用有效菌种保藏方法:如超低温液氮保藏(-196℃~-150℃);真空冷冻干燥保藏。3.简述日本大村教授发明的筛选细菌细胞壁合成抑制剂的支原体模型。

答:初筛:测定样品(几种样品,其中有抗支原体、有抗细菌的、还有两者都抗的样品)抗支原体https://www.360docs.net/doc/8118100541.html,idlawii和抗细菌B.subtilis活性。从中选出抗细菌(有可能抑制细胞壁或蛋白质的合成)而不抗支原体的样品。

二筛:测定所选出样品对meso-[3H]二氨基庚二酸(细菌细胞壁成分)和L-[14C]-Leu(蛋白质的合成有关)的渗入的影响。如果样品抑制前者的渗入而不影响后者渗入的抗生素可能是细胞壁合成的抑制剂。

4. 重组DNA技术在微生物药物菌种改良研究中的应用。

答:(1)提高微生物药物的单位产量,增加限速酶基因的拷贝数,提高菌种生产能力。

(2)引入抗性基因和调节基因:通过扩增与抗生素生物合成连锁的相关基因(如自身抗生

素耐药(抗性)基因)可以提高抗生素产量,这种方法对低产菌株比较有效。另外,增加正调节基因的拷贝数也能大幅度提高次级代谢产物的合成能力。

(3)克隆抗生素全部结构基因,改变表达体系提高产量:由于大肠杆菌的倍增时间短,培

养密度高,比起链霉菌来可以大大缩短培养时间——强表达体系。因此对于多肽类抗生素中的核糖体生产型,可以将其结构基因从基因文库(gene library)内调出后导入其它强表达体系,从而提高产量。研究表明核糖体生产型肽类抗生素可以像蛋白质一样通过增加启动子,采用通用密码子等手段在大肠杆菌中增强表达。

(4)构建产生新化合物的基因工程菌

5.冷冻干燥保藏法的原理和操作方法、特点及注意事项。

答:冷冻干燥基本原理:将液体的样品冷冻成冰,然后在低温低压的条件下使其脱水升华(即低压冻干,水直接由固体转化成气体而得以去除,同时用冷凝的方法捕捉冷凝水气,使样品脱水干燥。

特点:在冻干过程中,水分的升华是由表及里地进行的,冻干后的制品的体积都保持冻干时的状态,呈多孔性结构,这样制品就具有较大的内在空间,质地疏松,加水后容易溶解。冻

干过程酶化作用微弱;制品处在干燥、缺氧条件下,微生物处于休眠状态,因而可以保存较长时间。

冷冻干燥具体操作方法及注意事项:冷冻干燥的具体操作:(1)安瓿管准备;(2)菌种准备(3)保护剂的选择和准备;(4)预冻;(5)干燥;(6)测水分;(7)封熔;(8)保藏;(9)恢复培养;(10)质量检查;注意:冷冻干燥后的培养物在低于5℃下保藏。较低的保藏温度(-20~-70℃)对于培养物的长期稳定更好。

6.发酵过程中为什么要补料,补料的内容和方式。

答:在分批培养过程中补入新鲜的料液,以克服营养不足而导致的发酵过早结束的缺点。在这样一种系统中可以维持低的基质浓度,避免快速利用碳源的阻遏效应;可以通过补料控制达到最佳的生长和产物合成条件;还可以利用计算机控制合理的补料速率,稳定最佳生产工艺。①可以解除底物的抑制、产物的反馈抑制和分解代谢物阻遏作用。当代谢产物收率或其生产速率明显地受某种底物组分浓度影响②可以减少菌体生长量,提高有用产物的转化率;③菌种的变异及杂菌污染问题易控制;④便于自动化控制

7.发酵控制参数有哪些,它们是如何控制发酵进程的。

答:1、发酵过程的参数监测。目前经常测定的参数有温度、罐压、空气流量、搅拌速度、酸碱度、溶解度、效价、氨基氮含量、前体(如苯乙酸)浓度、菌体浓度(干重、离心压缩细胞体积%)等。

2温度对发酵的影响:a、发酵热b、温度对微生物生长的影响:一般情况下,温度增加10度,生长速度大致增加一倍。c、高温度超过最适温度生长温度时生长速度随温度升高而迅速下降。温度对微生物发酵的影响:温度对菌体生长和产物生产的影响是各种因素综合表现的结果。

3、溶解氧浓度对发酵的影响(1)溶解氧浓度(dissolved oxygen concentration):(DOC)溶

解到水中的氧气叫溶解氧。(2)溶解氧浓度的变化:a、临界氧浓度:一般不影响菌体的呼吸所允许的最低浓度。而对产物而言,便称为产物合成的临界氧浓度。但有时两者也不同。

发酵过程中,应保持氧浓度在临界氧浓度以上。b、产物合成的最适氧浓度:能够使产物合成能力最大的溶解氧浓度。它与临界氧浓度是不同的过低或过高对产物合成都有影响。c、溶解氧浓度变化的原因:明显下降的原因:污染好气性杂菌、菌体代谢发生异常、设备或工艺控制发生故障。明显上升的原因:菌体代谢出现异常、污染噬菌体。

4、pH对发酵的影响及其控制:a、发酵过程中,培养液的pH是微生物在一定环境条件下

代谢活动的综合指标,是一项重要的发酵参数。确定发酵过程中最适pH是保证和提高产量的重要环节。b、菌体本身是具有一定的pH调节能力,但外界条件变化过于剧烈时,菌体就失去了这种调节能力。c、引起pH下降的原因:培养基中C/N不当。例如:C源过多,G过量;中间补糖过多。通气不足或菌体生长过旺,使溶解氧不足,大量产生有机酸使pH 下降。加入消泡剂过多。生理酸性物质的利用(产生酸)。d、引起pH上升的原因:C/N不当,N源过多,生理碱性物质的利用(产生碱)。中间补料加入了过量的氨水或尿素。菌体生长异常产生自溶。e、pH变化的后果:引起各种酶活力的改变。影响菌体对基质的利用速度和菌体细胞的结构。改变菌体的代谢途径增加副产物的形成。对发酵液和产物的理化影响。f、最适pH值的选择与控制。原则:有利于菌体生长和产物的合成。由于生长和产物合成的最适pH值不同,应按发酵过程的不同阶段分别控制不同pH值的范围。方法:选择合适的营养物和适当的配比。合理使用生理酸碱性物质,使用缓冲剂。通过中间补料控制pH值。

5、CO2对发酵的影响:CO2对发酵的影响有双重作用:一方面当高浓度时抑制发酵,另一

方面低浓度时刺激发酵。CO2对细胞作用的主要原因是CO2及HCO3- 都影响细胞膜的结构。

6、前体浓度对代谢影响和控制:前体的加入(如青霉素的前体苯乙酸;红霉素的前体丙醇)

能提高抗生素的产量,但不可一次大量投入,过量过多的前体对产生菌可能产生毒性。前体不仅具有毒性,而且还能被菌体氧化分解。加入前体数量太少又不利于抗生素的合成,

因此采用上面的方法少加多次连续流加。

8.简述次级代谢产物合成的基本途径。

答:微生物以不同的前体和途径生成次级代谢产物的生源,接下来这些构建单位通过特殊的酶促反应进行缩合形成聚酮体,寡肽等,在经过一系列的化学修饰和装配构成具有多种多样的化学结构和生理活性的次级代谢产物。

1.前体聚合:聚酮体聚合形成聚酮体,氨基酸聚合形成寡肽。

2.修饰:次级代谢产物的各种单体聚合在一起,建立起基本骨架结构后,其中的某些基团

往往必须通过酶促反应进行修饰,才能形成有生理活性的物质。

3.不同组分的装配:次级代谢产物所必需的几个部分合成后要按照一定的顺序在特异酶的

催化下组装在一起形成具有生理活性的次级代谢产物。

9.试举出5种抗生素,并阐述它们各自的作用机理。

答:1、β-内酰胺类抗生素:包括青霉素类抗生素、头孢菌素类抗生素、碳青霉烯类抗生素、单环-β-内酰胺类抗生素和β-内酰酶抑制剂。作用和机理是这类抗生素与细菌青霉素结合位点(PBPS)结合,抑制交联形成肽聚糖的反应,是最重要的一类抗感染药物。

