抗风与抗震

抗风与抗震
抗风与抗震

1 本课程目的:认识桥梁的风、地震的重要性;了解基本的风、地震引起桥梁振动;中小桥梁的地震问题的应对;大跨桥梁主要风振问题应对措施

中国桥梁工程的问题:1. 中国桥梁工程的新技术2. 工程质量问题3. 桥梁经济问题4. 桥梁美学问题5 管理问题(管理层问题)

2抗风与抗震的必要性1)大跨桥梁的轻柔化2)中小桥梁的刚硬化

3抗风与抗震对于桥梁工程师意义1)意识到不同种类桥梁的潜在问题(长大桥的风,地震,中小桥梁的地震,裂缝,混凝土徐变)2)简单技术问题的理解(风越大,桥梁越危险?内地桥梁不存在风的问题?地震时桥梁不能倒塌?)

4风工程的重要性1)财产损失2)人员伤亡

5风工程研究内容建筑结构风工程;桥梁结构风工程;车辆空气动力学;环境污染与扩散

6风工程研究方法风洞试验,CFD,实地观测

7风工程研究内容1、建筑结构风工程(艾菲尔铁塔)2、桥梁结构风工程(Tay 桥,塔科马桥)3、车辆空气动力学(汽车的外形)4、环境污染与扩散(环境的空气污染物)5、农作物的倒伏6、其他结构物(广告牌,塑料大棚,煤堆帐篷)城市雕塑等

8风洞的分类

风洞:在按一定要求设计的管道内, 产生可控制气流

进行气动力实验的设备

按风速分:极低速低速亚音速跨音速超音速

(<3m/s) (0.4M) (0.8M) (1.2M) (5.0M)

按工作方式分:回流式(闭口式开口式)

直流式(吸入式吹出式)

按工作面积分:试验段当量直径(风工程用风洞)

大型(d>4m) 中型(1.5m

按用途分:气象、环境、建筑(桥梁)、工业(汽车)、航空(航天)

按功能分:普通、压力、低紊流度、低温、全尺寸、大气边界层

9影响风特性主要参数的因素1)大气环境2)地形3)地貌

10如何得到风特性1)实测2)气象资料3)数字模拟

11自然风特性的实验室模拟1被动模拟2主动模拟

13风:是空气相对于地球表面的运动,气象学上将平行于地表的运动叫风

14风的成因(大尺度)大气压差(地球表面不均匀加热);地球转动(Coriolis force );其他(焚风)

15台风:在西北太平洋,称之为台风;飓风:东太平洋,北大西洋一般称之为飓风;尘卷风是由于地面局部增热不均匀而形成的一种特殊的旋转对流运动.在尘卷风形成的过程中,外围空气通过贴近地面的薄层被地面加热后流向中心部位,外围空气的旋转能量在中心部位得到加强形成尘卷风。

16描述风特性的主要参数1)风速2)紊流度3)功率谱4)攻角5)主导风向角6)积分尺度

17主梁涡振的危害疲劳破坏;桥面行车舒适度;诱发失稳破坏(高风速区)

18主梁涡振的特点在低风速区;区间振动;振幅较小;断面形状密切相关;阻尼大小影响产生

19经典颤振(弯扭耦合颤振)竖弯模态和扭转模态相互耦合的弯扭耦合颤振,常发于扁平流线型桥梁断面。

分离流扭转颤振(单自由度扭转颤振,失速颤振)以扭转模态为主的颤振,常发生于

钝体桥梁断面,如槽型、工字型断面。

20影响桥梁颤振的主要因素1. 重要因素扭弯频率比;质量及质量惯矩;结构阻尼;主梁气动外形2. 振型贡献率

21抖振的定义;由风中紊流成份诱发桥梁产生的一种强迫振动。

22频域分析方法的局限性结构为线弹性,系统为时不变(对风敏感结构,通常较柔,其非线性行为不容忽视);各运动分量间的耦合效应较难考虑;当结构质量中心、转动中心及气动力中心不重合时难以考虑;结构质量特性、刚度特性及气动外形变化时;对于较柔的结构,分析模态较多,工作量较大

23驰振是具有特殊横截面形状的细长结构物发生的典型的不稳定性

振动现象特点1)截面形状为矩形、“D”字形,或一些裹冰输电线的有效截面形状2)垂直气流方向的大幅度振荡(振幅为一至十倍以上横风向截面尺寸)3)振动频率远低于该截面的旋涡脱落频率

24风致振动控制措施1提高、改善抗风能力的措施结构措施:增加结构的总体刚度,如质量、中央扣、辅助索;气动措施:改善桥梁结构的绕流特性,从而减小激振外力,如开敞式桥面、风嘴、中央稳定板、导流板、拉索的表面加工;机械措施:附加阻尼提高气动稳定性或降低风振响应,如阻尼器(调谐式和非调谐式)2主梁选择气动稳定性好的外形;提高颤振稳定性的措施3桥塔和高墩桥塔切角或附加气动装置抑制驰振或涡激共振;气动措施不能满足抗风要求时,可采取阻尼装置或主动控制装置4拉索和吊杆辅助索或联结器;拉索的表面附加凸起、卷缠螺旋线、表面加工或改变断面形状、涂料;设置阻尼装置

25桥梁抗风研究的目的1)提供风荷载计算参数(静力三分力系数,抖振风荷载)2)桥梁断面的选型(初步设计阶段)(虎门桥,大海带)3)桥梁抗风安全(施工图阶段)颤振稳定性;静风失稳特性;驰振稳定性;舒适性(涡振检验,拉索风雨振动);桥面风环境(行车安全)4)抗风措施极其有效性验证

26需要进行抗风研究桥梁及构件1)钢桥2)大跨径斜拉桥3)大跨径悬索桥4)高墩连续刚构的施工阶段5)斜拉桥的拉索6)系杆拱桥的吊杆7)大跨径桥梁的桥塔(尤其是钢结构)

27基本烈度是指该地区在一百年内能普遍遭受的最大地震烈度。

建筑场地烈度是指在建筑场地范围内,由于地质条件、地形地貌条件及水文地质条件不同而引起对基本烈度的提高或降低。

设计烈度是指抗震设计中实际采用的烈度。它是根据建筑物的重要性,永久性、抗震性及经济性等的需要对基本烈度的调整。

28当震源岩层发生断裂、错动时,岩层所积聚的变形能突然释放,引起剧烈的振动,振动以弹性波的形式从震源向各个方向传播并释放能量。这种波就称为地震波。

29 地震动,也称地面运动,是指由震源释放出来的地震波引起的地表附近土层的振动。地震动是引起桥梁破坏的外因,其作用相当于结构分析中的各种荷载,但与常用的荷载有很大差别,表现在三方面:1)常用荷载以力的形式出现,而地震动则以运动方式出现;2) 常用荷载一般为短期内大小不变的静力,而地震动则是迅速变化的随机振动;3) 常用荷载大多是竖向的,而地震动则是水平、竖向甚至扭转同时作用的。

