基于proe的凸轮机构设计与仿真

基于proe的凸轮机构设计与仿真
基于proe的凸轮机构设计与仿真

目录

中文摘要 ................................................................. I 英文摘要 ................................................................ II 第1章任务与课题条件 . (1)

1.1任务 (1)

1.2课题条件 (1)

第2章凸轮机构及PRO/E简介 (2)

2.1凸轮机构简介 (2)

2.2 PRO/E简介 (7)

第3章盘形凸轮创建过程 (10)

3.1新建零件 (10)

3.2创建拉伸特征 (10)

3.3创建方程曲线 (10)

3.4创建图形特征 (11)

3.5创建可变剖面扫描特征 (12)

3.6创建孔特征 (12)

第4章其余零件设计 (14)

4.1从动杆设计 (14)

4.2连杆设计 (14)

4.3滑块设计 (15)

第5章装配 (16)

第6章机构仿真 (17)

6.1定义凸轮从动连接机构. (17)

6.2添加驱动器 (17)

第7章运动分析及结果分析 (20)

7.1运行分析 (20)

7.2结果回放 (21)

7.3结果分析 (22)

结论 (25)

参考文献 (26)

致谢 (27)

摘要

机械产品的运动分析和仿真在机械产品的设计中是不可缺少的重要环节。在各类机械的传动结构中,凸轮结构有着广泛的应用,根据凸轮机构的设计原理,提出了在pro/e 中实现凸轮设计及实体造型的方法,并主要利用Pro/e Wildfire的运动学分析模块Mechanism对凸轮机构进行了运动学分析和仿真,这对凸轮机构的优化设计将提供较大的帮助。本文通过对对心直动尖顶盘型凸轮机构进行运动仿真分析,更加明确了该机构的优缺点,对于该机构的优化设计以及该机构以后的用途将提供指导作用。

关键词:凸轮机构 Pro/E 运动仿真运动分析

Abstract

Simulation technology in the mechanical products design plays an important role. In some mechanical transmission structures,the cam mechanism is used widely, Introducs the method of cam design and modeling in Pro/E,and mainly expiains the kinematics analysis and the simulasion by using Pro/E Wildfire Mechanism ,it will provide useful help to the optimized design of cam mechanism. This article through to the heart of translational knife-edge plate cam mechanism motion simulation analysis, more clearly the advantages and disadvantages, for the optimal design of the mechanism as well as the agency later use will provide guidance.

Key Words:cam mechanism ;Pro/E;motion simulation;motion analysis

第1章任务与课题条件

1.1 任务

为了对凸轮机构进行更好的优化设计以及对凸轮机构以后的应用起指导作用,因此基于pro/e对盘型凸轮机构进行设计与运动仿真,并对速度和加速度进行分析,研究该盘型凸轮机构的运动情况,并对该凸轮机构以后的应用作出预测。因此下面将对对心直动尖顶盘型凸轮机构进行设计与运动仿真,从而力争达到课题任务。如图1.1所示

图1.1对心直动尖顶盘型凸轮机构

1.2 课题条件

盘型凸轮的基圆半径为 Ra=40mm,升程角为 80°(其中 0~40°为等加速运动,40~80°为等减速运动) ,远休止角为20°,回程角为 80°(其中 100~140°为等加速运动,140~180°为等减速运动) ,从动件升程为h=10mm。

第2章凸轮机构及pro/e简介

2.1 凸轮机构简介

凸轮机构是由凸轮,从动件和机架三个基本构件组成的高副机构。凸轮是一个具有曲线轮廓或凹槽的构件,一般为主动件,作等速回转运动或往复直线运动。

凸轮机构是由凸轮,从动件和机架三个基本构件组成的高副机构。

凸轮是一个具有曲线轮廓或凹槽的构件,一般为主动件,作等速回转运动或往复直线运动。

与凸轮轮廓接触,并传递动力和实现预定的运动规律的构件,一般做往复直线运动或摆动,称为从动件。

凸轮机构在应用中的基本特点在于能使从动件获得较复杂的运动规律。因为从动件的运动规律取决于凸轮轮廓曲线,所以在应用时,只要根据从动件的运动规律来设计凸轮的轮廓曲线就可以了。

凸轮机构广泛应用于各种自动机械、仪器和操纵控制装置。凸轮机构之所以得到如此广泛的应用,主要是由于凸轮机构可以实现各种复杂的运动要求,而且结构简单、紧凑。

原理

由凸轮的回转运动或往复运动推动从动件作规定往复移动或摆动的机构。凸轮具有曲线轮廓或凹槽,有

图2.1 推杆运动规律图

盘形凸轮、圆柱凸轮和移动凸轮等,其中圆柱凸轮的凹槽曲线是空间曲线,因而属于空间凸轮。从动件与凸轮作点接触或线接触,有滚子从动件、平底从动件和尖端从动件等。尖端从动件能与任意复杂的凸轮轮廓保持接触,可实现任意运动,但尖端容易磨损,适用于传力较小的低速机构中。为了使从动件与凸轮始终保持接触,可采用弹

