大数定律及中心极限定理 应用题

大数定律及中心极限定理 应用题
大数定律及中心极限定理 应用题

大数定律与中心极限定理 应用题

1. 设各零件质量都是随机变量,且独立同分布,其数学期望为0.5kg ,标准差

为0.1kg, 问(1)5000只零件的总质量超过2510kg 的概率是多少?(2)如果用一辆载重汽车运输这5000只零件,至少载重量是多少才能使不超重的概率大于0.975?

解 设第i 只零件重为i X ,500,...,2,1=i ,则5.0=i EX ,21.0=i DX

设 ∑==500

1i i X X ,则X 是这些零件的总重量

250050005.0=?=EX ,5050001.02=?=DX

由中心极限定理 )1,0(~50

2500N X a - (1))2510(≥X P =)50

25002510502500(-≥-X P )2(10Φ-≈=9213.01-=0.0787

(2) 设 汽车载重量为a 吨

)(a X P ≤=)502500502500(-≤-a X P 95.0)50

2500(0≥-Φ≈a 查表得 64.150

2500≥-a 计算得 59.2511≥a

因此汽车载重量不能低于2512公斤

2. 有一批建筑房屋用的木柱,其中80%的长度不小于3m ,先从这批木柱中随

机的取100根,求其中至少有30根短于3m 的概率?

解 设X 是长度小于3m 的木柱根数,则)2.0,100(~b X

由中心极限定理 )16,20(~N X a

)30(≥X P =)16

20301620(-≥-X P )5.2(10Φ-≈=9938.01-=0.0062

3. 一个食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一种

蛋糕的价格是随机变量,它取1元,1.2元,1.5元的概率分别为0.3,0.2,0.5.若售出300只蛋糕,(1)求收入至少400元的概率 (2)售价为1.2元蛋糕售出多于60只的概率。

解 设第i 只蛋糕的价格为i X ,300,...,2,1=i ,则i X 有分布律:

由此得

29.1)(=i X E

713.1)(2=i X E

故 0489

.0)()(22=-=i i i EX EX X D (1) 设X 是这一天的总收入,则∑==300

1i i X X

29.1300300

1?==∑=i i EX EX

0489.0300300

1?==∑=i i DX DX

由中心极限定理 )0489.0300,29.1300(~??N X a

)400(≥X P =)489

.0030029.1300400489.0030029.1300(??-≥??-X P )39.3(10Φ-≈=9997.01-=0.0003

(2) 以Y 记300只蛋糕中售价为1.2元的蛋糕只数,于是)2.0,300(~b Y )1,0(~8

.02.03002.0300N Y a ???- )60(>Y P =5.0)0(14860608

.02.03002.03000=Φ-≈??? ??->???-Y P 4.设某种商品第n 天的价格为Yn ,令Xn=Yn+1-Yn ,Xn 独立同分布,且Xn 期望是0,方差是2,若该商品第一天价格是100,则第19天价格在96到104之间的概率是多少? 解:

121X Y Y =-,

232X Y Y =-,

343X Y Y =-,

……

1n n n X Y Y +=-

所以

181********n n X Y Y Y ==-=-∑ 1810n n E X ==∑, 1818

11

36n n n n D X DX ====∑∑

由中心极限定理,

()()1919961041004P Y P Y <<=-< =1818114n n n n P X E X ==??-< ?

??∑∑1818

11466n n n n X E X P ==??- ? ?=< ? ???∑∑ 2213??≈Φ- ???

=0.4972 5.(10)一枚均匀硬币至少要抛多少次,才能使正面出现的频率与概率之间的差的绝对值不小于0.05的概率不超过0.01?请分别用(1)切比雪夫不等式,与(2)中心极限定理给出估计。

设至少要抛n 次;=X “n 次抛硬币中出现正面的次数”,

则)5.0,(~n B X , n EX 5.0=,n DX 25.0=,正面出现的概率是5.0=p ; =n

X “n 次抛硬币中出现正面的频率”, 于是 5.0=n X E ,n

n X D 25.0= (1)由切比雪夫不等式

n n X

D

n X P 10005.005.05.02=≤??? ??≥- 由

01.0100≤n

,得 10000≥n 即至少要抛10000次。 (2)由中心极限定理, )25.0,5.0(~n n N X a ,

)25.0,5.0(~n N n X a , )25.0,0(~5.0n N n X a -

所以 ??? ??Φ-≈??