2、青霉素:青霉素的结构与细胞壁的成分粘肽结构中的D-丙氨酰-D-丙氨酸近似,可与后

者竞争转肽酶,阻碍粘肽的形成,造成细胞壁的缺损,使细菌失去细胞壁的渗透屏障,对细菌起到杀灭作用。

3、氨基糖苷类抗生素(天然氨基糖苷类抗生素、临床应用的氨基糖苷类抗生素)。它们能

作用于蛋白质的合成,氨基糖苷类抗生素由氨基环酸、氨基糖、多糖组成的抗生素,1944年waksman发现的链霉素治疗结核病一般产生于链霉菌。

4、安沙类抗生素:是一种安沙类抗生素,抑制细菌RNA聚合酶,对动物的RNA聚合酶

几乎没有作用,选择性良好,多产于链霉菌,利福霉素SV抗结核菌十分有效。

5、红霉素:作用机制主要是与核糖核蛋白体的50S亚单位相结合,抑制肽酰基转移酶,影

响核糖核蛋白体的移位过程,妨碍肽链增长,抑制细菌蛋白质的合成,系抑菌剂。10.结合微生物制药学谈谈对色谱知识的认识,现代色谱技术发展情况。

答:高效液相色谱法主要用于复杂成分混合物的分离、定性、与定量,其定性与定量方法与气相色谱相同。高效液相色谱法广泛用于微量有机药物及中草药有效成分的分离、鉴定和含量测定。近年来,对体液中原形药物及其代谢产物的分离分析,无论在灵敏度、专属性及快速性等方面都有独特的优点,已成为体内药物分析,药物研究及临床检验的重要手段。

气相色谱仪在生物制药行业中的应用主要包括药物含量测定,杂质检查和有机溶剂的残留量、中药成份研究、药剂分析、治疗药物监测和要去代谢研究。如:测定桉油中桉油精、丁香中的丁香酚、肉桂油中的桂皮醛等等。

色谱法以其高超的分离能力为特点,它的分离效能远远高于其他分离技术如蒸馏、萃取、离心等方法。其主要优点:

(一)分离效能高如毛细管气相色谱柱理论塔片数可达7万-12万。而毛细管电泳仪一般有几十万理论塔板数,至于凝胶毛细管电泳柱可达上千万理论塔板数的柱效。

(二)应用范围广它几乎可用于所有化合物的分离和测定,无论是有机物、无机物、低分子或高分子化合物,甚至有生物活性的生物大分子也可以进行分离和测定。

(三)分析速度快一般在几分钟到几十分钟就可完成一次复杂样品的分离和分析。

(四)样品用量少用极少的样品就可完成一次分离和测定。

(五)灵敏度高如气相色谱可以分析几纳克的样品,火焰离子化检测器(FID)可达10-12g/s,电子捕获检测器(ECD)达10-13g/s,检测限为10-9g/L和10-12g/L。

(六)分离和测定一次完成可以和多种波谱分析仪器联用。

(七)易于自动化分离和分析自动完成,可以在工业流程中应用。

液相色谱输液系统的发展

(1)通过自动实时溶剂补偿系统 ,能够自动记录并计量在混合过程中由于溶剂体积收缩而增量的溶剂在加压状态下输送 ,可基本消除空穴和气泡带来的影响。

(2)采用脉动流量自动校正机构和微柱塞、高速驱动 ,实现无脉动性的平稳输液 ,同时微步驱动机构可实现高精度的输液。

(3)非圆齿轮传动、静态阻尼及梯度混合器及各种专利设计 ,保证了流量的高精度和极高的梯度重现性及准确度。

(4)可互换的泵头 ,使流量范围可覆盖从分析到小量制备的应用。

微生物制药的一般工艺流程

微生物制药的一般工艺流程 微生物制药技术 工业微生物技术是可持续发展的一个重要支撑,是解决资源危机、生态环境危机和改造传统产业的根本技术依托。工业微生物的发展使现代生物技术渗透到包括医药、农业、能源、化工、环保等几乎所有的工业领域,并扮演着重要角色。欧美日等国已不同程度地制定了今后几十年内用生物过程取代化学过程的战略计划,可以看出工业微生物技术在未来社会发展过程中重要地位。 微生物制药技术是工业微生物技术的最主要组成部分。微生物药物的利用是从人们熟知的抗生素开始的,抗生素一般定义为:是一种在低浓度下有选择地抑制或影响其他生物机能的微生物产物及其衍生物。(有人曾建议将动植物来源的具有同样生理活性的这类物质如鱼素、蒜素、黄连素等也归于抗生素的范畴,但多数学者认为传统概念的抗生素仍应只限于微生物的次级代谢产物。)近年来,由于基础生命科学的发展和各种新的生物技术的应用,报道的微生物产生的除了抗感染、抗肿瘤以外的其他生物活性物质日益增多,如特异性的酶抑制剂、免疫调节剂、受体拮抗剂和抗氧化剂等,其活性已超出了抑制某些微生物生命活动的范围。但这些物质均为微生物次级代谢产物,其在生物合成机制、筛选研究程序及生产工艺等方面和抗生素都有共同的特

点,但把它们通称为抗生素显然是不恰当的,于是不少学者就把微生物产生的这些具有生理活性(或称药理活性)的次级代谢产物统称为微生物药物。微生物药物的生产技术就是微生物制药技术。可以认为包括五个方面的内容: 第一方面菌种的获得 根据资料直接向有科研单位、高等院校、工厂或菌种保藏部门索取或购买;从大自然中分离筛选新的微生物菌种。 分离思路新菌种的分离是要从混杂的各类微生物中依照生产的要求、菌种的特性,采用各种筛选方法,快速、准确地把所需要的菌种挑选出来。实验室或生产用菌种若不慎污染了杂菌,也必须重新进行分离纯化。具体分离操作从以下几个方面展开。 定方案:首先要查阅资料,了解所需菌种的生长培养特性。 采样:有针对性地采集样品。 增殖:人为地通过控制养分或培条件,使所需菌种增殖培养后,在数量上占优势。