图2.2 圆柱凸轮机构

簧或施加重力。具有凹槽的凸轮可使从动件传递确定的运动,为确动凸轮的一种。一般情况下凸轮是主动的,但也有从动或固定的凸轮。多数凸轮是单自由度的,但也有双自由度的劈锥凸轮。凸轮机构结构紧凑,最适用于要求从动件作间歇运动的场合。它与液压和气动的类似机构比较,运动可靠,因此在自动机床、内燃机、印刷机和纺织机中得到广泛应用。但凸轮机构易磨损,有噪声,高速凸轮的设计比较复杂,制造要求较高。凸轮机构的分类

按凸轮形状分

1)盘形凸轮

2)移动凸轮

3)圆柱凸轮

按从动件型式分

1)尖底从动件;

2)滚子从动件;

3)平底从动件

优点

结构简单、紧凑、设计方便,可实现从动件任意预期运动,因此在机床、纺织机械、轻工机械、印刷机械、机电一体化装配中大量应用。

缺点

1)点、线接触易磨损;

2)凸轮轮廓加工困难;

3)行程不大

凸轮机构从动件位移s(或行程高度h)与凸轮转角Φ(或时间t)的关系称为位移曲线。从动件的行程h有推程和回程。凸轮轮廓曲线决定于位移曲线的形状。在某些机械中,位移曲线由工艺过程决定,但一般情况下只有行程和对应的凸轮转角根据工作需要决定,而曲线的形状则由设计者选定,可以有多种运动规律。传统的凸轮运动规律有等速、等加速-等减速、余弦加速度和正弦加速度等。等速运动规律因有速度突变,会产生强烈的刚性冲击,只适用于低速。等加速-等减速和余弦加速度也有加速度突变,会引起柔性冲击,只适用于中、低速。正弦加速度运动规律的加速度曲线是连续的,没

有任何冲击,可用于高速。

为使凸轮机构运动的加速度及其速度变化率都不太大,同时考虑动量、振动、凸轮尺寸、弹簧尺寸和工艺要求等问题,还可设计出其他各种运动规律。应用较多的有用几段曲线组合而成的运动规律,诸如变形正弦加速度、变形梯形加速度和变形等速的运动规律等,利用电子计算机也可以随意组合成各种运动规律。还可以采用多项式表示的运动规律,以获得一连续的加速度曲线。为了获得最满意的加速度曲线,还可以任意用数值形式给出一条加速度曲线,然后用有限差分法求出位移曲线,最后设计出凸轮廓线。 一些自动机通常用几个凸轮配合工作,为了使各个凸轮所控制的各部分动作配合协调,还必须在凸轮设计以前先编制一个正确的运动循环图。

用电子计算机进行凸轮廓线设计能提高效率,并能从多方面综合考虑进行优化设计。这样可用以求得各种运动规律下的从动件的位移、速度、加速度等值和凸轮廓线坐标值,算出凸轮廓线上任意点的曲率半径、压力角和应力,满足接触强度和抗磨的角度,以获得最小尺寸的凸轮,而且还可画出凸轮的空间图形。

凸轮容易磨损,主要原因之一是接触应力较大。凸轮与滚子的接触应力可以看作是半径分别等于凸轮接

图2.3 盘型凸轮机构

触处的曲率半径和滚子半径的两圆柱面接触时的压应力,可用赫芝公式进行计算,应使计算应力小于许用应力。促使凸轮磨损的因素还有载荷特性、几何参数、材料、表面粗糙度、腐蚀、滑动、润滑和加工情况等。其中润滑情况和材料选择对磨损寿命影响尤大。为了减小磨损、提高使用寿命,除限制接触应力外还要采取表面化学热处理和低载跑合等措施,以提高材料的表面硬度。 推杆运动规律

多项式运动规律 1)一次多项式运动规律

设凸轮以等角速度ω转动,再推程时,凸轮的运动角为0δ ,推杆完成行程h,当采用一次多项式运动规律时,则有

01s c c δ=+ 011//0v ds dt c dv dt ωα====

在始点处0,0s δ== ,在终点处0,s h δδ==。 则可得000,1/c c h δ==,故推杆推程的运动方程为

0/s h δδ=

0/v h ωδ=

0α=

在回程时,因规定推杆的位移总是由最低位置算起,故推杆的位移s 是逐渐减小的,而其运动方程为

0(1/')s h δδ=-

0/'v h ωδ=-

0α=

式中,0'δ为凸轮回程运动角,注意凸轮的转角δ 总是从该段运动规律的起始位置计量起。

有上述可知,推杆此时作等速运动,故又称其为等速运动规律,但推杆在运动开始和终止的瞬时,因速度有突变,所以这时推杆在理论上将出现无穷大的加速度和惯性力,因而会使凸轮机构受到极大的冲击,这种冲击成为刚性冲击。

2)二次多项式运动规律 其表达式为

2012s c c c δδ=++ 12/2v ds dt c c ωωδ==+

22/2dv dt c αω==

这时推杆的加速度为常数,为了保证凸轮机构运动的平稳性,通常应使推杆先做加速运动,后做减速运动,设在加速段和减速段凸轮运动角及推杆的行程各占一半。这时,推程加速段的边界条件为