? ??≥-n n X P /5.005.01205.05.00( =()

01.0)1.0120≤Φ-n (

得 995.0)1.00≤Φn (,查表 995.0)58.20=Φ

(, 由于)0x (Φ单调增, 故58.21.0≥n ,解得 64.665≥n

因此至少要抛666次

6.根据经验,某宾馆电话预约的客户的实际入住率为80%,服务台共接受了2500个电话预约,请分别用(1)切比雪夫不等式,与(2)中心极限定理估计实际入住的人数在1950~2050之间的概率。

解 设随机变量=X “2500个电话预约的客户实际入住的人数”,

则 )8.0,2500(~B X ,2000=EX ,400=DX (1)由切比雪夫不等式,得

())502000(2050

1950<-=<

(~N X a , ())20

200020502020002020001950(20501950-<-<-=<

第5章大数定律及中心极限定理习题及答案

第 5 章 大数定律与中心极限定理 一、 填空题: 1.设随机变量μξ=)(E ,方差2 σξ=)(D ,则由切比雪夫不等式有≤≥-}|{|σμξ3P 9 1 . 2.设n ξξξ,,, 21是 n 个相互独立同分布的随机变量, ),,,(,)(,)(n i D E i i 218===ξμξ对于∑== n i i n 1 ξξ,写出所满足的切彼雪夫不等式 228εεξεμξn D P =≤ ≥-)(}|{| ,并估计≥<-}|{|4μξP n 21 1- . 3. 设随机变量129,, ,X X X 相互独立且同分布, 而且有1i EX =, 1(1,2, ,9)i DX i ==, 令9 1 i i X X ==∑, 则对任意给定的0ε>, 由切比雪夫不等式 直接可得{} ≥<-ε9X P 2 9 1ε- . 解:切比雪夫不等式指出:如果随机变量X 满足:()E X μ=与2 ()D X σ=都存在, 则对任意给定的0ε>, 有 22{||}P X σμεε-≥≤, 或者2 2{||}1.P X σμεε -<≥- 由于随机变量129,, ,X X X 相互独立且同分布, 而且有 1,1(1,2,9),i i EX DX i === 所以 99 9111()()19,i i i i i E X E X E X μ===??===== ???∑∑∑ 99 9 2 111()()19.i i i i i D X D X D X σ===??===== ???∑∑∑ 4. 设随机变量X 满足:2 (),()E X D X μσ==, 则由切比雪夫不等式, 有{||4}P X μσ-≥ 1 16 ≤ . 解:切比雪夫不等式为:设随机变量X 满足2 (),()E X D X μσ==, 则对任意 的0ε>, 有2 2{||}.P X σμεε -≥≤由此得 221{||4}.(4)16P X σμσσ-≥≤ =

抽样分布习题与答案

第 4 章抽样分布自测题选择题 1.抽样分布是指() A. 一个样本各观测值的分布C. 样本统计量的分布 B. 总体中各观测值的分布D. 样本数量的分布 2.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的均值为() 2 A. B. x C.2 D. n 3.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的方差为() 2 A. B.x C.2 D. n 4.从均值为,方差为2 n 的样本,则()的任意一个总体中抽取大小为 A.当 n 充分大时,样本均值x 的分布近似服从正态分布 B.只有当 n<30 时,样本均值x的分布近似服从正态分布 C.样本均值 x 的分布与n无关 D. 无论 n 多大,样本均值x 的分布都是非正态分布 5.假设总体服从均匀分布,从该总体中抽取容量为 36 的样本,则样本均值的抽样分布() A. 服从非正态分布 B. 近似正态分布 C. 服从均匀分布 D. 服从 2 分布 6. 从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,则当样本容量增大时,样 本均值的标准差() A. 保持不变 B. 增加 C.减小 D.无法确定 7. 某大学的一家快餐店记录了过去 5 年每天的营业额,每天营业额的均值为2500 元,标准差为 400 元。由于在某些节日的营业额偏高,所以每日营业额的分布是右偏的,假设从这5年中随机抽取100 天,并计算这100 天的平均营业额,则样本均值的抽样分布是() A. 正态分布,均值为250 元,标准差为40 元 B. 正态分布,均值为2500 元,标准差为40 元 C.右偏,均值为2500 元,标准差为400 元 D. 正态分布,均值为2500 元,标准差为400 元 8. 在一个饭店门口等待出租车的时间是左偏的,均值为12 分钟,标准差为 3 分钟。如果从饭店门口随机抽取 81 名顾客并记录他们等待出租车的时间,则样本均值的抽样分布是() A. 正态分布,均值为12 分钟,标准差为0.33 分钟 B. 正态分布,均值为12 分钟,标准差为 3 分钟 C. 左偏分布,均值为12 分钟,标准差为 3 分钟

