基于ANSYS的混凝土板的仿真计算

基于ANSYS的混凝土板的仿真计算
基于ANSYS的混凝土板的仿真计算

ansys分析混凝土的若干问题

1. 讨论两种Ansys求极限荷载的方法 (1)力加载 可以通过对应的方法(比如说特征值屈曲)估计结构的极限荷载的大致范围,然后给结构施加一个稍大的荷载,打开自动荷载步二分法进行非线性静力分析,最后计算会因不收敛终止,则倒数第二个子步对应的就是结构的极限荷载;另外,也可以选择弧长法,采用足够的子步(弧长法可以一直分析到极限承载力之后的过程)同样可以从绘制的荷载位移曲线或计算结果中找出结构的极限荷载。 (2)位移加载 给结构施加一个比较大的位移,打开自动荷载步二分法进行非线性分析,保证足够的子步数,这样也可以分析到极限荷载以后,通过绘制荷载位移曲线或查看相应结果文件也可知道结构的极限荷载。 希望众高手讨论一下 (1)弧长法求极限荷载的收敛性问题,如何画到荷载位移曲线的下降段? (2)位移法求极限荷载的具体步骤? 2. 需要注意的问题 1. 由于SOLID 65单元本身是基于弥散裂缝模型和最大拉应力开裂判据,因此在很多情况下会因为应力集中而使混凝土提前破坏,从而和试验结果不相吻合,因此,在实际应用过程中应该对单元分划进行有效控制,根据作者经验,当最小单元尺寸大于5cm 时,就可以有效避免应力集中带来的问题; 2. 支座是另一个需要注意的问题。在有限元分析中,很多时候约束是直接加在混凝土节点上,这样很可能在支座位置产生很大的应力集中,从而使支座附近的混凝土突然破坏,造成求解失败。因此,在实际应用过程中,应该适当加大支座附近单元的尺寸或者在支座上加一些弹性垫块,避免支座的应力集中; 3. 六面体的SOLID 65 单元一般比四面体的单元计算要稳定且收敛性好,因此,只要条件允许,应该尽量使用六面体单元; 4. 正确选择收敛标准,一般位移控制加载最好用位移的无穷范数控制收敛,而用力控制加载时可以用残余力的二范数控制收敛。在裂缝刚刚出现和接近破坏的阶段,可以适当放松收敛标准,保证计算的连续性; 3. 关于下降段的问题 1)在实际混凝土中都有下降段,但是在计算的时候要特别小心下降段的问题。 2)下降段很容易导致计算不收敛,有时为了计算的收敛要避免设置下降段,采用rush模型。 3)利用最大压应变准则来判断混凝土是否破坏。 4. Solid65单元中的破坏准则 1)采用Willam&Warnke五参数破坏准则 2)需要参数: 单轴抗拉强度,单轴,双轴抗压强度,围压压力,在围压作用下双轴,单轴抗压强度

钢筋混凝土梁的ansys分析

摘要 本文介绍ANSYS 模拟钢筋混凝土梁的过程,讨论了有限元模型的建立以及在 ANSYS 中的实现,给出了用分离式配筋方法对混凝土梁的分析的一般过程。并给出了详细的命令流过程。并在此基础上对混凝土梁进行了分析,讨论了在力的作用下混凝土梁的塑形变形和裂缝的发展过程。 关键词 Ansys 混凝土梁 分离式配筋 The analysis of mechanics of a reinforced concrete based on ANSYS Abstract This paper introduces ANSYS simulation of the reinforced concrete beam process, discusses the establishment of the finite element model and the realization, and gives the ANSYS reinforcement method with separate the analysis of concrete beams of the general process. And gives the detailed command flow process. Based on the analysis of concrete beams, and discussed the concrete beam under the action of forces of the body deformation and fracture process. Keywords Ansys concrete beams reinforced separated 1 引言 由于钢筋混凝上材料性质复杂,使其表现出明显的非线性行为[1]。长期以来采用线弹性理论的设计方法来研究钢筋混凝上结构的应力或内力,显然不太合理,尽管有此理论是基于人量试验数据上的经验公式,还是不能准确反映混凝上的力学性能,特别是受力复杂的重要结构,必须采用三维钢筋混凝上非线性有限元方法才能很好地掌握其力学性能。利用ANSYS 对钢筋混凝上结构弹塑性的仿真分析,可以对结构自开始受荷载直到破坏的全过程进行分析,获得不同阶段的受力性能。本文将以混凝土梁的弹塑性分析为例,介绍在Ansys 中分析材料非线性问题的具体实现方法。 2 问题介绍 如图所示的钢筋混凝土梁[2],横截面尺寸为200400b h mm mm ?=?,梁的跨度为3.0L m =,支座宽度为250mm 采用C20混凝土,梁内受拉纵筋3φ20,架立筋采用2φ12, 箍筋采用φ6@150,钢筋保护层厚度为25mm 。如图一。 图一 对于梁中所采用的所有钢筋,弹性模量为5 2.110MPa ?,抗拉强度设计值210MPa , 密度33 7.810/kg m ?,泊松比为0.3。

