用于制备可降解支架的聚乳酸材料改性研究

用于制备可降解支架的聚乳酸材料改性研究
用于制备可降解支架的聚乳酸材料改性研究

用于制备可降解支架的左旋聚乳酸改性的实验研究

祝平安

(上海理工大学医疗器械与食品学院上海 200093)

【摘要】

本文对单一的左旋聚乳酸(PLLA)进行改性,通过加入聚己内酯(PCL)得到共混和共聚材料。由于PCL 的低模量和高断裂伸长率,为了保证改性后的材料有足够的强度,并尽量提高材料的韧性,选择PLLA/PCL 为95/05的改性比例是合适的。通过薄膜降解实验,进一步对比PLLA、PLCL-H(PLLA和PCL共混材料)、PLCL-J (PLLA和PCL共聚材料)的机械性能变化,特性粘度和质量损失以及表面形态变化来考察改性对PLLA的作用以及改性材料用于可降解支架制备的可行性。最后确定改性配比为95/05的PLCL-H改性材料,在不损失材料力学强度的前提下,材料韧性最高,断裂伸长率以及降解速度最佳,因此这种改性后的材料用于制备可降解支架是可行的。

【关键词】

聚乳酸;聚己内酯;共混改性;共聚;可降解支架

Experimental Study of Modification of L-Polylactic for

Biodegradable Stent Preparation

Zhu pingan

University of Shanghai for Science and Technology, Shanghai, 200093, China;

【A bstract】

This paper modifies the single L-polylactic (PLLA) by adding polycaprolactone (PCL) to get blending and copolymerization materials. With low modulus and high breaking elongation of PCL, in order to guarantee enough intensity of the modified material, and increase ductility as more as possible, the modification ratio of PLA/PCL with 95/05 is decided. By film degradation test, the changes of mechanical properties, limiting viscosity, mass loss and surface morphology of PLLA、PLCL-H (PLLA and PCL blending material) and PLCL-J (PLLA and PCL copolymerization material) are compared to research the effect of modification on PLLA and the practicability of modification material used for biodegradable stent preparation. Finally, the modification material PLCL-H with modification ratio of 95/05 is decided. Without losing the material mechanical strength, the ductility of the material is significantly improved, breaking elongation is increased and degradation speed is accelerated. So the modified material is practicable for biodegradable stent preparation.

【Key words】

Polylactic; Polycaprolactone; Blending modification; Copolymerization; Biodegradable stent

目前临床上大量使用的血管支架均为金属材料制备,与机体的亲和性、生物相容性均较差,并且随着时间的推移金属材料逐渐老化,在体液中被腐蚀释放出金属离子,对机体产生不良影响[1]。因此,寻找新型生物可降解材料制备临时性、可降解的血管支架成为了研究热点。目前研究最为广泛、生物相容性和力学性能较好的材料为可降解脂肪族聚酯材料,尤其是其中的聚乳酸(PLA)材料。

聚乳酸是一种以天然素材为原料合成的新型高分子材料,由于它的完全降解性,因此广泛应用于医用、包装、纤维等领域,并且经过美国FDA认证属于可用于人体的生物医用材料[2]。聚乳酸的乳酸单体分为左旋(L-)和右旋(D-)两种,由于生物体内都是左旋,所以一般都选用左旋聚乳酸(PLLA)。目前Abbott利用PLLA制备的可降解支架BVS已进入临床阶段,临床实验表明,PLLA材料的力学强度是足够的[3-4]。但是单一的左旋聚合物结晶度较高,亲水性能较差,降解慢,强度高,是一种脆性材料,用作支架易于断裂[5]。另外还容易在植入部位引发炎症,这些都使PLLA材料在医疗器械领域的应用受到限制,因此对PLLA材料改性的研究就显得极为重要。

1PLLA改性原理

通常高分子材料的改性包括化学结构改性和物理改性。前者主要包括共聚、扩链等,后者有共混、表面改性、接枝、增塑等[6]。不同的改性材料和不同的改性方法都会对材料性能造成很大影响。常用的PLLA改性材料有聚己内酯(PCL)、右旋聚乳酸(D-PLA)、聚乙醇酸(PGA)等。其中,聚己内酯(PCL)是由ε-己内酯(ε-CL)开环聚合所得的线性脂肪族聚酯。它是一种半结晶型高分子,玻璃化温度为-60℃,在室温下是橡胶态,易于延展不易断裂[7]。PCL 降解后的产物为CO2和H2O,对人体无毒,具有优良的药物通过性和力学性能,可用作体内植入材料以及药物控释材料,目前已经获得美国FDA的批准。PCL玻璃化温度低,可以使支架保持一定弹性,提高支架抗疲劳能力[8],增加支架的韧性,保证支架在扩张和植入体内后不易断裂。

PCL对PLLA进行共聚改性,可在一定范围内调节共聚物的熔点、玻璃化温度,还能从结构方面改善PLLA的结晶性能,调节降解速率[9]。将PLLA与PCL共混后,材料之间的高分子链通过次价力作用(如库仑力,氢键作用,范德华力和电子转移作用等)形成分子聚集体,使官能团与结构发生变化[10]。另外,两种改性方式对PLLA的脆性都有明显降低,使之能更适于在支架上的应用。因此为了改善PLLA的性能,使之能更符合支架要求,采用PCL对PLLA嵌段共聚改性,或PCL与PLLA溶液共混改性,对材料性能的作用及影响。

实验研究表明,随着PCL含量的增加,改性后材料的弹性模量和最大载荷都逐渐降低,而断裂伸长率却有明显提高。因此,在保证材料在有足够的强度的前提下,尽量提高断裂伸长率,增强材料的韧性,选择改性配比为95/05的PLA/PCL共聚材料(PLCL-J 9505)和PLA/PCL 共混材料(PLCL-H 9505)进行改性是合适的。

2PLLA、PLCL-H和PLCL-J的降解实验

对PLLA、PLCL-H 9505和PLCL-J 9505 三种材料进行降解实验观察,从力学性能,质量损失,特性粘度和表面形态四方面评价三种材料的性能变化及改性后对原材料的影响和作用。

2.1降解试验方法

用溶液法制备PLLA、PLCL-H 9505和PLCL-J 9505薄膜。配制磷酸盐缓冲溶液,将溶液pH控制在7.4±0.2。用裁刀将PLLA薄膜和PLLA薄膜切成1宽0mm,长100mm的条状试样,每种材料准备三个合格的条状试样样品进行机械测试。质量,粘度,SEM测试试样为宽10mm,长度为机械样一半的样品条。将样品条编号放入装有缓冲溶液的试管中,并置于37℃烘箱中,分别考察降解1w,2w,3w,4w样品各项性能的变化。

测试机械性能前要调节样品的状态,将样品在 37℃的纯水中放置(60±15)min,然后保持湿态进行测试。测试采用 Instron 拉伸仪,均匀拉伸管材样品直至断裂。

特性粘度表示的是单个聚合物分子对溶液粘度的贡献,是反应聚合物特性的物理量,不

随溶液浓度的改变而改变。特性粘度的变化可间接反映聚合物分子量在降解过程中的变化。测试采用乌氏粘度计,根据溶液流经时间计算得到各材料的特性粘度。

质量测试采用Sartorius 天平 PM-05-006 型号(精度 0.001mg)测量每个样品初始的质量。然后在降解的各个时间阶段,将样品从缓冲液中取出,充分干燥样品至恒重:干燥时间≥16h,室温,压强≤-0.1MPa。再次称量降解后的样品质量,精确到 0.001mg。