在始点处 0,0,0s v δ=== 在终点处 0/2,/2s h δδ==

将其代入上式,可求得201200,0,2/c c c h δ=== ,故推杆等加速推程段的运动方程为

2202/s h δδ=

204/v h ωδδ=

2204/h αωδ=

由上式可知,在此阶段,推杆的位移s 与凸轮转角δ的平方成正比,故其位移曲线为一段向上弯的抛物线。

推程减速段的边界条件为 在始点处0/2,/2s h δδ== 在终点处0,,0s h v δδ===

将其代入上式,可得201020,4/,2/c h c h c h δδ=-==-,故推杆等减速推程段的运动方程为

2202(0)/s h h δδδ=--

()2004/v h ωδδδ=-

2042/h αωδ=-

这时推杆的位移曲线为一段向下弯曲的抛物线。

上述两种运动规律的结合,构成推杆的等加速等减速运动规律,因为加速度的突变为有限制,因而引起的冲击较小,故称这种冲击为柔性冲击。

回程时的等加速等减速运动规律的运动方程为 等加速行程:

2202/'s h h δδ=- 204/'v h ωδδ=- 2204/'a h ωδ=- 等减速回程:

()2

2002'/'s h δδδ=-

()2004'/'v h ωδδδ=-- 2204/'a h ωδ=

3)五次多项式运动规律

当采用五次多项式时,其表达式为

2345012345s c c c c c c δδδδδ=+++++

23412345/2345v ds dt c c c c c ωωδωδωδωδ==++++ 2222232345/261220a dv dt c c c c ωωδωδωδ==+++ 因待定系数有6个,故可设定6个边界条件为 在始点处 0,0,,0s v o a δ==== 在终点处 0,,0,0s h a δδν====

代入上式可解的3450123040500,10/,15/,6/c c c c h c h c h δδδ=====-=,故其位移方程式为33445500010/15/6/s h h h δδδδδδ=-+

称为五次多项式,其运动规律既无刚性冲击也无柔性冲击。 三角函数运动规律 1)余弦加速度运动规律 其推程时的运动方程为

()01cos //2s h πδδ=-????

()()00sin //2v h πωπδδδ=

()()22200cos //2a h πωπδδδ=

回程时的运动方程为

()01cos /'/2s h πδδ=+????

()()00sin /'/2'v h πωπδδδ=-

()()22200cos /'/2'a h πωπδδδ=-

由方程式画出的图易知在首末两点推杆的加速度有突变,故有柔性冲击而无刚性冲击。

2)正弦加速度运动规律 其推程时的的运动方程为

()()()0/0sin 2//2s h δδπδδπ=-???? ()001cos 2//v h ωπδδδ=-???? ()()22002sin 2//a h πωπδδδ=

回程时的运动方程为

()()()001/'sin 2/'/2s h δδπδδπ=-+???? ()00cos 2/'/'v h ωπδδδ=????

()()22002sin 2/'/a h πωπδδδ=-

由方程式画出的图易知既无刚性冲击也无柔性冲击。

除上述介绍的推杆常用的几种运动规律外,根据工作需要,还可以选择其他类型的运动规律,或者将几种运动规律组合使用,以改善推杆的运动和动力特性。

为了对凸轮进行优化设计,常常采用绘图软件先进行运动仿真,以了解其运动特性和其他的一些特性,本课题采用pro/e 软件进行运动仿真,下面就对pro/e 进行简要的介绍。

2.2 pro/e 简介

Pro/Engineer 操作软件是美国参数技术公司(PTC)旗下的CAD/CAM/CAE 一体化的三维软件。Pro/Engineer 软件以参数化著称,是参数化技术的最早应用者,在目前的三维造型软件领域中占有着重要地位,Pro/Engineer 作为当今世界机械CAD/CAE/CAM 领域的新标准而得到业界的认可和推广。是现今主流的CAD/CA 其它名称

Pro/Engineer 和WildFire 是PTC 官方使用的软件名称,但在中国用户所使用的名称中,并存着多个说法,比如ProE 、Pro/E 、破衣、野火、WildFire 等等都是指Pro/Engineer 软件,proe2001、proe2.0、proe3.0、proe4.0、proe5.0等等都是指软件的版本。

Pro/E 第一个提出了参数化设计的概念,并且采用了单一数据库来解决特征的相关性问题。另外,它采用模块化方式,用户可以根据自身的需要进行选择,而不必安装所有模块。Pro/E 的基于特征方式,能够将设计至生产全过程集成到一起,实现并行工程设计。它不但可以应用于工作站,而且也可以应用到单机上。

图2.4 Pro/E绘制示例图

Pro/E采用了模块方式,可以分别进行草图绘制、零件制作、装配设计、钣金设计、加工处理等,保证用户可以按照自己的需要进行选择使用。

1.参数化设计

相对于产品而言,我们可以把它看成几何模型,而无论多么复杂的几何模型,都可以分解成有限数量的构成特征,而每一种构成特征,都可以用有限的参数完全约束,这就是参数化的基本概念。

2.基于特征建模

Pro/E是基于特征的实体模型化系统,工程设计人员采用具有智能特性的基于特征的功能去生成模型,如腔、壳、倒角及圆角,您可以随意勾画草图,轻易改变模型。这一功能特性给工程设计者提供了在设计上从未有过的简易和灵活。

3.单一数据库(全相关)