中心极限定理及其应用论文

青岛农业大学本科生课程论文 题目:中心极限定理及其应用姓名: 学院: 专业: 班级: 学号: 指导教师: 2012 年06 月27 日

青岛农业大学课程论文任务书 论文题目中心极限定理及其应用 要求完成时间 2012年 07 月 02 日 论文内容(需明确列出研究的问题):研究中心极限定理的目的就是为了更深入的了解中心极限定理,更好的了解中心极限定理的作用,更好地使用它解决现实生活中的问题。 资料、数据、技术水平等方面的要求论文要符合一般学术论文的写作规范,具备学术性、科学性和一定的创造性。文字要流畅、语言要准确、论点要清楚、论据要准确、论证要完整、严密,有独立的观点和见解。内容要理论联系实际,计算数据要求准确,涉及到他人的观点、统计数据或计算公式等要标明出处,结论要写的概括简短。参考文献的书写按论文中引用的先后顺序连续编码。 指导教师签名:年月日

中心极限定理及其应用 信息与计算科学专业(学生姓名) 指导教师(老师姓名) 摘要:中心极限定理在概率论与数理统计中占有重要地位,本文阐述了中心极限定理的内容并简单介绍了它在实际中的应用。 关键词:中心极限定理;正态分布;随机变量

Central limit theorem and its application Student majoring in Information and Computing Science Specialty (学生英文名) Tutor (老师英文名) Abstract:The central limit theorem in probability theory and mathematical statistics plays an important role,this paper expounds the content of the central limit theorem and briefly introduces its application in practice. Key words: Central limit theorem Normal distribution Random variable

大数定理与中心极限定理典型题解

第四章 大数定理与中心极限定理典型题解 1. 计算器在进行时,将每个加数舍入,最靠近它的整数,设所有舍入误差 相互独立且在(-0.5,0.5)上服从均匀分布,将1500个数相加,问误差总和的绝对 值超过15的概率是多少? 解 设第k 个加数的舍入误差为 X k (k =1,2,…,1500),已知X k 在(-0.5,0.5) 1 1500 上服从均匀分布,故知E(X k ) =0,D(X k )=丄.记X =送X k ,由中心极限定理, 12 心 当n 充分时有近似公式 P{ 匸芒0 笄30} = P{30

实验十三 二项分布的计算与中心极限定.

实验十三二项分布的计算与中心极限定 [实验目的] 1.研究用Poisson逼近与正态逼近进行二项分布近似计算的条件 2.检验中心极限定理 §1 引言 二项分布在概率论中占有很重要的地位。N次Bernoulli实验中正好出现K次成功的概 率有下式给出b k;n,p C n k p k1p n k ,k=0,1,2,……..n.二项分布的 值有现成的表可查,这种表对不同的n及p给出了b(k;n.p)的数值。在实际应用中。通常可用二项的Poisson逼近与正态逼近来进行二项分布的近似计算。在本实验中,,我们来具体地研究在什么条件下,可用Poisson逼近与正态逼近来进行二项分布的近似计算。 在概率论中,中心极限定理是一个很重要的内容,在本实验中,我们用随即模拟的方法来检验一个重要的中心极限定理——Liderberg-Levi中心极限定理。 §2 实验内容与练习 1.1二项分布的Poisson逼近 用Mathematica软件可以比较方便地求出二项分布的数值。例如n=20;p=0,1;Table[Binomial[n,k]*p^k*(1-p)(n-k),{k,0,20}]给出了b(k;20,0.1)(k=0,1,2,…..,20)的值。 联系 1 用Mathematica软件给出了b(k;20,0.1),b(k;20,0.3)与 b (k;20,0.5)(k=0,1,2,…..,20)的值。 我们可用Mathematica软件画出上述数据的散点图,下面的语句给出了b(k;20.0.1)的(连线)散点图(图13。1): LISTpOLT[table[Binomi al[20,k]*0.1^k*0.9^(20-k), {k,0,20}],PlotJoined->True] 图13.1 b(k;20,0.1) b k;n,p C n k p k1p n k (k=1,1,2,……,20)的散点图 练习2绘出b(l;20,0.3)与b(k;20,0.5)(k=0,1,2,…,20)的散点图 根据下面的定理,二项分布可用Poisson分布来进行近似计算。 定理13。1 在Bernoulli实验中,以P n 代表事件A在试验中出现的概率,它与试验总数有关. 如果np n→→λ,则当n→∞时,b k;n,p k k e 。 由定理13,1在n很大,p很小,而λ=np大小适中时,有 b k;n.p c k n p k1p n k k k e

中心极限定理的内涵和应用

中心极限定理的内涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节内容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的内涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。 于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