30地震动三要素振幅;频谱;持续时间

31地震次生灾害是直接灾害发生后,破坏了自然或社会原有的平衡或稳定状态,从而引发出的灾害。主要有:火灾、水灾、毒气泄漏、瘟疫等。其中火灾是次生灾害中最常见、最严重的。

32地震直接灾害(1)地表破坏:地裂缝;滑坡;砂土液化;软土震陷(2)建筑物破坏

(3) 生命线工程破坏

33引起桥梁震害的原因主要有四个:所发生的地震强度超过了设防标准;桥梁场地对抗震不利,地震引起地基失效或地基变形;桥梁结构设计、施工错误;桥梁结构本身抗震能力不足。

34 桥梁震害现象: 1上部结构的震害自身的震害、移位震害、碰撞震害2支承连接件的震害桥梁支座、伸缩装置和剪力键等薄弱环节的损坏3下部结构的震害桥梁墩柱、桥台等的破坏4基础的震害砂土液化、基础沉降、地基失效等。

35桥梁震害的教训与启示要重视桥梁结构的总体设计,选择较理想的抗震结构体系;要重视延性抗震,并且必须避免出现脆性破坏;要重视结构的局部构造设计,避免出现构造缺陷;要重视桥梁支承连接部位的抗震设计,同时开发有效的防止落梁装置。对复杂桥梁(斜弯桥、高墩桥梁或墩刚度变化很大的桥梁),应进行空间动力时程分析;要重视采用减隔震技术提高结构的抗震能力。

桥梁抗风与抗震

桥梁抗风与抗震 1.桥梁抗震 1.1桥梁的震害及破坏机理 调查与分析桥梁的震害及其破坏机理是建立正确的抗震设计方法,采取有效抗震措施的科学依据。 国内外学者对桥梁震害的调查研究结果表明,桥梁震害主要表现为: (1)上部结构的破坏:桥梁上部结构本身遭受震害而被毁坏的情形不多,一般都是由于桥梁结构的其他部位的毁坏而引起的。如落梁,一种是由于弹性设计理论采用毛截面刚度,这样就会低估横向地震作用和位移。导致活动节点处所设置的支座长度明显不足以及相邻梁体之间因横向距离不足而引起的相互冲击,造成落梁及相邻结构的撞击破坏;另外一种是由于地基土的作用造成大的地震位移,这种桥梁震害主要发生在建在软土或者可能液化的地基土上的桥梁上。软土通常会使结构的振动反应放大,使得落梁的可能性增加。 (2)支座连接部位的破坏:这中破坏比较常见,由于连接部位的破坏会引起力传递方式的变化,从而对结构其他部位的抗震产生影响,进一步加重震害。这种破坏是抗震设计中最关注的问题之一。 (3)下部结构和基础的破坏:下部结构和基础的严重破坏是引起桥梁倒塌,并在震后难以修复使用的主要原因。除了地基毁坏的情况,桥梁墩台和基础的震害是由于受到较大的水平地震力,瞬时反复振动在相对薄弱的截面产生破坏而引起的,从大量震害实例来看,比较高柔的桥墩多为弯曲破坏,矮粗的桥墩多为剪切型破坏,介于两者之间的为混合型。地基破坏主要表现为砂土液化,地基失效,基础沉降和不均匀沉降破坏及由于其上承载力和稳定性不够,导致地面产生大变形,地层发生水平滑移,下沉,断裂。 (4)桥台沉陷,当地震加速度作用时,由于桥台填土与桥台是不完全固结的,桥台填土的纵向土压力增大,桥梁与桥台之间的冲撞会产生相当大的被动土压力,造成桥台有向桥跨方向移动的趋势。由于桥面的支撑作用,桥台将发生以桥台顶端为支点的竖向旋转,导致基础破坏。如果桥台基础在液化土上,又将引起桥台垂直沉陷,最终导致桥梁破坏。 以上所介绍桥梁的几种破坏形式是相互影响的,不同的地质条件和不同的抗震措施所造成的破坏程度和类型往往是不同的。这就要求我们在桥梁设计中尤其是不规则桥梁和大跨度桥梁,必须从整体分析桥梁的抗震性能。 1.2抗震分析理论

建筑结构抗风设计

建筑结构抗风设计在如今经济高速发展的同时,建筑的高度也飞速增高,而且建筑体型越来越复杂。高楼引来“风速杀手”。由于高层、超高层建筑鳞次栉比而引发峡谷效应,使城市街道风速加大,以致危及行人和行车安全。这种峡谷效应还表现在某些高楼部分外墙表面因风速过大产生巨大负压,玻璃幕墙或大墙板块会像雪崩一样脱落,高档门窗等也常常会发生突然崩塌、坠落伤人事故。所以,建筑高度的增高和复杂的体型使得建筑结构抗风设计的难度也在不断提高。我们要明白风对建筑的危害机理才能更好地进行抗风设计。风是紊乱的随机现象。风对建筑物的作用十分复杂,规范中关于风荷载值的确定适用于大多数体型较规则、高度不太大的单幢高层建筑。目前还没有有效的预测体型复杂、高柔建筑物风作用的计算方法;摩天大楼可能造成很强的地面风,对行人和商店有很大影响;当附近还有别的高层建筑时,群体效应对建筑物和建筑物之间的通道也会造成危害。风对建筑物表面的作用力大小,与建筑物体型、高度、建筑物所处位置、结构特性有关。 我国是世界上遭受台风灾害最为严重的国家之一,每年因台风灾害造成的经济 损失十分惨重。城市各类建筑物的损坏与倒塌是风灾直接损失的主要组成部分,快速预测和评估城市建筑物遭受风灾后的损伤情况,对城市防灾减灾工作至关重要,也是目前土木工程领域急待解决的一个问题。接下来让我们看一些比较成功的抗风设计的实例。 1974年美国芝加哥建成443m高(加上天线达500m)110层的西尔斯大楼成为当时世界最高的建筑,纽约的世界贸易中心大厦(412m,110层)只能让位,退居第二。大楼由9个标准方形钢筒体(22.9mx22.9m)组成。该结构由SOM设计.建筑师为FazlurKahn。建造到52层减少2个简体.到67层再减少2个简体.到92层再