Pro/Engineer是建立在统一基层上的数据库上,不象一些传统的CAD/CAM系统建立在多个数据库上。所谓单一数据库,就是工程中的资料全部来自一个库,使得每一个独立用户在为一件产品造型而工作,不管他是哪一个部门的。换言之,在整个设计过程的任何一处发生改动,亦可以前后反应在整个设计过程的相关环节上。例如,一旦工程详图有改变,NC(数控)工具路径也会自动更新;组装工程图如有任何变动,也完全同样反应在整个三维模型上。这种独特的数据结构与工程设计的完整的结合,使得一件产品的设计结合起来。这一优点,使得设计更优化,成品质量更高,产品能更好地推向市场,价格也更便宜。

软件版本

目前Pro/E最高版本为Pro/ENGINEER Wildfire 5.0(野火5.0)。但在目前的市场应用中,不同的公司还在使用着从Proe2001到WildFire5.0的各种版本,WildFire3.0和WildFire是目前的主流应用版本。Pro/Engineer软件系列都支持向下兼容但不支持向上兼容,也就是新的版本可以打开旧版本的文件,但旧版本默认是无法直接打开新版本文件。虽然PTC提供了相应的插件以实现旧版本打开新版本文件的功能,但在很多情况下支持并不理想容易造成软件的操作过程中直接跳出。

在Pro/Engineer软件版本中,除了使用类似proe2001、Wildfire、WildFire2.0、

WildFire3.0、WildFire4.0和WildFire5.0等主版本外在每一个主版本中还有日期代码的小版本区别,不同的日期代码代表主版本的发行日期顺序。通常每一个主版本中都会有C000、F000和Mxxx三个不同系列的日期代码,C000版代表的是测试版,F000是第一次正式版,而类似M010,M020...M200等属于成熟的正式发行版系列。M系列的版本可以打开C000和F000系列版本的文件,而C000版本则无法打开相同主版本的F000和Mxxx版本的Pro/Engineer文件,比如WildFire4.0 C000版本的Pro/Engineer将无法打开WildFire4.0 M060版本Pro/Engineer所创建的文件,但反过来则可M/CAE软件之一,特别是在国内产品设计领域占据重要位置。

第3章盘形凸轮创建过程

3.1 新建零件

打开新建对话框,在名称输入框中输入tulun,单击使用默认模版复选框中取消选中标志,单击确定按钮,打开新文件选项对话框,选择mmns_part_solid模版,建立单位为公制的新文件。

3.2.创建拉伸特征

单击右侧基础特征栏中拉伸工具按钮,在工作区下方操纵板栏中选择拉伸为实体和对称拉伸选项,单击草绘按钮,打开剖面对话框。选择基准平面top为草绘平面,接受系统默认的草绘方向和参照平面,单击剖面对话框中的草绘按钮,进入草绘模式。接受默认的尺寸,绘制草图,完成后单击草绘工具栏中的按钮,退出草绘模式。

在操纵板的深度值输入框中输入拉伸值5,单击操纵板中的确定按钮,退出草绘模式。

3.3 创建方程曲线

单击工作区右侧基准工具栏中的插入基准曲线按钮,在弹出的菜单管理器中选择从方程选项,单击完成选项,弹出曲线对话框和次级菜单,根据系统提示选择系统默认坐标系prt_csys_def。在下一级菜单中选择笛卡尔选项,弹出记事本定义曲线方程.

在记事本中输入如下方程。

h=10,a=80,x=40*t,y=5*t*t,z=0

单击记事本中文件-保存选项保存文本。单击记事本中菜单文件-退出选项退出记事本。然后单击曲线对话框中的确定按钮,生成曲线。

然后依次画出曲线,其方程如下。

h=10,a=80,x=40+40*t,y=10-5*(1-t)*(1-t),z=0

h=10,x=80+20*t,y=10,z=0

h=10,a=80,x=100+40*t,y=10-5*t*t,z=0

h=10,a=80,x=140+40*t,y=5*(1-t)*(1-t),z=0

由方程曲线知,凸轮的基圆半径为 Ra=40mm,升程角为 80°(其中 0~40°为等加速运动,40~80°为等减速运动) ,远休止角为20°,回程角为 80°(其中 100~140°为等加速运动,140~180°为等减速运动) ,从动件升程为h=10mm。曲线如图3.1所示。

图3.1 方程曲线

选择菜单文件-保存副本选项,在保存副本对话框中选择保存类型为iges格式,输入名称为tulun,单击确定按钮,在弹出的输出iges对话框中选中基准曲线和点复选框,单击曲面复选框中取消选中标志,单击确定按钮,完成iges文件输出。

在模型树中右击刚才创建的由方程得到的曲线特征,在弹出的菜单中选择隐藏选项。

3.4.创建图形特征

选择菜单插入-模型基准-图形选项,根据系统提示在消息输入框中输入图形名称cad,单击确定按钮,进入草绘模式。

在草绘模式中,在工作区左下角绘制一个坐标系,同时绘制一条水平,一条垂直的中心线通过此坐标系。

选择菜单草绘-数据来自文件选项,再打开对话框中选择刚才输出的tulun.igs文件,单击打开。关闭信息窗口,在缩放旋转对话框中输入比例1和角度0,拖动该曲线至适当位置,单击确定按钮。

