冲模跳屑原理

冲模跳屑原理
冲模跳屑原理

[冲模技术]级进冲裁中跳屑现象的原因与解决方法《现代模具》2008年1月刊

来源:《现代模具》时间:2008-2-26 11:39:50

关键字:级进冲裁|跳屑

摘要:对连接器端子类零件在级进冲裁中的跳屑现象进行了研究,对其产生的原因进行了分析,讨论了其对生产造成的不良影响,并总结出空气吸引、倒锥度、设计提料装置、下模披覆、改变废料轮廓、选用适当的冲载间隙、凹模选用适当的落料斜度、增加误差检测凹模选用适当的落料斜度等8种解决方法。

跳屑现象是指冲压模具在高速冲裁时,凸模四周压缩材料,使凸模下方的空间被密封,造成凸模底部与材料之间呈真空状态,冲裁后废料被自下而上的大气压力推动上升而跳出凹模。如果跳屑不及时清除,

将使料带被压伤或变形,导致模具损坏如图1。

常见的解决办法有设计带顶出销的凸模结构如图2,利用弹性顶出销使废料脱离凸模下端,或在凸模中心增加通气孔,减小“真空区”压力,使废料容易脱离。但这些方法适用于2.0以上的凸模。特别是对于尺寸小、精度要求高的连接器端子类零件的生产,上述方法并不适用。

图1

图2

由于该类产品都是以厚度很薄的精密带状板料为被加工材料,采用精密多工位级进模和高速冲床(500

(1)料带被压伤、端子变形等外观不良的质量问题如图3。

图3

(2)料带呈扇形如图3,导致凸模或凹模的刃口磨损加剧甚至出现崩裂。

1 跳屑的原因分析

(1)冲裁的形状过于简单。在设计冲裁的外形时,如果废料的形状过于简单呈水平或垂直连接,例如图

4中的“1”字形废料外形,就不易被凹模咬住,造成跳屑。

图4

(2)冲裁间隙不合理。当冲裁间隙过大或不均匀时,随着冲裁结束后出现的弹性回复,冲下的废料沿实体方向收缩,使冲下的废料外形尺寸小于凹模的尺寸,这样废料对凹模的咬合力也就较小,废料就容易从

凹模中跳出。

(3)切削油选用及用量不合理。一般根据材质的不同选用不同的切削油。例如预镀材和磷青铜就要使用

不同粘度的切削油。一般只把切削油加在材料的下表面,以防止废料被凸模下表面粘住。

切削油的用量: 切削油的用量与冲裁速度有很大的关系。

SPM<400时,每隔4秒一滴;

400

SPM>700时,每隔2秒一滴。

(4)冲裁速度过高。

(5)凸模与凹模的刃口过于锋利。这样在废料的断面特征区中光亮带比例大而毛刺比例很小,废料与凹

模之间的磨擦力过小,容易被凸模吸附出凹模造成跳屑。

(6)凸模经过研磨后总长度过短造成冲裁深度过浅。废料接近凹模的上表面,极易被凸模吸附出凹模造

成跳屑。

(7)因凹模在设计时刃口有一定落料斜度。经常研磨会使刃口高度降低,冲裁间隙变大造成跳屑。

(8)异物附在铜材上被带进入模具。

(9)材料越硬越容易产生跳屑。

(10)由于机械振动而使凹模内原本粘在一起的废料分散产生跳屑。

2 跳屑现象的解决方法

(1)空气吸引:加装吸尘器使废料在吸尘器的强力吸引下不易被凸模带出。缺点:需购买吸尘器并要

修改冲床工作台的漏料口。

(2)倒锥度:在凹模刃口附近倒锥度形成一个喇叭口,使凹模刃口变钝以增大废料切断面与凹模之间的

磨擦力,废料冲下后被卡住不易跳出如图5。缺点:需人工倒锥度,钳工技巧不好掌控。

图5

(3)设计踢料装置

在凸模里面加装弹性踢料杆如图6,可以将废`料从凸模上剥离。缺点:外形很小的凸模受空间限制,

里面很难加装踢料杆。

图6

(4)下模披覆:用点焊机将凹模刃口附近点焊出凹凸不平的方式增大与凸模之间的磨擦力。缺点:凹模

研磨到披覆部位时刀口不利切出的端子外形有毛刺,有品质不良的隐患。

(5)改变废料轮廓(增加勾料部分)

在设计废料轮廓时,增加圆角过渡的勾料部分如图7,避免外形过于简单。勾料部分可以使废料与凹

模之间紧紧咬合。

图7

(6)选用适当的冲裁间隙

当凸模与凹模的间隙愈小,材料冲裁断面与凹模之间的咬合愈强,但是间隙变小会使模具的磨损加剧。

(7)凹模选用适当的落料斜度

用光学磨床研磨的分割式凹模落料斜度可为0.1°,用线切割的整体式凹模落料斜度可为0.5°如图8。

图8

(8)增加误差检测销凹模选用适当的落料斜度:

如果出现跳屑现象,就会使送进的步距出现误差,导致检侧销没有正确插入料带的导料孔而向上移动,从而推动推杆,推杆又使微动开关闭合,从而使离合器脱开,设备停机。如图9

图9

3 小结

实践证明,以连接器端子类产品为代表的尺寸小、精度高、形状复杂、且生产批量大的冲压零件,采用上述方法能有效解决级进冲裁中的跳屑现象,从而提高生产效率和工件精度。

参考文献

材料成型基本原理第十八章答案

第十九章思考与练习 1.主应力法的基本原理和求解要点是什么? 答:主应力法(又成初等解析法)从塑性变形体的应力边界条件出发,建立简化的平衡方程和屈服条件,并联立求解,得出边界上的正应力和变形的力能参数,但不考虑变形体内的应变状态。其基本要点如下: ⑴把变形体的应力和应变状态简化成平面问题(包括平面应变状态和平面应 力状态)或轴对称问题,以便利用比较简单的塑性条件,即 G -二=七S。对于形状复杂的变形体,可以把它划分为若干形状简单的变形单元,并近似地认为这些单元的应力应变状态属于平面问题或轴对称问题。 ⑵根据金属流动的方向,沿变形体整个(或部分)截面(一般为纵截面)切取包含接触面在 内的基元体,且设作用于该基元体上的正应力都是均布的主应力,这样,在研究基元体的力的平衡条件时,获得简化的常微分方程以代替精确的偏微分方程。接触面上的摩擦力可用库仑摩擦条件或常摩擦条件等表示。 ⑶在对基元体列塑性条件时,假定接触面上的正应力为主应力,即忽略摩擦 力对塑性条件的影响,从而使塑性条件大大简化。即有二X- J y=叙(当二X > 二y) ⑷将经过简化的平衡微分方程和塑性条件联立求解,并利用边界条件确定积分常数,求得接 触面上的应力分布,进而求得变形力。 由于经过简化的平衡方程和屈服方程实质上都是以主应力表示的,故而得名“主应力法”。 2 .一20钢圆柱毛坯,原始尺寸为-5Qmm 50mm ,在室温下镦粗至高度h=25mm 设接触表面摩擦切应力E =0.2丫。已知Y =746 £2Q MPa ,试求所需的变形力P和单位流动压力P O