结构抗风抗震感想

结构抗风抗震感想 结构抗风抗震是个庞大的学科,但最主要的是桥梁抗风与抗震,桥梁抗风抗震无论是在中国还是在国外,都有着一定的发展历史,长期的发展历程。整个世界每天都在改变,而桥梁抗风抗震也随科学的进步而发展。力学的发现,材料的更新,不断有更多的科学技术引入桥梁中。以前只能建在小的地方的桥,现在不仅可以建各种类型的大跨度桥,更要追求美观,不同的思想,不同的科学,推动了桥梁抗风抗震的发展,使其更加完美的融入结构抗风抗震中。 结构抗风抗震也是一门古老的学科,它已经取得了巨大的成就,未来的桥梁抗风抗震将在人们的桥梁建设生活中占据更重要的地位。这是一门需要心平气和和极大的耐心和细心的专业。因为成千上万,甚至几十万根线条要把桥梁的每一处结构清楚的反映出来。没有一个平和的心态,做什么事情都只是浮在表面上,对任何一座桥梁的结构,对要从事的事业便不可能有一个清晰、准确和深刻的认识,这自然是不行的。从事这个行业,可能没有挑灯夜战的勇气,没有不达目的不罢休的精神,只会被同行所淘汰。这是一个需要责任感和爱心的行业。要有一颗负责的心——我一人之命在我手,千万人之命在我手。既然选择了桥梁抗风抗震建设,就应该踏踏实实的肩负起这个责任。这更是一个不断追求完美的行业。金字塔,壮观吧;长城,雄伟吧......但如果没有一代又一代人的不断追求,今天的我们或许还用那种最古老的办法来造这同样的桥梁建筑。设计一座桥梁的结构是很繁,但是这都是经历了数个世纪的涤荡,经过不断的积累,不断改良,不断创新所得到的。而且这样的追求,绝不局限于过去。试想,如果设计一座桥梁能够像计算一加一等于二一样简单而易于掌握,那何了而不为呢?因此,桥梁抗风抗震大师总是在不断的求索中。一个最简单的结构,最少的耗费,最大的功用。选择研究桥梁抗风抗震,选择了一条踏实勤奋,不断创新,追求完美的道路。随着人们生活的水平的不断提高,人们对自己所处的地球空间已经不仅仅单纯从数量上提出更高的要求,而且从速度上也提了更高的要求,要求快速,有一定抗风险能力。这就需要对桥梁进行必要的加固。如果说桥梁主体工程构成了桥梁的骨架,那么装饰后的桥梁抗风减震则成了有血有肉的有机体,最终以丰富的,完善的面貌出现在人们的面前,最佳的桥梁抗风抗震应该充分体现各种材料的有关特性,结合现有的施工技术,最有效的手法,来达到构思所要表达的效果。桥梁设

【结构设计】高层建筑结构设计常用哪些抗风抗震措施

高层建筑结构设计常用哪些抗风抗震措施题目问的是高层建筑"通常”用哪些手段防风防震,大家说的这些SSD液体减震器、TMD质量调节阻尼器、AMD主动减震系统、无粘结支撑、层压橡胶支座、延性阻尼墙都太不“通常”了。大致说来,拿武侠小说做比照的话,这些差不多相当于狼牙棒、鳄鱼剪、流星锤,可以大大提高战斗力,但是并不是决定性因素。本来不行的,给他个狼牙棒还是不太行;本来就是萧峰,什么都不拿也可以很猛。当然了,让萧峰拿个狼牙棒,锦上添花,可能会更猛。 我猜这跟大家对“高层建筑”这个概念的认识有关。可能在很多人的印象中,所谓高层建筑指得就是那些动辄200米、300米甚至800米以上的摩天大楼。事实上,按照国家标准《GB50352民用建筑设计通则》,高层建筑的正式定义是“10层及10层以上的住宅建筑和建筑高度大于24m的其他民用建筑(不含单层公共建筑)”。按照这个标准,城市地区有大批大批的建筑物都属于高层建筑,而这些建筑物,绝大多数都没有采用那些“狼牙棒”装置。 达不到高层建筑标准的,我们称之为多层建筑。这两者有什么区别呢?为什么要这么划分呢?原因是多方面的,比如消防、占地等等因素。具体到结构专业,简而言之,高层建筑需要更多的考虑抗水平力问题。对于相对低矮的多层建筑,一般而言,竖向重

力荷载起到了主导作用。对于高层建筑,如何抵抗水平荷载则变成了重中之重。 上图来自川口卫《建筑结构的奥秘》一书。左侧是高层框架抵抗竖向荷载时的变形,右侧则是高层框架抵抗水平荷载时的变形。 风和地震就是高层建筑最主要的两种水平荷载。这两者有共性,也有区别。确切的说,应该叫做“抗风抗震”,而不是“防风防震”。我们可以“防止”火灾的发生,但我们无法“防止”风和地震的发生。哪怕没有人类,地球上也一样有风有地震,防是防不了的,我们所能做的只是被动的“抗”。

大门大桥抗风分析报告

大门大桥抗风分析报告

目录 概述 1.采用的规范及参考依据 2.设计基本风速、设计基准风速、主梁颤振检验风速的确定2.1 设计基本风速 2.2 主梁颤振检验风速 3.结构动力特性分析 3.1 计算图式 3.2 边界条件 3.3 动力特性分析 4.主梁抗风稳定性分析 4.1 桥梁颤振稳定性指数 4.2 主梁颤振临界风速的估算 4.3 结论

概述: 大门大桥推荐方案采用双塔双索面混凝土斜拉桥,跨度布置为135+316+ 135=586m,主跨主梁为 形断面,主塔为倒Y形索塔。在进行初步设计的过程中需要对主桥推荐方案的抗风、抗震性能进行分析。本报告对推荐方案的抗风稳定性进行分析。 分析的必要性 大桥在施工和运营期间,需满足12级以上台风、风速分别为33.3m/s和35.9m/s下的稳定性要求。由于缺乏桥区处风速观测资料,报告中设计风速采用的是《公路桥梁抗风设计规范》附表A中温州市的10m高设计基准风速。 由于桥址处无论是10m平均最大风速,还是瞬时最大风速均较大,而主桥推荐方案有“塔高、跨大”的特点,因此,主桥方案斜拉桥结构的抗风稳定性检算是必需的。 结论 利用ANSYS软件对推荐方案的相关环节进行相应分析,得出如下结论: 结构的抗风稳定性等级为Ⅰ级,成桥状态和施工状态的主梁的颤振临界风速大于主梁的颤振检验风速,满足抗风稳定性要求。 1.采用规范及参考依据 1.1 中华人民共和国交通部部标准《公路桥涵设计通用规范》(JTG D60-2004)1.2 中华人民共和国推荐性行业标准《公路桥梁抗风设计规范》(JTG/T D60-01-2004) 1.3 中华人民共和国交通部部标准《公路斜拉桥设计规范》(试行)(JTJ027-96)2.设计基本风速、设计基准风速和主梁颤振检验风速的确定根据《公路桥梁抗风设计规范》(JTG/T D60-01-2004),查得温州地区距地 =33.8m/s。据《温州市大门大桥面以上10米,频率为1/100平均最大风速V 10 工程可行性研究报告》中4.3.7条桥梁抗风、抗震规定标准,大桥在施工和运营期间,需满足12级以上台风、风速分别为33.3m/s和35.9m/s下的稳定性要求。本报告中场地平均最大风速按后者取值。