ANSYS中混凝土的本构关系

一、关于模型 钢筋混凝土有限元模型根据钢筋的处理方式主要分为三种,即分离式、分布式和组合式模型。考虑钢筋和混凝土之间的粘结和滑移,则采用引入粘结单元的分离式模型;假定混凝土和钢筋粘结很好,不考虑二者之间的滑移,则三种模型都可以;分离式和分布式模型适用于二维和三维结构分析,后者对杆系结构分析比较适用。裂缝的处理方式有离散裂缝模型、分布裂缝模型和断裂力学模型,后者目前尚处研究之中,主要应用的是前两种。离散裂缝模型和分布裂缝模型各有特点,可根据不同的分析目的选择使用。随着计算速度和网格自动划分的快速实现,离散裂缝模型又有被推广使用的趋势。 就ANSYS而言,她可以考虑分离式模型(solid65+link8,认为混凝土和钢筋粘结很好,如要考虑粘结和滑移,则可引入弹簧单元进行模拟,比较困难!),也可采用分布式模型(带筋的solid65)。而其裂缝的处理方式则为分布裂缝模型。 二、关于本构关系 混凝土的本构关系可以分为线弹性、非线性弹性、弹塑性及其它力学理论等四类,其中研究最多的是非线性弹性和弹塑性本构关系,其中不乏实用者。混凝土破坏准则从单参数到五参数模型达数十个模型,或借用古典强度理论或基于试验结果等,各个破坏准则的表达方式和繁简程度各异,适用范围和计算精度差别也比较大,给使用带来了一定的困难。 就ANSYS而言,其问题比较复杂些。 1 ANSYS混凝土的破坏准则与屈服准则是如何定义的? 采用tb,concr,matnum则定义了W-W破坏准则(failure criterion),而非屈服准则(yield criterion)。W-W破坏准则是用于检查混凝土开裂和压碎用的,而混凝土的塑性可以另外考虑(当然是在开裂和压碎之前)。理论上破坏准则(failure criterion)和屈服准则(yield criterion)是不同的,例如在高静水压力下会发生相当的塑性变形,表现为屈服,但没有破坏。而工程上又常将二者等同,其原因是工程结构不容许有很大的塑性变形,且混凝土等材料的屈服点不够明确,但破坏点非常明确。 定义tb,concr matnum后仅仅是定义了混凝土的破坏准则和缺省的本构关系,即W—W破坏准则、混凝土开裂和压碎前均为线性的应力应变关系,而开裂和压碎后采用其给出的本构关系。但屈服准则尚可另外定义(随材料的应力应变关系,如tb,MKIN,则定义的屈服准则是Von Mises,流动法则、硬化法则也就确定了)。 2 定义tb,concr后可否定义其它的应力应变关系 当然是可以的,并且只有在定义tb,concr后,有些问题才好解决。例如可以定义tb,miso,输入混凝土的应力应变关系曲线(多折线实现),这样也就将屈服准则、流动法则、硬化法则等确定了。 这里可能存在一点疑问,即ANSYS中的应力应变关系是拉压相等的,而混凝土材料显然不是这样的。是的,因为混凝土受拉段非常短,认为拉压相同影响很小,且由于定义的tb,concr 中确定了开裂强度,所以尽管定义的是一条大曲线,但应用于受拉部分的很小。 三、具体的系数及公式 1 定义tb,concr时候的两个系数如何确定? 一般的参考书中,其值建议先取为0.3~0.5(江见鲸),原话是“在没有更仔细的数据时,不妨先取0.3~0.5进行计算”,足见此0.3~0.5值的可用程度。根据我的经验和理由,建议此值取大些,即开裂的剪力传递系数取0.5,(定要>0.2)闭合的剪力传递系数取1.0。支持此说法的还有 现行铁路桥规的抗剪计算理论,以及原公路桥规的容许应力法的抗计剪计算。

ANSYS 钢筋混凝土建模

ANSYS 钢筋混凝土建模 一、简介 钢筋混凝土有限元建模的方法与结果评价(前后处理),是对钢筋混凝土结构进行数值模拟的重要步骤,能否把握模型的可行性、合理性,如何从计算结果中寻找规律,是有限元理论应用于实际工程的关键一环。Blackeage以自己做过的一组钢筋混凝土暗支撑剪力墙的数值模拟为例,从若干方面提出一些经验与建议。希望大家一起讨论、批评指正(wang.jian@https://www.360docs.net/doc/814794286.html,)。 程序:ANSYS 单元:SOLID65、BEAM188 建模方式:分离 暗支撑剪力墙结构由北京工业大学曹万林所提出,简言之就是一种在普通钢筋配筋情况下,加配斜向钢筋的剪力墙结构。 二、单元选择 以前经常采用的钢筋混凝土建模方法是通过SOLID65模拟混凝土,通过SOLID65的实常数指定钢筋配筋率,后来发现这种整体式的模型并不理想,而且将钢筋周围的SOLID65单元选择出来,再换算一个等效的配筋率,工作量也并不小。最关键的是采用整体式模型之后,得不出什么有意义的结论,弄一个荷载-位移曲线出来又和实验值差距比较大。只有计算的开裂荷载与实验还算是比较接近,但这个手算也算得出来的东西费劲去装模作样的建个模型又有什么意义? 所以,这次我尝试采用分离式的模型,钢筋与混凝土单元分别建模,采用节点共享的方式。建模时发现,只要充分、灵活地运用APDL的技巧,处理好钢筋与混凝土单元节点的位置,效率还是很高的。 暗支撑剪力墙数值模型 看过很多的资料,分离式模型是用LINK8与SOLID65的组合方式,这样做到是非常直观,因为LINK8是spar类型的单元,每个节点有3个自由度,这与SOLID65单元单节点自由度数量是一致的。但是问题也就由此产生,当周围的混凝土开裂或是压碎时,SOLID65将不能对LINK8的节点提供足够地约束(如