样品初始质量为m0,过滤、干燥以后再次称量样品的质量为m1,则样品的失重率可由下式计算得到:

(m0–m1)/ m0×100%

2.2试验结果

(1)机械性能变化

图1 PLLA、PLCL-H和PLCL-J弹性模量比较图2 PLLA、PLCL-H和PLCL-J最大载荷比较

图3 PLLA、PLCL-H和PLCL-J屈服强度比较图4 PLLA、PLCL-H和PLCL-J断裂伸长率比较从上图可以看出PLLA的弹性模量和最大载荷在前4周降解过程中的变化不大,几乎保持不变;PLCL-H从第2周以后开始有缓慢下降,表明降解开始;PLCL-H的断裂伸长率始终远远大于PLLA,并且二者在前4周都有所下降。而PLCL-J从第2周开始力学性能明显降低,在第3周时材料屈服点消失,表现出完全的脆性,这些现象说明PLCL-J 在缓冲溶液中2周后发生降解,材料韧性降低,开始变得发脆,材料断裂伸长率也急剧下降。因此共聚改性后的材料PLCL-J力学性能弱于PLLA,不能满足支架对材料的要求;而PLCL-H的弹性模量和最大载荷虽然稍低于PLLA,但仍能满足支架要求,并且断裂伸长率明显提高,降解时间加快,更有利于材料在支架上的应用。

(2)特性粘度变化

图5 PLLA、PLCL-H和PLCL-J特性粘度比较图6 PLLA、PLCL-H和PLCL-J质量损失比较PLLA、PLCL-H和PLCL-J特性粘度变化如图5所示,从图中可以看出降解前4周PLLA 的特性粘度基本维持在3.2dl/g左右,变化不大。PLCL-H有所下降,降到3.1 dl/g左右,尤其是后两周下降比较明显,同样说明后两周材料开始降解。而PLCL-J的特性粘度从3.2dl/g降低到了1.3dl/g左右,说明PLCL-J在前4周降解过程中分子量明显降低,这与机械实验中该材料屈服点消失,材料完全变脆,发生降解的现象相符合,说明该材料在本阶段已发生较明显的降解。

(3)质量损失

PLLA、PLCL-H和PLCL-J质量损失变化如图6所示,从图中可以看出降解前4周三种材料的质量数值都没有太大变化,质量损失均小于5%。聚合物降解的失重过程可以分为两个阶段:第一阶段水分子通过扩散作用进入聚合物间隙,聚合物中的酯键断裂,大分子降解为小分子,形成水溶性低聚物或单体,此阶段聚合物失重比较缓慢,曲线趋于平稳;第二阶段聚合物大块脱落,碎片溶解直至崩解,此外由于降解过程产生了局部酸性,分子量大幅下降也导致了整体结构发生变形和失重,逐步变为微小的碎片进入磷酸盐缓冲液中,导致失重急剧增加[11]。从实验结果来看,降解的前4周还处于第一阶段,质量损失比较缓慢。

(4)SEM观察表面形态(100X)

未降解PLLA 降解1wPLLA 降解2wPLLA 降解3wPLLA 降解4wPLLA

未降解PLCL-H降解1wPLCL-H 降解2wPLCL-H 降解3wPLCL-H 降解4wPLCL-H

未降解PLCL-J 降解1wPLCL-J 降解2wPLCL-J 降解3wPLCL-J 降解4wPLCL-J

图7 PLLA、PLCL-H和PLCL-J SEM比较

从未降解的照片可以看出材料表面光滑平整,说明溶液法制作的薄膜满足实验要求,可以进行降解实验。降解1w后,材料表面都出现竖纹,并且随着降解时间的增加,竖纹越来越明显,尤其是改性后的PLCL-H和PLCL-J材料,竖纹现象尤为突出。竖纹的产生可能是由于薄膜材料中纵向取向的分子链中酯键断裂产生的,因此竖纹越严重说明材料降解程度越大。从图中可以看出,在相同的时间阶段,PLCL-J和PLCL-H材料的降解情况较为显著,而PLLA 的竖纹现象不明显,说明加入PCL改性后加快了PLLA的降解。

3结论与分析

理想的生物可降解支架应该具备应机械性能变化相吻合的降解速率。理论上,最初应该缓慢降解,以确保支架在动脉血管重塑过程中有足够的机械支撑力。通常认为,血管在6-12个月能完成重塑过程[12]。之后,降解速率能保持在一定的水平既能防止降解产物在降解点的累积,又能在血管治愈后尽快降解完成,排出体外。支架植入后12-24个月被认为是支架完全降解的合理时间[13]。单一的PLLA降解时间太长,无法满足要求,经过PCL共聚或共混改性后,降解时间加快。

实验研究表明当PLLA与PCL改性比例为95/05时不仅能保证材料具备支架所需的力学强度,还能大大提高材料的断裂伸长,加快降解速率,使之更满足于在支架上的应用。因此采用95/05的比例对聚乳酸进行共聚改性和共混改性。但是实验发现PLCL共聚改性后的材料2周后力学性能急速下降,并且材料完全变脆,4周内特性粘度降低约60%,表面腐蚀严重,说明降解时间过快,不满足制备支架的条件。这可能是由于在聚合过程中形成了新的结构,由于共聚比例的难以控制以及结构的不明确,因此我们主要采用共混PCL的方式对PLLA进行改性。PLLA与PCL共混得到的PLCL改性材料,弹性模量有所降低,但是断裂伸长率明显增加,降解时间加快,并且PCL具备形状记忆功能[14-15],有利于后期制备成的支架进行植入和扩张。

【参考文献】

1 Gopinath Mani, Marc D. Feldman, Devang Patel, et al. Coronary stents: A materials perspective[J]. Biomaterials, 2007, 28 (9): 1689-1710

2 任杰. 可降解与吸收材料[M],北京:化学工业出版社,2003:89-109

3 Patrick W Serruys, John A Ormiston, Yoshinobu Onuma, et al. A bioabsorbable

everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods[J]. Lancet, 2009, 373: 897-910

4 Barry O’Brien, William Carroll, The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: A review[J]. Acta Biomaterialia, 2009, 5: 945-958

5 崔福斋. 可降解医用介入支架的研发进展[J],国外塑料,2005,23(11):58-64

6 王国全,王秀珍. 聚合物改性[M],中国轻工业出版社,2000:1-2

7 王永亮,易国斌. 聚己内酯的合成与应用研究进展[J],化学与生物工程,2006,26(3):1-3

8 王振斌,朱梁. 可生物降解材料聚己内酯在医学上的应用进展[J],国外医学生物医学工程,2005,28(1):19-22

9 He. F, Li. S. M, et a1. Enzyme-catalyzed polymerization and degradation of copolymers prepared fromε-caprolactone and poly(ethylene glycol)[J], Polymer, 2003 (44): 5145-5151

10 刘峰,张康助. 聚乙烯醇薄膜的共混改性[J],化学推进剂与高分子材料,2006,4(3):47-51

11 朱振宇,骆光林. 聚乳酸降解机理及其方法探讨[J],材料导报网刊,2007,2(1):35-37

12 Tamai H, Igaki K, Kyo E, etal. Initial and 6-month results of biodegradable poly-L-lactic acid coronary stents in humans [J], Circulation, 2000, 102(4) : 399-404

13 El-Omar MM, Dangas G, Iakovou I, Mehran R. Update on in-stent restenosis. Current Interventional Cardiology Reports[J], 2001; 3(4):296–305.