桥梁抗风抗震复习资料

第一讲 1、《中华人民共和国防震减灾法》的主要内容是什么? 答:主要内容包括:1.《防震减灾法》的立法目的2.《防震减灾法》的调整对象及适用范围3.防震减灾工作方针4.对各级人民政府的基本要求。5.政府各部门在防震减灾工作中的职责6.单位和个人的义务7.群测群防工作8.依靠科学进步提高防震减灾工作水平9.提高政府领导防震减灾工作能力10.提升地震监测能力和社会服务职能11.提高建设工程的抗震设防水平12.提高社会的非工程性地震预防能力13.及时完善地震应急救援等相关规定。 2、地震引起的地表破坏现象有哪几种? 答:1.地表断裂 2.滑坡 3.砂土液化 4.软土震陷 3、工程结构主要有哪些震害现象? 答:建筑结构软弱层机制破坏、钢筋混凝土柱压弯破坏和剪切破坏、梁柱节点破坏、框架填充墙剪切破坏、桥梁结构落梁、整体或部分倒塌、钢筋混凝土桥墩压弯破坏和剪切破坏、桥梁碰撞、节点破坏、现代斜拉桥震害现象等。 4、近年来结构震害的主要经验教训是什么? 答:⑴结构抗震设防应采用性能设计原则。即在综合考虑工程造价、结构遭遇地震作用水平、结构的重要性、耐久性和修复费用等因素下,定义结构允许的损坏程度(性能)。 ⑵结构抗震设计应同时考虑强度和延性,尤其注重提高结构整体及延性构件的延性能力。 ⑶重视采用减隔震的设计技术,以提高结构的抗震性能。 ⑷对体系复杂的结构,强调进行空间非线性动力时程分析的必要性。 ⑸对桥梁结构,应重视支座的作用及其设计,同时开发更有效的防落梁装置。 ⑹充分认识到按早期规范设计的旧结构的地震易损性,认识到对重要的旧结构进行抗震加固的紧迫性和必要性。 ⑺充分认识到城市生命线工程遭受地震破坏可能导致的严重社会后果,认识到保证城市生命线工程抗震安全性的意义。 ⑻充分认识到,地震区的一切新建工程都都必须严格按照国家颁布的抗震设计规范进行设防,为此而增加一些基建投资是值得的和必要的。 第二讲 1、构造地震的成因是什么? 答:构造地震主要是由于断层的错动而造成的。自板块构造学说提出后,人们已广泛接受这样的观点:断层错动是由全球性的大规模板块构造运动所造成的。可以说,板块构造运动是构造地震发生的宏观背景,而断层错动则是构造地震发生的局部机制。 2、什么是地震动的特性及其三要素? 答:特性:地震动是以运动方式出现。地震动是迅速变化的随机振动,地震动的这一特点,导致了抗震设计对地震作用峰值的关注。地震动对结构的作用效应与结构的动力特性和变形反应有关。地震动具有更大的不确定性,这使得抗震设计不能完全依靠强度安全储备。 三要素:地震动的幅值(最大振幅或叫峰值)、频谱(波形)和持续时间(简称持时), 3、什么是地震安全性评价? 答:地震安全性评价是指对具体建设工程场址及其周围地区的地震地质条件、地

《公路桥梁抗风设计规范》概要及大跨桥梁的抗风对策

《公路桥梁抗风设计规范》概要及大跨桥梁的抗风对策 摘要:随着我国桥梁工程的不断发展,迫切需要编制适合我国国情的《公路桥梁抗风设计规范》。本文介绍了该规范编制中的几个主要问题,其中包括基本风速图和风压图、风荷载的表达方式、桥梁动力稳定性检验和风洞试验要求等,此外,还讨论了大跨桥梁成桥和施工阶段的各种抗风对策。 关键词:桥梁抗风、设计规范 0. 前言 1999年10月,江阴长江大桥正式建成通车标志着中国有了第一座超千米的悬索桥,同时也成为世界上能够建造千米级大桥的第六个国家。自从80年代初中国改革开放以来,中国已建成了一百余座各种类型的斜拉桥,成为世界上建造斜拉桥最多的国家。如果把即将于2001年建成的南京长江二桥和福州闽江大桥统计在内,在跨度超过500m的世界斜拉桥中中国的斜拉桥已占有十分重要的地位。1996年我国人民交通出版社出版了我国第一部由同济大学和中交公路规划设计院编写的《公路桥梁抗风设计指南》,几年来已被广泛用于多座大路桥梁的抗风设计中。在此基础上,受交通部的委托,同济大学、中交公路规划设计院、中央气象研究院以及西安公路交通大学针对其中的几个关键问题进行了专题研究,为形成最终的《公路桥梁抗风设计规范》奠定了基础。这几个专题的内容以及通过多次修改形成的报批稿的目录如表1所示。本文将主要介绍该规范编制中的几个主要问题,其中包括基本风速的确定、风荷载的表达方式、桥梁动力稳定性检验和风洞试验要求等 二、全国基本风速图和风压图 基本风速定义为桥梁所在地区的开阔平坦地貌条件下,地面以上10m高度处,100年重现期的10min 平均年最大风速。 本次规范编制,采用我国657个基本台站1961年至1995年间自己记录的风速资料,以极值I型分布曲线进行拟合,将基准高度从原来的20m高改为10m高,并考虑100年重现期,得到相应各气象台站百年一遇的最大风速值。鉴于目前我国有相当多的气象台站,由于近年来城市建设的快速发展,使得台站环境不能满足空旷无遮挡的要求,致使风速记录明显受人为因素的影响而偏小。本次研究,对其部分计算结果参照周围台站的情况予以适当的修正。与此同时,参照国内其他的规范确定基本风压的下限值100年一遇为0.35kN/m2,50年一遇为0.30kN/m2,10年一遇为0.20kN/m2,相应的基本风速下限分别为24m/s,22m/s和18m/s。全国基本风压图和风速图有如下特点: 1.东南沿海为我国大陆上的最大风压区。风压等值线大致与海岸平行,风压从沿海向内陆递减很快,到达离海岸50km处的风速约为海边风速的75%,到100km处则仅为50%左右,这和造成这一地区大风的主要天气系统--台风有关。在这一区域内,大致有三个特大风压带,即湛江以南至海南沿海地区、广东沿海地区以及浙江到福建省中部沿海地带,百年一遇风压在0.90kN/m2(38m/s)以上。由于台湾岛对台风屏障作用,福建南部的风压有所减弱。 2.西北至华北北部和东北中部为我国大陆上风压的次大区。这一地区的大风主要与西伯利亚寒流引起强冷空气活动有关,等风压线梯度由北向南递减。 3.青藏高原为风压较大区。这一地区大风主要是因海拔高度较高所造成的。但该区空气密度较小,因此,虽然风速很大,但所形成的风压相对较小。从风压图和风速图的对比中可以反映出这一特点。 4.云贵高原、长江中游以及南丘陵山区风压较小,特别是在四川中部、贵州、湘西和鄂西为我国风压最小的区域。大部分地区风压在0.4kN/m2(25m/s)以下。 5.台湾、海南岛和南海诸岛的风压各自独立成区,台湾是我国风压最大的地区。据分析,其东部沿海风压可

大门大桥抗风分析报告共13页

目录 概述 1.采用的规范及参考依据 2.设计基本风速、设计基准风速、主梁颤振检验风速的确定 2.1 设计基本风速 2.2 主梁颤振检验风速 3.结构动力特性分析 3.1 计算图式 3.2 边界条件 3.3 动力特性分析 4.主梁抗风稳定性分析 4.1 桥梁颤振稳定性指数 4.2 主梁颤振临界风速的估算 4.3 结论