ANSYS中混凝土的计算问题

ANSYS中混凝土的计算问题【精华】 最近做了点计算分析,结合各论坛关于这方面的讨论,就一些问题探讨如下,不当之处敬请指正。 一、关于模型 钢筋混凝土有限元模型根据钢筋的处理方式主要分为三种,即分离式、分布式和组合式模型。考虑钢筋和混凝土之间的粘结和滑移,则采用引入粘结单元的分离式模型;假定混凝土和钢筋粘结很好,不考虑二者之间的滑移,则三种模型都可以;分离式和分布式模型适用于二维和三维结构分析,后者对杆系结构分析比较适用。裂缝的处理方式有离散裂缝模型、分布裂缝模型和断裂力学模型,后者目前尚处研究之中,主要应用的是前两种。离散裂缝模型和分布裂缝模型各有特点,可根据不同的分析目的选择使用。随着计算速度和网格自动划分的快速实现,离散裂缝模型又有被推广使用的趋势。 就ANSYS而言,她可以考虑分离式模型(solid65+link8,认为混凝土和钢筋粘结很好,如要考虑粘结和滑移,则可引入弹簧单元进行模拟,比较困难!),也可采用分布式模型(带筋的solid65)。而其裂缝的处理方式则为分布裂缝模型。 二、关于本构关系 混凝土的本构关系可以分为线弹性、非线性弹性、弹塑性及其它力学理论等四类,其中研究最多的是非线性弹性和弹塑性本构关系,其中不乏实用者。混凝土破坏准则从单参数到五参数模型达数十个模型,或借用古典强度理论或基于试验结果等,各个破坏准则的表达方式和繁简程度各异,适用范围和计算精度差别也比较大,给使用带来了一定的困难。 就ANSYS而言,其问题比较复杂些。 1 ANSYS混凝土的破坏准则与屈服准则是如何定义的? 采用tb,concr,matnum则定义了W-W破坏准则(failure criterion),而非屈服准则(yield criterion)。W-W破坏准则是用于检查混凝土开裂和压碎用的,而混凝土的塑性可以另外考虑(当然是在开裂和压碎之前)。理论上破坏准则(failure criterion)和屈服准则(yield criterion)是不同的,例如在高静水压力下会发生相当的塑性变形,表现为屈服,但没有破坏。而工程上又常将二者等同,其原因是工程结构不容许有很大的塑性变形,且混凝土等材料的屈服点不够明确,但破坏点非常明确。 定义tb,concr matnum后仅仅是定义了混凝土的破坏准则和缺省的本构关系,即W—W破坏准则、混凝土开裂和压碎前均为线性的应力应变关系,而开裂和压碎后采用其给出的本构关系。但屈服准则尚可另外定义(随材料的应力应变关系,如tb,MKIN,则定义的屈服准则是V on Mises,流动法则、硬化法则也就确定了)。

用ANSYS对钢筋混凝土梁进行计算模拟

一、用钢筋混凝土简支梁的数值模拟为实例,对ANSYS的使用方法进行说明 钢筋混凝土简支梁,尺寸为长2000mm,宽150mm,高300mm。混凝土采用C30,钢筋全部采用HRB335,跨中集中荷载P作用于一刚性垫板上,垫板尺寸为长150mm,宽100mm。 建立分离式有限元模型,混凝土采用SOLID65单元,钢筋采用LINK8单元,不考虑钢筋和混凝土之间的粘结滑移。创建分离式模型时,将几何实体以钢筋位置切开,划分网格时将实体的边线定义为钢筋即可。加载点以均布荷载近似代替钢垫板,支座处则采用线约束和点约束相结合。单元尺寸以50mm左右为宜。 二、命令流 !钢筋混凝土简支梁数值分析 !分离式模型 FINISH /CLEAR /PREP7 !1.定义单元与材料属性 ET,1,SOLID65,,,,,,,1 ET,2,LINK8 MP,EX,1,13585 !混凝土材料的初始弹模以及泊松比 MP,PRXY,1,0.2 FC=14.3 !混凝土单轴抗压强度和单轴抗拉强度 FT=1.43 TB,CONCR,1 TBDA TA,,0.5,0.95,FT,-1 !定义混凝土材料及相关参数,关闭压碎 TB,MISO,1,,11 !定义混凝土应力应变曲线,用MISO模型 TBPT,,0.0002,FC*0.19 TBPT,,0.0004,FC*0.36 TBPT,,0.0006,FC*0.51 TBPT,,0.0008,FC*0.64 TBPT,,0.0010,FC*0.75 TBPT,,0.0012,FC*0.84 TBPT,,0.0014,FC*0.91 TBPT,,0.0016,FC*0.96 TBPT,,0.0018,FC*0.99 TBPT,,0.002,FC TBPT,,0.0033,FC*0.85 MP,EX,2,2.0E5 !钢筋材料的初始弹模以及泊松比 MP,PRXY,2,0.3 TB,BISO,2 TBDA TA,,300,0 !钢筋的应力应变关系,用BISO模型