第五章大数定律与中心极限定理习题

第五章 大数定律与中心极限定理 一、填空题: 1. 将一枚硬币连掷100次,则出现正面的次数大于60的概率约为 。 2.在概率论里,把研究在什么条件下,大量独立随机变量和的分布以 为极限这一类定理称为中心极限定理。 3.在天平上重复称量一重为a 的物体,假设各次称重结果相互独立且同服从正态分布)2.0,(2a N ,若以n X 表示n 次称重结果的算术平均值,则为使95.0)1.0(≥<-a X P n ,n 的最小值应不小于自然数 。 二、选择题: 1.设随机变量ξ服从参数为n ,p 的二项分布,则当∞→n 时,≈<<)(b a P ξ( )。 (A))()(a b Φ+Φ (B))()(00a b Φ+Φ (C))()(a b Φ-Φ (D)1)(20-Φb 2.设ξ为服从参数为n ,p 的二项分布的随机变量,则当∞→n 时,npq np -ξ一定服从 ( )。 (A)正态分布。 ( B)标准正态分布。 (C)普哇松分布。 ( D)二项分布。 三、计算题: 1. 对敌人的防御地段进行100次射击,每次射击中,炮弹命中数的数学期望为2,而命中数的均方差为1.5,求当射击100次时,有180颗到220颗炮弹命中目标的概率。 2.计算机在进行加法时,对每个加数取整(取为最接近于它的整数),设所有的取整误差是相互独立的,且它们都在(-0.5,0.5)上服从均匀分布。(1)若将1500个数相加,问误差总和的绝对值超过15的概率是多少?(2)多少个数加在一起时的误差总和的绝对值小于10的概率为0.90?

2. 已知某工厂生产一大批无线电元件,合格品占 61,某商店从该厂任意选购6000个这种元件,问在这6000个元件中合格品的比例与6 1之差小于1%的概率是多少? 3. 一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50千克,标准 差为5千克,若用最大载重量为5吨的汽车承运,试用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.9770? 4. 某工厂有400台同类机器,各台机器发生故障的概率都是0.02。假设各台机器工作是相 互独立的,试求机器出故障的台数不少于2的概率。

中心极限定理及其应用

中心极限定理及其应用 [摘要] 在中心极限定理的基础上,通过实例介绍它的应用。 [关键词] 中心极限定理随机变量应用 中心极限定理是棣莫佛在18世纪首先提出的,至今其内容已经非常丰富。它不仅是概率论中的重要内容,而且还是数理统计中大样本统计推断的理论基础。一种随机现象可能会受到许多不确定因素的影响,如果这些彼此之间没有什么依存关系,且谁也没有特别突出的影响,那么,这些影响的“累积效应”将会使现象近似地服从正态分布。中心极限定理在很一般的情况下证明了,无论随机变量服从什么分布,个随机变量的和当时的极限分布是正态分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释在现实中为什么很多数量指标都服从或近似服从正态分布这一事实。在中心极限定理的教学中,通过列举一些用中心极限定理解决问题的实例,能使学生较深地理解中心极限定理的理论与实用价值。 一、两个常用的中心极限定理 根据不同的假设条件,有多个中心极限定理。这里只介绍两个常用的中心极限定理。 定理1 列维—林德伯格(Levy-Lindeberg)定理(独立同分布的中心极限定理) 设随机变量相互独立,服从同一分布,且具有数学期望和方差.则随机变量 的分布函数Fn(x)对于任意x满足 (5.7) 从定理1的结论可知,当n充分大时,有 或者说,当n充分大时,有 如果用表示相互独立的各随机因素。假定它们都服从相同的分布(不论服从什么分布),且都有有限的期望与方差(每个因素的影响有一定限度)。则(5.8)式说明,作为总和这个随机变量,当n充分大时,便近似地服从正态分布。 定理2(棣莫佛-拉普拉斯(De Moivre Laplace)定理) 设随机变量X服从参数为n,p (0<p<1)的二项分布,即,则

数理统计作业二__用数学实验的方法验证大数定理和中心极限定理

验证大数定理: 1、实验原理: 证明大数定理即证明样本均值趋近于总体均值。 2、实验步骤: ①在excel中,用公式 =RAND( )*9+1 生成2000个1到10之间的随机数。 ②选择样本的前50个,前100个,前150个…前2000个,分别求出均值。 ③利用excel作出上述求出值的样本均值折线图(图一)和总体均值折线图(图二): 图一 图二 从图一和图二中可以看出样本均值最终趋于水平,即趋于总体均值,大数定理得证。