生物制药考试重点

生物制药考试重点 第一章 药物是用于预防、诊断、治疗人的疾病。改善生活质量和影响人体生物学进程的物质。药物可分为化学药物、中药、生物药物三大类。P1 生物药物是指利用生物体、生物组织或其成分、综合应用多门学科的原理和方法进行加工、制造而成的一大类药物。P1 天然生化药物是指从生物体(动物、植物和微生物)中获得天然存在的生化活性物质。 抗生素是指由生物(包括微生物、植物和动物)在其生命过程中所产生的一类在微量浓度下就能选择性地抑制他种生物或细胞生长的生理活性物质及其衍生物。P2 生物制品,一般指的是用微生物及其代谢产物、原虫、动物毒素、人或动物的血液或组织等直接加工制成,或用现代生物技术方法制备的,用于预防、治疗、诊断特定传染病或其他有关疾病的药品。P3 自1982年重组人胰岛素投放市场以来,利用基因工程开发生物药物已经成为一个重要的发展方向。P4 1989年我国研发出第一个拥有自主知识产权的生物医药产品——重组人干扰素a-1b。(细胞因子)P5 生化制药主要是从动物、植物、微生物和海洋生物中提取、分离、和纯化生物活性物质,加工制造成为生化药物。天然的生化药物包括氨基酸、多肽、蛋白质、核酸、酶和辅酶、糖类、脂类药物等。P5 微生物制药是以发酵工程技术为基础、利用微生物代谢过程生产药物的制备技术。微生物制药生产的药物包括抗生素、酶抑制剂、免疫调节剂以及维生素、氨基酸、核苷酸等。P5 生物技术制药是利用现代生物技术(包括基因工程、细胞工程、酶工程、发酵工程和蛋白质工程等),生产多肽、蛋白质、酶和疫苗、单克隆抗体等。P5 迄今为止,已上市的基因工程药物多数以E.coli表达系统生产,其次是酿酒酵母和哺乳动物细胞(中国仓鼠卵细胞CHO和幼仓鼠肾细胞BHK)。P6 第二章 生物活性物质的制备技术很多,主要是利用它们之间特异性的差异,如分子大小、形状、酸碱度、极性、溶解度、电荷和对其他分子的亲和性等建立起来的。P9 传统的生化制药的基本工艺过程可分为:材料的选择和预处理,组织与细胞的破碎及细胞器的分离,活性物质的提取和纯化,活性物质的浓缩、干燥和保存。P9 细胞破碎后,一般采用差速离心方法分离细胞内质量不同的细胞组分,沉降于离心管内不同区域,分离后即所得所需组分。P14 某一物质在溶剂中的溶解度大小与该物质的分子结构及所使用的溶剂的理化性质有密切关系,一般遵循“相似相溶”的原则。P14 提取的原则是“少量多次”,即对于等量的提取溶液,分多次提取比一次提取的效果好得多。P14 生物活性物质的初步分离与纯化,一般采用沉淀分离法,即通过改变某些条件或加入某种物质,使溶液中某种溶质的溶解度降低,从而从溶液中沉淀析出。沉淀分离法包括盐析沉淀、等电点沉淀和有机溶剂沉淀等。P15 一般的透析时间是24h,每小时换水一次,整个过程在4.o C下进行。P16 电泳技术既可用于分离各种生物大分子,也可用于分析某种物质的纯度,还可用于相对分子质量的测定。P17 常用的干燥方法是真空干燥和冷冻干燥。P18

微生物与制药综述范文

微生物制药的研究进展 姓名:李青嵘 班级:生工102 学号:

摘要 本文通过对历史文献的检索,从微生物生产维生素,微生物生产多价不饱和脂肪酸,微生物生产抗生素,微生物生产抗癌物质,微生物生产医用酶制剂等五个方面综述了微生物制药的研究进展。 关键词:微生物,制药,发酵工程 1.前言 随着生物技术的迅猛发展,在医药领域的许多方面取得了巨大的进展.,其中采用微生物制药,具有生产工艺简单,生产成本低廉,产品产量高,产品纯度高,可大规模工业化生产等优势,同样得到了巨大的发展。从传统工艺,如利用发酵工程生产抗生素、酶制剂以及B-胡萝卜素等;到现今的利用转基因技术生产干扰素、胰岛素、生长因子等几十种新药和疫苗。本文着重综述了微生物的发酵工程在医药研究和生产中应用的最近进展,主要包括生产维生素、多价不饱和脂肪酸、抗生素、抗癌物质医用酶制剂等五个方面。 2.研究内容 2.1.微生物生产维生素 维生素是六大生命要素之一, 为整个生命活动所必需。β-胡萝卜素、VC、VE是目前应用最为广泛,效果最为显著的三种维生素,它们的作用分别是:β-胡萝卜素是强力抗氧化剂, 有抑制癌细胞增殖和提高机体免疫力等作用。V C 和V E 均是抗氧化剂, 前者可阻止、破坏自由基形成,还具有激活免疫系统细胞的活力,刺激机体产生干扰素以抵御外来侵染因子。至于VE可产生抗体,增强机体免疫力。目前,上述的“三素”以实现了微生物工业化生产。 目前,β-胡萝卜素主要是由三孢布拉霉菌生产,在1998年,陈涛等[1]已经针对三孢布拉霉菌的特点,优化发酵工艺,在3M3的发酵罐中发酵120h,生产的β-胡萝卜素产量已达到1146.5mg/L。虽然,传统的工艺生产β-胡萝卜素的产量高,生产周期比较短,但是传统的工艺复杂,成本过高,不利于大规模工业化生产。故,目前许多课题组专注于开发新的生产β-胡萝卜素的菌种或改进传统工艺。据近年所发表的期刊文献,目前,采用红酵母发酵生产β-胡萝卜素是一种工艺简单,成本低廉的方法,虽然在产量方面较传统方法的低很多,但是该方法仍具有很大的发展潜力。何海燕等[2]采用粘红酵母R3-35摇瓶发酵84h,生产的β-胡萝

微生物制药技术介绍

微生物制药技术介绍 工业微生物技术是可持续发展的一个重要支撑,是解决资源危机、生态环境危机和改造传统产业的根本技术依托。工业微生物的发展使现代生物技术渗透到包括医药、农业、能源、化工、环保等几乎所有的工业领域,并扮演着重要角色。欧美日等国已不同程度地制定了今后几十年内用生物过程取代化学过程的战略计划,可以看出工业微生物技术在未来社会发展过程中重要地位。 微生物制药技术是工业微生物技术的最主要组成部分。微生物药物的利用是从人们熟知的抗生素开始的,抗生素一般定义为:是一种在低浓度下有选择地抑制或影响其他生物机能的微生物产物及其 衍生物。(有人曾建议将动植物的具有同样生理活性的这类物质如鱼素、蒜素、黄连素等也归于抗生素的范畴,但多数学者认为传统概念的抗生素仍应只限于微生物的次级代谢产物。)近年来,由于基础生命科学的发展和各种新的生物技术的应用,报道的微生物产生的除了抗感染、抗肿瘤以外的其他生物活性物质日益增多,如特异性的酶抑制剂、免疫调节剂、受体拮抗剂和抗氧化剂等,其活性已超出了抑制某些微生物生命活动的范围。但这些物质均为微生物次级代谢产物,其在生物合成机制、筛选研究程序及生产工艺等方面和抗生素都有共同的特点,但把它们通称为抗生素显然是不恰当的,于是不少学者就把微生物产生的这些具有生理活性(或称药理活性)的次级代谢产物统称为微生物药物。微生物药物的生产技术就是微生物制药技术。可以认为包括五个方面的内容:

根据资料直接向有科研单位、高等院校、工厂或菌种保藏部门索取或购买;从大自然中分离筛选新的微生物菌种。 分离思路新菌种的分离是要从混杂的各类微生物中依照生产的要求、菌种的特性,采用各种筛选方法, 快速、准确地把所需要的菌种挑选出来。实验室或生产用菌种若不慎污染了杂菌,也必须重新进行分离纯化。具体分离操作从以下几个方面展开。 定方案:首先要查阅资料,了解所需菌种的生长培养特性。 采样:有针对性地采集样品。 增殖:人为地通过控制养分或培条件,使所需菌种增殖培养后,在数量上占优势。 分离:利用分离技术得到纯种。 发酵性能测定:进行生产性能测定。这些特性包括形态、培养特征、营养要求、生理生化特性、发酵周期、产品品种和产量、耐受最高温度、生长和发酵最适温度、最适pH值、提取工艺等。 工业上生产用菌株都是经过选育过的。工业菌种的育种是运用遗传学原理和技术对某个用于特定生物技术目的的菌株进行的多方位的改造。通过改造,可使现存的优良性状强化,或去除不良性质或增加新的性状。 工业菌种育种的方法:诱变、基因转移、基因重组。