14 朱军,倪海鹰. 形状记忆材料聚己内酯复合材料性能研究[J],塑料工业,2007,35(9):60-67

15 Subbu S Venkatraman, Lay Poh Tan, Joe Ferry D Joso, Biodegradable stents with elastic memory[J], Biomaterials, 2006, 27(8): 1573-1578

聚乳酸的研究进展

聚乳酸的研究进展 摘要:聚乳酸(Poly(lactic acid),PLA)是一种由可再生植物资源如谷物或植物秸秆发酵得到的乳酸经过化学合成制备的生物降解高分子。聚乳酸无毒、无刺激性,具有优良的可生物降解性、生物相容性和力学性能,并可采用传统方法成型加工,因此,聚乳酸替代现有的一些通用石油基塑料己成为必然趋势。由于聚乳酸自身强度、脆性、阻透性、耐热性等方面的缺陷限制了其应用范围,因而,增强改性聚乳酸己成为目前聚乳酸研究的热点和重点之一。本文综述了聚乳酸的研究进展,以改性为中心。 关键词:聚乳酸改性合成方法生物降解 引言 天然高分子材料更具有完全生物降解性,但是它的热学、力学性能差,不能满足工程材料的性能要求,因此目前的研究方向是通过天然高分子改性,得到有使用价值的天然高分子降解塑料。1780年,瑞典化学家Carl Wilheim Scheele 首先发现乳酸(Lactic acid ,LA)之后,对LA进一步研究发现,在大自然中其可作为糖类代谢的产物存在。乳酸即2—羟基丙酸,是具有不对称碳原子的最小分子之一,其存在L-乳酸(LLA)和D—乳酸(DLA)两种立体异构体。LA的生产主要以发酵法为主,一般采用玉米、小麦等淀粉或牛乳为原料,由微生物将其转化为LLA,由于人体只具有分解LLA的酶,故LLA比DLA或DLLA在生物可降解材料的应用上有独到之处。 上世纪50年代就开始了PLA的合成及应用研究上世纪70年代通过开环聚合合成了高分子量的聚乳酸并用于药物制剂及外科手术的研究上世纪80到90年代组织工程学的兴起更加推动了对PLA及其共聚物材料的研究。目前国内外对的研究主要集中在两个方面(1)合成不同结构的聚合物材料主要是采用共聚、共混等手段合成不同结构的材料;(2)催化体系的研究。 1 PLA的结构和性能

聚乳酸化学改性

聚乳酸化学改性的研究 摘要为了改善聚乳酸的使用性能,需要将聚乳酸改性,改善其力学性能、耐热性、柔韧性和作为生物材料所需的亲水性、生物相容性等。近年来有许多研究者对聚乳酸的改性进行了大量研究。本文致力于综述各种化学改性的方法如共聚、交联改性、表面改性,并对各种方法进行分析。 关键词聚乳酸化学改性共聚表面改性 0引言 合成聚乳酸的原料来自可再生的农副产品,而且聚乳酸本身可以生物降解、有较好生物相容性,因此聚乳酸在通用材料特别是一次性材料和生物材料等方面有较好的应用前景。然而聚乳酸的韧性、强度等力学性能和耐热性较差,同时亲水性不高、生物相容性还不能满足作为生物材料的许多要求,因此近年来许多研究者从化学改性、物理改性、复合改性方面进行了大量研究。而本文将从最有效的改性手段之一-化学改性的进展进行诉述和分析。 共聚改性 共聚改性是指将乳酸和其他单体按一定比例进行共聚,以此改善聚乳酸某些性能。 1.1任建敏等【1】分别研究了聚乳酸与聚乙二醇改性聚乳酸的体外降解特性,通过测定分子量和重量在pH7.4的磷酸盐缓冲液中的变化表征它们的体外降解特性。结果表明,聚乙二醇改性聚乳酸开始降解的时间早于聚乳酸,在相同时间内,前者的重量下降也较后者明显。他们提到这些材料的降解与水引起酯基水解有关,降解较快表明亲水性更好,所以聚乙二醇改性聚乳酸亲水性优于聚乳酸,这使得它可能是蛋白抗原等亲水性药物的缓释载体材料。而乙二醇的比例应该与亲水程度有关,因此研究乙二醇的比例与降解速率的关系对满足不同的缓释效果有重大的意义。樊国栋等【2】就对在共聚物中PEG分子量对亲水性能的影响进行了研究,结果表明PEG聚合度为800时亲水性最好,水在其表面的接触角为63。 1.2马来酸酐改性聚乳酸指将乳酸和马来酸酐进行共聚而得到的共聚物。许多研究证明了马来酸酐可以改性聚乳酸的亲水性和力学性能。程艳玲和龚平【3】在不同的pH值的环境下研究了聚乳酸和马来酸酐改性聚乳酸的降解性能,结果表明聚乳酸在碱性环境中降解更快,而在酸性环境中马来酸酐改性聚乳酸降解更快。曹雪波等【4】研究了马来酸酐改性聚乳酸的力学性能,结果显示其压缩强度和压缩模量均优于未改性的聚乳酸。作为生物材料,经常需要更好的力学性能,因此马来酸酐改性聚乳酸在作为组织工程支架材料方面有更好的优势。当然,力学性能改性也能改善聚乳酸作为环保材料的力学性能要求。曹雪波等【5】还研究了大鼠成骨细胞在聚乳酸、马来酸酐改性聚乳酸表面的粘附性能。他们的实验表明:与玻璃材料相比,成骨细胞在聚乳酸表面的粘附力有较大的提升,而在马来酸酐改性聚乳酸表面的粘附力更是提升了近两倍。这体现了马来酸酐改性聚乳酸对成骨细胞有较好的亲和力。马来酸酐改性聚乳酸相比聚乳酸有更好的亲水性、力学性能和细胞粘附力,这体现它可能在组织工程材料方面有一定的应用前景。 同时,聚乳酸降解会产生乳酸,这将会导致机体不良反应,因此再次改性消除这种效应对于最终的成功应用是不可或缺的。为此,罗彦风等【6】合成了基于马来酸酐改性聚乳酸和丁二胺的新型改性聚乳酸BMPLA。他们测定了BMPLA在12周内降解过程中pH的变化,结果表明降解过程中未出现pH快速下降的现象,没有表现酸致自加速特征。丁二胺上的氨基有效地改善了降解产生的酸导致的pH变化,同时阻止了酸催化降解的加速效应。不仅如此,他们还测定了水接触角,发现这种新型改性聚乳酸相比于聚乳酸和马来酸酐改性,其亲水性有了很大的改性。这可能与氨基与水形成了氢键有关。优良的细胞亲和性和降解行为,使得马来酸酐、丁二胺改性聚乳酸在组织工程支架上有良好的应用前景。