解:根据主应力法应用中轴对称镦粗得变形力算得的公式 . Y 而本题.=0.2Y 与例题.=mk , k =—相比较得:m=0.4,因为该圆柱被压缩至 2 h=25mm 根据体积不变定理,可得r e =25 ,2 , d=50 2 ,h=25 又因为 Y = 746 ;0.2 (1 -—2 ) 15 3 .在平砧上镦粗长矩形截面的钢坯,其宽度为 a 、高度为h ,长度 l a ,若接触面上的摩擦条件符合库仑摩擦 定律,试用主应力法推导单位流动压力 P 的表 达式。 解:本题与例1平面应变镦粗的变形力相似,但又有 其不同点,不同之处在于■= U^y 这个摩擦条件,故在 2U ;二 y ^y LdX 中是一个一阶微分方程, J 算得的结果不一样,后面的答案也不 h 一样, 4 .一圆柱体,侧面作用有均布压应力 G ,试用主应力法求镦粗力 P 和单位流动压力p (见图19-36) 解:该题与轴对称镦粗变形力例题相似,但边界条件不一样,当r =r e ,二 re -J 0 而不是二re =0 ,故在例题中,求常数C 不一样: 2 . C = X e ? 2k 飞0 h 2τ ■ -y (X -X e ) 2k — h m d P = 丫(1 图 19-36

连续模的维护要领及常见故障产生的原因

连续模的维护要领及常见故障产生的原因、处理对策: 一.模具的维护要领 连续模的维护,须做到细心、耐心、按部就班,切忌盲目从事。因故障修模时需附有料带,以便问题的查询。打开模具,对照料带,检查模具状况,确认故障原因,找出问题所在,再进行模具清理,方可进行拆模。拆模时受力要均匀,针对卸料弹簧在固定板与卸料板之间和卸料弹簧直接顶在内导柱上的模具结构,其卸料板的拆卸要保证卸料板平衡弹出,卸料板的傾斜有可能导致模具内凸模的断裂。 1.凸凹模的维护 凸凹模拆卸时应留意模具原有的状况,以便后续装模时方便复原,有加垫或者移位的要在零件上刻好垫片的厚度并做好记录。更换凸模要试插卸料块、凹模是否顺畅,并试插与凹模间隙是否均匀,更换凹模也要试插与冲头间隙是否均匀。针对修磨凸模后凸模变短需要加垫垫片达到所需要的长度应检查凸模有效长度是否足够。更换已断凸模要查明原因,同时要检查相对应的凹模是否有崩刃,是否需要研磨刃口。组装凸模要检查凸模与固定块或固定板之间是否间隙足够,有压块的要检查是否留有活动余量。组装凹模应水平置入,再用平铁块置如凹模面上用铜棒将其轻敲到位,切不可斜置强力敲入,凹模底部要倒角。装好后要检查凹模面是否与模面相平。凸模凹模以及模芯组装完毕后要对照料带做必要检查,各部位是否装错或装反,检查凹模和凹模垫块是否装反,落料孔是否堵塞,新换零件是否需要偷料,需要偷料的是否足够,模具需要锁紧部位是否锁紧。 注意做脱料板螺丝的锁紧确认,锁紧时应从内至外,平衡用力交叉锁紧,不可先锁紧某一个螺丝再锁紧另一个螺丝,以免造成脱料板傾斜导致凸模断裂或模具精度降低。 2.卸料板的维护 卸料板的拆卸可先用两把起子平衡撬起,再用双手平衡使力取出。遇拆卸困难时,应检查模具内是否清理干净,锁紧螺丝是否全部拆卸,是否应卡料影起的模具损伤,查明原因再做相应处理,切不可盲目处置。组装卸料板时先将凸模和卸料板清理干净,在导柱和凸模导入处加润滑油,将其平稳放入,再用双手压到位,并反复几次。如太紧应查明原因(导柱和导套导向是否正常,各部位是否有损伤,新换凸模是否能顺利过卸料板位置是否正确,),查明原因再做相应处理。固定板有压块的要检查卸料背板上偷料是否足够。卸料板与凹模间的材料接触面,长时间冲压产生压痕(卸料板与凹模间容料间隙一般为料厚減0.03-0.05mm,當压痕严重时,会影响材料的压制精度,造成产品尺寸异常、不稳定等,需对卸料镶块和卸料板进行维修或重新研磨。等高套筒应作精度检查,它不等高时会导致卸料板傾斜,其精密导向、平稳弹压功能將遭到破坏,須加以维护 3.导向部位检查 导柱、导套配合间隙如何,是否有烧伤或磨损痕迹,模具导向的给油状态是否正常,应作检查。导向件的磨损及精度的破坏,使模具的精度降低,模具的各个部位就会出现问题,故必须作适当保养以及定期的更換。检查导料件的精度,若导正钉磨损,已失去应有的料带导正精度及功能,必须进行更换。检查弹簧狀況(卸料弹簧和顶料弹簧等),看其是否断裂,或长时间使用虽未断裂,但已疲劳失去原有的力度,必须作定期的维护、更換,否则会对模具造成伤害或生产不顺畅 4.模具间隙的调整 模芯定位孔因对模芯频繁、多次的組合而产生磨损,造成组装后间隙偏大(组装后产生松动)或间隙不均(产生定位偏差),均会造成冲切后断面形状变差,凸模易断,产生毛刺等,可透过对冲切后断面状况检查,作适当的间隙调整。间隙小时,断面较少,间隙大时,断面较多且毛边较大,以移位的方式来获得合理的间隙,调整好后,应作适当记录,也可在凹模边作记号等,以便后续维护作业。日常生产应注意收集保存原始的模具较佳状

冲压模具概念

冲压模具概念 一.冲压材料的认识。 二.冲压模具材料的介绍。 三.常用模具用语。 四.各种冲压模具结构分类。 五.冲压设计应注意事项。 六.如何拆解工程数。 七.问题与讨论。 常用冲压材料 1.SPCC(冷轧钢板) : 早期用在通讯产品, 表 面须电镀, 因环保问题, 现今较少人使用。 2.SPHC(热轧钢板) : 材料使用1.5T以上较多, 材质不稳定, 使用在非外观件。 3.SECC(镀锌钢板) : 近来大量用在通讯、PC 产品, 取代SPCC, 唯一缺点, 切断面及折 痕容易生锈。