微生物制药研究进展和发展趋势

微生物制药研究进展和发展趋势 现如今,随着医学的不断进步发展,微生物药物的应用越来越广泛,最开始的微生物药品为沿用至今的抗生素类药物。然而,随着科学技术的不断完善,抗感染、抗肿瘤等微生物药物已经满足不了人们对药物的需求。医疗科学需要不断进步与发展,进而免疫调节剂、抗氧化剂等药物相继推出[1,2]。但是人们的生活在日益变化着,微生物也会跟随着人类的脚步而慢慢变化。因而,针对不同微生物的药物需要不断进行改进与创新,才能确保人们在生产发展过程中的药物需求,保证人类的健康发展。本文探讨微生物在现实生活中的应用问题,综述了微生物制药研究进展,对微生物的制药前景进行了展望。 1 微生物制药概述 微生物的制药技术是属于工业微生物技术的最主要的组成部分。而人们使用最早的药物就是抗生素类药物,随着医疗技术的不断推陈出新,抗氧化剂、受体拮抗剂等药物的活性远远超过了抑制某些微生物生命活性的范围。而微生物药物是属于微生物的代谢产物,因此在微生物药物的生物合成机制、筛选的研究程序及生产工艺等方面,与抗生素药物都有着相似的特点。而微生物药物就是微生物产生的具有生理活性的次级代谢产物,微生物药物的生产技术实则为微生物制药技术,需要技术操作人员对微生物的制药工程掌握熟练,达到理论知识与实践操作的结合。 2 微生物制药的研究进展与展望 生物制品的研究进展 生物制品是人工免疫中用于预防、治疗和诊断传染病的来自生物体的各种制剂的总称。而生物制品一般分为免疫血清、细胞免疫制剂、免疫调节剂、疫苗等。免疫血清微生物药物的使用,在血清学实验中具有重要的检验价值,最突出的便是“肥达反应”,并且这一检验技术在临床上的应用较为广泛,为临床的正确诊断提供时效性价值。还可以利用免疫血清对人工进行人工被动免疫,可以使机体即刻获得免疫力,从而达到治疗效果及预防疾病的目的。但是,免疫血清的抵抗性并非机体所产生,维持的时间较短,需要不断进行改进。疫苗的药物功能也是对疾病进行预防,特别是对流感病毒的治疗与预防,但是疫苗长时间的接种,流感病毒的型号会不断更换,因而疫苗对于某些特点的流感病毒或细菌也会逐渐失去药物性质。 抗生素的研究进展

浅谈微生物在制药领域的应用

微生物在制药领域的应用 摘要:1.掌握抗生素的概念、制备、效价的微生物学测定法,了解抗生素产生菌的筛选方法及生产过程。 2.了解微生物在医药工业其他方面的重要应用。 关键字:抗生素制备产品质量检测 微生物制药技术是工业微生物技术的最主要组成部分。微生物药物的利用是从人们熟知的抗生素开始的,抗生素一般定义为:是一种在低浓度下有选择地抑制或影响其他生物机能的微生物产物及其衍生物。 抗生素产生菌的分离和筛选 1.土壤微生物的分离 2.筛选 3.早期鉴别 4.分离精制 5.药理试验和临床试用 抗生素的制备: 菌种孢子制备种子制备发酵发酵液预处理提取及精制成品检验成品包装 微生物发酵的一般工艺也就是利用深层培养,进行微生物发酵生产所需要产品的过程。微生物发酵一般分发酵与提取2个阶段。 发酵阶段:发酵阶段是指微生物菌种在适宜的培养液内,在一定的培养条件下,微生物生长繁殖,生物合成所需产物的过程。 (1)菌种 发酵所用的菌种都是从自然界分离、纯化及选育后获得的。这些菌种通常采用砂土管或冷冻干燥管保存。要经常进行菌种选育工作,用人工方法加以纯化和育种,才能保持菌种的优良性状不变。菌种制备的整个过程要保持严格的无菌状态。 (2)孢子制备 胞子制备就是将保藏的菌种进行培养,制备大量孢子供下一步植被种子使用。需氧发酵制备孢子一般是在摇瓶内进行,通过振荡,外界空气与培养液进行自然交换获得氧气。所用的培养基要含有生长因子和微量元素,且碳源或氮源不宜过多,从而保证生产大量的孢子。此外,还要严格控制培养基的pH、培养温度、培养时间等条件。 (3)种子制备 种子制备是使有限数量的孢子萌发、生长、繁殖产生足够量的菌丝体,供发酵培养所用。在种子罐内微生物菌丝大量生长、繁殖,因而缩短了下一步发酵罐内菌丝生长的时间。种子罐中的培养液要尽可能与发酵液一致。而且要有易吸收的碳源和氮源。 提取阶段 发酵结束后,只有对发酵液中的产物通过一系列物理、化学方法进行分离、提取及精制,才能得到合乎规定的纯品,此为微生物发酵的提取阶段。 (1)发酵液预处理 多数发酵产品如抗生素存在于发酵液内,有些存在于菌丝内。发酵液预处理包括除去发酵液内的杂质离子(Ca2+、Mg2+、Fe3+等)以及蛋白质,并利用板框压滤机,使菌丝与滤液分开,便于进一步提取。 (2)提取与精制

微生物学就业前景综述

专业介绍 微生物学专业是比较热门的专业,该专业就业前景相比其他专业还是有优势的,而且近年来医药行业蓬勃发展,肿瘤和慢性病治疗出现了很多突破性进展,属于朝阳行业,具有很好的未来发展前景。 微生物学(microbiology)是生物学的分支学科之一。它是在分子、细胞或群体水平上研究各类微小生物(细菌、放线菌、真菌、病毒、立克次氏体、支原体、衣原体、螺旋体原生动物以及单细胞藻类)的形态结构、生长繁殖、生理代谢、遗传变异、生态分布和分类进化等生命活动的基本规律,并将其应用于工业发酵、医学卫生和生物工程等领域的科学。微生物学是研究各类微小生物生命活动规律和生物学特性的科学。 就业前景 出路:四大就业通道 与计算机、电子等热门专业或化工、机械等传统专业相比,生物专业的就业形势不容乐观,但作为一个发展迅速的潜力专业,生物学专业的前景还是很令人期待的。认清形势,找准定位,未雨绸缪,为自己的将来做一个长期规划,创造更好的条件迎接未来的挑战。大致而言,生物学专业的毕业生主要有四个就业通道: 通道一:工业、医药、食品、农、林、牧、渔、环保、园林等行业的企事业单位和行政管理部门的研发人员或技术员 该方向按照待遇及工作环境从高到低可分为以下几类: 1.跨国公司或较大的生物技术外企的技术支持。如宝洁、玛氏、联合利华、伯乐公司等。这类公司主要招收名牌大学的硕士生、博士生。待遇非常不错,福

利优厚,培训机制也很完善,而且大公司的从业经历也能为个人今后的发展提供较高的平台。此类单位可以说是生物学专业的最佳出路,竞争相当激烈,对英语水平有很高的要求,尤其是口语。 2.公务员或事业单位的检验员。在国家公务员报考专业中尚未发现专门招收生物学专业的,如果报考不限专业的公务员岗位,就只能挑战“百里挑一”的录用几率了。毕业生一旦被事业单位录用,工资一般都在2000元以上。相关事业单位主要有疾控中心(CDC)、物证中心、食品检验处等,但相关岗位的人员需求较少。以北京为例,每年招收的也不过十几人,且以当地生源为主。这一类岗位需要很长的时间准备考试,并且考后还要经过较长时间的面试、审核等,且招收人数较少,竞争激烈。不过,这类岗位对专业知识的要求不高,且工作稳定,工作强度不大,福利和各项保障也比较好,是生物专业女生的首选。 3.生物技术服务公司或非事业型科研单位。生物技术服务公司如上海生工、北京奥科、申能博彩、北京博奥、三博远志等,这些公司一般以引物合成、测序等业务为主,其技术人员主要是操作测序仪、合成仪,工作烦琐、技术含量较低,时常需要加班。硕士毕业生的待遇在2000~3000元之间。科研单位如华大基因、北大生命科技园等对专业基础的要求则比较高,研发工作的辛苦和枯燥不是一般人能忍受的。如果想在生物科技领域“出人头地”,不妨试一试,因为在这样的工作环境下能学到一些技术,培养良好的科研能力。但毕业生刚开始工作时,待遇一般,如果能获得研究成果,会有一定的提成和奖励。 4.酒厂、生物制药厂等企业的技术人员。目前社会上有不少民营企业,如生产木糖醇、酒精等产品的企业也招收生物学专业的学生,岗位大部分是技术员,工作比较辛苦。但这类岗位待遇相对不错,如张裕、青啤、五粮液,待遇较高,