完全生物降解材料聚乳酸的改性及应用

完全生物降解材料聚乳酸的改性及应用 1、聚乳酸 聚乳酸(PLA)是一种具有优良的生物相容性和可生物降解性的合成高分子材料。PLA这种线型热塑性生物可降解脂肪族聚酯是以玉米、小麦、木薯等一些植物中提取的淀粉为最初原料,经过酶分解得到葡萄糖,再经过乳酸菌发酵后变成乳酸,然后经过化学合成得到高纯度聚乳酸。聚乳酸制品废弃后在土壤或水中,30天内会在微生物、水、酸和碱的作用下彻底分解成CO2和H2O,随后在太阳光合作用下,又成为淀粉的起始原料,不会对环境产生污染,因而是一种完全自然循环型的可生物降解材料。 1.1聚乳酸的制备 目前聚乳酸的生产和制备主要有两条路线:(1)间接法即丙交酯开环聚合法(ROP法);(2)直接聚合法(PC法)。两类方法皆以乳酸为原料。丙交酯开环聚合法是先将乳酸缩聚为低聚物,低聚物在高温、高真空等条件下发生分子内酯交换反应,解聚为乳酸的环状二聚体2丙交酯,丙交酯再开环聚合得到聚乳酸,此方法中要求高纯度的丙交酯。直接法使用高效脱水剂使乳酸或其低聚物分子间脱水,以本体或溶液聚合的方式制备聚乳酸。 1.2聚乳酸的基本性质 由于乳酸具有旋光性,因此对应的聚乳酸有三种:PDLA、PLLA、PDLLA(消旋)。常用易得的是PDLLA和PLLA,分别由乳酸或丙交酯的消旋体、左旋体制得。 聚乳酸(PLA)是一种真正的生物塑料,其无毒、无刺激性,具有良好的生物相容性,可生物分解吸收,强度高,不污染环境,可塑性好,易于加工成型。由于聚乳酸优良的生物相容性,其降解产物能参与人体代谢,已被美国食品医药局(FDA)批准,可用作医用手术缝合线、注射用胶囊、微球及埋植剂等。 同时聚乳酸存在的缺点是:(1)聚乳酸中有大量的酯键,亲水性差,降低了它与其它物质的生物相容性;(2)聚合所得产物的相对分子量分布过宽,聚乳酸本身为线型聚合物,这都使聚乳酸材料的强度往往不能满足要求,脆性高,热变形温度低(0146MPa负荷下为54℃),抗冲击性差;(3)降解周期难以控制;(4)价格太贵,乳酸价格以及聚合工艺决定了PLA的成本较高。这都促使人们对聚乳酸的改性展开深入的研究。

聚乳酸的合成、改性与应用的研究进展

聚乳酸的合成、改性与应用的研究进展 摘要:本文阐述了聚乳酸(PLA)的基本特征及合成方法,并针对其性能上的缺点,提出了几种具体的改性方法,介绍了可降解生物材料聚乳酸在包装行业、纺织行业及医疗卫生行业的应用前景。 关键词:聚乳酸; 改性; 应用前景 Abstract:This paper describes the polylactic acid (PLA) and the basic characteristics of synthesis methods, and for the performance of its shortcomings, proposed several specific modification method, introduced biodegradable polylactic acid material in the packaging industry, the textile industry and health care prospects of the industry. Key word: Prospects; modified; polylactic acid

1前言 目前,世界高分子材料产量已超过2亿吨,一些不可分解的塑料产品废弃物 也相应增加,它不仅影响了整个城市的美观,更严重的是它会引起环境污染,破 坏生态环境的平衡,影响人类的身体健康。可降解塑料作为一种新型的绿色生物 材料,它可以补充替代石油资源、减少温室气体排放、有利于社会的可持续发展, 因此,生物可降解塑料成为国内外研究的热点。不同于一般石化产品,生产聚乳 酸(PLA ) 的原料主要有玉米、小麦、甘蔗等天然农作物中提取的淀粉。这些淀 粉原料可经过发酵过程制成乳酸,然后通过化学合成法制得PLA ,这样不仅降低 了对石油资源的依赖,也间接降低了原油炼油等过程中氮氧化物及硫氧化物等污 染气体的排放。聚乳酸作为目前产业化最成熟、产量最大、应用最广泛、价格最 低的生物基塑料,是未来最有希望撼动石油基塑料传统地位的降解材料,将成为 生物基塑料的主力军[1]。 2聚乳酸的合成方法 目前合成聚乳酸的方法主要有两种:直接缩聚法和开环聚合法。 2.1直接缩聚法 直接缩聚法也叫一步聚合法,就是把乳酸单体直接缩合。其原理是在脱水剂 存在的条件下,分子中的羧基和羟基受热脱水,直接缩聚成低聚物,然后加入催 化剂,继续加热,最终就会得到分子质量相对较高的聚乳酸。PLA 直接缩聚的反 应式如下: HO C H CH 3C O OH HO C H C OH O CH 3+H 2O n (n-1)n 直接缩聚法的优点是操作简单,成本低,但反应条件要求高,反应时间长, 副产物水难以及时排除,得到的产物相对分子质量低,分布宽,重现性能差。直 接聚合法制得的产物相对分子质量普遍偏低,是因为反应过程中,受到许多影响 因素的影响,在聚合反应末期,聚合熔体的粘度很大,其中的水分很难除去,残 余水分不仅会降低PLA 的相对分子质量,也会影响其整体性能,因此,改善直接 聚合法反应过程中的影响因素,是一个亟待解决的问题。

聚乳酸的基本性质与改性研究

增加其力学强度,同时使降解速度减缓。PLA在高热下不稳定,即使低于熔融温度下加工也会使分子量下降较大。但随分子量升高,材料在加工中的降解速度也会变慢。 PLA具有良好的生物相容性,在生物体内PLA分解成乳酸,经生物酶的分解生成CO2和H2O,从体内排出。临床试验未发现有严重的急性组织反应和毒理反应,但PLLA仍有可能导致一些无菌性炎症反应。如用PLA材料做颧骨固定术后3年会产生无痛的局域肿块,皮下组织也出现降解缓慢的 结晶PLA颗粒,而引发噬菌作用。研究无法确定产生组织反应的真正原因,但PLA降解后产生小颗粒是无菌性炎症反应出现的根本原因。植入部位不同也决定了组织反应类型和强度,植入皮下PLA时炎症发生率偏高,在髓 内固定组织吞噬细胞较少,则反应发生率较低。 PLA是一种完全生物降解的热塑性高分子,具有良好的机械性能,透明性和生物相容性,广泛应用于生物医药行业中。PLA还具有较高的拉伸强度、压缩模量,但PLA还具有取多缺点。具有光学活性的PLA,结晶度较高,降解周期长,脆性大,而消旋PLA强度差,质硬而韧性较差,缺乏柔性和弹性,极易弯曲变形;另外,PLA的化学结构缺乏反应性官能基团,也不具有亲水性,降解速度需要控制。为了改善产品的脆性,调节其生物降解周期,更好地拓宽其应用面,各国研究者纷纷致力于PLA的改性事业。通过对PLA进行增塑、共聚、共混、分子修饰、复合等改性方法可实现对PLA的降解性能、亲水性及力学性能的改进,还可获得成本低廉的产品,从而更好地满足在医

学领域或环保方面的应用需求。 1.2 PLA热力学特性 PLA中碳原子为手性碳原子,因此PLA可分为左旋、右旋和内消旋等种类。其中非立体异构PLA的玻璃化转变温度由共聚单体的性能和聚合度决定。PLA立体异构体共聚物的Tg一般在60℃,与乳酸含量多少无关。 PLA的熔点与聚合物的分子量大小、光纯度、结晶程度等有关。共聚单体纯度也影响合成PLA的熔点。一般情况下,光纯度较高的PLLA的熔点较高,可到180℃,随D型乳酸增大后,合成的内消旋PLA的熔点有明显下降趋势,比如当内消旋异构体含量为2%,Tm下降至160℃,含量升至15%时,熔点降低至127℃。 但当PLLA和PDLA以1:1的比例混合后,形成外消旋PLA,其熔点可提高至230℃。因为混合物中PLLA和PDLA之间发生明显的立体络合,无定形区的链节之间之间相互作用导致该区域高密度的链堆砌,结构更加紧密,导致Tg升高。 1.3 PLA的热稳定性 同PET一样,由于PLA分子链中主要为羟基和羧基脱水缩合形成的酯键,化学活化能低,在高温下易发生化学键断裂反应,使分子量降低。特别是在有水分子存在的情况下,易发生水解反应,使PLA降解速度加快。有实验显示PLA在干燥条件下起始失重温度为285℃,但未经干燥的PLA的起始失重温度降低至260℃。因此在生产过程中水分对PLA的影响不可忽视,