验证中心极限定理: 1、实验原理: 证明中心极限定理即证明N个独立同分布的随机变量和的极限分布为正态分布。本次实验采用独立同分布于0-1分布B(1,0.5)的随机变量序列E k,k=1,2,3······来验证中心极限定理。因为E k, k=1,2,3······之间是独立同分布,所以 )5.0, ( ~ E n 1 k k n B ∑ =。由中心极 限定理可知,当n的取值足够大时,∑ = n 1 k k E 这一随机变量的分布与正太分 布具有很好的近似,下面用MATLAB软件分别画出n取不同值时∑ = n 1 k k E 的分 布及对应的正太分布的图像,通过对比这两条曲线的相似度来验证中心极限定理。 2、实验步骤: ①当n=10时,对应正态分布为N(5,2.5)。 MATLAB结果图:

MATLAB源程序: MATLAB结果图:

MATLAB源程序: MATLAB结果图:

MATLAB源程序: MATLAB结果图:

MATLAB源程序: ⑤观察得出,当N足够大时,其密度函数服从正态分布,即满足 中心极限定理。

中心极限定理的内涵和应用

中心极限定理的涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

大数定律与中心极限定理及其应用

重庆三峡学院毕业设计(论文)大数定律与中心极限定理及其应用 分院数学与统计学院 专业数学与应用数学(师范) 班级 10数本1班 学号201006034109 姓名张永东 指导教师陈飞翔 (讲师) 2014年5月10日

目录 摘要.................................................................................................................................................. I ABSTRACT. ..................................................................................................................................II 1大数定律的应用 .. (3) 1.1引言 (3) 1.2预备知识 (3) 1.2.1相关定义 (3) 1.2.2切比雪夫不等式及其应用 (4) 1.3几类重要的大数定律的应用 (4) 1.3.1切比雪夫大数定律及其在测绘方面的应用 (4) 1.3.2伯努利大数定律及其在重复事件方面的应用 (6) 1.3.3辛钦大数定律及其在数学分析方面的应用 (6) 1.4大数定律的意义 (8) 2 中心极限定理的应用 (8) 2.1前言 (8) 2.2几类重要的中心极限定理的应用 (9) 2.2.1林德伯格定理及其在保险方面的应用 (9) 2.2.2列维定理及其在极限求解方面的应用 (10) 2.2.3棣莫弗-拉普拉斯定理及其在实际生活方面的应用 (11) 2.2.4 李雅普诺夫中心极限定理及其在具体分布方面的应用 (14) 3 大数定律和中心极限定理的比较应用 (15) 3.1大数定律和中心极限定理的比较应用 (15) 结论 (16) 致谢 (17) 参考文献 (18)

中心极限定理及其意义

题目:中心极限定理及意义 课程名称:概率论与数理统计 专业班级: 成员组成: 联系方式: 2012年5月25日 摘要: 本文从随机变量序列的各种收敛与他们的关系谈起,通过对概率经典定理——中心极限定理在独立同分布和不同分布两种条件下的结论做了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布用正态分布来表示的理论依据。同样中心极限定理的内容也从独立分布与独立不同分布两个角度来研究。同时通过很多相关的正反例题,进行说明这些定理所给出的条件是否是充要条件;签掉在实际问题中灵活的应用和辨别是否服从我们给出的定理条件。最后了解一些简单简便的中心极限定理在数理统计、管理决策、仅是计算以及保险业务等方面的应用,来进一步的阐明了中心极限定理分支学课中的中重要作用和应用价值。

关键词: 随机变量,独立随机变量,特征函数,中心极限定理 引言: 在客观实际中有许多随机变量,他们是由大量的相互独立的随机因数的综合 影响所形成的,而其中每一个别因数在总的影响中所起的作用都是渺小的,这种随机变量往往近似地服从正态分布,这种现象就是中心极限定理的客观背景。 中心极限定理自提出至今,其内容已经非常丰富。在概率论中,把研究在什么条件下,大量独立随机变量和的分布以正态分布为极限的这一类定理称为中心极限定理。但其中最常见、最基本的两个定理是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。 一、三个重要的中心极限定理 1.独立同分布的中心极限定理 设随机变量??????,,,,21n X X X 相互独立,服从统一分布,具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k σμ,则随机变量之和 ∑=n k k X 1 的标准化变量, σ μ n n X X D X E X Y n k k n k k n k k n k k n -=?? ? ????? ??-=∑∑∑∑====1 111 的分布函数)(x F n 对于任意x 满足, ()x dt e x n n X P x F t x n k k n n n Φ==????????? ?? ??? ≤-=-∞-=∞→∞→?∑2/1221lim )(lim πσμ 2.李雅普诺夫定理 设随机变量??????,,,,21n X X X 相互独立,它们具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k k k σμ,