删除伴随该曲线出现的坐标系,更改尺寸标志和尺寸值。如图3.2所示。

图3.2 草绘图形特征

3.5.创建可变剖面扫描特征

选择菜单插入-可变剖面扫描选项,在操纵板中选择扫描为实体选项,在工作区中选择扫描轨迹,单击草绘按钮,进入草绘模式,绘制剖面。

选择菜单工具-关系选项,此时,尺寸值立即变为尺寸编号sd#,在弹出关系对话框中输入关系式,单击确定按钮,单击草绘工具栏中确定按钮,退出草绘模式。

如图3.3所示

图3.3 可变剖面扫描实体

3.6创建孔特征

在凸轮基准圆的中心拉伸一个直径为5的孔。结果如图3.4所示。

图3.4 凸轮图

第4章其余零件设计

4.1从动杆设计

打开新建对话框,在名称输入框中输入congdonggan,单击适应默认模板复选框取消选中标志,单击确定按钮,打开新文件选项对话框。选择mmns_part_solid模板,建立单位为公制的新文件。

然后使用拉伸命令,绘制草图,完成后单击草绘工具栏中的确定按钮,退出草绘模式,然后单击操纵板中的确定按钮,生成所要特征。

结果如图4.1所示

图4.1 从动杆图

4.2连杆设计

草绘工具栏中的确定按钮,退出草绘模式,然后单击操纵板中的确定按钮,生成所要特征。打开新建对话框,在名称输入框中输入liangan,单击适应默认模板复选框取消选中标志,单击确定按钮,打开新文件选项对话框。选择mmns_part_solid模板,建立单位为公制的新文件。然后使用拉伸命令,绘制草图,完成后单击草绘工具栏中的确定按钮,退出草绘模式,结果如图4.2所示。

图4.2连杆图

4.3滑块设计

打开新建对话框,在名称输入框中输入huakuai,单击适应默认模板复选框取消选中标志,单击确定按钮,打开新文件选项对话框。选择mmns_part_solid模板,建立单位为公制的新文件。

然后使用拉伸命令,绘制草图,完成后单击草绘工具栏中的确定按钮,退出草绘模式,然后单击操纵板中的确定按钮,生成所要特征。

结果如图4.3所示

图4.3滑块图

第5章装配

选择系统菜单栏中的文件—新建命令,系统打开新建对话框,在对话框中选择组件单选按钮,然后制定文件名,系统默认扩展名为.asm。完成设置后单击确定按钮,系统将自动进入装配模式。

选择系统菜单栏中的插入—元件—装配命令,系统打开对话框,对话框显示当前工作目录下所有的零件及装配件,选取一个供装配使用的零件后,系统将在装配区显示该零件,并打开元件放置对话框。

在对话框中单击连接,在显示的连接对话框中选择机架的连接类型为刚性。选择固定。然后依次按照上述步骤依次连接上各零件,组装成凸轮机构。

结果如图所示

该凸轮机构为对心直动尖顶盘型凸轮机构。

这种凸轮机构中的盘型凸轮是一个绕固定轴转动并且具有变化向径的盘形零件,如内燃机配气机构中的凸轮。当其绕固定轴转动时,可推动从动件在垂直于凸轮转轴的平面内运动。它是凸轮的最基本型式,结构简单,应用最广。

而从动件是尖顶的,能够实现任意的运动规律,但尖端处易磨损,故只适应于速度较低和传力不大的场合。

但盘型凸轮的轮廓线能够使从动件先做等加速运动,再做等减速运动,再做匀速运动,再做等加速,再做等减速,再做匀速运动,因此可引起的冲击较小。装配图如图5.1所示。

图5.1 装配图

哈工大机械原理大作业 凸轮机构设计 题

H a r b i n I n s t i t u t e o f T e c h n o l o g y 机械原理大作业二 课程名称: 机械原理 设计题目: 凸轮机构设计 一.设计题目 设计直动从动件盘形凸轮机构, 1.运动规律(等加速等减速运动) 推程 0450≤≤? 推程 009045≤≤? 2.运动规律(等加速等减速运动) 回程 00200160≤≤? 回程 00240200≤≤? 三.推杆位移、速度、加速度线图及凸轮s d ds -φ 线图 采用VB 编程,其源程序及图像如下: 1.位移: Private Sub Command1_Click() Timer1.Enabled = True '开启计时器 End Sub Private Sub Timer1_Timer() Static i As Single

Dim s As Single, q As Single 'i作为静态变量,控制流程;s代表位移;q代表角度 Picture1.CurrentX = 0 Picture1.CurrentY = 0 i = i + 0.1 If i <= 45 Then q = i s = 240 * (q / 90) ^ 2 Picture1.PSet Step(q, -s), vbRed ElseIf i >= 45 And i <= 90 Then q = i s = 120 - 240 * ((90 - q) ^ 2) / (90 ^ 2) Picture1.PSet Step(q, -s), vbGreen ElseIf i >= 90 And i <= 150 Then q = i s = 120 Picture1.PSet Step(q, -s), vbBlack ElseIf i >= 150 And i <= 190 Then q = i s = 120 - 240 * (q - 150) ^ 2 / 6400 Picture1.PSet Step(q, -s), vbBlue ElseIf i >= 190 And i <= 230 Then