用于制备可降解支架的聚乳酸材料改性研究

用于制备可降解支架的左旋聚乳酸改性的实验研究 祝平安 (上海理工大学医疗器械与食品学院上海200093) 【摘要】 本文对单一的左旋聚乳酸(PLLA)进行改性,通过加入聚己内酯(PCL)得到共混和共聚材料。由于PCL的低模量和高断裂伸长率,为了保证改性后的材料有足够的强度,并尽量提高材料的韧性,选择PLLA/PCL为95/05的改性比例是合适的。通过薄膜降解实验,进一步对比PLLA、PLCL-H(PLLA和PCL 共混材料)、PLCL-J(PLLA和PCL共聚材料)的机械性能变化,特性粘度和质量损失以及表面形态变化来考察改性对PLLA的作用以及改性材料用于可降解支架制备的可行性。最后确定改性配比为95/05的PLCL-H 改性材料,在不损失材料力学强度的前提下,材料韧性最高,断裂伸长率以及降解速度最佳,因此这种改性后的材料用于制备可降解支架是可行的。 【关键词】 聚乳酸;聚己内酯;共混改性;共聚;可降解支架 Experimental Study of Modification of L-Polylactic for Biodegradable Stent Preparation Zhu pingan University of Shanghai for Science and Technology, Shanghai, 200093, China; 【A bstract】 This paper modifies the single L-polylactic (PLLA) by adding polycaprolactone (PCL) to get blending and copolymerization materials. With low modulus and high breaking elongation of PCL, in order to guarantee enough intensity of the modified material, and increase ductility as more as possible, the modification ratio of PLA/PCL with 95/05 is decided. By film degradation test, the changes of mechanical properties, limiting viscosity, mass loss and surface morphology of PLLA、PLCL-H (PLLA and PCL blending material) and PLCL-J (PLLA and PCL copolymerization material) are compared to research the effect of modification on PLLA and the practicability of modification material used for biodegradable stent preparation. Finally, the modification material PLCL-H with modification ratio of 95/05 is decided. Without losing the material mechanical strength, the ductility of the material is significantly improved, breaking elongation is increased and degradation speed is accelerated. So the modified material is practicable for biodegradable stent preparation. 【Key words】 Polylactic; Polycaprolactone; Blending modification; Copolymerization; Biodegradable stent 目前临床上大量使用的血管支架均为金属材料制备,与机体的亲和性、生物相容性均较

组织工程用聚乳酸系生物可降解高分子材料修饰研究进展

组织工程用聚乳酸系生物可降解高分子材料修饰研究进展 姚芳莲孟继红毛君淑#姚康德# (天津大学化工学院#天津大学高分子材料研究所天津 300072) 聚乳酸(PLA)和聚羟基乙酸(PGA)及它们的共聚物(PLG)为研究得最多的生物分解性脂肪族聚酯。它们已为美国FDA批准可用作外科缝合线及药物释放载体。近年来在组织工程中被广泛用于支架(scaffold)和细胞构建结构物。此类生物降解聚合物随组织重建在体内分步降解吸收。这些材料的本体性能和力学性质与降解速率有关。而材料的表面特性则因其与体内细胞接触而对材料与细胞间的相互作用情况起关键作用,因而对这类植入体内材料的表面修饰就显得特别主要。乳酸类聚合物的表面疏水性强,影响了其与细胞的亲和性,要扩大乳酸系聚合物在组织工程中的应用,对其与细胞亲和力的改进是一关键问题。由于聚乳酸分子链上缺乏反应位点,使得对其进行修饰变得非常困难。一般常用于聚合物表面修饰的方法,如调节材料表面亲水/疏水性及电荷、将细胞粘连因子和细胞增殖因子等生物活性因子固定于材料表面等,对乳酸类聚酯的表面修饰难于奏效。基于物理吸附的修饰方法是由范德华力维持吸附分子与基材间的作用,所以结合力弱,被结合分子易脱落,影响材料的长期使用性能,不能满足应用需要。因而,寻求聚乳酸系聚合物合适的修饰技术,包括用嵌段或接枝聚合方法对其化学结构进行本体修饰、表面修饰或复合改性,从而改善聚乳酸基生物降解材料对目标细胞的亲和性,使其在组织工程相关应用中发挥作用具有重要意义。 1 嵌段共聚物 纤连蛋白细胞粘连微区为精氨酸-甘氨酸-天冬氨酸(RGD)二肽,它可由含 侧链羧基的乳酸和苹果酸的共聚物而固定化。天冬氨酸与苄醇的80%H 2SO 4 水溶液 于70?C脱水缩合得其L-β天冬氨酸苄酯,将其在硫酸水溶液中与NaNO 2 反应得L-β 苹果酸苄酯(2),它与溴代乙酰氯在三乙胺存在下,于醚中反应得L-β溴乙酰苄 基苹果酸酯(3),它在二甲基甲酰胺中与NaHCO 3 反应则得其环状二聚体(BMD)(4)。将它与L-丙交酯(L-LAC)在己酸亚锡催化下于160?C开环聚合而后水解得 PMLA[1]。其中含苹果酸10%,数均分子量为31,700。以二环己基碳二亚胺(DCC)法或氯甲酸酯(ECF)法可将RGD在其薄膜上固定化。以后法为例,固定化量达6.3μg RGD/1mg PMLA。以1.0×105的NIH3T3细胞种植后,在D-MEM基中,37?C 下 5% CO 2 气氛中培养1h, 细胞培养后的薄膜用戊二醛固定化,对照薄膜上粘连细胞仅为种植细胞的1%,而固定化7.29μg后表面粘连细胞数增大30倍。可见利用聚(苹果酸-共-乳酸)侧链上的羧基使聚乳酸表面修饰,利于细胞粘连因子、细胞分化诱导因子和增殖因子固定化。