大数定律及中心极限定理 应用题

大数定律与中心极限定理 应用题 1. 设各零件质量都是随机变量,且独立同分布,其数学期望为0.5kg ,标准差 为0.1kg, 问(1)5000只零件的总质量超过2510kg 的概率是多少?(2)如果用一辆载重汽车运输这5000只零件,至少载重量是多少才能使不超重的概率大于0.975? 解 设第i 只零件重为i X ,500,...,2,1=i ,则5.0=i EX ,21.0=i DX 设 ∑==500 1i i X X ,则X 是这些零件的总重量 250050005.0=?=EX ,5050001.02=?=DX 由中心极限定理 )1,0(~50 2500N X a - (1))2510(≥X P =)50 25002510502500(-≥-X P )2(10Φ-≈=9213.01-=0.0787 (2) 设 汽车载重量为a 吨 )(a X P ≤=)502500502500(-≤-a X P 95.0)50 2500(0≥-Φ≈a 查表得 64.150 2500≥-a 计算得 59.2511≥a 因此汽车载重量不能低于2512公斤 2. 有一批建筑房屋用的木柱,其中80%的长度不小于3m ,先从这批木柱中随 机的取100根,求其中至少有30根短于3m 的概率? 解 设X 是长度小于3m 的木柱根数,则)2.0,100(~b X 由中心极限定理 )16,20(~N X a )30(≥X P =)16 20301620(-≥-X P )5.2(10Φ-≈=9938.01-=0.0062 3. 一个食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一种 蛋糕的价格是随机变量,它取1元,1.2元,1.5元的概率分别为0.3,0.2,0.5.若售出300只蛋糕,(1)求收入至少400元的概率 (2)售价为1.2元蛋糕售出多于60只的概率。

大数定理与中心极限定理的关系及应用

本科生毕业论文(设计) 题目大数定律与中心极限定理的 关系及应用 姓名学号 院系数学科学学院 专业数学与应用数学 指导教师职称 2013年4 月16 日 曲阜师范大学教务处制

目录 摘要 (3) 关键词 (3) Abstract (3) Key words (3) 引言 (3) 1 大数定律与中心极限定理的关系 (4) 1.1预备知识 (4) 1.1.1大数定律 (4) 1.1.2中心极限定理 (5) 1.2大数定律与中心极限定理的关系 (6) 1.2.1服从大数定律不服从中心极限定理的例子 (7) 1.2.2服从中心极限定理不服从大数定律的例子 (8) 1.2.3大数定律与中心极限定理均不服从的例子 (9) 2 大数定律与中心极限定理在实际生活中的应用 (10) 2.1 在误差分析中的应用 (10) 2.2 在数学分析中的应用 (11) 2.3 在近似计算中的应用 (13) 2.4 在保险业中的应用 (14) 2.5 在企业管理方面的应用 (15) 结论 (16) 致谢 (16) 参考文献 (17)

大数定律与中心极限定理的 关系及应用 摘要:本文通过对大数定律与中心极限定理在独立同分布和不同分布两种情况下的结论作了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布可以用正态分布来表示理论依据。另外,叙述了大数定律与中心极限定理之间的关系,同时通过举出很多相关的反例说明二者的关系。最后给出了一些简便的大数定律与中心极限定理在误差分析、数学分析、近似计算、保险业及企业管理等几个方面的应用,来进一步地阐明了大数定律与中心极限定理在各分支学科中的重要作用和应用价值。 关键词:大数定律中心极限定理随机变量应用 Relationship and Applications between the Law of Large Number and Central Limit Theorem Student majoring in mathematics and applied mathematics Bai Yanfei Tutor Liu Li Abstract: Based on the law of large numbers and central limit theorem in the independent distribution with the different distribution of both cases, it makes more systematic exposition, and reveals the phenomenon of the random nature of the most fundamental an average of the results of the Stability. Through the central limit theorem discussion, it gives out the random variables and the distribution of the normal distribution. At the same time, it demonstrates the relationship between the two aspects through lots of anti-related examples. Finally, it gives out several aspects of applications of a number of simple law of large numbers and the central limit theorem in error analysis, mathematical analysis, the approximate calculation, the insurance industry and business management to further clarify the law of large numbers and the central limit theorem in all branches of the important role and value. Key words: Laws of large number; Central-limit theorem; Random variables; Applications 引言概率论与数理统计是研究随机现象的统计规律的一门学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律。大数定律是概率论中一个非常重要的课题,而且是概率论与数理统计之间一个承前启后的重要纽带。大数定律阐明了大量随机现象平均结果具有稳定性,证明了在大样本条件下,样本平均值可以看作总体平均值,它是“算数平均值法则”的基本理论,通俗地说,这个定理就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。在现实生活中经常可以见到这一类型的数学模型,比如,我们向上抛一枚硬币,硬币落下后哪一面朝上本来是偶然的,但当我们向上抛硬币的次数足够多时,达到上万次甚至几十万几百万次之后,我们会发现,硬币向上的次数约占总次数的二分之一,偶然中包含着必然。 而中心极限定理是概率论中讨论随机变量序列部分和的分布渐近于正态分