微生物制药

微生物制药 微生物(microorganism简称microbe)是一切肉眼看不见的或看不清的微小生物的总称。它们都是一些个体微小(一般<0.1mm)、构造简单的低等生物。微生物应用途径拓广,主要应用于制药,制农药,食品工业,产能,以及新兴的一系列应用. 随着水污染处理技术的发展,出现了许多新的处理技术,其中由于生物降解处理工业废水中的有毒污染物效果明显,现已成为降解有毒有机污染物主要方法之一。微生物在制药废水的处理过程中起着重要的作用,因此只有充分了解环境微生物学和群落演替规律等生物学特性,才能提高废水处理中的生物学效能,提高制药废水的处理效果。筛选出对工业废水中各类不同的有毒有机污染物均有较强降解能力的微生物,可以提高生物处理法对废水中有毒类有机污染物的处理效果。利用微生物降解的方法处理含高浓度有机污染物的工业废水具有处理成本低、经济效益好、无二次污染等优点。 而我们讨论的微生物制药是指利用微生物技术,通过高度工程化的新型综合技术,以利用微生物反应过程为基础,依赖于微生物机体在反应器内的生长繁殖及代谢过程来合成一定产物,通过分离纯化进行提取精制,并最终制剂成型来实现药物产品的生产 其中最著名的故事要数青霉素了,青霉素是由英国科学家亚历山大弗莱明发现的。 曾有一部电影叫《盘尼西林·1944》,讲述抗日战争期间,为争夺2箱青霉素,中共地下党人与汪伪军展开的一场殊死较量。现在一

定有很多人会发出这样的疑问:普普通通的青霉素,有那么重要吗?在抗生素泛滥的今天,人们难以想象青霉素刚刚能批量生产时的价值。从某种意义上说青霉素是具有划时代意义的发明,也并不为过。在战争时期,一瓶青霉素可以换两个金条,足见它的重要性,远不是现在的我的能够想象的。因为正是青霉素的出现,解救了二战时期的无数伤兵和患病的百姓。 然而,在那个物质资源极度匮乏的年代,青霉素而生产又成了一大难题,治疗一个成年人所需要的青霉素数量约为一只小鼠的3000倍,如果光靠弗洛里等人的生产,几个月的时间也凑不齐治疗一个病人所需的药物。 终于找到一种被称为“产黄青霉素”的霉,它的提取物超过原来200多倍。由于战争对青霉素的需求量急剧增多,研究团队决心对霉进行放射,以这种极端方式来增加产量。没想到的是,这一方式产生了意料之外的效果,几周时间,提取青霉素的产量提高了几万倍之多。1944年,青霉素的快速和大批量生产已经成为现实。 自1929 年英国人发现青霉菌分泌青霉素能抑制葡萄球菌生长以后,相继发现了链霉素、氯霉素、金霉素、土霉素、四环素、新霉素和红霉素等抗菌素。在近几十年内,抗生素的研究又有了飞速的发展,已找到的抗生素有数千种,其中具有临床效果并已利用发酵法大量生产和广泛应用的多达百余种。同时抗生素的产量也大幅度提高,青霉素也由最初的100U/mL,通过诱变育种和优化发酵工艺的方法,目前以提高到105~106 U/mL。

微生物制药

第一章 药物微生物与微生物药物 什么是微生物药物(Microbial Medicines ) 狭义定义为:微生物在其生命过程中产生的,能以极低浓度有选择地抑制或影响其他生物机能的低分子的代谢物。 广义定义为:能以极低浓度抑制或影响其它生物机能的微生物或微生物的代谢物。 三、微生物发酵制药的种类 (1)微生物菌体发酵(2)微生物酶发酵(3)微生物代谢产物发酵(4)微生物转化发酵 一、药物微生物分类 药源微生物:药用微生物:基因工程菌: 二、 微生物作为天然药物资源的优势 ① 微生物多样性 ② 生长快速,可以大规模工业化生产 ③ 微生物遗传背景简单 ④ 微生物代谢产物的多样性为筛选高效低毒的药物提供了可能性。 三、药源微生物 不同的微生物类群,次级代谢产物的形成能力有着巨大的差异。甚至是产生药物较多的种属之间,产物的类型也有着巨大的差异。只有少数的微生物类群是优秀的药物产生菌---药源微生物。因此,药源微生物是药物筛选最重要的来源。 半个多世纪的微生物药物的筛选与开发,为人们提供了大量的各种类型天然化合物,占全部发现的生物活性天然化合物的80%以上。在微生物来源的天然化合物中,70%左右是由放线菌产生的,尤其是链霉菌。但随着筛选工作广泛深入的开展,从放线菌获得新化合物的比例已经降到了不足0.1%。因此,目前微生物药物的筛选已从传统的高产微生物转向新的微生物类群。如中药用微生物、海洋微生物、极端微生物、以及尚未开发或开发不足的新微生物类群。 如下微生物类群,通常都有着或多或少的“光荣的”药物产生历史。 (1)放线菌:目前国际上已经描述和发表的放线菌近60个属,2000多种,放线菌是产生微生物药物最多,也是药物研究最多的生物类群。最重要的是产生链霉素的链霉菌属(Streptomyces ),其次是产生放线菌素和庆大霉素的小单孢菌属(Micromonospora ),产生利福霉素的诺卡氏菌属(Nocardia )。 (2)细菌:芽胞杆菌属(Bacillus )和假单胞菌属(Pseudomonas ),产生的主要是肽类,毒性较大,但通过组合生物合成技术,可能经过人工改造获得新型的药物。值得一提的是目前研究较热的粘细菌(Myxobacteria ),重要的药源菌类群。例如能够降解纤维素的纤维堆囊菌,是目前已知的产生生物活性代谢产物的比例最高的生物类群,并且产物结构新颖多样,是很好的药源菌类群。 粘细菌又称子实粘细菌,其生活史包括营养细胞阶段和休眠体(子实体)阶段。营养细胞杆状,包埋在粘液层中,菌体柔软,除缺乏坚硬的细胞壁外,与G-细菌无甚差别。在固体表面或气-液界面滑动。以二横裂方式繁殖。营养细胞发育到一定阶段,在一定位置聚集,并形成由细胞和粘液组成的子实体,肉眼可见。在子实体中细胞变成休眠细胞,称为粘孢子。 (3)真菌:重要的药源真菌主要是青霉属(Penicillium ),曲霉属(Aspergillus ),头孢菌属(Cephalosporium )的菌株。 传统中药中的大型真菌,如灵芝、虫草等,被称为药用真菌。现代研究表明,药用真菌也是通过产生具有药理活性的代谢产物而起作用,如大分子多糖、小分子萜类、多肽等。 五、药用微生物 (1)传统中药(汉药方)大型药用真菌,如灵芝、虫草。(2)粘细菌的子实体结构部分 (3)各种具有明显药效作用的菌剂,如减毒或灭活的疫苗、益肠道菌剂、农用微生物菌剂。 四、次级代谢产物合成的特点 ① 次级代谢产物多在细胞停止生长以后合成② 初级代谢产物可直接或修饰后成为次级代谢产物合成的前体。 ③ 合成反应包括聚合作用和修饰④ 次级代谢产物分泌胞外⑤ 合成反应受初级代谢影响间接松弛,主要受次级代谢自身系统控制。 六、次要组分 大部分微生物通常能够产生一系列密切相关的次级代谢产物,其中仅有一种或两种是主要的,其余的都是微量组分,这些微量组分即称为次要组分。 在已知的药源微生物中发现未知的次要组分的例子很多,如白霉素、制霉菌素、多粘菌素等 。 次要组分的实际重要性时非常大的,如头孢霉素C 、卡那霉素B 的发现。 次要组分多数是主要产物的结构类似物,少数呈现不同结构 七、微生物药物的几个相关概念 (7)化疗指数(chemotherapeutic index ,CI )判断一种药物的安全性和有效性的综合指标。 一般以动物半数致死量(LD50)和治疗感染动物的半数有效量(effective dose, ED50)的比值表示,即CI =LD50/ED50;化疗指数愈大,表明药物毒性愈小,相对较安全,但并非绝对安全,如化疗指数高的青霉素可致过敏性休克。 (10)药物相互作用 不同药物同时存在时,将会对各自的活性产生相互的影响。累加作用:相互无关 协同作用:相互促进 拮抗作用:相互抑制 CI= 治疗对象对药物不呈现明显毒性反应的最大耐受剂量 明显疗效的最低给药剂量