心脏支架材料

心脏支架材料比较 冠心病是由于供应心肌血液的冠状动脉血管壁发生粥样硬化,导致血管腔内狭窄甚至完全阻塞,引起心肌缺血缺氧甚至坏死的一种疾病。随着人类生活水平的提高和老年人口的增多,冠心病发病率呈明显升高趋势。经皮冠状动脉介入治疗(PCI)是治疗冠心病的主要方法,据统计,现在接受PCI 手术的患者中 85%以上植入了支架。选择合适的心脏支架植入患者血管已经成为保证冠心病治疗效果的最重要的措施。冠心病介入治疗相对于药物治疗和外科手术治疗具有治疗效果显著、手术创伤小、技术容易推广等优点,是近30 年发展最迅速的冠心病治疗技术,已经成为冠心病治疗的主流方法。目前美国每年PCI 治疗上百万例,中国达到33 万例,中国每年仍然以20%的速度快速增长。近30 年随着生物材料技术的进步,心脏支架材料的应用取得了快速的发展。 世界上第一个成功的冠脉支架是美国强生Cordis公司于1994 年推出的Palmaz-Schatz(PS)支架。在此之前冠心病介入治疗已经普遍采用了经皮腔内冠状动脉成形术(PTCA),PTCA 是在冠状动脉内用球囊导管扩张狭窄病变血管达到改善冠状动脉血流的手术。PTCA治疗效果显著,推广应用十分迅速,但是,PTCA 的并发症高达30%~50%,主要表现是术后血管再狭窄、诱发血栓导致再次 冠心病发作,甚至急性心肌梗死,其机制是被扩张成形的血管弹性回缩,被挤压的血管内粥样硬化斑块破碎脱落。 很多医生和公司尝试使用金属丝网支撑PTCA 术后的血管,例如,美国波士顿科学公司采用金属丝编织的自膨胀式的Wallstent 支架(不锈钢丝)和Radius 支架(镍钛合金丝),Cook公司球囊膨胀式GR支架(不锈钢丝),美敦力公司Wiktor U 型支架,这些支架获得美国FDA或欧洲CE 批准。但是,只有强生公司的PS 支架被临床医学证明可以明显降低再狭窄率,其经典的临床试验是BENESTENT和STRESS试验,并成为评价以后所有支架必然的对照试验。PS 支架采用316L 不 锈钢管经激光雕刻成丝网,具有弹性回缩小,病变覆盖率高的优点,这种工艺技术也成为日后冠脉支架主流的制做技术。

生物可降解材料聚乳酸的制备改性及应用

生物可降解材料聚乳酸的制备改性及应用 摘要:聚乳酸(PLA)是人工合成的可生物降解的的热塑性脂肪族聚酯,其具有良好的机械性能、热塑性、生物相容性和生物降解性等,广泛应用于可控释材料、生物医用材料、组织工程材料、合成纤维等领域。本文主要介绍了聚乳酸的合成、改性及其在各个领域的应用。关键词:聚乳酸;生物降解;合成;应用 随着大量高分子材料在各个领域的应用,废弃高分子材料对环境的污染有着日益加剧的趋势。处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。而乳酸主要来源于自然界十分丰富的可再生植物资源如玉米淀粉、甜菜糖等的发酵。聚乳酸(polylactide简称PLA)在自然环境中可被水解或微生物降解为无公害的最终产物CO2和H2O,对其进行堆肥或焚烧处理也不会带来新的环境污染[1]。此外聚乳酸及其共聚物是一种具有优良的生物相容性的合成高分子材料。它具有无毒、无刺激性、强度高、可塑性强、易加工成型等特点,因而被认为是最有前途的生物可降解高分子材料[2]。利用其可降解性,也可用作生物医用材料如组织支架、外科手术缝合线、专业包装、外科固定等。 1 生物降解机理[3,4] 生物降解是指高分子材料通过溶剂化作用、简单水解或酶反应,以及其他有机体转化为相对简单的中间产物或小分子的过程。高分子材料的生物降解过程可分为4个阶段:水合作用、强度损失、物质整体化丧失和质量损失。微生物首先向体外分泌水解酶,与可生物降解材料表面结合,通过水解切断这些材料表面的高分子链,生成低相对分子质量的化合物(有机酸、糖等),然后,降解的生成物被微生物摄入体内,合成为微生物体物或转化为微生物活动能量,在耗氧条件下转化为CO2,完成生物降解的全过程。材料的结构是决定其是否可生物降解的根本因素。合成高分子多为憎水性的,一般不能生物降解,只有能保持一定湿度的材料才有可能生物降解。含有亲水性基团的高分子可保持一定的湿度,宜生物降解,同时含有亲水和憎水基的聚合物生物降解性好。一般分子量大的材料较分子量小的更难生物降解;脂肪族聚合物比相应的芳香族聚合物容易生物降解;支化和交联会降低材料的生物降解性。另外,材料表面的特性对生物降解也有影响,粗糙表面材料比光滑表面材料更易降解。影响可生物降解性的化学因素主要有高分子的亲水性、构型、形态结构、链段的活动性、分子量、高聚物的组成以及上述因素之间的相互关系等。高分子的亲水性越强越易水解,水解酶对酯键、酰胺键和氨基甲酸酯都有较强的作用;无定型态的高聚物比结晶状态容易水解;分子链段越柔顺,玻璃化温度越低,越有利于降解;链段活动性越大,自由体积越大,越容易受到酶的进攻,也就越容易降解;可降解性随着分子量增大而降低;高聚物的组成,如共混、共聚等也影响着高分子的可降解性。一般情况下只有极性高分子才能与酶相吸附并能很好亲和,因此高分子具有极性是生物降解的必要条件。具有生物降解性(包括水解)的分子化学结构有:脂肪族酯键、酞键、脂肪族醚键、亚甲基、氨基、酰氨基、烯氨基、芳香族偶氮基、脲基、氨基甲酸乙酯等。 2 聚乳酸的基本性质

解读之心血管支架(三)

【专家解读】奥咨达专家解读之心血管支架(三) 近日,国务院办公厅印发《深化医药卫生体制改革2018年下半年重点工作任务的通知》,其中就明确提出:推进医疗器械国产化,促进创新产品应用推广。此项政策由国家工信部、国家发改委、国家卫健委、国家药监局负责落实推进。这就意味着推进医疗器械国产化,加速国产医疗器械崛起将成为今年下半年深化医改的重中之重! 医学影像设备、手术机器人、高值医用耗材、可穿戴设备、远程诊疗设备、3D打印器械这六大类医疗器械国产化要加速!它们属于《中国制造2025》的重点突破发展的十大领域之一“生物医药及高性能医疗器械”。这是国家吹响了高端医疗器械国产化号角的明确信号,就在《中国制造2025》正式公布两周年之际,国务院再出重拳:在今年国务院发布的2018年下半年深化医改文件中,再次明确推进医疗器械国产化,预计相关的政策文件将会出台。六大医疗器械的国产厂商,也有望迎来更多的扶持政策,国产替代进口速度进一步加快。 根据公开资料显示,全球医疗器械市场规模在2016-2021年间CAGR为4.5%,估计2018年预计将突破4400亿美元,预计2021年将超过5100亿美元。心血管医疗器械(包括冠状动脉支架、起搏器等)作为全球第二大医疗器械市场,其2018年的市场份额预计为11.0%,仅次于体外诊断行业(IVD),预计到 2021年行业规模将达至600亿美元错误!未找到引用源。。 数据来源:《2017奥咨达医疗器械行业蓝皮书》,Trendforce,奥咨达整理