混凝土的ANSYS分析

【原创】钢筋混凝土分离式建模方法(含ANSYS命令流) 钢筋混凝土, 分离式, 建模, ANSYS, 命令钢筋混凝土, 分离式, 建模, ANSYS, 命令 一、简介 钢筋混凝土有限元建模的方法与结果评价(前后处理),是对钢筋混凝土结构进行数值模拟的重要步骤,能否把握模型的可行性、合理性,如何从计算结果中寻找规律,是有限元理论应用于实际工程的关键一环。Blackeage以自己做过的一组钢筋混凝土暗支撑剪力墙的数值模拟为例,从若干方面提出一些经验与建议。希望大家一起讨论、批评指正(wang.jian@https://www.360docs.net/doc/814794286.html,)。 程序:ANSYS 单元:SOLID65、BEAM188 建模方式:分离 暗支撑剪力墙结构由北京工业大学曹万林所提出,简言之就是一种在普通钢筋配筋情况下,加配斜向钢筋的剪力墙结构。 二、单元选择 以前经常采用的钢筋混凝土建模方法是通过SOLID65模拟混凝土,通过SOLID65的实常数指定钢筋配筋率,后来发现这种整体式的模型并不理想,而且将钢筋周围的SOLID65单元选择出来,再换算一个等效的配筋率,工作量也并不小。最关键的是采用整体式模型之后,得不出什么有意义的结论,弄一个荷载-位移曲线出来又和实验值差距比较大。只有计算的开裂荷载与实验还算是比较接近,但这个 手算也算得出来的东西费劲去装模作样的建个模型又有什么意义? 所以,这次我尝试采用分离式的模型,钢筋与混凝土单元分别建模,采用节点共享的方式。建模时发现,只要充分、灵活地运用APDL 的技巧,处理好钢筋与混凝土单元节点的位置,效率还是很高的。 [center] 暗支撑剪力墙数值模型[/center] 看过很多的资料,分离式模型是用LINK8与SOLID65的组合方式,这样做到是非常直观,因为LINK8是spar类型的单元,每个节点有3个自由度,这与SOLID65单元单节点自由度数量是一致的。但是问题也就由此产生,当周围的混凝土开裂或是压碎时,SOLID65将不能对LINK8的节点提供足够地约束(如下图箭头方向),从而导致总刚矩阵小主元地出现影响计算精度,或者干脆形成瞬变体系导致计 算提前发散。 [center] LINK8+SOLID65的问题[/center] 如果采用梁单元模拟暗钢筋,就算包裹钢筋的混凝土破坏了,钢筋单元本身仍可对连接点提供一定的侧向刚度(其实钢筋本身就是有一定抗弯刚度的),保证计算进行下去。ANSYS中的梁单元比较多,建议选取beam188单元。beam188支持弹塑性分析、自定义截面。可以用内力计算结果按截面插值得出应力结果,这样,SOLID65+beam188不仅解决了SOLID65+beam188的小主元问题,而且可以方便地控 制钢筋单元的划分密度,也扩充了钢筋单元输出信息。 三、单元组合方式 将剪力墙中所有钢筋单元(包括暗柱、梁的纵、箍筋、暗支撑钢筋、暗支撑箍筋、暗分布筋)单独建模,为了能够与混凝土单元节点共享,将混凝土单元细化,单元高度设为暗柱箍筋间距与墙片分布筋间距的最大公约数。 钢筋与混凝土单元节点共享。不考虑粘接-滑移影响。其实由于混凝土单元已经细化过了,钢筋周围的混凝土由于钢筋作用而开裂之

ANSYS岩土计算例子

ANSYS土工结构计算案例 ANSYS-CHINA广州办事处 2019年6月24日

目录 计算题目及计算要求说明 (1) 题目一 (4) 一、计算说明 (4) 二、计算所用ANSYS邓肯-张的E-B模型说明 (5) 三、计算有限元模型及计算结果 (6) 题目二 (7) 一、用三维有限元模型计算 (7) 二、用三维有限元模型计算 (8) 题目三 (10) 一、计算说明 (10) 二、计算有限元模型及边界条件 (10) 三、强夯地基固结计算 (10) 题目四 (17) 一、计算说明 (17) 二、计算几何模型和有限元模型 (17) 三、计算结果 (18) 1、计算边界条件 (18) 2、计算结果 (19) 3、结论 (20)

计算题目及计算要求说明 题目一:高桩码头桩基与岸坡相互作用的线性有限元和非线性有线元分析 题目二:大圆筒结构、波浪与地基的相互作用分析(大圆筒作为重力式码头结构,波浪为水平动荷载,门吊为竖向动荷载,地基为三层以上地基包括自抛碎石垫层、粘土层、粉细砂层和岩层,粉细砂层可能在波浪动荷载作用下液化造成圆筒倾覆) 题目三:(冲击荷载下)强夯地基固结有限元分析(提供固结方程或固结方程处理方案,孔隙水压力消散计算方案、沉降计算方案及其他一些处理技巧) 题目四:在降雨情况下土工格栅加筋土挡墙边坡上公路稳定分析(由上至下为公路面层,垫层,挡墙,挡墙面板采用预制混凝土块0.6?0.6?0.6m3,混凝土后方为钩挂式土工格栅,边坡比较陡,边坡有一定排水特性)。 具体处理方案包括: 1、提供计算输入界面 2、计算模型或采用本构情况 3、前处理方案及网格划分技巧 4、特殊材料或模型嵌入技术 5、计算技巧及解决方案 6、后处理提供内容