4.SPTE(马口铁) : 导电性强, 外观佳, 因成 本考量有些来取代SUS, 非磁性材料,但冲压加工次数越多, 磁性越强。 5.AL1100(铝合金) : 材料含铝较纯, 材质轻, 散热好; 材质不易加工。 6.AL5052(铝合金) : 散热好、材料较硬、强度强, 但材质不易加工。 7.SUS 304(不锈钢) : 用途最多之不锈钢种, 因含有Ni故比Cr钢较富耐蚀性耐热性, 且具低温强度, 故机械特性非常好, 加工硬 化性非常大, 加热处理不硬化,非磁性, 强 度佳, 较没弹性, 常使用厚度0.4T - 1.0T之间。 8.SUS 301(不锈钢) : Cr(铬)成分比SUS304 低, 耐蚀性较差, 但冷间加工能得到非常 高度的拉力及硬度, 其特性用途广大, 因 弹性佳, 现被广汎运用在防EMI上, 做接触部份, 但常用厚度在0.4T - 0.07T之间。 9.PBS(磷青铜PHOSPHOR BRONZE SPRING) : 导电性佳、弹性高、富耐磨耗; 是电气开关、端子等应用之弹片及导电材料, 但没有不锈钢之强度。 10.AL6063(铝挤型) : 材质较硬, 用来做散热片。 11.BECU(铍铜BERYLLIUM CU) : 持性与PBS相似, 但热处理后, 可得更好的硬度与弹性, 用在多次挤压、切换开关上, 外观须电镀, 但成本过高。 12.Tic grade / HRB70°/ HRC36°Titanium

材料成型基本原理习题答案

第一章习题 1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答:(1)液体与固体及气体比较的异同点可用下表说明 (2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明: ①物质熔化时体积变化、熵变及焓变一般都不大。金属熔化时典型的体积变化?V m/V为3%~5%左右, 表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。 ②金属熔化潜热?H m约为气化潜热?H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。 2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么? 答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。 N1 表示参考原子周围最近邻(即第一壳层)原子数。 r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。 3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。 答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。 近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团 (2)说明液态金属或合金结构的近程有序的实验例证 ①偶分布函数的特征

金属切削原理及刀具

涂层技术对刀具磨损的影响及其发展趋势 陈君(G机械091 220911104) (淮海工学院连云港222005) 摘要:磨损是影响生产效率、加工成本和加工质量的重要问题,所以为了解决这一问题涂层 技术的发展就尤为重要。涂层技术起源于上个世纪的五、六十年代;特别是近30年来,刀具涂层技术迅速发展,使得涂层刀具得到了广泛应用。随着涂层技术迅速发展,它已成为解决刀具磨损的有效方法并且在很大程度上影响刀具的寿命。所以说对刀具进行涂层是机械加工行业前进道路上的一大变革。 关键词:涂层技术刀具磨损发展趋势 The Influence of Tool Wear and Its Development Trend for Coating Technology CHEN Jun (Huaihai Institute of Techology,Lianyungang,222005) Abstract:Wear is the important impact for the production efficiency, processing cost and processing quality of the important problem, so in order to solve this problem the development of coating technology, is important. Coating technology originated in the last century 5, 6 s; Especially for nearly 30 years, the cutting tool coating technology rapid development, make coated tools to a wide range of applications. With the rapid development of coating technology, it has become a effective method to solve the tool wear and significantly impact on the life of cutting tools. So say to coating is of tool machine processing industry on the road of advance a big change. Key words:Coating technology Tool wear Development trend 0 前言 人类社会已经迈入21世纪,科学技术得到了前所未有的发展。在机械加工中金属切削技术是其重要组成部分,并且随着科技的发展越发显示出它在机械加工中的核心地位。目前,切削加工约占整个机械加工工作量的

高速级进模跳屑问题的探讨与解决对策

高速级进模跳屑问题的探讨与解决对策 摘要:阐述了影响高速级进模具在生产过程中“跳屑”产生的几个主要因素,并据此提出了解决方法和措施, 对于级进模的设计制造具有一定的借鉴作用。 在金属冷冲压行业中,高速级进模具的生产效率高,产品精度高,便于实现自动化和机械化,适宜大批量生产需求,因而广泛应用于汽车﹑电子﹑家用电器等产品的冲压制造业中。目前国内模具主流速度SPM(Strike Per Minute)集中在40 – 2000,国际上已经开发出超过4000SPM的冲床和模具。但是,无论是过去还是现在,高速级进模的“跳屑”一直是个令设计和生产人员苦恼的问题。因为只要“跳屑”偶尔发生一次,就会在产品表面留下压伤,产出成批的不良品。轻则影响制造部门的产能,需要停机修理模具、重新架模调试;重则崩碎刀口、折断凸模、损伤昂贵的模具和高速冲床主轴。而“跳屑”又是高速级进模行业里发生频率很高的问题。所谓的“跳屑”是指在模具生产过程中,本应从凹模刀口中落下去的屑料或制品因为种种原因却随着凸模跳出模面的现象,如图1所示。从力学的角度来阐述,跳屑是因为屑料与凹模刀口侧壁的咬合力f小于它所受到的向上的吸附力F而跳出凹模进入模面,如图2所示。本文专门针对高速级进模 来具体分析跳屑所产生的原因及其解决对策。

1 高速级进模跳屑原因的分析 前文中已经提到跳屑产生的两个力学因素,下面就从这两个方面来阐述。 (1)屑料向上的吸附力过大导致屑料跳出,包括以下几个部分。 1)屑料受凸模的真空吸附的作用。在冲切加工时,凸模切下的材料,因受到弯矩的作用,中心部位发生弯曲,四周却与凸模紧密压着,如图3示:屑料下方受到一个大气压向上的力,上方与凸模之间是真空负压,从而产生一个压力差吸附在凸模上。随着模具的开启,而跳出模面。另外在高速冲切生产中,为了给模具散热以及润滑凸凹模,我们往往会在材料送入模具前,给它涂上切削油,这会产生类似吸附剂的作用。如果切削油的挥发性差、黏度高、加的量过大,屑料与凸模的真空吸附现象会更加明显。 2)电磁力的效应。模具上的很多零件是通过研磨加工出来的。现有的磨床都是利用电磁平台的磁力装夹零件。如果加工结束后,没有对零件的残余磁性进行消磁处理,铁基材料的屑料就会因为磁力随着凸模吸附 上升,发生跳屑。 3)凸模活塞效应以及加速度的影响。如图4,当模具闭合到下死点时,模具内部卸料板和材料紧密地包在凸模周围,紧紧地压死在凹模刀口上,形成一个相对真空负压,此时上模回升打开,凸模先从凹模中抽出,由于屑料受到下面一个大气压力与上面真空之间的压力差,而随着凸模一起上升,就象活塞在汽缸里运动,