浅谈基于UG凸轮机构的运动仿真

浅谈基于UG凸轮机构的运动仿真 Xxx (xx大学 xx学院江苏xx xxxxx) 摘要:介绍如何利用UG软件来完成凸轮机构设计和运动仿真。应用UG 的表达式工具和规律曲线功能, 精确、快速地生成凸轮实体, 应用UG的运动仿真功能, 再现凸轮机构的运动过程, 检验机构的运动结果是否与设计相一致, 以保证设计的准确性。[1] 关键词: UG ;凸轮;机构;运动仿真;参数化 Discussion on the dynamic simulation of cam mechanism based on UG xxxxx (UGS College, Yancheng Institute of Technology, Yancheng, Jiangsu 224051) Abstract: This article introduces how fulfills the design of the cam mechanism and the motion simulation by UG software. Using the expression tool and the law curve of UG software, the cam entity can be produced precisely and fast. Using the motion simulation of UG software, the whole process of the cam mechanism can reappeared. Whether the result of the movement is consistent with the design can be examined. Key words: UG; Cam ;mechanism;Motion simulation;Parametric 0 引言 凸轮机构因具有结构简单、运动准确可靠等优点,在机械和自动控制系统中被广泛应用。凸轮机构设计的关键在于凸轮轮廓曲线的设计,通常的方法是根据从动件的运动规律,应用图解法或解析法来设计凸轮轮廓曲线。图解法直观、简便,但精度不高,解析法精确但计算繁杂,也不能满足现代设计的需要。UG 是大型的CAD/CAE/CAM 三维软件,可利用其建模模块的表达式工具和规律曲线等功能,结合解析法进行凸轮机构的三维设计,还可在运动仿真模块中进行运动仿真和运动分析。[2] 1 UG 运动仿真模块介绍 运动仿真模块是CAE应用软件,用于建立运动机构模型,分析其运功规律运动方针。运动仿真模块可以进行机构的干涉分析。跟踪零件的运动轨迹,分析机构中零件的速度、加速度、作

用ADAMS进行凸轮机构模拟仿真示例

例: 尖顶直动从动件盘形凸轮机构的凸轮基圆半径mm r 600 =,已知:从动件行程mm h 40=,推程运动角为 1500=δ,远休止角 60=s δ,回程运动角 1200='δ,近休止角为 30='s δ;从动件推程、回程分别采用余弦加速度和正弦加速度运动规律。对该凸轮机构进行模拟仿真。 解: 1. 从动件推程运动方程 推程段采用余弦加速度运动规律,故将已知条件mm h 406/51500 ===、。πδ代入余弦加速度运动 规律的推程段方程式中,推演得到 ???? ?????=≤≤=-=δωπδδωδ56cos 8.28)6/50( 56sin 24)56cos 1(202a v s 2. 从动件远休程运动方程 在远休程s δ段,即6/76/5πδπ ≤≤时, 0,0,===a v h s 。 3. 从动件回程运动方程 因回程段采用正弦加速度运动规律,将已知条件mm h v 403/21200===' 、πδ 代入正弦加速度运 动规律的回程段方程式中,推演得到 []???? ?????--=≤≤---=??????-+-?=)5.33sin(180)6/116/7( )5.33cos(160)5.33sin(212375.2402πδωππδππδωππδπδπa v s 4. 从动件近休程运动方程 在近休程s 'δ段,即πδπ 26/11≤≤时, 0,0,0===a v s 。 创建过程 1、 启动ADAMS 双击桌面上ADAMS/View 的快捷图标,打开ADAMS/View 。在欢迎对话框中选择“Create a new model ”,在模型名称(Model name )栏中输入:tuluen ;在重力名称(Gravity )栏中选择“Earth Normal (-Global Y)”;在单位名称(Units )栏中选择“MMKS –mm,kg,N,s,deg ”。如图1-1所示。 图1-1 欢迎对话框

VC++凸轮机构运动仿真编程示例

VC++凸轮机构运动仿真编程示例 一. 机构运动原理 1. 推杆从动件的运动规律(仅列出常用的四种运动规律) 表1-1 从动件的运动方程式 2. 偏置直动尖顶推杆盘形凸轮机构 如图所示,凸轮逆时针方向转动,导路偏置于凸轮转动中心A ,导路距转轴A 的垂直距离为偏距e 。以偏距e 为半径作的圆为偏距圆。当凸轮转动时,凸轮上的偏距圆也随之转动,但其始终与导路轴线相切。凸轮转动时不便求解其上的廓线方程,故采用反转法。反转法是建立在推杆与凸轮的相对运动与参考系无关这一原理上的。所谓反转法,即给整个机构一个与凸轮转向相反的角速度-ω1,则凸轮静止不动,而从动件随机架反转且沿凸轮廓线相对运动,导路的反转角?即凸轮的转角。如图所示,此时导路由B K 00转到BK 。由于AK B K 000⊥,AK BK ⊥,所以∠=K AK 0?,此时导路BK 与基圆和凸轮廓线的交点''B B 间的长度,即从动件 的位移s BB =''。由几何关系知??B K A B KA 00='',所以s 0=''=B K ) ( r e b 22 1 2 -。选取坐标