ANSYS混凝土问题分析实例

ANSYS混凝土问题分析学习资料 1.关于模型 钢筋混凝土有限元模型根据钢筋的处理方式分为三种:分离式、整体式和组合式模型◆分离式模型: 把混凝土和钢筋作为不同的单元来处理,即混凝土和钢筋各自被划分为足够小的单元,两者的刚度矩阵是是分开来求解的,考虑到钢筋是一种细长的材料,通常可以忽略起横向抗剪强度,因此可以将钢筋作为线单元处理。钢筋和混凝土之间可以插入粘结单元来模拟钢筋与混凝土之间的粘结和滑移。一般钢筋混凝土是存在裂缝的,而开裂必然导致钢筋和混凝土变形的不协调,也就是说要发生粘结的失效与滑移,所以此种模型的应用最为广泛。 ◆整体式模型: 将钢筋分布与整个单元中,假定混凝土和钢筋粘结很好,并把单元视为连续均匀材料,与分离式模型不同的是,它求出的是综合了混凝土与钢筋单元的整体刚度矩阵;与组合式不同之点在于它不是先分别求出混凝土与钢筋对单元刚度的贡献然后再组合,而是一次求得综合的刚度矩阵。 ◆组合式模型 组合式模型分为两种:一种是分层组合式,在横截面上分成许多混凝土层和若干钢筋层,并对截面的应变作出某些假设,这种组合方式在钢筋混凝土板、壳结构中应用较广;另一种组合方法是采用带钢筋膜的等参单元。 当不考虑混凝土和钢筋二者之间的滑移,三种模型都可以。分离式和整体式模型使用于二维和三维结构分析。 就ANSYS而言,可以考虑分离式模型:混凝土(SOLID65)+钢筋(LINK单元或PIPE单元),认为混凝土和钢筋粘结很好。如要考虑粘结和滑移,则可引入弹簧单元进行模拟,如果比较困难也可以采用整体式模型(带筋的SOLID65)。 2.本构关系及破坏准则 ◆本构关系 混凝土本构关系的模型对钢筋混凝土结构的非线性分析有重大影响。混凝土的本构就是表示在各种外荷载作用下的混凝土应力应变的响应关系。在建立混凝土本构关系时一般都是基于现有的连续介质力学的本构理论,在结合混凝土的力学特性,确定甚至调整本构关系中各种所需的材料参数。通常,混凝土的本构关系可以分为线性弹性、非线性弹性、弹塑性及其他力学理论等四类。其中研究最多的是非线性弹性和弹塑性本构关系,其他的不怎么用。线性弹性理论认为应力应变加载、卸载时呈线性关系,服从虎克定律,应力应变关系是相互对应的关系。在实际结构设计中线性弹性仍然是应用很广泛的本构模型。 非线性弹性理论认为应力应变不成正比,但是有一一对应的关系。卸载后没有残余应变,应力状态完全由应变状态决定,而与加载历史无关。非线性弹性本构关系分为全量型(如Ottosen模型)和增量型(如Darwin-Pecknold)两类。 弹塑性本构关系则把屈服面和破坏面分开处理。根据混凝土单轴受压的试验研究结果,混凝土在应力未达到其强度极限以前,应力应变的非线性关系受塑性变形的影响,这可以用屈服面理论来解释。而在曲线的下降阶段,混凝土的非线性关系则主要受混凝土内部微断裂的影响,表现微损伤断裂的关系,可用破坏准则来评判。一般在经典的强度理论中,有Tresca、VonMises和Druck-Prager等屈服准则,此外还有Zienkiewicz-Pande、W.F.Chen、Nilsson 屈服条件,破坏准则有Mohr。 混凝土破坏准则从单参数到五参数多大数十个模型,或借用古典强度理论或基于试验结果等。各个破坏准则的表达式和繁简程度各异,适用范围和计算精度也差别较大,给使用带来了一定的困难。

基于ANSYS的钢筋混凝土力学分析

基于ANSYS的钢筋混凝土力学分析 1 引言 由于钢筋混凝上材料性质复杂,使其表现出明显的非线性行为。长期以来采用线弹性理论的设计方法来研究钢筋混凝上结构的应力或内力,显然不太合理,尽管有此理论是基于人量试验数据上的经验公式,还是不能准确反映混凝上的力学性能,特别是受力复杂的重要结构,必须采用三维钢筋混凝上非线性有限元方法才能很好地掌握其力学性能。利用ANSYS对钢筋混凝上结构弹塑性的仿真分析,可以对结构自开始受荷载直到破坏的全过程进行分析,获得不同阶段的受力性能。 2 模型的建立 2.1 单元类型的选取 2.1.1 混凝土单元 混凝上选用SOLID65单元。SOLID65单元在普通8节点三维等参元SOLID45单元的基础上增加了针对混凝上材料参数和整体式钢筋模型,常被用来模拟钢筋混凝上和岩石等抗拉能力远大于抗拉能力的非均匀材料,可以模拟混凝土材料的开裂和压碎力学行为。 2.1.2 钢筋单元 可采用杆元来模拟纵筋,一般利用空间单元LINK8单元或空间管单元PIPE20建立钢筋模型,与混凝上SOLID65单元共用节点。用COMBINE39来模拟钢筋和混凝上之间的粘结。 2.2 材料本构关系模型 2.2.1 混凝土本构模型 弹塑性本构关系把服而和破坏而分开来处理。根据弹塑性理论建立混凝上的本构关系时,必须对屈服,条件流动法则、硬化法则即塑性模型三要素做出基本假定。ANSYS弹塑性本构关系主要使用Mises屈服准则或Drucker-Prager屈服准则。 2.2.2 混凝土破坏准则 一般强度准则的参数越多,对混凝土强度性能的描述就越准确,多参数模型大多基于强度试验的统计而进行曲线拟合。ANSYS中的混凝上材料特性用改进的William Wamke五参数破坏破坏准则和拉应力的组合模式,其破坏而子午线和偏平而见相关文献。 2.2.3 钢筋本构模型 一般采用双线形理想弹塑性模型,在ANSYS中,钢筋可以选择经典双线性随动强化模型(BKIN)和双线性等向强化模型(BISO)。 2.2.4 本构关系和破坏准则在ANSYS中的实现 在SOLID65单元中实现上式的本构关系需通过定义数据表。对于钢筋材料,定义一个应力应变关系的数据表;而对于混凝土模型,则要定义两个数据表,一个是本构关系的数据表,