金属切削屑理

金属切削原理 定义 金属切削的过程是工件和刀具相互作用的过程。刀具要从工件上切去一部分金属,并在保证高生产率和低成本的前提下,使工件得到符合技朮要求的形状、尺寸精度、和表面质量﹔为了实现这一切削过程必须具备以下三个条件:(1)工件与刀具要有相对运动即切削运动﹔(2)刀具材料必须具备一定的切削性能﹔(3)刀具必须具备适当的几何参数。即切削角度等。 第一章 第一节 切削运动与切削用量 一、切削运动 外圆切削和平面刨削是金属切削加工中常见的加工方法。现以它们为例来分析工件与刀具的切削运动。图1-1表示外圆切削时的情况,工件旋转,车刀连续纵向进给,于是形成工件的外圆柱表面。图1-2表示的是在牛头刨床上刨平面的情况,刀具作直线往复运动,工件作间歇的直线进给运动。 圖1-1外圓車削的切削運動与加工表面 圖1-2平面刨削的切削運動与加工表面 在其它各种切削加工方法中,刀具或工件同样必须完成一定的切削运动.通常切削运动按其所起的作用可分为以下两种: 1.主运动 使工件与刀具产生相对运动以进行切削的最基本的运动.称为主运动.这个运动的速度 最高,消耗的功率最大. 2.进给运动 使主运动能够继续切除工件上多余的金属,以便形成工件表面所需的运动,称为进给运 动. 二.切削用量 所谓切削用量是切削速度、进给量和背吃刀量三者的总称。它们分别定义如下: 1. 切削速度v 它是切削加工时,刀刃上选定点相对于工件的主运动的速度。刀刃上各点的切削 速度可能是不同的。 当主运动为旋转运动时,刀具或工件最大直径处的切削速度由下式确定: m i n ) //(1000 m s m dn V 或π= 式中 d —完成主运动的刀具或工件的最大直径(mm ) n —主运动的转速(r/s 或r/min ) 2.进给量f 它是工件或刀具的主运动每转或每一行程时,工件或刀具在进给运动方向上的相对位

材料成型基本原理期末考试总结

名词解释 1溶质平衡分配系数;特定温度T*下固相合金成分浓度C*S与液相合金成分C*L达到平衡时的比值。 2缩孔:纯金属火共晶合金铸件中最后凝固部位形成的大而集中的孔洞; 缩松:具有宽结晶温度温度范围的合金铸件凝固中形成的细小而分散的缩孔; 3沉淀脱氧:将脱氧元素(脱氧剂)溶解到金属液中以FeO直接进行反应而脱氧,把铁还原的方法。 4均质形核:形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,所以也成“自发形核”(实际生产中均质形核是不太可能的)非均质形核:依靠外来质点或型壁界面而提供的衬底进行生核过程,亦称“异质形核”或“非自发形核”。 5.简单加载:是指在加载过程中各应力分量按同一比例增加,应力主轴方向固定不变。 6.冷热裂纹:冷裂纹是指金属经焊接或铸造成形后冷却到较低温度时产生的裂纹,热裂纹是金属冷却到固相线附近的高温区时所产生的开裂现象 7.最小阻力定律:当变形体质点有可能沿不同方向移动时,则物体各质点将沿着阻力最小的方向移动. 填空 1.动力学细化四个内容:铸型振动、超声波振动、液相搅拌、流变铸造 2.铸件宏观凝固组织一般包括表层细晶粒区、中间柱状晶区和内部等轴晶区三个不同的形态的晶区 3.细化铸件宏观凝固组织的措施有合理地控制浇注工艺和冷却条件、孕育处理、动力学细化等三个方面 4.微观偏析的两种主要类型为晶内偏析与晶界偏析,宏观偏析按由凝固断面表面到内部的成分分布,有正常偏析与逆偏析两类 5.铸造过程中的气体主要来源是熔炼过程和浇注过程和铸型 6.我们所学的特殊条件下的凝固包括快速凝固和失重条件下凝固和定向凝固 7.液态金属(合金)凝固的驱动力由过冷度提供,而凝固时的形核方式有:均质形核和非均质形核两种 8.晶体的生长方式有连续生长和台阶方式生长两种 9.凝固过程的偏析可分为:微观偏析和宏观偏析两种 10.液体原子的分布特征为:长程无序,短程有序,即液态金属原子团的结构更类似于固态金属 11.Jakson因子α可以作为固液界面微观结构的判据,凡α<=2的晶体,其生长界面为粗糙,凡α>5的晶体,其生长界面为光滑 12.液态金属需要净化的有害元素包括碳氧硫磷 13.塑形成形中的三种摩擦状态分别是干摩擦、流体摩擦、边界摩擦 14.对数应变的特点是具有真实性、可靠性、和可加性 15.就大多数金属而言,其总的趋势是随着温度的升高,塑形增加 16.钢冷挤压时,需要对胚料表面进行磷化、皂化润滑处理 选择题1.塑形变形时,工具表面粗糙度对摩擦系数的影响(A)工件表面的粗糙度对摩擦系数的影响 A大于B等于C小于 2.塑形变形时,不产生硬化的材料叫做(A)A理想塑形材料B理想弹性材料C硬化材料 3.用近似平衡微分方程和近似塑形条件求解塑形成形问题的方法称为(B)A解析法B主应力法C滑移线法 4.韧性金属材料屈服时(A)准则较符合实际的 A密席斯B屈雷斯加C密席斯与屈雷斯加 5.塑形变形之前不产生弹性变形(或者忽略弹性变形)的材料叫做(B)A理想弹性材料B理性刚塑形材料C塑形材料 6.硫元素的存在使碳钢易产生(A)A热脆性B冷脆性C兰脆性 7.应力状态中的(B)应力,能充分发挥材料的塑形A拉应力B压应力C拉应力与压应力 8.平面应变时,其平均正应力σs(B)中间主应力σz.A大于B等于C小于 9.钢材中磷使钢的强度、硬度提高,塑形、韧性(B).A提高B降低C没有变化 简答题1.简述顺序凝固原则和同时凝固原则的优缺点和适用范围 答:(1)铸件的顺序凝固原则是采取各种措施保证铸件各部分按照距离冒口的远近,由远及近朝着冒口方