第二版生物制药技术习题答案完整版

第二版生物制药技术习 题答案 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

第一章绪论1、生化药物:从生物体分离纯化所得的一类结构上十分接近人体内正常生理活性物质的,能调节人体生理功能以达到预防和治疗疾病目的的物质。 P1 2、按照药物的化学本质,把生物药物分为氨基酸类、蛋白质类、酶类、 核酸类、多糖类、脂类、维生素及辅酶类。P3-5 3、生物药物的原料来源分为动物、植物、微生物、海洋生物、人体五大类。P5 4、肝素的化学成分属于一种多糖,其最常见的用途是抗血凝。P4 5、SOD的中文全称是超氧化物歧化酶,能专一性清除氧自由基。P4 6、辅酶在人体内的酶促反应中起重要的递H、递e等作用,有药用价值,人体生化反应中重要的辅酶:NAD、NADP、FMN和FAD 。P4 7、前列腺素的成分是一大类含五元环的不饱和脂肪酸,重要的天然前列腺素有 PGE1、PGE2、PGF2α等。P5 8、请说明酶类药物主要有几类,并分别举例。P4 第二章生物药物的质量管理与控制 1、中试:是把已取得的实验室研究成果进行放大的研究过程。P28 2、热原:是指在药品中污染有能引起动物及人的体温升高的物质。P42 3、生物检定法:利用药物对生物体的作用以测定其效价或生物活性的一种方法。 4、生物药物质量检验的程序包括取样、鉴别、检查、含量测定、写出检验报告。 5、药物的ADME表示药物在体内的整个过程,它们分别是吸收Absorption、 分布Distribution、代谢Metabolism、排泄Excretion。 6、生物药物在表示含量的时候有百分含量和活性效价两种。

微生物药物的研究与开发综述

龙源期刊网 https://www.360docs.net/doc/8118100541.html, 微生物药物的研究与开发综述 作者:吴佳新 来源:《现代农业科技》2014年第21期 摘要在临床上,微生物药物是一类应用非常广泛的药物,在抗感染、抗肿瘤、血糖调 节、降血脂及器官移植等临床治疗中发挥着重要的作用。该文对微生物药物的发展历程、特点、资源研究及开发等方面进行了论述。 关键词药物;微生物;放线菌;基因组学;研究;研发 中图分类号 Q939.93 文献标识码 A 文章编号 1007-5739(2014)21-0284-02 在临床药物学研发中,针对中药、化学药物及生物技术药物研究较多,而微生物药物方面的研究并不多。随着微生物次级代谢产物研究的增多,有关微生物新药的开发也越来越多,而且微生物药物还具有条件温和、易工业化生产及污染小等优点,加强微生物类药物研究和开发具有现实意义。 1 微生物药物的发展历程 人类认识微生物的历史悠久,但研究微生物药物的历史并不长,尤其是对微生物次生代谢产物方面的药物研究历史更短,至今不过70年。微生物药物中的青霉素是由英国的细菌学家在1929年发现的,20世纪40年代初学者Chain与Florey将青霉素应用到了临床治疗中。随后,从微生物次生代谢产物中发现了庆大霉素、红霉素、螺旋霉素及林可霉素等药物。随着医药学的发展,人们对疾病分子基础与药物作用机制越来越了解,还能在体外构建各类药物筛选的模型,极大地提升了微生物药物研制。微生物所筛选的生理活性物质中,除了抗生素外,在抗肿瘤用药、免疫抑制剂及酶抑制剂等领域也具有很大的药物开发价值。在近70年的微生物药物研究中,科学家从土壤、动物、植物、海洋中获取微生物,还有些微生物来自高寒、高温及高压等极端环境,而人类对微生物的了解仍然较少,还不到3%,在微生物代谢的产物当中,还存在着大量待开发的药物,需要人们进一步研究与开发。 2 微生物药物的特点 微生物药物是指微生物在生命活动过程中,产生的具有生理活性的次生代谢产物及其衍生物。近些年,随着其微生物次生代谢产物生理活性的研究,微生物中靶位确切的多糖及蛋白分子等活性物质被发现[1-2]。次级代谢产物难以用化学法进行合成,即使能合成也无法有效实现工业生产,若把小分子的物质进行化学修饰之后,可获得含有使用价值更高的微生物药物。与化学药物相比,微生物药物具有以下特点:一是微生物的生长周期较短,易选育菌种,易控制,可经大规模发酵进行工业化生产;二是微生物的来源非常丰富,筛选时不用特别考虑先导

(工艺流程)微生物制药一般工艺流程

微生物制药技术 工业微生物技术是可持续发展的一个重要支撑,是解决资源危机、生态环境危机和改造传统产业的根本技术依托。工业微生物的发展使现代生物技术渗透到包括医药、农业、能源、化工、环保等几乎所有的工业领域,并扮演着重要角色。欧美日等国已不同程度地制定了今后几十年内用生物过程取代化学过程的战略计划,可以看出工业微生物技术在未来社会发展过程中重要地位。 微生物制药技术是工业微生物技术的最主要组成部分。微生物药物的利用是从人们熟知的抗生素开始的,抗生素一般定义为:是一种在低浓度下有选择地抑制或影响其他生物机能的微生物产物及其衍生物。(有人曾建议将动植物来源的具有同样生理活性的这类物质如鱼素、蒜素、黄连素等也归于抗生素的范畴,但多数学者认为传统概念的抗生素仍应只限于微生物的次级代谢产物。)近年来,由于基础生命科学的发展和各种新的生物技术的应用,报道的微生物产生的除了抗感染、抗肿瘤以外的其他生物活性物质日益增多,如特异性的酶抑制剂、免疫调节剂、受体拮抗剂和抗氧化剂等,其活性已超出了抑制某些微生物生命活动的范围。但这些物质均为微生物次级代谢产物,其在生物合成机制、筛选研究程序及生产工艺等方面和抗生素都有共同的特点,但把它们通称为抗生素显然是不恰当的,于是不少学者就把微生物产生的这些具有生理活性(或称药理活性)的次级代谢产物统称为

微生物药物。微生物药物的生产技术就是微生物制药技术。可以认为包括五个方面的内容: 第一方面菌种的获得 根据资料直接向有科研单位、高等院校、工厂或菌种保藏部门索取或购买;从大自然中分离筛选新的微生物菌种。 分离思路新菌种的分离是要从混杂的各类微生物中依照生产的要求、菌种的特性,采用各种筛选方法,快速、准确地把所需要的菌种挑选出来。实验室或生产用菌种若不慎污染了杂菌,也必须重新进行分离纯化。具体分离操作从以下几个方面展开。 定方案:首先要查阅资料,了解所需菌种的生长培养特性。 采样:有针对性地采集样品。 增殖:人为地通过控制养分或培条件,使所需菌种增殖培养后,在数量上占优势。 分离:利用分离技术得到纯种。