系xAy ,B 0点为凸轮廓线起始点。当凸轮转过?角,由反转法知此时从动件位于BK 。则B 点的坐标为 )()( X s s e Y s s e =++=+-?? ???00sin cos cos sin ?? ?? (1-1) 式(1-1)即为尖顶推杆凸轮廓线的方程式,也称为理论廓线方程。 3. 偏置直动滚子推杆盘形凸轮机构 大多数推杆在尖顶B 处装有滚子,以提高推杆的使用寿命。显然,只要使滚子中心B 沿理论廓线曲线上运动,即可保证推杆预期的运动规律。如图所示,此时凸轮的轮廓曲线不是理论廓线,而是处处与滚子相切的另一条曲线,这条曲线称为凸轮的实际廓线。因为实际廓线与理论廓线在法线方向的距离处处相等,且等于滚子半径r r ,故当已知廓线上任一点B )(x y ,时,只要沿理论廓线在该点法线方向取距离为r r ,即得实际廓线上的相应点)('''B x y ,。由此可见,理论廓线上作一系列滚子圆的包络线即实际廓线。因此实际廓线是理论廓线的等距曲线。该等距曲线有两条,即内等距曲线和外等距曲线。 盘状槽形凸轮的廓线即该两条等距曲线。由高等数学知识可求得理论廓线B 点处法线n -n 的斜率(与切线斜率互为负倒数)应为 ()() tan θ??=- =-d d d d d d x y x y (1-2) 式(1-2)中的dx/dy 与dy/dx 可根据式(1-1)求出,代入式(1-2)后有 ()()()()tan sin cos sin cos θ?? ?? = -+++--d d s e s s s s s e 00 (1-3) 式(8-10)中的θ角可在0360 ~变化,其值要根据分子、分母的正负号所决定的tan θ所在象限来计算。求出θ角后,可计算()'''B x y ,的坐标值:

第9章凸轮机构及其设计(有答案)

1.图示凸轮机构从动件推程运动线图是由哪两种常用的基本运动规律组合而成?并指出有无冲击。如果有冲击,哪些位置上有何种冲击?从动件运动形式为停-升-停。 (1) 由等速运动规律和等加速等减速运动规律组合而成。 (2) 有冲击。 (3) ABCD 处有柔性冲击。 2. 有一对心直动尖顶从动件盘形凸轮机构,为改善从动件尖端的磨损情况,将其尖端改为滚子,仍使用原来的凸轮,这时该凸轮机构中从动件的运动规律有无变化?简述理 由。 (1) 运动规律发生了变化。 (见下图 ) (2)采用尖顶从动件时,图示位置从动件的速度v O P 2111=ω,采用滚子从动件时,图示位置的速度 '='v O P 2111ω,由于O P O P v v 1111 22≠'≠',;故其运动规律发生改变。

3. 在图示的凸轮机构中,画出凸轮从图示位置转过60?时从动件的位置及从动件的位移s。 总分5分。(1)3 分;(2)2 分 (1) 找出转过60?的位置。 (2) 标出位移s。

4. 画出图示凸轮机构从动件升到最高时的位置,标出从动件行程h ,说明推程运动角和回程运动角的大小。 总分5分。(1)2 分;(2)1 分;(3)1 分;(4)1 分 (1) 从动件升到最高点位置如图示。 (2) 行程h 如图示。 (3)Φ=δ0-θ (4)Φ'=δ' 0+θ

5.图示直动尖顶从动件盘形凸轮机构,凸轮等角速转动,凸轮轮廓在推程运动角Φ=? 从动件行程h=30 mm,要求: (1)画出推程时从动件的位移线图s-?; (2)分析推程时有无冲击,发生在何处?是哪种冲击? - 总分10分。(1)6 分;(2)4 分 (1)因推程时凸轮轮廓是渐开线,其从动件速度为常数v=r0?ω,其位移为直线, 如图示。

proe运动仿真

proe5.0装配体运动仿真 基础与重定义主体 基础是在运动分析中被设定为不参与运动的主体。 创建新组件时,装配(或创建)的第一个元件自动成为基础。 元件使用约束连接(“元件放置”窗口中“放置”页面)与基础发生关系,则此元件也成为基础的一部份。 如果机构不能以预期的方式移动,或者因两个零件在同一主体中而不能创建连接,就可以使用“重定义主体”来确认主体之间的约束关系及删除某些约束。 进入“机构”模块后,“编辑”—>“重定义主体”进入主体重定义窗口,选定一个主体,将在窗口里显示这个主体所受到的约束(仅约束连接及“刚体”接头所用的约束)。可以选定一个约束,将其删除。如果删除所有约束,元件将被封装。、、 特殊连接:凸轮连接 凸轮连接,就是用凸轮的轮廓去控制从动件的运动规律。PROE里的凸轮连接,使用的是平面凸轮。但为了形象,创建凸轮后,都会让凸轮显示出一定的厚度(深度)。 凸轮连接只需要指定两个主体上的各一个(或一组)曲面或曲线就可以了。定义窗口里的“凸轮1”“凸轮2”分别是两个主体中任何一个,并非从动件就是“凸轮2”。 如果选择曲面,可将“自动选取”复选框勾上,这样,系统将自动把与所选曲面的邻接曲面选中,如果不用“自动选取”,需要选多个相邻面时要按住Ctrl。 如果选择曲线/边,“自动选取”是无效的。如果所选边是直边或基准曲线,则还要指定工作平面(即所定义的二维平面凸轮在哪一个平面上)。 凸轮一般是从动件沿凸轮件的表面运动,在PROE里定义凸轮时,还要确定运动的实际接触面。选取了曲面或曲线后,将会出线一个箭头,这个箭头指示出所选曲面或曲线的法向,箭头指向哪侧,也就是运动时接触点将在哪侧。如果系统指示出的方向与想定义的方向不同,可反向。 关于“启用升离”,打开这个选项,凸轮运转时,从动件可离开主动件,不使用此选项时,从动件始终与主动件接触。启用升离后才能定义“恢复系数”,即“启用升离”复选框下方的那个“e”。 因为是二维凸轮,只要确定了凸轮轮廓和工作平面,这个凸轮的形状与位置也就算定义完整了。为了形象,系统会给这个二维凸轮显示出一个厚度(即深度)。通常我们可不必去修改它,使用“自动”就可以了。也可自已定义这个显示深度,但对分析结果没有影响。 需要注意: A.所选曲面只能是单向弯曲曲面(如拉伸曲面),不能是多向弯曲曲面(如旋转出来的鼓形曲面)。 B.所选曲面或曲线中,可以有平面和直边,但应避免在两个主体上同时出现。 C.系统不会自动处理曲面(曲线)中的尖角/拐点/不连续,如果存在这样的问题,应在定义凸轮前适当处理。