ansys中混凝土结构的计算

(1)转贴一个例题,来自中国有限元联盟论坛-运行没有问题/title, fixed - fixed concrete beam example /prep7 et,1,65 mp,ex,1,3e7 ! steel rebar (units are pounds, inches) MP,PRXY, 1,0.3 mp,ex,2,1e6, ! concrete MP,PRXY, 2,0.3 mp,dens,2,.00025 tb,concr,2 tbdata,1,.3,.5,200,4000 ! shear coeffs, tensile and compress strength r,1,1,.03,0,0 ! mat 1 (steel), 3 percent reinforcement in x dir r,2,1,.01,0,0 ! mat 1 (steel), 1 percent r,3,1,.04,0,0 ! mat 1 (steel), 4 percent block,,100,,5,,5 block,,100,5,10,,5 block,,100,10,15,,5 !vovlap,all NUMMRG,KP, , , ,LOW numcmp,volu esize,5 mat,2 ! concrete material real,1 ! rebar vmesh,1 real,2 vmesh,2 real,3 vmesh,3 nsel,s,loc,x d,all,all nsel,s,loc,x,100 d,all,all nsel,all fini /solu nsel,s,loc,y,15 sf,all,pres,100 nsel,all OUTRES,ALL,ALL, nsub,10 solve fini

ANSYS在玻璃钢-混凝土复合材料结构中的计算分析

ANSYS在玻璃钢-混凝土复合材料结构中的计算分析 殷波 (扬州大学水利与建筑工程学院土木工程系,扬州225009) 摘要:混凝土结构由于受荷载变化、材料、施工质量等因素影响,会造成结构的强度、刚度不足,玻璃钢-混凝土复合材料结构则改善其性能。本文通过ansys有限元软件计算,分析说明了玻璃钢-混凝土复合材料结构将有力的提高结构的强度和刚度。 关键词:ansys,混凝土、玻璃钢-混凝土、有限元、复合材料 ANSYS’s calculation in glass fibre reinforced plastics- concrete composite material structure YIN BO (Dept.of Civil Engin,Hydr and Civil Engin Coll, Yangzhou University, Yangzhou, 225009, China) Abstract: As the variety of load、material、constructional quality and so on ,concrete structure may be insufficient in intensity and rigidity. Glass fibre reinforced plastics- concrete composite material structure can improve its capacity. With the calculation of ansys, this paper indicate that glass fibre reinforced plastics-concrete composite material structure will raise the intensity and rigidity. Key words: ansys ,concrete, glass fibre reinforced plastics- concrete, finite element; composite material 1.前言 钢筋混凝土结构合理地利用钢筋和混凝土两种材料的力学性能,因而具有整体性、耐久性等优点。但同时也存在着自重大等缺点,在受弯构件中较显著。自重太大,对于设计大跨度结构、高层建筑以及抗震结构都很不利。针对普通钢筋混凝土梁以及经由玻璃钢加固的钢筋混凝土复合梁,通过ansys有限元软件计算分析说明了玻璃钢-混凝土复合材料结构将提高其强度和刚度。 2.用ANSYS进行有限元计算 有限元法是目前工程技术领域中实用性最强、应用最为广泛的数值计算方法。它的基本思想是将问题的求解域划分为一系列单元,单元之间靠节点连接。单元内部点的待求物理量可由单元节点物理量通过选定的函数关系插值求得。由于单元形状简单,易于由平衡关系或能量关系建立节点量之间的方程式,然后由单元方程再形成总体代数方程组,加入边界条件后即可对方程组求解。以ANSYS为代表的有限元分析软件具有以下优点:减少设计成本、缩短设计和分析的循环周期、增加产品和工程的可靠性、采用优化设计、降低材料的消耗和成本、在产品制造或工程施工前预先发现潜在的问题、可以进行模拟实验分析、进行机械事故分析,查找事故原因。ANSYS软件是集结构、热、流体、电磁、声学于一体的大型通用有限元分析软件,可广泛地应用于土木工程、

如何在ANSYS中模拟钢筋混凝土的计算模型

如何在ANSYS 中模拟钢筋混凝土的计算模型最近做了点计算分析,结合各论坛关于这方面的讨论,就一些问题探讨如下,不当之处敬请指正。 一、关于模型 钢筋混凝土有限元模型根据钢筋的处理方式主要分为三种,即分离式、分布式和组合式模型。考虑钢筋和混凝土之间的粘结和滑移,则采用引入粘结单元的分离式模型;假定混凝土和钢筋粘结很好,不考虑二者之间的滑移,则三种模型都可以;分离式和分布式模型适用于二维和三维结构分析,后者对杆系结构分析比较适用。裂缝的处理方式有离散裂缝模型、分布裂缝模型和断裂力学模型,后者目前尚处研究之中,主要应用的是前两种。离散裂缝模型和分布裂缝模型各有特点,可根据不同的分析目的选择使用。随着计算速度和网格自动划分的快速实现,离散裂缝模型又有被推广使用的趋势。 就ANSYS 而言,她可以考虑分离式模型(solid65+link8 ,认为混凝土和钢筋粘结很好,如要考虑粘结和滑移,则可引入弹簧单元进行模拟,比较困难!),也可采用分布式模型(带筋的solid65) 。而其裂缝的处理方 式则为分布裂缝模型。 二、关于本构关系 混凝土的本构关系可以分为线弹性、非线性弹性、弹塑性及其它力学理论等四类,其中研究最多的是非线性弹性和弹塑性本构关系,其中不乏实用者。混凝土破坏准则从单参数到五参数模型达数十个模型,或借用古典强度理论或基于试验结果等,各个破坏准则的表达方式和繁简程度各异,适用范围和计算精度差别也比较大,给使用带来了一定的困难。 就ANSYS 而言,其问题比较复杂些。 1 ANSYS 混凝土的破坏准则与屈服准则是如何定义的? 采用tb,concr,matnum 则定义了W-W 破坏准则(failure criterion),而非屈服准则(yield criterion)。W-W 破坏准则是用于检查混凝土开裂和压碎用的,而混凝土的塑性可以另外考虑(当然是在开裂和压碎之前)。 理论上破坏准则(failure criterion) 和屈服准则(yield criterion) 是不同的,例如在高静水压力下会发生相当的 塑性变形,表现为屈服,但没有破坏。而工程上又常将二者等同,其原因是工程结构不容许有很大的塑性变形,且混凝土等材料的屈服点不够明确,但破坏点非常明确。