抽样技术上机实验_中心极限定理验证

均匀分布中心极限定律的实现: clc clear n=200000; %/* ???′′?êy*/ k=100; %/* ?ù±???êy*/ mu=0; u=0; sigma=1/12; population=0:0.001:1; for i=1:n y = randsample(population,k,1); mu=[mu,mean(y)]; end mu=(mu-0.5)/(sqrt(sigma)/sqrt(k)); %hist(mu(2:end),1000) [f, x1] = ksdensity(mu(2:end)); plot(x1, f) hold on plot(x1,normpdf(x1,0,1),'r') hold off %%%%%%%%%%%%%%%%%%%%%%%% 两点分布的实现: clc clear n=10000; %/* ???′′?êy*/ k=100; %/* ?ù±???êy*/ mu=0; u=0; p=0.5; sigma=p*(1-p); population=0:1; for i=1:n y = randsample(population,k,1); mu=[mu,mean(y)]; end mu=(mu-p)/(sqrt(sigma)/sqrt(k)); %hist(mu(2:end),1000) [f, x1] = ksdensity(mu(2:end)); plot(x1, f) hold on plot(x1,normpdf(x1,0,1),'r') hold off %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 两点分布1以概率0.4发生

大数定律与中心极限定理习题

第六章 大数定律与中心极限定理习题 一、 填空题 1.设n ξ是n 次独立试验中事件A 出现的次数,P 为A 在每次试验中出现的概率,则对任意的0>ε,有=≥-)(εξp n P n 。 2.设随机变量ξ,E ξ=μ,D ξ=2σ,则≥<-)2(σμξP 。 3.设随机变量ξ的方差为2,则根据切比雪夫不等式有估计≤≥-)2(ξξE P 。 4.在概率论里,把研究在什么条件下,大量独立随机变量和的分布以 为极限这一类定理称为中心极限定理。 5.将一枚硬币连掷100次,则出现正面的次数大于60的概率约为 。 6.在天平上重复称量一重为a 的物体,假设各次称重结果相互独立且同服从正态分布)2.0,(2a N ,若以n X 表示n 次称重结果的算术平均值,则为使95.0)1.0(≥<-a X P n ,n 的最小值应不小于自然数 。 二、选择题 1.设随机变量ξ服从参数为n ,p 的二项分布,则当∞→n 时,≈<<)(b a P ξ( )。 (A))()(a b Φ+Φ (B))()(00a b Φ+Φ (C))()(a b Φ-Φ (D)1)(20-Φb 2.设ξ为服从参数为n ,p 的二项分布的随机变量,则当∞→n 时,npq np -ξ一定服从 ( )。 (A)正态分布。 ( B)标准正态分布。 (C)普哇松分布。 ( D)二项分布。 三、计算题 1.对敌人的防御地段进行100次射击,每次射击中,炮弹命中数的数学期望为2,而命中数的均方差为,求当射击100次时,有180颗到220颗炮弹命中目标的概率。 2.计算机在进行加法时,对每个加数取整(取为最接近于它的整数),设所有的取整误差是相互独立的,且它们都在(-,)上服从均匀分布。(1)若将1500个数相加,问误差总和

中心极限定理的应用

毕业论文 题目中心极限定理的应用 学生姓名张世军学号1109014148 所在院(系) 数学与计算机科学学院 专业班级数学与应用数学专业(统计类)11级2班指导教师程小静 2015 年 5 月 25 日