冲压模具跳料怎么修时间以及其原因分析

冲压模具跳废料的原因分析,冲压模具跳料怎么修时间 冲头把多余的废料切除,跳废料就是废料往上跳,跳到下模板上,或者跳到其他地方,总之就是废料从刀口那里跳出来了。然后可能因为修模人员、设计人员、或产线人员的原因,导致本来已经切除的某些废料又从下模刀口处跳出来了,想想这是多么危险的一件事情。有可能就造成人身的安全受到威胁,想想是一件多么危险的事情啊。 那么下面我们就来分析下冲压模具引起跳废料的原因,以及防御方法。 1、冲切废料或落料件外形的影响,外形过于简单、重量太轻,就很容易被冲头带上来; 2、磁力原因,冲头、或者刀口有磁性,本身就有磁性、因为研磨、冲击改变而带来的磁性等,都很容易把废料吸附上来,特别是与铁有关的材料,如马口铁、SECC、SGCC等,打这些材料的模具零件一定要注意退磁,否则模具就老是跳屑,老是需要人过去修模,这是多么烦心的一件事情; 3、冲裁间隙的影响,间隙小或者间隙大都可能会使毛刺随着冲头返回模具表面,加工精度不够,加工误差的影响等。 4、冲裁速度的影响,速度过快有可能会造成冲头与刀口内壁还有废料形成一个活塞,从而造成真空吸附的现象,即冲头把废料从下模刀口里面吸出来。这样你可以让设计在冲头中间挖个小孔,垫板上也要搞相应的槽,让空气流通就不会造成真空吸附了。或者把冲头的刃口搞成不一个平面,不是一个平面吸附的可能性就会小些,具体的如图: 5、切削油的选用与用量不当,油加多了,或者加的油太黏了,废料吸附在冲头上面掉不下去,导致跳屑; 6、凹凸模刃口的锋利程度,太锋利,光亮带多而毛刺少,与刃口凹模避的摩擦力小,容易被冲头吸附;当然这种情况你只能想别的办法来修模具了,不可能把从刀口冲头上下手吧。 7、冲头长度影响,一般我们说冲孔的“冲头”长度等于:夹板的厚度+止挡板的厚度+脱料板的厚度+料厚+(1~2)两毫米,只要符合这个长度就可以了,但是如果太长,料还没压住冲头就开始冲了,容易造成冲头刀口磨损。 8、下模刀口的原因,因为下模刀口一般都是有斜度或者段差的,一般斜度是在3~5°,根据实际需要、模具强度综合考虑。研磨的太多,造成冲裁间隙加大,导致跳屑; 9、如果冲头够大、强度够强的话,也可以在中间挖个孔,冲头屁股后面锁止付螺丝,止付螺丝+弹簧+顶料销,把废料顶下去,顶料销高出冲头表面一两个毫米就好了,太长了可能会把产品顶变形。

材料成型基本原理课后答案

第十三章思考与练习 简述滑移和孪生两种塑性变形机理的主要区别。 答:滑移是指晶体在外力的作用下,晶体的一部分沿一定的晶面和晶向相对于另一部分发生相对移动或切变。滑移总是沿着原子密度最大的晶面和晶向发生。 孪生变形时,需要达到一定的临界切应力值方可发生。在多晶体内,孪生变形是极其次要的一种补充变形方式。 设有一简单立方结构的双晶体,如图13-34所示,如果该金属的滑移系是{100} <100>,试问在应力作用下,该双晶体中哪一个晶体首先发生滑移?为什么? 答:晶体Ⅰ首先发生滑移,因为Ⅰ受力的方向接近软取向, 而Ⅱ接近硬取向。 试分析多晶体塑性变形的特点。 答:①多晶体塑性变形体现了各晶粒变形的不同时性。 ②多晶体金属的塑性变形还体现出晶粒间变形的相互协调性。 ③多晶体变形的另一个特点还表现出变形的不均匀性。 ④多晶体的晶粒越细,单位体积内晶界越多,塑性变形的抗力大, 金属的强度高。金属的塑性越好。 4. 晶粒大小对金属塑性和变形抗力有何影响? 答:晶粒越细,单位体积内晶界越多,塑性变形的抗力大,金属的强度高。金属的塑性越好。 5. 合金的塑性变形有何特点? 答:合金组织有单相固溶体合金、两相或多相合金两大类,它们的塑性变形的特点不相同。 单相固溶体合金的塑性变形是滑移和孪生,变形时主要受固溶强化作用, 多相合金的塑性变形的特点:多相合金除基体相外,还有其它相存在,呈两相或多相合金,合金的塑性变形在很大程度上取决于第二相的数量、形状、大小和分布的形态。但从变形的机理来说,仍然是滑移和孪生。 根据第二相又分为聚合型和弥散型,第二相粒子的尺寸与基体相晶粒尺寸属于同一数量级时,称为聚合型两相合金,只有当第二相为较强相时,才能对合金起到强化作用,当发生塑性变形时,首先在较弱的相中发生。当第二相以细小弥散的微粒均匀分布于基体相时,称为弥散型两相合金,这种弥散型粒子能阻碍位错的运动,对金属产生显着的强化作用,粒子越细,弥散分布越均匀,强化的效果越好。 6. 冷塑性变形对金属组织和性能有何影响? 答:对组织结构的影响:晶粒内部出现滑移带和孪生带; 晶粒的形状发生变化:随变形程度的增加,等轴晶沿变形方向逐步伸长,当变形量很大时,晶粒组织成纤维状; 晶粒的位向发生改变:晶粒在变形的同时,也发生转动,从而使得各晶粒的取向逐渐趋于一致(择优取向),从而形成变形织构。 对金属性能的影响:塑性变形改变了金属内部的组织结构,因而改变了金属的力学性能。 随着变形程度的增加,金属的强度、硬度增加,而塑性和韧性相应下降。即产生了加工硬化。 7. 产生加工硬化的原因是什么?它对金属的塑性和塑性加工有何影响? 答:加工硬化:在常温状态下,金属的流动应力随变形程度的增加而上升。为了使变形继续下去,就需要增加变形外力或变形功。这种现象称为加工硬化。 加工硬化产生的原因主要是由于塑性变形引起位错密度增大,导致位错之间交互作用增强,大量形成缠结、不动位错等障碍,形成高密度的“位错林”,使其余位错运动阻力增大,于是塑性变形抗力提高。 8. 什么是动态回复?动态回复对金属热塑性变形的主要软化机制是什么? 答:动态回复是层错能高的金属热变形过程中唯一的软化机制。 对于层错能高的金属,变形位错的交滑移和攀移比较容易进行,位错容易在滑移面间转移,使异号位错互相抵消,其结果是位错密度下降,畸变能降低,达不到动态再结晶所需的能量水平。 9. 什么是动态再结晶?影响动态再结晶的主要因素有哪些?

冲裁中常见不良

连续冲模常见设计缺陷及其 解决措施 一.冲裁中常见不良 1.跳屑 2.金属丝 3.冲子蹦 4.模仁裂与堵料 5.接刀毛头 6.尺寸超差 7.压板断 8.啃刀口 9.接刀设计错(粗定位无效果) 二.折弯成形常见不良 1.违反先压料后成形原则 2.冲子断差太大 3.框口磨损 4.拉毛 5.两次折弯折弯线设计错 6.折弯成形尺寸不稳定 7.成形尺寸不到位 8.浮动模仁定位段太短,晃动幅度大 9.浮动模仁或Lifter,易跳出来(危险性大),或者设计强度太差 10.KINK的成形问题 11.尺寸不良的几个因素: 1)角度 2)圆角 3)展开长度 4)折弯线处之逃料 三.整形机构 1.斜面整形的适用范围及常见问题点 2.摆块整形机构的适用范围及常见问题点 3.斜面整形机构的适用范围及常见问题点 4.一次折弯整形机构的局限性 四.翻边打卡荀等起伏成形工站常见问题点 1.翻边口部裂纹 2.翻边高度小 3.扭力不足 4.翻边起皱