Ansys计算浓度场操作流程

Instruction Ansys solute field calculation Question 1: Consider a semi-infinite steel plate with initial carbon concentration C0. One end of the plate is exposed to the atmosphere of which the concentration is C e (I type boundary condition). With the help of the thermal analysis module of Ansys (λ=D, ρ=1, c p=1), analyze the concentration distribution in the plate during the period of 36000s. 问题1:考虑一个半无限长的钢板,初始浓度为C0,一段暴露在浓度为C e的碳氛围中。借助Ansys的热分析模块(λ=D, ρ=1, c p=1),分析在36000s内钢板碳扩散情况。 Basic parameters基本物性参数 Geometry几何:a=0.003 m, b=6×10-5 m Material材料:λ=D=9.8×10-12, ρ=1, c p=1 Loads载荷:C0=0.002, C e=0.013, Jobname and directory settings设置文件名、存储路径 Menu | File | Change Jobname Menu | File | Change Directory Preprocessing前处理 (1) Define Element Type定义单元类型 Preprocessor | Element Type | Add/Edit/Delete Add: Thermal Mass | Solid | Quad 4node 55 (2) Set Material Properties设置材料属性 Preprocessor | Material Props | Material Models

ansys计算混凝土板裂缝命令流

! 书中例题 FINISH$/CLEAR$/CONFIG,NRES,5000$/PREP7 et,2,link8 et,1,solid65 keyopt,1,1,1 keyopt,1,3,2 keyopt,1,7,1 mp,ex,1,19095 mp,prxy,1,0.2 fck=20.1 ftk=2.01 tb,concr,1 tbdata,,0.5,0.95,ftk,-1 tb,miso,1,,11 tbpt,,0.0002,fck*0.19 tbpt,,0.0004,fck*0.36 tbpt,,0.0006,fck*0.51 tbpt,,0.0008,fck*0.64 tbpt,,0.0010,fck*0.75 tbpt,,0.0012,fck*0.84 tbpt,,0.0014,fck*0.91 tbpt,,0.0016,fck*0.96 tbpt,,0.0018,fck*0.99 tbpt,,0.0020,fck*1.00 tbpt,,0.0033,fck*0.85 !定义钢筋材料参数 mp,ex,2,2e5 mp,prxy,2,0.3 tb,biso,2 tbdata,,335,0 mp,ex,3,2e5 mp,prxy,3,0.3 tb,biso,3 tbdata,,235,0 pi=acos(-1) !π r,1,0.25*pi*22*22 !22直径圆 r,2,0.25*pi*22*22/2 r,3,0.25*pi*10*10 r,4,0.25*pi*10*10/2 r,5 !建立几何模型并切分 blc4,,,150/2,300,2000/2 *do,i,1,2$wpoff,,,100$vsbw,all$*enddo !沿z向移动两个100并切分*do,i,1,4$wpoff,,,50$vsbw,all$*enddo

ansys 钢筋混凝土建模

ANSYS在钢筋混凝土构件全过程分析中钢筋混凝土材料的单元选择、材料特性、破坏准则等方面。说明只要合理选择单元类型、划分网格等,就能够得出比较准确的非线性特性曲线,从而达到减少设计成本、缩短设计和分析的循环周期、增加产品和工程的可靠性的目的。 【关键词】ANSYS;钢筋混凝土;单元类型;材料特性;破坏准则 一、前言 钢筋混凝土结构是目前工业与民用建筑中最主要的结构形式。由于钢筋混凝土是由两种性质不同的材料———混凝土和钢筋组合而成,它的性能明显地依赖于这两种材料的性能,特别是非线性阶段,对钢筋混凝土结构进行非线性分析就显得特别重要了。有限元方法作为一个强有力的数值分析工具,在钢筋混凝土结构的非线性分析中起着非常重要的作用。在钢筋混凝土结构有限元分析领域,对于混凝土结构分析应当考虑的因素包括混凝土的应力-应变特性曲线(非线性弹性,弹塑性等)的模型,混凝土的破坏面模型,裂缝的模拟,钢筋的模拟,钢筋的应力应变模型(如:双线性弹性硬化塑性)及包括混凝土钢筋接触面的粘结滑移、拉伸硬化模型和裂缝接触面模型。要模拟钢筋混凝土结构的受力机理及破坏过程,关键要合理地选择单元类型和混凝土的破坏准则。本文主要是从这个角度,介绍单元选取、定义材料特性的方法。 二、用ANSYS 进行有限元计算 有限元法是目前工程技术领域中实用性最强、应用最为广泛的数值计算方法。它的基本思想是将问题的求解域划分为一系列单元,单元之间靠节点连接。单元内部点的待求物理量可由单元节点物理量通过选定的函数关系插值求得。由于单元形状简单,易于由平衡关系或能量关系建立节点量之间的方程式,然后由单元方程再形成总体代数方程组,加入边界条件后即可对方程组求解。 ANSYS 软件是集结构、热、流体、电磁、声学于一体的大型通用有限元分析软件,可广泛地应用于土木工程、交通、水利、铁道、石油化工、航空航天、机械制造、国防军工、电子、造船、生物医学、地矿、日用家电等一般工业及科学研究。AN?鄄SYS 有限元分析软件具有以下优点:减少设计成本、缩短设计和分析的循环周期、增加产品和工程的可靠性。采用优化设计,降低材料的消耗和成本,在产品制造或工程施工前预先发现潜在的问题,可以进行模拟实验分析,进行机械事故分析,查找事故原因。 (一)选取单元类型 ANSYS软件本身带有大量的单元类型,如BEAM、LINK、SOLID、PIPE、PLANE、SHELL、COMBIN、MASS等结构方面的单元类型。三维8结点实体等参单元,SOLID65单元(如图1所示)通常用来模拟钢筋混凝土材料,实体单元每个节点都有3个自由度,该单元可以产生塑性变形,在三个方向上开裂及可以被压碎。 内部的钢筋的模拟有两种方法,一种是作为附加弥散钢筋分布在一个指定方向,即整体式。钢筋作为附加弥散钢筋加入到SOLID65单元中,是通过输入实常数,给定SOLID 65 单元在三维空间各个方向的钢筋材料编号、位置、角度和配筋率。这种方法主要用于有大量钢筋且钢筋分布较均匀的构件中,譬如剪力墙或楼板结构;另一种把混凝土和钢筋作为不同单元来处理即分离式,混凝土与构件各自被划分成