图5-1 2016-2021年全球医疗器械市场规模(亿美元) 我国医疗器械行业起步晚、技术和人才不足,企业规模普遍较小,市场同质化竞争严重,导致国产医疗器械落后国外医疗器械水平。但是,随着我国经济不断发展以及人们健康意识的提高,从医院的高端医疗器械的配备到便捷的家用医疗器械都将迎来高度的需求增长,为国内医疗器械行业带来广阔的发展前景。尤其是近几年国家不断出台相关政策加大对医疗器械领域的扶持,为鼓励医疗器械的研究与创新,其中《中国制造2025》、《健康中国2030规划纲要》以及《“十三五”医疗器械科技创新专项规划》等相关政策均提出支持高性能医疗器械研发与创新、构建生物医药及高性能医疗器械产业新体系,预计大型影像设备、高值医疗耗材等高性能医疗器械将成为未来政策扶持重点,为我国医疗器械行业未来的发展带来优势。 目前广泛应用的心脏支架为金属材质,植入人体后将永久存在。可降解支架的材质为可吸收高分子材料,其功能类似永久性金属支架,通过打开心脏内被堵塞的冠状动脉、恢复血流以缓解冠心病症状。这种支架在植入人体后会在一定时间内逐渐降解,因此不会在体内留下任何异物,从而为今后可能的进一步治疗提供更多选择,所以被认为是人类心脏支架发展史上继球囊扩张术、金属裸支架、药物洗脱支架后的第四次革命。 可降解支架的大时代必将来临: 第一,我国已在可降解支架植入手术中积累了较多的经验。 目前市场主流的可降解支架Xinsorb(葛均波院士团队)、NeoVas(韩雅玲院士团队)、Firesorb(高润林院士团队)均由国内心血管权威专家领衔进行临床试验,具备良好的学术推广基础;国内有多个医院的心内科大夫参与了可降解支架的临床试验,大多数临床试验的结果表现优异,在医生中的认可度较高,并总结出了不少植入经验,例如血管直径适中(2.25mm≤QCARVD≤3.75mm)、严格遵守PSP原则(充分预处理病变、选择合适大小的支架、后扩张支架,最好有腔内影像学指导)、延长抗凝时间等。 第二,可降解支架的植入费用未来将会逐步降低。 我们预计未来随着各地医保政策对支架手术报销政策的完善,可降解支架的植入费用会逐步降低并得到广泛应用。

聚乳酸的改性研究进展

聚乳酸的改性研究进展 摘要:聚乳酸是一种新型无毒的材料,有较好的生物相容性和生物降解性,是性能优良的绿色高分子材料,本文综述了聚乳酸的改性研究进展,展望了其应用前景。 中国论文网/7/view-12986201.htm Abstract:The polylactic acid was a kind of new non-toxic material,which was biocompatible and biodegradable. It was a fine performance green polymer material. The research progress of the modification of polylactic acid was reviewed. The application prospects of modified polylactic acid were discussed. 关键词:聚乳酸;改性;共聚;共

混;复合 Key words:polylactic acid;modification;coplymerization;blend;composite 中?D分类号:TQ311 文献标识码:A 文章编号:1006-4311(2017)23-0227-03 0 引言 聚乳酸简称为PLA,因为具有较好的相容性和降解性,所以在医药领域得到了广泛的应用,如生产一次性的点滴用具、美容注射粒子、口腔膜、心脏支架等方面得到了很广的应用。在PLA制备的初期,是由小麦、玉米、麦秆等植物中的淀粉为原料,在催化剂酶的作用下,得到乳酸,在经过一定的化学合成工艺合成得到高浓度的聚乳酸。聚乳酸除了较好的生物可降解性以外,还具良好的机械性能和物理性能。 1 聚乳酸改性的原因 PLA的聚合主要是有两种方法[1],第一种方法是直接缩聚法,乳酸同时具

聚乳酸的研究进展

聚乳酸的研究进展 摘要 乳酸主要应用于食品保健、医药卫生和工业等方面。聚乳酸是以乳酸为主要原料的聚合物,聚乳酸作为生物可降解材料的一种,对环境友好、无毒害,可应用于组织工程、药物缓释等生物医用材料,以及石油基塑料的替代材料。本文综述了聚乳酸在可降解塑料,纤维,医用材料,农用地膜,和纺织等领域的应用,并对其发展方向进行了展望。 关键词:聚乳酸聚乳酸纤维生物医药生物降解 Abstract Lactic acid green chemistry is the basic structure of one of the unit ,Mainly used in food, medicine, sanitation and health care industry, etc。Poly lactic acid is lactic acid as the main raw material polymer,Poly lactic acid as biodegradable material of a kind,Friendly to environment, non-toxic, can be applied to tissue engineering, drugs such as slow release of biomedical materials,And instead of the petroleum base plastic material。This paper reviewed the biodegradable polylactic acid in plastic, fiber and medical materials, agricultural plastic sheeting, and textile application in the field, and its developing prospects。 Key world: PLA PLA fiber Biological medicine Biodegradable 前言 由于人口的日益膨胀,以及地球上资源和能源的短缺,环境污染日益成为全人类需要急需关注的问题,各国在享受现代科技带来的便利的同时,也应该认识到人类即将面临的及其紧迫的环境危机。因此绿色化学成为了今国际化学和化工科学创新的主要动力来源,它是未来科学发展最重要的领域之一。绿色化学是实现污染预防最基本的科学手段,具有极其重要的社会和经济意义。

聚乳酸的基本性质与改性研究

PLA的基本性质与改性研究 1.1 物理性质[1,9] 无定形PLA的密度为1.248g/cm3,结晶PLLA的密度为1.290g/cm3,因此PLA的密度一般在两者之间。PLA为浅黄色或透明的物质,玻璃化温度约为55℃、熔点约175℃,不溶于水、乙醇、甲醇等,易水解成乳酸[6]。其性质如表1-1所示: 表1-1 PLA的基本性能 Table 1.1 The basic properties of PLA 性能PLLA PDLLA 熔点/℃170-190 <170 玻璃化转变温度/℃50~65 50~60 密度(g/cm3) 1.25~1.29 1.27 溶度参数(MPa0.5) 19~20.5 21.2 拉伸强度(kg/mm2) 12~230 4~5 弹性模量(kg/mm2) 700~1000 150~190 断裂伸长率(%) 12~26 5~10 结晶度(%) 60 / 完全降解时间(月) >24 12~16 乳酸有两种旋光异构体即左旋(L)和右旋(D)乳酸,聚合物有三种立体构型:右旋PLA(PDLA)、左旋PLA(PLLA)、内消旋PLA(PDLLA)。右旋PLA和左旋PLA是两种具有光学活性的有规立构聚合物,比旋光度分别为+157℃、-157℃。在熔融和溶液条件下均可形成结晶,结晶度高达60%左右。内消旋PLA是无定形非结晶材料,T g为58℃,由于内消旋结构打乱了分子链的规整度,无法结晶因此不存在熔融温度。纯的PLA为乳白色半透明粒子,PLA经双向拉伸加工可具有良好的表面光泽性、透明性、高刚性、抗油和耐润滑侵蚀性。 结晶性对PLA材料力学性能和降解性能(包括力学强度衰减、降解速率)的影响很大,PLA性脆、冲击强度差,特别是无定形非晶态的PDLLA力学强度明显低于晶态的PLLA,用特殊增强工艺制备的Φ3.2mmPLLA,PDLLA棒材的最大弯曲强度分别是270MPa和140 MPa,PLLA弯曲强度几乎是PDLLA的2倍。结晶也使降解速度变慢,研究称PDLLA 材料在盐水中降解时,分子量半衰期一般为3至10周,而PLLA由于结晶存在至少为20周。随分子量增大,PLA的力学强度也会随之提高,如PLA要想作为可使用的材料其分子量至少要达到10万左右。PLA材料的另一个突出优点是加工途径广泛,如挤出、纺丝、双轴拉伸等。在加工过程中分子取向不仅会大大增加其力学强度,同时使降解速