5.卡荀断 6.起伏成形对相邻已成形尺寸的影响 7.撕破成形高度偏低 五.下料时常见问题:(下料不畅) 1.废料留在模面(821-762N1) 2.下料不畅,加吹气,顶杆 3.混料 4.下产品改为下废料(吹气方式) 六.抽引中常见问题点 1.毛坯太大 2.毛坯太小 3.抽引拉裂 4.抽引起皱 5.壁部拉毛 6.Carry相互挤压 7.定位不可靠 8.大肚子 七.结构设计中常见问题: 1.定位针固定在冲子固定板上 2.剥料套设计不良 3.料条定位不好(追加导板) 4.压板,弹簧断裂(改冲子固定方式) 5.背板螺丝太靠外 6.抽引第一抽不分开 7.缺少整形工站 8.定位针太少,太细 9.Lifter无爬坡(模仁太短) 八.料条设计问题: 1.刚性太差 2.前后工序排配不合理 3.粗定位无效 4.定位针孔太靠后 九.几种常见的典型机构 十.其它常见问题: 1.大平面的平面度问题 2.SMT PAD的共面度问题 3.铆合中的一些问题及解决措施 4.料带式产品的扇形(波浪形)

材料成型基本原理第十八章答案

第十九章思考与练习 1.主应力法的基本原理和求解要点是什么? 答:主应力法(又成初等解析法)从塑性变形体的应力边界条件出发,建立简化 的平衡方程和屈服条件,并联立求解,得出边界上的正应力和变形的力能参数,但不考虑变形体内的应变状态。其基本要点如下: ⑴把变形体的应力和应变状态简化成平面问题(包括平面应变状态和平面应力状态)或轴对称问题,以便利用比较简单的塑性条件,即13s σσβσ-=。对于形状复杂的变形体,可以把它划分为若干形状简单的变形单元,并近似地认为这些单元的应力应变状态属于平面问题或轴对称问题。 ⑵根据金属流动的方向,沿变形体整个(或部分)截面(一般为纵截面)切取包含接触面在内的基元体,且设作用于该基元体上的正应力都是均布的主应力,这样,在研究基元体的力的平衡条件时,获得简化的常微分方程以代替精确的偏微分方程。接触面上的摩擦力可用库仑摩擦条件或常摩擦条件等表示。 ⑶在对基元体列塑性条件时,假定接触面上的正应力为主应力,即忽略摩擦力对塑性条件的影响,从而使塑性条件大大简化。即有 x y Y x y σσβσσ-=(当>) ⑷将经过简化的平衡微分方程和塑性条件联立求解,并利用边界条件确定积分常数,求得接触面上的应力分布,进而求得变形力。 由于经过简化的平衡方程和屈服方程实质上都是以主应力表示的,故而得名“主应力法”。 2.一20钢圆柱毛坯,原始尺寸为mm 50mm 50?φ,在室温下镦粗至高度 h =25mm ,设接触表面摩擦切应力Y 2.0=τ 。已知MPa 74620 .0ε =Y ,试求所需的 变形力P 和单位流动压力p 。

解:根据主应力法应用中轴对称镦粗得变形力算得的公式)61(h d m Y p + = 而本题Y 2.0=τ与例题2 ,Y k mk ==τ相比较得:m=0.4,因为该圆柱被压缩至 h=25mm 根据体积不变定理,可得225=e r , d=502 ,h=25 又因为Y =746) 15 221(2.0+ ε 3.在平砧上镦粗长矩形截面的钢坯,其宽度为a 、高度为h ,长度 l a ,若接触面上的摩擦条件符合库仑摩擦 定律,试用主应力法推导单位流动压力p 的表达式。 解:本题与例1平面应变镦粗的变形力相似,但又有 其不同点,不同之处在于y u στ=这个摩擦条件,故在 dx h u d y y σσ 2- =中是一个一阶微分方程,y σ 算得的结果不一样,后面的答案也不 一样, 4.一圆柱体,侧面作用有均布压应力0 σ,试用主应力法求镦粗力P 和单位流动压力p (见图19-36)。 解:该题与轴对称镦粗变形力例题相似,但边界条件不一样,当e r r = ,0σσ=re 而不是0=re σ,故在例题中,求常数c 不一样: 22στ++=k x h c e 2)(2σ τσ ++-- =∴k x x h e y 图 19-36

《金属切削原理》作业(一)答案

《金属切削原理》作业(一)答案 《金属切削原理》作业(一) 一、填空题: .刀具材料的种类很多,常用的金属材料有碳素工具钢、合金工具钢、高速钢、硬质合金;非金属材料有陶瓷、金刚石、立方氮化硼等。 金属及非金属。(√) .刀具寿命的长短、切削效率的高低与刀具材料切削性能的优劣有关。(√) .安装在刀架上的外圆车刀切削刃高于工件中心时,使切削时的前角增大,后角减小。(√) .刀具磨钝标准表中,高速钢刀具的值均大于硬质合金刀具的值,所以高速钢刀具是耐 磨损的。(×) .刀具几何参数、刀具材料和刀具结构是研究金属切削刀具的三项基本内容。(√)

.由于硬质合金的抗弯强度较低,冲击韧度差,所取前角应小于高速钢刀具的合理前角。(√) .切屑形成过程是金属切削层在刀具作用力的挤压下,沿着与待加工面近似成°夹角滑移的过程。(√) .积屑瘤的产生在精加工时要设法避免,但对粗加工有一定的好处。(×) .切屑在形成过程中往往塑性和韧性提高,脆性降低,使断屑形成了内在的有利条件。(×) (√) .当粗加工、强力切削或承冲击载荷时,要使刀具寿命延长,必须减少刀具摩擦,所以后角应取大些。(×) 三、选择题(将正确答案填在空格内) .在中等背吃刀量时,容易形成“”形切屑的车刀卷屑槽宜采用。 、外斜式、平行式、内斜式)

.刀具产生积屑瘤的切削速度大致是在范围内。 、低速、中速、高速 .切削过程中,车刀主偏角κ增大,切削力。 、增大、不变、减小 .前刀面上(刀屑间)的磨擦是() 、外磨擦、内磨擦、内磨擦与外磨擦兼有之 .车削时切削热主要是通过和进行传导的。 、切屑、工件、刀具、周围介质 .刀具磨钝标准通常都按后刀面的磨损值制订值的。 、月牙洼深度、后刀面、月牙洼深度 .刀具磨损过程的三个阶段中,作为切削加工应用的是阶段。 、初期磨损、正常磨损、急剧磨损 .车削时为降低表面精糙度,可采用()的方法进行改善。

3.1 金属切削过程与切屑类型

安徽工程科技学院教师备课教案 本章节讲稿共6 页教案第1 页备课时间:05年2月22日教师签名:

第二章金属切削基本理论及应用 金属切削过程中,刀具与工件相互作用,产生切削变形、形成切屑、产生切削力、切削热与切削温度、刀具磨损、卷屑与断屑等现象。 为了保证产品加工质量、减少能耗、提高生产率、必须合理使用与设计刀具、夹具和机床,必须研究切削过程,分析金属切削变形及其规律。 第一节金属切削过程及切屑类型 一、切屑形成过程及变形区的划分 实验1:金属压缩实验 金属试件受挤压时,在其内部产生主应力的同时,还将在与作用力大致成45°方向的斜截面内,产生最大切应力,在切应力达到屈服强度时将在此方向剪切滑移。 刀具切削时相当于局部挤压,使金属沿最大剪应力方向产生滑移。实验2:制作金属切削层变形图片(如图2-1) 试验条件:选用塑性金属棒、爆炸分离车刀、车床、抛光机、显微镜、视频卡及其相应软件、打印机等。 观察图片发现:在刀具、工件、切屑接触区域,金属材料发生很大的塑性变形。 在图片上可绘制出金属切削层的滑移线和流线。 流线表示切削层内某点在切削过程中的流动轨迹。 切削层金属有三个变形区: 第I变形区OAMO:塑性变形区。因为晶粒的位错滑移而形成。 第II变形区:纤维化区。在切屑底部靠近前刀面处,纤维方向基本上与前刀面平行。因为切屑沿前刀面流出时,受前刀面挤压和摩擦阻力作用,与前刀面接触的金属层再次产生剪切变形,使流动滞缓,流动滞缓的一层金属称为滞流层,即第II变形区。 第III变形区:已加工面与后刀面的接触部分。由于工件已加工面受钝圆弧切削刃的挤压和后刀面的摩擦,造成纤维化、加工硬化、变形与回弹。 三个变形区无明显分界,汇聚在切削刃附近。 二、第一变形区内金属变形特点 见图2-2,考察任意一点P的流线,P点到达1位时,剪应力达到材料屈服强度 s,产生剪切滑移,P点在向前移动的同时,也沿起始滑移线OA线滑移,合成运动使P点流动到2位,2-2’为其滑移量。P点依次到达3、4点后,其流动方向与前刀面平行,不再滑移,OM为终止滑移线。

冲压模具的维修保养手册—范文

冲压模具的维修保养手册—范文 在冲压生产中,模具的日常维护作业至关重要,即日常注意检查冲压机及模具是否处于正常状态,如冲压油的供给导向部的加油。模具上机前的检查,刃部的检查,各部位锁紧的确认等,如此可避免许多突发性事故的产生。修模时一定要先想而后行,并认真做好记录积累经验。 模具的维护要领连续模的维护,须做到细心、耐心、按部就班,切忌盲目从事。因故障修模时需附有料带,以便问题的查询。打开模具,对照料带,检查模具状况,确认故障原因,找出问题所在,再进行模具清理,方可进行拆模。拆模时受力要均匀。 一.模具的维护要领连续模的维护,须做到细心、耐心、按部就班,切忌盲目从事。因故障修模时需附有料带,以便问题的查询。打开模具,对照料带,检查模具状况,确认故障原因,找出问题所在,再进行模具清理,方可进行拆模。 拆模时受力要均匀,针对卸料弹簧在固定板与卸料板之间和卸料弹簧直接顶在内导柱上的模具结构,其卸料板的拆卸要保证卸料板平衡弹出,卸料板的傾斜有可能导致模具内凸模的断裂。 1.凸凹模的维护 凸凹模拆卸时应留意模具原有的状况,以便后续装模时方便复原,有加垫或者移位的要在零件上刻好垫片的厚度并做好记录。 更换凸模要试插卸料块、凹模是否顺畅,并试插与凹模间隙是否均匀,更换凹模也要试插与冲头间隙是否均匀。针对修磨凸模后凸模变短需要加垫垫片达到所需要的长度应检查凸模有效长度是否足够。 更换已断凸模要查明原因,同时要检查相对应的凹模是否有崩刃,是否需要研磨刃口。组装凸模要检查凸模与固定块或固定板之间是否间隙足够,有压块的要检查是否留有活动余量。 组装凹模应水平置入,再用平铁块置如凹模面上用铜棒将其轻敲到位,切不可斜置强力敲入,凹模底部要倒角。装好后要检查凹模面是否与模面相平。凸模凹模以及模芯组装完毕后要对照料带做必要检查,各部位是否装错或装反,检查凹模和凹模垫块是否装反,落料孔是否堵塞,新换零件是否需要偷料,需要偷料的是否足够,模具需要锁紧部位是否锁紧。 注意:做脱料板螺丝的锁紧确认,锁紧时应从内至外,平衡用力交叉锁紧,不可先锁紧某一个螺丝再锁紧另一个螺丝,以免造成脱料板傾斜导致凸模断裂或模具精度降低。 2.卸料板的维护 卸料板的拆卸可先用两把起子平衡撬起,再用双手平衡使力取出。 遇拆卸困难时,应检查模具内是否清理干净,锁紧螺丝是否全部拆卸,是否应卡料影起的模具损

材料成形原理重点及答案

一、名词解释 1 表面张力—表面上平行于表面切线方向且各方向大小相等的张力。表面张力是由于物体在表面上的质点受力不均匀所致。 2 粘度-表面上平行于表面切线方向且各方向大小相等的张力。或作用于液体表面的应力τ大小与垂直于该平面方向上的速度梯度dvx/dvy的比例系数。 3 表面自由能(表面能)-为产生新的单位面积表面时系统自由能的增量。 4 液态金属的充型能力-液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,即液态金属充填铸型的能力。 5 液态金属的流动性-是液态金属的工艺性能之一,与金属的成分、温度、杂质含量及其物理性质有关。 6 铸型的蓄热系数-表示铸型从液态金属吸取并储存在本身中热量的能力。 7 不稳定温度场-温度场不仅在空间上变化,并且也随时间变化的温度场 稳定温度场-不随时间而变的温度场(即温度只是坐标的函数): 8 温度梯度—是指温度随距离的变化率。或沿等温面或等温线某法线方向的温度变化率。 9 溶质平衡分配系数K0—特定温度T*下固相合金成分浓度CS*与液相合金成分CL*达到平衡时的比值。 10 均质形核和异质形核-均质形核(Homogeneous nucleation) :形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,亦称“自发形核” 。非均质形核(Hetergeneous nucleation) :依靠外来质点或型壁界面提供的衬底进行生核过程,亦称“异质形核”。 11、粗糙界面和光滑界面-从原子尺度上来看,固-液界面固相一侧的点阵位置只有50%左右被固相原子所占据,从而形成一个坑坑洼洼凹凸不平的界面层。粗糙界面在有些文献中也称为“非小晶面”。 光滑界面—从原子尺度上来看,固-液界面固相一侧的点阵位置几乎全部为固相原子占满,只留下少数空位或台阶,从而形成整体上平整光滑的界面结构。也称为“小晶面”或“小平面”。 12 “成分过冷”与“热过冷”-液态合金在凝固过程中溶质再分配引起固-液界面前沿的溶质富集,导致界面前沿熔体液相线的改变而可能产生所谓的“成分过冷”。这种仅由熔体存在的负温度梯度所造成的过冷,习惯上称为“热过冷” 。 13 内生生长和外生生长-晶体自型壁生核,然后由外向内单向延伸的生长方式,称为“外生生长”。平面生长、胞状生长和柱状枝晶生长皆属于外生生长。等轴枝晶在熔体内部自由生长的方式则称为“内生生长”。 14 枝晶间距-指相邻同次枝晶间的垂直距离。它是树枝晶组织细化程度的表征。 15 共生生长-是指在共晶合金结晶时,后析出的相依附于领先相表面而析出,进而形成相互交叠的双相晶核且具有共同的生长界面,依靠溶质原子在界面前沿两相间的横向扩散,互相不断地为相邻的另一相提供生长所需的组元,彼此偶合的共同向前生长。 15离异生长-两相的析出在时间上和空间上都是彼此分离的,因而形成的组织没有共生共晶的特征。这种非共生生长的共晶结晶方式称为离异生长,所形成的组织称离异共晶。 16 孕育与变质-孕育主要是影响生核过程和促进晶粒游离以细化晶粒;而变质则是改变晶体的生长机理,从而影响晶体形