概述: 大门大桥推荐方案采用双塔双索面混凝土斜拉桥,跨度布置为 135+316+ 135=586m,主跨主梁为 形断面,主塔为倒Y形索塔。在进行初步设计的过程中需要对主桥推荐方案的抗风、抗震性能进行分析。本报告对推荐方案的抗风稳定性进行分析。 分析的必要性 大桥在施工和运营期间,需满足12级以上台风、风速分别为33.3m/s 和35.9m/s下的稳定性要求。由于缺乏桥区处风速观测资料,报告中设计风速采用的是《公路桥梁抗风设计规范》附表A中温州市的10m高设计基准风速。 由于桥址处无论是10m平均最大风速,还是瞬时最大风速均较大,而主桥推荐方案有“塔高、跨大”的特点,因此,主桥方案斜拉桥结构的抗风稳定性检算是必需的。 结论 利用ANSYS软件对推荐方案的相关环节进行相应分析,得出如下结论:结构的抗风稳定性等级为Ⅰ级,成桥状态和施工状态的主梁的颤振临界风速大于主梁的颤振检验风速,满足抗风稳定性要求。 1.采用规范及参考依据 1.1 中华人民共和国交通部部标准《公路桥涵设计通用规范》(JTG D60-2004) 1.2 中华人民共和国推荐性行业标准《公路桥梁抗风设计规范》(JTG/T D60-01-2004)

1.3 中华人民共和国交通部部标准《公路斜拉桥设计规范》(试行) (JTJ027-96) 2.设计基本风速、设计基准风速和主梁颤振检验风速的确定根据《公路桥梁抗风设计规范》(JTG/T D60-01-2004),查得温州地区 距地面以上10米,频率为1/100平均最大风速V 10 =33.8m/s。据《温州市大门大桥工程可行性研究报告》中4.3.7条桥梁抗风、抗震规定标准,大桥在施工和运营期间,需满足12级以上台风、风速分别为33.3m/s和35.9m/s下的稳定性要求。本报告中场地平均最大风速按后者取值。 桥址地表类别按A类考虑,桥面离水面高度为38.5m,根据《公路桥梁 抗风设计规范》式3.2.5-1,计算得K 1 =1.38,由此,求得本桥运营阶段的 设计基本风速V d =K1·V 10 =49.542m/s。 对于施工阶段,设计基准风速V D S=45.954m/s。 根据《公路桥梁抗风设计规范》第6.3.8条,主梁成桥状态颤振检验风速 [V cr ]=1.2·μ F ·V d =1.2×1.3068×49.542=77.69m/s。 主梁施工阶段颤振检验风速 [V s cr ]= 1.2·μ f ·V D S=1.2×1.3068×39.181=72.05m/s。 3.结构动力特性分析 3.1 计算图式 本方案的抗风稳定性分析中,梁、塔、墩采用梁单元建模,索采用单向受拉杆单元建模。 考虑到主梁为带实心边梁板式开口断面,其自由扭转刚度较小,若按

《桥梁抗风抗震》复习资料

1、震级和烈度:震级指一次地震释放能量的大小。烈度指地震对地表及工程结构影响的强弱程度。 2、烈度影响因素:震源M、传播途径与震中距R、场地条件S、其它。 3、桥梁震害的原因:①地震强度。②场地情况。③认为错误。④结构地震易损性。 4、桥梁震害的形成:①地基失效引起的破坏。②结构强振引起的破坏。 5、桥梁震害的类型:①墩柱的弯曲破坏。②墩柱的剪切破坏。③墩柱的基脚破坏。 6、三级设防思想:小震不坏,中震可修,大震不倒。 7、确定抗震设防标准应考虑的因素:①根据桥梁的重要性程度确定该结构的设计基准期; ②地震破坏后,桥梁结构功能丧失可能引起次生灾害的损失;③建设单位所能承担抗震防灾的最大经济能力。 8、预期地震出现概率的另一种表达方式:①地震超越概率:定场地在未来一定时间内遭遇到大于或等于给定地震的概率,以年超越概率或设计基准期超越概率表示;②地震重现期:定场地重复出现大于或等于给定地震的平均时间间隔。 9、《公路工程抗震设计规范》:单一水准的抗震设防思想;《城市桥梁抗震设计规范》:三级设防思想。 10、分析和认识桥梁结构的自振周期、振型和阻尼比这些动力特性的重要意义:桥梁结构的自振周期和地震动卓越(主要)周期越接近,它的振型接受到地震力的影响越大;而结构的阻尼比越小,结构所受的震害也越大。分析和认识桥梁结构的自振周期、振型和阻尼比这些动力特性的重要意义就在于此。 11、地震力理论:也称地震作用理论,研究地震时地面运动对结构物产生的动态效果。 12、确定性地震力计算方法:①静力法。②动力反应谱法。③动态时程分析法。 13、动态时程分析法:精细分析方法,用于重要、复杂、的大跨桥梁抗震计算。 14、动态时程分析法步骤:①选定合适的地震动输入(地震动加速度时程);②采用多节点多自由度的结构有限元动力计算模型建立地震振动方程;③采用逐步积分法对方程进行求解,计算地震过程中每一瞬时结构的位移、速度和加速度反应;④分析出结构在地震作用下弹性和非弹性阶段的内力变化以及构件逐步开裂、损坏直至倒塌的全过程。 15、桥梁抗震设计的任务:是选择合理的结构形式,并为结构提供较强的抗震能力,具体包括以下三个方面:①正确选择能够有效地抵抗地震作用的结构形式;②合理地分配结构的刚度、质量和阻尼等动力参数,以便最大限度地利用构件和材料的承载和变形能力;③正确估计地震可能对结构造成的破坏,以便通过结构、构造和其它抗震措施,使损失控制在限定的范围内。 16、抗震概念设计:是指根据地震灾害和工程经验等获得的基本设计原则和设计思想,正确地解决结构总体方案、材料使用和细部构造,以达到合理抗震设计的目的。合理的抗震设计,要求设计出来的结构,在强度、刚度和延性等指标上有最佳的组合,使结构能够经济地实现抗震设防的目标。 17、理想的桥梁结构体系布置应是:①从几何线形上看:是直桥,而且各墩高度相差不大。 ②从结构布局上看:上部结构是连续的,伸缩缝尽可能少;桥梁保持小跨径;在多个桥墩上布置弹性支座;各个桥墩的强度和刚度在各个方向都相同;基础是建造在坚硬的场地上。 18、进行地震反应分析,正确预测地震对桥梁结构的影响是进行桥梁抗震设计的基础。 19、桥梁结构的地震反应分析是一个抗震动力学问题。动力学问题都具有三个要素,即输入(激励)、系统、输出(反应)。 20、地震动输入是进行结构地震反应分析的依据。结构的地震反应以及破坏与否,除和结构的动力特性、弹塑性变形性质、变形能力有关外,还和地震动的特性(幅值、频谱特性和持续时间)密切相关。

台北101抗震抗风设计

高层建筑作业浅析台北101结构设计之抗风抗震 长安大学建筑学院建筑学 班级: 学号: 姓名: 指导老师: 日期:

浅析台北101结构设计之抗风抗震 摘要:从一般高层建筑的抗震抗风设计到超高层建筑台北101在抗震与抗风方面的设计,及抗震设计的重要性。 关键字:台北101 结构设计抗震设计抗风设计 台北101大楼建筑设计概要 台北101(Taipei 101),原名台北国 际金融中心(Taipei Financial Center),设 计师李祖原(其实是王重平和李祖元。其 位于台北市信义计划区内,其长宽各约 175 m,基地面积约30 277 m2。建筑设计 为塔、裙楼各一栋,如同帝国大厦之于纽 约、艾菲尔铁塔之于巴黎、更如晚近的金 茂大厦之于上海,面对二十一世纪,台北 需要更宽广的舞台、更亮眼的演出,高度 508公尺,地上101层,地下5层的TAIPEI 101专案即是「将台北带向全世界」 (Bringing Taipei to the world )的希望工程。 其主要用途为商场及停车场,建筑总楼地 板面积约374 000 m2。一座杰出的地标建 筑,足以改变这个城市。 结构设计概要 超高层大楼的设计,对于安全的可靠度要求标准远高于一般建筑,相对于结构设计而言,在既定的设计载重标准下,需要以更加严谨的态度订定材质规格、施工标准与细部设计图说明。而结构与建筑设计之间的互动更显重要。 在对高层、超高层建筑进行结构设计中以水平荷载为主,而水平荷载则以风荷载,地震荷载为主。所以接下以台北101为例分析一下高层设计中的抗风雨抗震设计。 一、抗风设计 高层建筑结构抗风设计的一般先考虑风对建筑作用的特点,比如是一个稳定的分压力,还是建筑振动的风振。其特点有以下几点: 1)风力作用与高层建筑结构的外形直接相关, 圆形和正多边形受到的风力较小,对抗风有利; 2)风力受建筑物周围环境影响较大,处于高 层建筑群中的高层建筑,有时会出现受力更不利的 情况,要适当加大安全度; 3)风力作用具有静力和动力两重性质; 4)风力在建筑物上的分布很不均匀,在角区 和立面内收的局部区域,会产生较大的风力;

桥梁抗震与抗风设计复习思考题

桥梁抗震与抗风设计复习思考题 一、名词解释:莫霍面,次生灾害,地震危险性,规范反应谱,振型参与质量系数延性,反应谱,地震破坏准则,结构动力时程分析,卓越周期基本风压,抖振,横向屈曲 二、问答题 ⑴ 试说明桥梁抗震设防的合理安全度原则? ⑵ 试说明振型分解法的基本原理,适用范围? ⑶ 试说明桥梁结构的地震反应分析所要解决的关键问题是什么? ⑷ 试说明桥梁结构震害类型、经验教训? ⑸ 试说明桥梁结构采用减、隔震设计的适用条件和基本原则是什么?⑹ 影响地震动特性的主要因素有哪些? ⑺ 试述“概念设计”与“数值设计”的关系? ⑻ 试说明全球主要地震分布带有哪些? ⑼ 试论述常规的结构抗震设计方法与能力设计方法什么不同? ⑽ 试说明桥梁结构的抗震设防标准 (11)试说明地震类型有哪几种? (12)试说明决定抗震设防标准的基本因素有哪些? (13)简述结构的地震破坏准则主要有哪些? 圍试说明人工合成地震加速度事成的基本方法 (15)桥梁结构的抗震构造设计一般包括几个方面? (16)能力设计方法的基本思想是什么? (17)在什么情况下,桥梁结构不是以采用减隔震设计? (18)试说明设计地震力与延性系数的关系 (19)试说明结构延性设计原理是什么? (20)是说明桥梁抗风设计的目的是什么?

参考答案 莫霍面:地壳与地幔的分界面 次生灾害:由地震引发的火灾、水灾、有毒物质泄漏和疫病流行等灾害称为。 规范反应谱:大量地震加速度记录输入后绘制得到众多反应谱曲线的基础上,再经过平均与光滑化之后才可以得到供设计使用的规范反应谱。 振型参与质量系数:每个质点质量与其在某一振型中相应坐标乘积之和与该振型的主质量之比。延性:在初始强度没有明显退化情况下的非弹性变形能力。 反应谱:一组具有相同阻尼、不同自振周期的单质点体系,在某一地震动时程作用下的最大反应,为该地震动的反应谱。(反应谱分为加速度反应谱、速度反应谱和位移反应谱) 卓越周期:地震时,从震源发出的地震波在土层中传播时,经过不同性质地质界面的多次反射,将出现不同周期的地震波。若某一周期的地震波与地基土层固有周期相近,由于共振的作用,这种地震波的振幅将得到放大,此周期称为卓越周期。 基本风压:平坦开阔地区,地面以上10m高度处,统计得30年一遇10min平均最大风速V。为标准, 2 按W0=V02/1600 确定的风压值。 抖振:边界层分离或湍流激起结构或部分结构的不规则振动。 横向屈曲:作用于悬吊桥梁主梁上的横向荷载超过主梁侧向屈曲的临界荷载出现的一种静力失稳现象。地震危险性:指某一场地在一定时期内可能遭受到的最大地震破坏影响,可以用地震烈度或地面运动参数来表示。 地震破坏准则:在地震作用下,岩体土体破坏时应力状态达到的限度结构动力时程分析: 1、试说明桥梁抗震设防的合理安全度原则? 答:桥梁工程的抗震设防,既要使震前用于抗震设防的经济投入不超过我国当前的经济能力,又要使地震中经过抗震设计的桥梁的破坏程度限制在人们可以承受的范围内。换言之需要在经济与安全之间进行合理平衡,这就是桥梁抗震 2、、试说明振型分解法的基本原理,使用范围? 3、桥梁结构的地震反应分析所解决的关键问题是什么? ①确定合理的地震输入②建立结构系统的数学模型及振动方程③选择合适的方法求解地震振动方程 得到地震反应。 4、试说明桥梁结构震害类型、经验教训? ①地基失效引起的破坏,一般来说这类破坏现象是人为工程难以抵御的因此应尽量通过场地选择避免 ②结构强烈振动引起的破坏。由于地震懂的不确定性和复杂性,人们目前还无法准确预测桥址未来可能发生的地震动,所以,设计对地震动特性不敏感的结构就显得特别重要。 5、试说明桥梁结构采用减、隔震设计的适用条件和基本原则是什么? ①桥梁上部结构为连续形式,下部结构刚度比较大,整个桥的基本周期比较短②桥梁下部结构高度变化不规则,刚度不均匀,引入减隔震装置可调节各桥墩刚度,因而可以避免刚度较大桥墩承担很大惯性力的情况③场地条件较好,预期地面运动具有较高的卓越频率,长周期范围所含能力较少等。 6、影响地震动特性的主要因素有哪些? 震源、传播介质与途径,以及局部场地条件这三类 7、试述“概念设计”与“数值设计”的关系? 抗震“概念设计”是从概念上,特别是从结构总体上考虑抗震的工程决策;用计算、构 数值计算”主要是地震作 件强度验算、结构和支座变形验算等。应当指出,强调概念设计重要,并非不重视数值计 算。而是为了给抗震计算创造有利条件,使计算分析结果更能反映地震时结构反应的实际情况。这两者是相辅相成的,作 为一个正确的抗震设计,必须重视抗震概念设计,灵活而又合理地运用抗震设计思想。 8、试说明全球主要地震分布带有哪些?(环太平洋地震带、欧亚地震带) 9、试论述常规的结构抗震设计方法与能力设计方法有什么不同?能力设计方法是结构动力概念设计的一种体现。它的主