中心极限定理的应用 张世军 (陕西理工学院数学与计算机科学学院数学与应用数学专业2011级数应2班,陕西汉中 723000) 指导教师:程小静 [摘要]中心极限定理是概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类重要定理。本文首先从中心极限定理的内容出发,给出几种常见的中心极限定理并对其进行了证明;其次讨论了中心极限定理在供应电力、器件价格、商场管理、烟卷制造业、社会生活、军事问题等这几个方面的实际应用;最后总结分析了中心极限定理在应用上的优缺点。 [关键词]随机变量;中心极限定理;正态分布;概率论;近似计算 Central Limit Theorem of Application Zhang Shijun (Grade11,Class02,Major Mathematics and Applied Mathematics Specialty,Mathematics and computer scienceDept.,Shaanxi University of Technology,Hanzhong 723000,Shaanxi) Tutor: Cheng Xiaojing Abstract:The central limit theorem is an important limit theorem in probability theory to discuss a set of random variables and the distribution of the normal distribution. Firstly starting from the content of the central limit theorem, given several common central limit theorems and its proofs; Second central limit theorem is discussed in the electric power supply, prices, market management, cigarette manufacturing, social life, the practical application of this a few aspects such as military questions; Summarized and analyzed the advantages and disadvantages of central limit theorem on the application. Keywords:Random variables; Central limit theorem; Normal distribution; Probability theory;Approximate calculation

中心极限定理实验仿真

中心极限定理的仿真实验 目的:模拟投掷一枚骰子出现的点数的试验,重复进行104次,统计出现的点数和,并将数据标准化处理后,画出频率直方图,通过观察比较验证数据的正态性。 所用的软件:Microsoft EXCEL 步骤如下: 1 打开excel软件,在A2格子中输入=INT(6*RAND())+1,按回车就会产生一个1-6中的某一个随机整数,并且出现1-6中每一个整数的概率是相同的。 2鼠标点击A2格子,并移动到格子的右下角,出现”+”后往下拖动鼠标直到出现A501时停下来,这样就得到了500个随机数据,都是在1-6中随机取值的。(当然你越往下拖,产生的随机整数越多,试验效果越好) 3 在第二列重复第1步和第2步,第三列,第四列……直到CZ列都和第二列同样操作,这样产生了104列随机数据。 4 在DB列分别求出每行数据的和,用的函数是“SUM”,接着依次求出500行数据的和。 5 复制DB列到DC列,注意值复制数值。 6 对DC列数据进行排序, 7对DC列数据进行标准化处理,即每个数据减去平均值再除以标准差(均值函数为average,样本方差函数为var)

8处理后的数据放在DE列。根据最大值和最小值,把数据分到20个区间,这里数据范围从-2.7到2.7,故每个区间长度为0.27,这样得到(-2.7,-2.43],……,(2.43,2.7)共20个区间(也可以分15个区间,这时区间长度为0.36)。 9统计每个区间里的数据个数,用函数countif(区域,条件),详见EXCEL文件。 10 画出频率直方图,大家可以看到,投掷104次骰子后出现的点数和数据标准化后出现标准正态分布的特征。 请大家按照以上方法,产生200列数据,每列1000个数据,按照以上步骤做好中心极限定理的仿真实验。按个步骤写出实验过程,并将计算结果或图标截图后放在每个步骤后面,完整一份实验报告。

中心极限定理应用

中心极限定理及其应用 【摘要】中心极限定理的产生具有一定的客观背景,最常见的是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。它们表明了当n 充分大时,方差存在的n 个独立同分布的随机变量和近似服从正态分布,在实际中的应用相当广泛。本文讨论了中心极限定理的内容、应用与意义。 【关键词】:中心极限定理 正态分布 随机变量 一、概述 概率论与数理统计是研究随机现象、统计规律性的学科。随机现象的规律性只有在相同条件下进行大量重复的实验才会呈现出来,而研究大量的随机现象常常采用极限的形式,由此导致了对极限定理的研究。极限定理的内容很广泛,中心极限定理就是其中非常重要的一部分内容。中心极限定理主要描述了在一定条件下,相互独立的随机变量序列X1、X2、…Xn 、…的部分和的分布律:当n →∞时的极限符合正态分布。因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使得中心极限定理有了广泛的应用。 二、定理及应用 1、定理一(林德贝格—勒维定理) 若 ξ 1 ,ξ 2 ,…是一列独立同分布的随机变量,且 E k ξ=a, D k ξ = σ 2 ( σ 2 >0) ,k=1,2,…则有 dt e x n na p x t n k k n ? ∑∞ -- =∞ →= ≤-2 1 221)(lim π σξ 。 当n 充分大时, n na n k k σξ ∑=-1 ~N (0,1),∑=n k k 1 ξ ~N (2 ,σn na ) 2、定理二(棣莫弗—拉普拉斯中心极限定理) 在n 重伯努利试验中,事件A 在每次试验中出现的概率为错误!未找到引用源。, 错误!未 找到引用源。为n 次试验中事件A 出现的次数,则dt e x npq np p x t n n ?∞ -- ∞ →= ≤-2 2 21 )( lim π μ 其中1q p =-。这个定理可以简单地说成二项分布渐近正态分布,因此当n 充分大时,可

相关文档
最新文档