ANSYS【混凝土】问题分析

ANSYS混凝土问题分析 1.关于模型 钢筋混凝土有限元模型根据钢筋的处理方式分为三种:分离式、整体式和组合式模型◆分离式模型: 把混凝土和钢筋作为不同的单元来处理,即混凝土和钢筋各自被划分为足够小的单元,两者的刚度矩阵是是分开来求解的,考虑到钢筋是一种细长的材料,通常可以忽略起横向抗剪强度,因此可以将钢筋作为线单元处理。钢筋和混凝土之间可以插入粘结单元来模拟钢筋与混凝土之间的粘结和滑移。一般钢筋混凝土是存在裂缝的,而开裂必然导致钢筋和混凝土变形的不协调,也就是说要发生粘结的失效与滑移,所以此种模型的应用最为广泛。 ◆整体式模型: 将钢筋分布与整个单元中,假定混凝土和钢筋粘结很好,并把单元视为连续均匀材料,与分离式模型不同的是,它求出的是综合了混凝土与钢筋单元的整体刚度矩阵;与组合式不同之点在于它不是先分别求出混凝土与钢筋对单元刚度的贡献然后再组合,而是一次求得综合的刚度矩阵。 ◆组合式模型 组合式模型分为两种:一种是分层组合式,在横截面上分成许多混凝土层和若干钢筋层,并对截面的应变作出某些假设,这种组合方式在钢筋混凝土板、壳结构中应用较广;另一种组合方法是采用带钢筋膜的等参单元。 当不考虑混凝土和钢筋二者之间的滑移,三种模型都可以。分离式和整体式模型使用于二维和三维结构分析。 就ANSYS而言,可以考虑分离式模型:混凝土(SOLID65)+钢筋(LINK单元或PIPE单元),认为混凝土和钢筋粘结很好。如要考虑粘结和滑移,则可引入弹簧单元进行模拟,如果比较困难也可以采用整体式模型(带筋的SOLID65)。 2.本构关系及破坏准则 ◆本构关系 混凝土本构关系的模型对钢筋混凝土结构的非线性分析有重大影响。混凝土的本构就是表示在各种外荷载作用下的混凝土应力应变的响应关系。在建立混凝土本构关系时一般都是基于现有的连续介质力学的本构理论,在结合混凝土的力学特性,确定甚至调整本构关系中各种所需的材料参数。通常,混凝土的本构关系可以分为线性弹性、非线性弹性、弹塑性及其他力学理论等四类。其中研究最多的是非线性弹性和弹塑性本构关系,其他的不怎么用。线性弹性理论认为应力应变加载、卸载时呈线性关系,服从虎克定律,应力应变关系是相互对应的关系。在实际结构设计中线性弹性仍然是应用很广泛的本构模型。 非线性弹性理论认为应力应变不成正比,但是有一一对应的关系。卸载后没有残余应变,应力状态完全由应变状态决定,而与加载历史无关。非线性弹性本构关系分为全量型(如Ottosen模型)和增量型(如Darwin-Pecknold)两类。 弹塑性本构关系则把屈服面和破坏面分开处理。根据混凝土单轴受压的试验研究结果,混凝土在应力未达到其强度极限以前,应力应变的非线性关系受塑性变形的影响,这可以用屈服面理论来解释。而在曲线的下降阶段,混凝土的非线性关系则主要受混凝土内部微断裂的影响,表现微损伤断裂的关系,可用破坏准则来评判。一般在经典的强度理论中,有Tresca、VonMises和Druck-Prager等屈服准则,此外还有Zienkiewicz-Pande、W.F.Chen、Nilsson 屈服条件,破坏准则有Mohr。 混凝土破坏准则从单参数到五参数多大数十个模型,或借用古典强度理论或基于试验结果等。各个破坏准则的表达式和繁简程度各异,适用范围和计算精度也差别较大,给使用带来了一定的困难。

相关文档
最新文档