台北101抗震抗风设计

高层建筑作业 浅析台北101结构设计之抗风抗震 长安大学建筑学院建筑学 班级: 学号: 姓名: 指导老师: 日期:

浅析台北101结构设计之抗风抗震 摘要:从一般高层建筑的抗震抗风设计到超高层建筑台北101在抗震与抗风方面的设计,及抗震设计的重要性。 关键字:台北101 结构设计抗震设计抗风设计 台北101大楼建筑设计概要 台北101(Taipei 101),原名台北国 际金融中心(Taipei Financial Center),设 计师李祖原(其实是王重平和李祖元。其 位于台北市信义计划区内,其长宽各约 175 m,基地面积约30 277 m2。建筑设计 为塔、裙楼各一栋,如同帝国大厦之于纽 约、艾菲尔铁塔之于巴黎、更如晚近的金 茂大厦之于上海,面对二十一世纪,台北 需要更宽广的舞台、更亮眼的演出,高度 508公尺,地上101层,地下5层的TAIPEI 101专案即是「将台北带向全世界」 (Bringing Taipei to the world )的希望工程。 其主要用途为商场及停车场,建筑总楼地 板面积约374 000 m2。一座杰出的地标建 筑,足以改变这个城市。 结构设计概要 超高层大楼的设计,对于安全的可靠度要求标准远高于一般建筑,相对于结构设计而言,在既定的设计载重标准下,需要以更加严谨的态度订定材质规格、施工标准与细部设计图说明。而结构与建筑设计之间的互动更显重要。 在对高层、超高层建筑进行结构设计中以水平荷载为主,而水平荷载则以风荷载,地震荷载为主。所以接下以台北101为例分析一下高层设计中的抗风雨抗震设计。 一、抗风设计 高层建筑结构抗风设计的一般先考虑风对建筑作用的特点,比如是一个稳定的分压力,还是建筑振动的风振。其特点有以下几点: 1)风力作用与高层建筑结构的外形直接相关, 圆形和正多边形受到的风力较小,对抗风有利; 2)风力受建筑物周围环境影响较大,处于高 层建筑群中的高层建筑,有时会出现受力更不利的 情况,要适当加大安全度; 3)风力作用具有静力和动力两重性质; 4)风力在建筑物上的分布很不均匀,在角区 和立面内收的局部区域,会产生较大的风力;

抗风抗震

无锡蓉湖大桥 抗风抗震初步分析报告 中铁大桥勘测设计院 2002年7月武汉

分析复核专业负责人站长院总工程师

前言 无锡蓉湖大桥工程位于江苏省无锡市市区,该桥跨越京杭大运河。本研究报告所研究的方案为: 145m+41.2m+33.8m独塔单索面混合梁斜拉桥;桥面以上主塔高为55.3m(不含塔顶装饰部分), 桥面以上塔柱为双柱钢管砼塔柱,其中锚固区的双柱由20mm厚的钢板相连,下塔柱为单柱砼塔柱,斜拉索为单索面,两根索沿横桥向的间距为1.0m。该方案的主梁主跨为钢箱梁,边跨为砼箱梁。 由于桥址处设计基本风速达25.9m/s,因此,该桥在成桥运营状态和施工全过程的抗风安全应高度重视;同时,大桥所在地区地震动峰值加速度为0.05g,地震动反应谱特征周期为0.35秒,故该桥在成桥运营状态的抗震安全也应重视;为此,我们对该桥的抗风安全性和抗震安全性进行了较为全面的分析。其主要研究内容、主要研究结论及评价如下: 1.主要研究内容 1.1 设计基本风速、设计基准风速和主梁颤振检验风速的确定1.2 抗震设防标准的确定 1.3 结构动力特性分析 1.4 主梁抗风稳定性验算 1.5 有关抗风的其它问题 1.6 结构的抗震分析 2.主要研究结论及评价

2.1 基本风压W0=600Pa,设计基本风速V10=25.9m/s。 主梁设计基准风速V D(梁)=21.5m/s;主塔设计基准风速 V D(塔)=29.8m/s。 施工阶段主梁设计基准风速V D(梁施工)=18.1m/s;施工阶段主塔设计基准风速V D(塔施工)=25.0m/s。 主梁成桥状态颤振检验风速[V cr]=36.1m/s;主梁施工阶段颤振检验风速[V cr s]=30.3m/s。 2.2 抗震设防标准:地震动峰值加速度为0.05g,地震动反应谱特征周期为0.35秒,具体设计计算取地震动峰值加速度为0.10g,地震动反应谱特征周期为0.30秒,检算结构物的强度;取地震动峰值加速度为0.15g,地震动反应谱特征周期为0.30秒,检算结构物的位移。 2.3 结构动力特性分析和主梁颤振临界风速的估算(见表一)表一成桥状态动力特性及主梁颤振临界风速的估算 表中:ε——扭弯频率比;V cr1——弯扭耦合颤振临界风速;V cr2——分离流扭转颤振临界风速; 从上表中可以看出,由于斜拉桥主跨不大,且主跨主梁为箱梁,扭转刚度较大,桥面较宽,且在结构体系中采取了合理的布置(塔梁固结、设置一个辅助墩),使主梁具有较高的扭转自振频率和扭弯频率比,同时,主梁采用扁平(宽高比12.5)的流线型箱梁,这些对

抗风与抗震

1 本课程目的:认识桥梁的风、地震的重要性;了解基本的风、地震引起桥梁振动;中小桥梁的地震问题的应对;大跨桥梁主要风振问题应对措施 中国桥梁工程的问题:1. 中国桥梁工程的新技术2. 工程质量问题3. 桥梁经济问题4. 桥梁美学问题5 管理问题(管理层问题) 2抗风与抗震的必要性1)大跨桥梁的轻柔化2)中小桥梁的刚硬化 3抗风与抗震对于桥梁工程师意义1)意识到不同种类桥梁的潜在问题(长大桥的风,地震,中小桥梁的地震,裂缝,混凝土徐变)2)简单技术问题的理解(风越大,桥梁越危险?内地桥梁不存在风的问题?地震时桥梁不能倒塌?) 4风工程的重要性1)财产损失2)人员伤亡 5风工程研究内容建筑结构风工程;桥梁结构风工程;车辆空气动力学;环境污染与扩散 6风工程研究方法风洞试验,CFD,实地观测 7风工程研究内容1、建筑结构风工程(艾菲尔铁塔)2、桥梁结构风工程(Tay 桥,塔科马桥)3、车辆空气动力学(汽车的外形)4、环境污染与扩散(环境的空气污染物)5、农作物的倒伏6、其他结构物(广告牌,塑料大棚,煤堆帐篷)城市雕塑等 8风洞的分类 风洞:在按一定要求设计的管道内, 产生可控制气流 进行气动力实验的设备 按风速分:极低速低速亚音速跨音速超音速 (<3m/s) (0.4M) (0.8M) (1.2M) (5.0M) 按工作方式分:回流式(闭口式开口式) 直流式(吸入式吹出式) 按工作面积分:试验段当量直径(风工程用风洞) 大型(d>4m) 中型(1.5m