了解第四代心脏生物可降解支架介绍

第四代心脏生物可降解支架介绍 目前国外服务体系最完善的海外就医全程服务司。杭州五舟医院管理有限司致力于为国内患者提供国外权威医院推荐、国外权威专家预约、出国看病病情材料收集整理、病历材料的医学翻译、病历材料邮寄、国外医院邀请函及费用预估函的翻译、医疗签证的办理、机票住宿预订、出国前指导、国外看病期间的接机住宿及看病接送、国外就医全程医学翻译、在国外期间的生活翻译陪同及护工陪同安排、归国后的病情跟踪、国外药品邮寄、医院费用账单折扣申请等一站式服务。 近日上海患者李先生通过五舟前往第四代可降解支架创实地,英国最大的心肺医院皇家布朗普顿医院进行了可降解支架手术。具体就医流程可以到杭州五舟医院管理有限公司网站查看。 第四代冠脉支架 1977年,Gruentzig医生进行世界第一例经皮冠脉血管成形术。 1986年,Jacques Puel和Ulrich Sigwart置入了人类第一例冠脉内支架。 1994-1997年间,各种支架不断问世,经皮冠脉血管球囊成形术进入了金属裸支架时代。至1997年,全球有超过100万的患者接受了该治疗。 2003年,美国FDA批准使用由J&J公司生成的第一个药物洗脱支架。 2004年,美国BSC公司生产的Taxus药物洗脱也应用于临床,和Medronic公司生产的Endeavor支架一起,标志着冠脉介入治疗进入到药物洗脱支架时代。 2008年,来自英国皇家布朗普顿医院的Carlo Di Mario教授等人率先在全球发起了一项针对可降解支架研究的试验,4年后2011年底,国际著名医学杂志《柳叶刀》第一时间报道了这项备受全球瞩目、在冠脉介入领域具有革命性意义的试验结果,结果证明完全可降解支架的操作成功率达到了100%,无支架血栓事件。 2012年,完全生物可降解支架正式在欧洲等地上市,预示着金属不可降解药物支架的彻底终结。 作用机理 支架的比较

聚乳酸改性的研究进展

聚乳酸改性的研究进展 周海鸥史铁钧王华林方大庆 (合肥工业大学化工学院,合肥,230009) 摘 要 概述了近年来国内外聚乳酸通过共聚、共混、复合等方法获得改性材料的研究进展,并对其发展方向进行了展望。 关键词:聚乳酸改性共聚共混复合 一、前言 聚乳酸(PLA)具有优良的生物相容性、生物可降解性,最终的降解产物是二氧化碳和水,不会对环境造成污染。这使之在以环境和发展为主题的今天越来越受到人们的重视,并对其在工业、农业、生物医药、食品包装等领域的应用展开了广泛地研究。由于聚乳酸在性质上存在如下局限而限制了它的实际应用: (1)聚乳酸中有大量的酯键。酯键为疏水性基团,它降低了聚乳酸的生物相容性; (2)降解周期难以控制; (3)聚合所得产物的分子量分布过宽。聚乳酸本身为线型聚合物,这使得材料的强度往往不能满足要求。 同时,在实际应用中还有一些特殊的功能性需要。这都促使人们对聚乳酸材料的改性展开深入地研究。目前国内外对聚乳酸的改性主要有共聚、共混以及制成复合材料等几种方法。 二、共聚法改性 随着聚乳酸应用领域的不断扩展,单纯的均聚物已不能满足人们的需要,特别是在高分子药物控制释放体系中,要求对于不同的药物有不同的降解速度,同时对于抗冲击强度、亲水性有更高的要求。这使得人们开始将乳酸与其它单体共聚改性,以调节共聚物的分子量、共聚单体数目和种类来控制降解速度并改善结晶度、亲水性等。由于在乳酸分子中含有羟基和羧基,生成的聚乳酸含有端羟基和端羧基,所以在聚乳酸共聚物中比较多的是聚酯2聚酯共聚物、聚酯2聚醚共聚物以及和有机酸、酸酐等反应生成的共聚物。 1.线性结构的共聚物 聚酯2聚酯共聚物是目前聚乳酸共聚物中最多的一种。人们将多种酯类和丙交酯共聚制得了不同用途的产物,其中涉及的机理主要是将共聚单体制成环状化合物,再开环聚合生成不同单体间的交替共聚物。Miller等研究发现用乙醇酸生成乙交酯(gly2 colide,简称G A)再和乳酸开环聚合,能使降解速率比均聚物提高10倍以上,并且可以通过改变组分的配比来调节共聚物的降解速度[1]。张艳红等采用低聚D,L2丙交酯与聚己内酯低聚物在2,42甲苯二异氰酸酯(TDI)作用下进行了扩链反应,形成了具有

聚乳酸(PLA)的合成及改性研究

聚乳酸(PLA)的合成及改性研究 摘要 介绍聚乳酸(PLA)的基本性质、合成方法及应用范围。综述了国内外PLA 的改性研究及目前有关PLA性能改进的方法。概括了PLA在合成改性中需要注意的问题,展望了PLA的发展前景:不断改进、简化和缩短PLA的合成工艺;用新材料、新方法对PLA进行改性,开发出新用途、高性能的PLA材料是PLA的研究方向。 关键词:聚乳酸合成改性 前言

聚乳酸(PLA)是一种以可再生生物资源为原料的生物基高分子,具有良好的生物降解性、生物相容性、较强的机械性能和易加工性。聚乳酸材料的开发和应用,不但可解决环境污染问题,更重要的意义在于为以石油资源为基础的塑料工业开辟了取之不尽的原料资源。 此外,由于它的最终降解产物为二氧化碳和水,可由机体正常的新陈代谢排出体外,是具有广泛应用前景的生物医用高分子材料(如可吸收手术缝合线)、烧伤覆盖物、骨折内固定材料、骨缺损修复材料等。近几年来,有应用到纺织材料、包装材料、结构材料、电子材料、发泡材料等更广泛的领域的研究报道。PLA 的应用市场空间和发展潜力巨大,有关它的研究一直是可生物降解高分子材料研究领域的热点。

1、聚乳酸的研究背景 聚乳酸(PLA)是由人工合成的热塑性脂肪族聚酯。早在20 世纪初,法国人首先用缩聚的方法合成了PLA[1];在50 年代,美国Dupont 公司用间接的方法制备出了相对分子质量很高的PLA;60 年代初,美国Cyanamid 公司发现,用PLA 做成可吸收的手术缝合线,可克服以往用多肽制备的缝合线所具有的过敏性;70 年代开始合成高分子量的具有旋光性的D 或L 型PLA,用于药物制剂和外科等方面的研究;80 年代以来,为克服PLA 单靠分子量及分子量分布来调节降解速度的局限,PLA 开始向降解塑料方面发展[2]。 作为石油基塑料的可替代品,其最大的缺点就是脆性大、力学强度较低,亲水性差,在自然条件下它降解速率较慢;因此近年来对PLA 的改性己成为研究的热点。目前国内外对PLA的改性主要有共聚、共混以及制成复合材料等几种方法。 2、PLA的合成 以玉米、小麦、木芋等植物中提取的淀粉为原料.经过酶分解得到葡萄糖.再通过乳酸菌发酵转变为乳酸,然后经化学合成得到高纯度的PLA。 PLA的合成通常有:1)直接缩聚法[3-4]。以乳酸、乳酸酯和其他乳酸衍生物等为原料在真空条件下,采用溶剂使之脱水聚合成PLA。该法生产工艺简单、成本低,且合成的PLA中不含催化剂.但由于体系中存在杂质且乳酸缩聚是可逆反应,故该法很难得到高相对分子质量的PLA。具体反应式如下[5]: nHOCH(CH 3)COOH → H 一[OCH(CH 3 )CO]n 一OH + (n-1)H 2 O H一[OCH(CH 3 )CO]n一 一[OCH(CH 3 )CO]n一OH + H 2 O

相关文档
最新文档