微生物制药发展及存在问题

微生物制药的发展现状以及存在问题 生物技术x班 生物制药是指运用微生物学、生物学、医学、生物化学等的研究成果,从生物体、生物组织、细胞、体液等,综合利用微生物学化学生物化学生物技术药学等科学的原理和方法制造的用于预防、治疗和诊断的制品。我国生物制药业始于上世纪80年代,属于高科技行业发展迅速,市场前景广阔。尽管我国生物制药业发展较快,但仍然存在一些制约其发展的因素。 微生物制药无疑属于生物制药的范畴,人们对微生物药物的认识是从抗生素开始的, 如今大多学者对微生物药物的理解是:由微生物在其生命活动过程中产生的具有生理活性(或称药理活性)的次级代谢产物及其衍生物, 当然也有学者定义微生物药物是指应用微生物直接合成或通过微生物转化生产的临床上治疗人类多种疾病的药物。尽管对微生物药物的表述不尽相同, 但它们的内涵却是一致的,即微生物药物包含以下两大部分:具有抗微生物感染和抗肿瘤作用的传统意义上的抗生素以及非抗菌的生理活性物质, 诸如特异性的酶抑制剂、免疫调节剂、受体拮抗剂、抗氧化剂和细胞因子诱导剂等。 一,我国微生物制药的现状 相对国外发达资本主义国家,我国生物制药产业起步比较晚,经过了将近20 年的发展,以基因工程药物为核心的研制开发和产业化已经颇具规模。目前,我国集中建设了一批先进的医疗机构,开生物制药的发展现状发出了一大批新的特效药物,解决了过去用常规方法不能生产或者生产成本特别昂贵的药品的生产技术问题,这些药品对肿瘤、心脑肺血管、免疫性、内分泌等严重威胁人类健康的疑难病症起到了较好的治疗效果,且副作用明显低于传统药品。与世界先进国家的生物医药产业相比,我国生物医药产业还处于比较落后的状态,但是国家和地方政府都在不断加大对该产业的发展力度,从政策和资金等各方面不断加大投入。总体而言,中国生物制药产业未来充满希望,前景看好,中国的生物制药产业将呈继续增长态势。 1,临床地位 微生物药物在临床上占据着极其重要的地位,从抗感染治疗中的临床用药来看,直接来源于微生物代谢产物的抗生素及其衍生物用量最大,品种最多。对2005 年我国医药市场的调查得出,抗感染药物的销售仍居第一位。 在抗细菌方面,20 世纪后半叶, 抗生素的发现和应用控制了大多数由细菌引起的感染, 明显降低了与感染相关的死亡率。此为微生物药物的主要应用领域,种类繁, 品种多, 用量大。临床上普遍使用的有B内酰胺类、氨基糖苷类、大环内酯类、四环素类等。抗真菌方面,此类抗生素的品种和数量较为有限,少有新

微生物综述

微生物在环境治理方面的应用现状及展望 周江维 (浙江理工大学材料与纺织学院,09包装工程(1)班,杭州310018) 摘要:在我们生活的这个星球上,微生物可以说是无处不在。人类与微生物相处了相当长的一段时间,然而并没有真正重视微生物,直到17世纪显微镜的出现让人类真正观察到了微生物。随着人类观察手段的不断进步,越来越多的微生物走入人类的视野,人类对微生物的认识也不断深化。人类对微生物的深入了解,使得我们能够很好的利用微生物有利的一面避免有害的一面,环境问题作为现代社会一个很突出的问题越来越受到人们的重视,微生物为环境治理带来了新的希望。微生物在环保方面的大有作为离不开对它们进一步的研究,弄清微生物治理环境的原理是进一步利用它们的前提。 关键词:微生物环境治理污染修复现状可持续发展 1、微生物修复技术 1.1 微生物修复的原理 生物修复包括微生物修复、植物修复、菌根修复等,其中微生物修复在众多领域中得到了广泛的应用。微生物修复是指微生物将土壤、地下水和海洋中的有害物质“就地”降解成二氧化碳和水,转化为无毒、无害物质的方法。实际上,大多数环境中都存在着天然微生物降解净化有毒有害污染物质的过程,只是自然条件下的微生物净化速度比较慢,因此能够被广泛应用到环境保护中。微生物修复大多都是在人为的条件下进行的,通过提供氧气,添加各类营养物质,接种经过驯化培养的高效菌株等强化修复过程,迅速去除污染物质,这就是微生物修复的基本原理。 微生物修复技术是指通过微生物的作用清除土壤和水体中的污染物,或是使污染物无害化的过程。它包括自然和人为控制条件下的污染物降级或无害化的过程。 在自然修复的过程(natural attenuation)中,利用土著微生物(indigenous microorganism)的降解能力,但需要以下条件: (1) 有充分和稳定的地下水流; (2) 有微生物可利用的营养物质; (3) 有缓冲pH的能力; (3) 有使代谢能够进行的电子受体。 如果缺少一项条件,将会影响微生物修复的速率和程度。 对于外来化合物,如果污染新近发生,很少会有土著微生物能降解它们,所以需要加入有降解能力的外源微生物(exogenous microorganism)。人为修复工程一般采用有降解能力的外源微生物,用工程化手段来加速生物修复的进程,这种在受控条件下进行的生物修复又称强化生物修复(enhanced bioremediation)或工程化的生物修复(engineered bioremediation)。工程化的生物修复一般采用下列手段来加强修复的速率: (1) 生物刺激(biostimulation)技术,满足土著微生物生长所需要的条件,诸如提供电子受体、供体氧以及营养物等; (2) 生物强化(bioaugmentation)技术需要不断地想污染环境投入外源微生物、酶、其他生长基质或氮、磷无机盐。 1.2 微生物修复技术的分类

微生物综述

微生物学综述 微生物的定义 微生物是包括细菌、病毒、真菌以及一些小型的原生动物、显微藻类等在内的一大类生物群体,它个体微小,却与人类生活关系密切。涵盖了有益有害的众多种类,广泛涉及健康、食品、医药、工农业、环保等诸多领域。 微生物的特点 1.体积小,比表面积大。 2.吸收多,转化快。 3.生长旺,繁殖速。 4.适应性强,易变异。 5.分布广,种类多。 微生物工程的应用范围 ⑴医药工业,⑵食品工业,⑶能源工业,⑷化学工业,⑸农业:改造植物基因;生物固氮;工程杀虫菌生物农药;微生物饲料。⑹环境保护等方面。 微生物对发酵也有重大影响。微生物发酵即是指利用微生物,在适宜的条件下,将原料经过特定的代谢途径转化为人类所需要的产物的过程。微生物发酵生产水平主要取决于菌种本身的遗传特性和培养条件。酒类,醋酱,油,酸奶,面包面包,各类罐头,各种果汁,啤酒,饮料等,都是由发酵产生。微生物发酵又分为:微生物菌体发酵,微生物酶发酵,微生物代谢产物发酵,微生物的转化发酵。 著名科学家的成就 巴斯德 微生物学家巴斯德,为微生物学的建立和发展做出了卓越的贡献。主要集中在下列三个方面:①巴斯德的玻瓶彻底否定了“自然发生”学说(“自生说”是一个古老学说,认为一切生物是自然发生的)。并从此建立了病原学说,推动了微生物学的发展。②免疫学——预防接种。1877年,巴斯德研究了鸡霍乱,预防了鸡霍乱病。又研究了牛、羊炭疽病和狂犬病,并首次制成狂犬疫苗,证实其免疫学说。 ③证实发酵是由微生物引起的。证实酒精发酵是由酵母菌引起的,还发现乳酸发酵、醋酸发酵和丁酸发酵都是不同细菌所引起的。 巴斯德消毒法(60~65℃作短时间加热处理,杀死有害微生物的一种消毒法)和家蚕软化病问题的解决。 柯赫 柯赫是著名的细菌学家,突出的贡献:①具体证实了炭疽病菌是炭疽病的病原菌;②发现了肺结核病的病原菌,获得了诺贝尔奖;③提出了证明某种微生物是否为某种疾病病原体的基本原则——柯赫原则。 微生物学的发展