《桥梁结构抗风与抗震》教学大纲-桥梁工程教学团队

道路桥梁与渡河工程专业 《桥梁结构抗风与抗震》教学大纲 一、课程基本信息 二、课程简介 《桥梁结构抗风与抗震》是道路桥梁与渡河工程专业方向的选修课程。本课程的主要任务是通过课堂教学、专题研讨、课后作业、期末考试等环节,使学生掌握地震基本知识、桥梁震害特点、桥梁抗震与抗风的基础知识、计算理论和分析方法。通过本课程的教学活动,使学生能够运用结构力学、结构动力学与桥梁工程等课程基础知识,初步具有分析或设计桥梁结构合理的抗风与抗震体系、地震作用与风荷载的力学特征、计算分析方法,初步具备解决实际桥梁结构抗风与抗震设计的能力。 三、课程教学目标 本课程的教学目标及能力要求具体如下: 课程目标1. 了解有关地震的基本知识和桥梁结构的震害特点,掌握单自由度体系自由振动和地震作用下强迫振动的数值计算方法;掌握反应谱的概念和反应谱分析方法;了解多自由度体系地震反应地震反应时程分析法的概念;掌握桥梁抗震设防和抗震验算要求;了解桥梁延性抗震设计的方法,桥梁减隔震设计的概念与流程;了解空气动力学基础知识及风对桥梁的动力作用。 课程目标2. 掌握桥梁工程抗震与抗风设计的基本原理和分析方法,熟悉桥梁抗震与抗风设计规范。通过文献或资料研究,掌握桥梁抗震与抗风理论的发展历程与最新研究成果,了解最新的桥梁抗震与抗风设计理念,能够利用结构力学、桥梁工程及相关规范的要求进行设计和分析。在提出解决复杂结构或环境下桥梁抗风与抗震设计方案时具有创新意识。 课程目标对毕业要求的支撑关系

四、课程教学内容与学时分配

五、课程教学方法 1.采用以问题为导向的启发式教学,培养和激发学生主动学习的兴趣,培养学生独立思考、分析问题和解决问题的能力,引导学生主动通过实践和自学获得自己想学到的知识。 2.课程采用PPT教学模式,增强课程的信息量和感性认识。 3. 理论教学与工程实践相结合,引导学生应用数学、自然科学和工程科学的基本原理,采用现代设计方法和手段,进行机构分析、综合与仿真,培养其识别、表达和解决土木类专业相关工程问题的思维方法和实践能力。 4. 理论教学与工程实例相结合,引导学生应用数学、自然科学和工程科学的基本原理,分析和判别桥梁在地震激励与风荷载作用下的受力特点和工程减震(振)措施,培养其识别、表达和解决桥梁工程问题的思维方法和实践能力。

建筑结构抗风设计

建筑结构抗风设计 在如今经济高速发展的同时,建筑的高度也飞速增高,而且建筑体型越来越复杂。高楼引来“风速杀手”。由于高层、超高层建筑鳞次栉比而引发峡谷效应,使城市街道风速加大,以致危及行人和行车安全。这种峡谷效应还表现在某些高楼部分外墙表面因风速过大产生巨大负压,玻璃幕墙或大墙板块会像雪崩一样脱落,高档门窗等也常常会发生突然崩塌、坠落伤人事故。所以,建筑高度的增高和复杂的体型使得建筑结构抗风设计的难度也在不断提高。我们要明白风对建筑的危害机理才能更好地进行抗风设计。风是紊乱的随机现象。风对建筑物的作用十分复杂,规范中关于风荷载值的确定适用于大多数体型较规则、高度不太大的单幢高层建筑。目前还没有有效的预测体型复杂、高柔建筑物风作用的计算方法;摩天大楼可能造成很强的地面风,对行人和商店有很大影响;当附近还有别的高层建筑时,群体效应对建筑物和建筑物之间的通道也会造成危害。风对建筑物表面的作用力大小,与建筑物体型、高度、建筑物所处位置、结构特性有关。 我国是世界上遭受台风灾害最为严重的国家之一,每年因台风灾害造成的经济损失十分惨重。城市各类建筑物的损坏与倒塌是风灾直接损失的主要组成部分,快速预测和评估城市建筑物遭受风灾后的损伤情况,对城市防灾减灾工作至关重要,也是目前土木工程领域急待解决的一个问题。接下来让我们看一些比较成功的抗风设计的实例。 1974年美国芝加哥建成443m高(加上天线达500m)110层的西尔斯大楼成为当时世界最高的建筑,纽约的世界贸易中心大厦(412m,110层)

只能让位,退居第二。大楼由9个标准方形钢筒体(22.9mx22.9m)组成。该结构由SOM设计.建筑师为FazlurKahn。建造到52层减少2个简体.到67层再减少2个简体.到92层再减少3个简体.到顶部变成2个简体。这种独特结构的确引人人胜。它是多筒结构中的巨型结构.每一个筒体都是单独简体,本身具有很好的刚度和强度,能够单独工作。必须指出:这种逐步减少的单筒结构,最好对称于建筑物的平面中心,减少偏心。同时这种把上部结构的某些单筒适当减少,可减小高层建筑上部的受风面积。并且扰乱大气气流.使产生的涡流对高层建筑的摇摆振动减小。从而有效地减小风力产生的侧向移动,因此。多筒结构往往采用这种自下而上逐步减少简体数量的方法,使得高层建筑的结构体系更加合理和经济。 独特贝壳广场建造于1970年,位于美国休斯敦,是一座高217.6m、52层的办公大楼,是当时最高的钢筋混凝土大楼。休斯敦的地基在600多m 内主要是粘土,要求结构体系必须使整个建筑物最为经济,建筑物包括基础全部采用轻质混凝土。这座大楼的结构体系:上部结构采用钢筋混凝土筒中筒。这种体系在当时是剪力墙与框架共同作用结构的发展。楼板结构采用密肋楼板,混凝土外框柱外面为玻璃帷幕。这样,使得整个建筑别有风格,尤为美观。基础采用筏板基础。埋深为19.3m ,筏厚2.52m,该筏板从大楼的四边各伸出6.1m,整个筏板的尺寸为70.76mx52.46m。风荷载采用休斯敦地区的飓风的风力,沿整个建筑物高度作用40lb/ft (195.3kg/mz),在风荷载作用下产生的摆动限制在1/600高度。这座大楼不但设计成功。而且,采用轻质混凝土把原设计的35层大楼变成52

相关文档
最新文档