五金模具常见故障原因及处理对策

五金模具常见故障原因及处理对策 在级进模的冲压生产中,针对冲压不良现象必须做到具体分析,采取行之有效的处理对策,从根本上解决所发生之问题,如此才能降低生产成本,达到生产顺畅。以下就生产中常见的冲压不良现象其产生的原因及处理对策分析如下,供模具维修人员参考。 1.冲件毛边. (1)原因:a、刀口磨损;b、间隙过大研修刀口后效果不明显;c、刀口崩角; d、间隙不合理上下偏移或松动;e、模具上下错位。 (2)对策:a、研修刀口;b、控制凸凹模加工精度或修改设计间隙;c、研修刀口; d、调整冲裁间隙确认模板穴孔磨损或成型件加工精度等问题; e、更换导向件或重新组模。 2.跳屑压伤 (1)原因:a、间隙偏大;b、送料不当;c、冲压油滴太快,油粘;d、模具未退磁;e、凸模磨损,屑料压附于凸模上;f、凸模太短,插入凹模长度不足;g、材质较硬,冲切形状简单;h、应急措施。 (2)对策:a、控制凸凹模加工精度或修改设计间隙;b、送至适当位置时修剪料带并及时清理模具;c、控制冲压油滴油量,或更换油种降低粘度;d、研修后必须退磁(冲铁料更须注意);e、研修凸模刀口;f、调整凸模刃入凹模长度;g、更换材料,修改设计。凸模刃入端面装顶出或修出斜面或弧性(注意方向)。减少凸模刃部端面与屑料之贴合面积;h、减小凹模刃口的锋利度,减小凹模刃口的研修量,增加凹模直刃部表面的粗糙度(被覆),采用吸尘器吸废料。降低冲速,减缓跳屑。 3.屑料阻塞 (1)原因:a、漏料孔偏小;b、漏料孔偏大,屑料翻滚;c、刀口磨损,毛边较大; d、冲压油滴太快,油粘; e、凹模直刃部表面粗糙,粉屑烧结附着于刃部; f、

材质较软;g、应急措施。 (2)对策:a、修改漏料孔;b、修改漏料孔;c、刃修刀口;d、控制滴油量,更换油种;e、表面处理,抛光,加工时注意降低表面粗糙度;更改材料,f、修改冲裁间隙;g、凸模刃部端面修出斜度或弧形(注意方向),使用吸尘器,在垫板落料孔处加吹气。 4.下料偏位尺寸变异 (1)原因:a、.凸凹模刀口磨损,产生毛边(外形偏大,内孔偏小);b、设计尺寸及间隙不当,加工精度差;c、下料位凸模及凹模镶块等偏位,间隙不均;d、导正销磨损,销径不足;e、导向件磨损;f、送料机送距、压料、放松调整不当; g、模具闭模高度调整不当;h、卸料镶块压料位磨损,无压料(强压)功能(材料牵引翻料引发冲孔小);i、卸料镶块强压太深,冲孔偏大;j、冲压材料机械性能变异(强度延伸率不稳定);k、冲切时,冲切力对材料牵引,引发尺寸变异。 (2)对策:a、研修刀口;b、修改设计,控制加工精度;c、调整其位置精度,冲裁间隙;d、更换导正销;e、更换导柱、导套;f、重新调整送料机;g、重新调整闭模高度;h、研磨或更换卸料镶块,增加强压功能,调整压料;i、减小强压深度;j、更换材料,控制进料质量;k、凸模刃部端面修出斜度或弧形(注意方向),以改善冲切时受力状况。许可时下料部位于卸料镶块上加设导位功能。5.卡料 (1)原因:a、送料机送距、压料、放松调整不当;b、生产中送距产生变异;c、送料机故障;d、材料弧形,宽度超差,毛边较大;e、模具冲压异常,镰刀弯引发;f、导料孔径不足,上模拉料;g、折弯或撕切位上下脱料不顺;h、导料板之脱料功能设置不当,料带上带;i、材料薄,送进中翘曲;j、模具架设不当,与送料机垂直度偏差较大。 (2)对策:a、重新调整;b、重新调整;c、调整及维修;d、更换材料,控制进料质量;e、消除料带镰刀弯;f、研修冲导正孔凸、凹模;g、调整脱料弹簧力量等;h、修改导料板,防料带上带;i、送料机与模具间加设上下压料,加设上下挤料安全开关;j、重新架设模具。 6.料带镰刀弯 (1)原因:a、冲压毛边(特别是载体上);b、材料毛边,模具无切边;c、冲床深度不当(太深或太浅);d、冲件压伤,模内有屑料;e、局部压料太深或压到部局部损伤;f、模具设计。 (2)对策:a、研修下料刀口; b、更换材料,模具加设切边装置;c、重调冲床深度;d、清理模具,解决跳屑和压伤问题;e、检查并调整各位卸料及凹模镶块高度尺寸正确,损伤位研修;f、采用整弯机构调整。 7.凸模断裂崩刃 (1)原因:a、跳屑、屑料阻塞、卡模等导致;b、送料不当,切半料;c、凸模强度不足;d、大小凸模相距太近,冲切时材料牵引,引发小凸模断;e、凸模及凹模局部过于尖角;f、冲裁间隙偏小;g、无冲压油或使用的冲压油挥发性较强;h、冲裁间隙不均、偏移,凸、凹模发生干涉;i、卸料镶块精度差或磨损,失去精密导向功能;j、模具导向不准、磨损;k、凸、凹模材质选用不当,硬度不当;i、导料件(销)磨损; m、垫片加设不当。 (2)对策:a、.解决跳屑、屑料阻塞、卡模等问题; b、注意送料,及时修剪料带,及时清理模具;c、修改设计,增加凸模整体强度,减短凹模直刃部尺寸,注意

相关文档
最新文档