微生物综述

大肠杆菌耐药机制研究进展 摘要:大肠杆菌对常用抗菌药物的耐药机制十分复杂,主要包括产生灭活抗生素的酶、改变靶位蛋白、减少药物的摄取吸收(细胞外膜通透性的改变、细菌药物外排泵)及质粒介导的耐药性等。而且大肠杆菌对抗生素的耐药问题是当前国内外研究的热点,本文将对其产生耐药性的研究进展做一综述。 关键词:大肠杆菌;耐药性;作用机制 致病性大肠杆菌是人类和动物临床上最常见的病原之一,是威胁人类和动物健康的重要致病菌。大肠杆菌具有可产生β-内酰胺酶和通过接触传播耐药基因的特征,加之在大肠杆菌疾病的防控过程中抗生素广泛盲目滥用,大肠杆菌耐药株引起的感染在临床上不但有增多趋势,而且其耐药性还通过质粒在细菌间传递耐药基因而不断蔓延与突变。使耐药形势越来越严峻。因此,大肠杆菌耐药性问题引起世界广泛关注。 1.致病性大肠杆菌对抗生素的耐药现状 自1929年弗来明发现青霉素以来,伴随着抗生素和化学抗菌剂的开发使用,各种病原菌对抗菌药物的耐药也日趋严重,而且1940年Abyaham和chain从大肠杆菌体内分离和鉴定出了一种能水解青霉素的酶,至此,人们才了解到即使未使用抗生素之前,大肠杆菌就存在着耐药性。后来科学家们发现大肠杆菌可通过耐药因子或R质粒在细菌间传递耐药性的因子。而且家畜源大肠杆菌耐药性对于一些临床常用抗生素,普遍出现耐药,如阿莫西

林、链霉素等,对某些抗生素的耐药率可达90%以上。出现大量多重耐药株,部分多重耐药株可耐10 多种抗菌药物。同时研究发现到野生动物携带了耐药大肠杆菌,说明耐药大肠杆菌已经向环境扩散,由于野生动物流动性较大,尤其是野生鸟类,又易于将耐药大肠杆菌传递给家畜,在一定程度上加速耐药大肠杆菌和耐药基因的扩散。 2.大肠杆菌的耐药机制 根据细菌耐药性的起源,可将其分为两类:一类为固有耐药,即耐药性的产生并不依赖于抗菌药物的存在,而是细菌细胞所固有的,与细菌的遗传和进化密切相关。固有耐药性是细菌稳定的遗传特性,它受细菌染色体DNA 控制并且是同属细菌的共同特征,固有耐药性包括自发基因突变导致的耐药性和细胞膜药物外输作用引起的耐药性。另一类为获得性耐药性,是指细菌在抗菌药物选择性压力存在下经过基因突变或细菌在生长过程中由于移动耐药因子的转移而获得的一种表型。其移动因子包括质粒、转座子、整合子和噬菌体。获得性耐药性主要包括移动因子和抗菌药压力作用下引起基因突变所导致的耐药性[1]。抗生素耐药可以通过各种机制产生,包括以下几个方面: 2.1产生灭活抗生素的酶 大肠杆菌可以产生酶加工修饰进入菌体内的抗生素,使抗生素失活,提高菌体的耐药性。如可以灭活β-内酰胺类药物的β-内酰胺酶、超广谱β内酰胺酶,可以使氨基糖苷类药物失活的氨基糖苷

微生物论文微生物制药

微生物制药 【摘要】微生物制药利用微生物技术,通过高度工程化的新型综合技术,以利用微生物反应过程为基础,依赖于微生物机体在反应器内的生长繁殖及代谢过程来合成一定产物,通过分离纯化技术进行提取精制,并最终制剂成型来实现药物产品的生产。。 【关键词】微生物制药抗生素甾体激素酶及酶抑制剂 半个世纪以来微生物转化在药物研制中一系列突破性的应用给医药工业创造了巨大的医疗价值和经济效益。微生物制药工业生产的特点是利用某种微生物以“纯种状态”,也就是不仅“种子”要优而且只能是一种,如其它菌种进来即为杂菌。微生物在其生命活动过程中产生的,能以极低浓度抑制或影响其他生物机能的低分子量代谢物。微生物制药利用微生物技术,通过高度工程化的新型综合技术,以利用微生物反应过程为基础,依赖于微生物机体在反应器内的生长繁殖及代谢过程来合成一定产物,通过分离纯化技术进行提取精制,并最终制剂成型来实现药物产品的生产。微生物制药的生物来源是青霉素,放线菌;作用对象是抗菌药,抗肿瘤药,抗病毒药,除草剂,酶抑制剂,免疫调节剂;作用机制是抑制细胞壁合成药,影响细胞膜功能药,干扰蛋白质合成药;化学结构是抗生素,维生素,氨基酸,甾体激素,酶及酶抑制剂。 一、代表人物及主要成果 Louis Pasteur (1822~1895) 法国微生物学家,化学家。对狂犬病的研究是他科学生涯中最后、也是最重要的一项工作。将狂犬患者的唾液注射到兔子体中,使兔感染狂犬病后,再将兔的脑和脊髓,制成可供免疫用的弱化疫苗,1885年在一个9岁的被患狂犬病的狼咬伤的孩子身上试用,获得成功。这一研究成果当时被誉为“科学纪录中最杰出的一项”。巴斯德研究所就在那时筹款建立。开创了药物微生物技术的新时代。 Alexander Fleming英国细菌学家。他首先发现青霉素。后英国病理学家弗劳雷、德国生物化学家钱恩进一步研究改进,并成功的用于医治人的疾病,三人共获诺贝尔生理或医学奖。青霉素的发现,是人类找到了一种具有强大杀菌作用的药物,结束了传染病几乎无法治疗的时代;从此出现了寻找抗菌素新药的高潮,人类进入了合成新药的新时代。 Selman Abraham waksman抗生素之父瓦克斯曼,美国人。对土壤微生物产生抗生素物质进行了系统和开创性工作,发现了链霉素是结核杆菌的克星。 二、抗生素 细菌对抗生素的抗性有内在抗性( intrinsic resistance) 和获得性抗性( acquired re2sistance) 。内在抗性是指细菌天然对某些抗生素不敏感。获得性抗性涉及细菌遗传背景的改变。细菌可通过随机突变, 或表达潜在抗性基因获得抗性; 也可通过抗性基因水平转移获得抗性。细菌可移动遗传元件(mobile genetic elements, MGE) 可以在同种甚至不同种菌株间水平转移, 加速了临床上耐药及多重耐药菌株产生。【1】 链霉素(streptomycin)是一种氨基葡萄糖型抗生素,分子式C21H39N7O12。1943年美国S.A.瓦克斯曼从链霉菌中析离得到,是继青霉素后第二个生产并用于临床的抗生素。它的抗结核杆菌的特效作用,开创了结核病治疗的新纪元。链霉素属于不含伯胺基的氨基糖苷类抗生素,可采用两种方法制备免疫原。一是利用醛基可以采用O-(羧甲基)羟基胺法,将其生成含有带羧基的半抗原衍生物,然后采用碳化二亚胺法,将带有羧基的半抗原与载体蛋白的胺基或者羧基结合。二是利用链霉素其醛基直接与载体蛋白的胺基缩和。【2】目前已发现的天然抗生素约2/ 3 来源于链霉菌。利用链霉菌产抗生素能力与链霉素抗性基因之间的对应关系定向筛选正向突变株,是目前农用抗生素科研领域的研究热点,紫外诱变是菌种选育过程中最常用的诱变方法之一,但该法导致的菌种突变是随机的,正突变株的出现频率很低,需要进行大

相关文档
最新文档