哈工大机械原理大作业凸轮机构第四题

Harbin Institute of Technology 机械原理大作业二 课程名称:机械原理 设计题目:凸轮机构设计 姓名:李清蔚 学号:1140810304 班级:1408103 指导教师:林琳

一.设计题目 设计直动从动件盘形凸轮机构,其原始参数见表 1 表一:凸轮机构原始参数 升程(mm ) 升程 运动 角(o) 升程 运动 规律 升程 许用 压力 角(o) 回程 运动 角(o) 回程 运动 规律 回程 许用 压力 角(o) 远休 止角 (o) 近休 止角 (o) 40 90 等加 等减 速30 50 4-5-6- 7多 项式 60 100 120

二.凸轮推杆运动规律 (1)推程运动规律(等加速等减速运动) 推程F0=90° ①位移方程如下: ②速度方程如下: ③加速度方程如下: (2)回程运动规律(4-5-6-7多项式) 回程0 0240 190≤ ≤?,F0=90°,F s=100°,F0’=50°其中回程过程的位移方程,速度方程,加速度方程如下:

三.运动线图及凸轮s d ds -φ 线图 本题目采用Matlab 编程,写出凸轮每一段的运动方程,运用Matlab 模拟将凸轮的运动曲线以及凸轮形状表现出来。代码见报告的结尾。 1、程序流程框图 开始 输入凸轮推程回程的运动方程 输入凸轮基圆偏距等基本参数 输出ds,dv,da 图像 输出压力角、曲率半径图像 输出凸轮的构件形状 结束

2、运动规律ds图像如下: 速度规律dv图像如下: 加速度da规律如下图:

3.凸轮的基圆半径和偏距 以ds/dfψ-s图为基础,可分别作出三条限制线(推程许用压力角的切界限D t d t,回程许用压力角的限制线D t'd t',起始点压力角许用线B0d''),以这三条线可确定最小基圆半径及所对应的偏距e,在其下方选择一合适点,即可满足压力角的限制条件。 得图如下:得最小基圆对应的坐标位置O点坐标大约为(13,-50)经计算取偏距e=13mm,r0=51.67mm.

如何用solidworks2016进行凸轮的运动仿真分析

如何用Solidworks2016进行凸轮的运动分析 李犹胜(上海200000) 0、摘要 凸轮机构是机械设计中常用的结构,它的运动仿真模拟是凸轮设计过程中不可缺少的步骤。很多专业人士都对其做了研究,但是过程趋于复杂。较多的年轻工程师很难理解,本文通过一个简单的例子通过SolidWorks2016软件来说明凸轮机构仿真模拟的方法和步骤,浅显易懂。 1、关键词 凸轮机构、运动仿真、运动分析 2、概述 凸轮机构一般是由凸轮、从动件和机架三个构件组成的高副机构。凸轮通常作连续等速转动,从动件根据使用要求设计使它获得一定规律的运动。凸轮机构能实现复杂的运动要求,广泛用于各种自动化和半自动化机械装置中,几乎所有任意动作均可经由此一机构产生[1]。在设计凸轮机构时,凸轮机构的模拟运动分析将是一项必要而不可缺少的工作。它也是进行凸轮外形设计的辅助手段。 本文介绍了使用solidworks2016软件进行凸轮运动分析的基本步骤和使用技巧。 3、零件建模及装配 3.1、先用solidworks2016 将凸轮机构的零件建 模好,作为本文的一个例子,作者建立了下列零 件数模。 3.2 将上述零件导入到solidworks 2016装配体中, 具体操作为:步骤1、文件、新建、选择装配图模板,进入装配体模式 步骤2、导入凸轮轴 (1)选择插入部件 (2)在插入零部件窗口中选择“浏览”按钮。 (3)选择要插入的文件,按“打开”按钮; (4)将图形放在屏幕的任意位置,将其固定(如图2)。

步骤3、导入“凸轮” (1)重复按照步骤2的方法,将凸轮导入到装配体中。 (2)添加“同心”约束,添加后如图(3)添加“距离”约束添加后的结果如下 步骤4 、导入“滚轮” (1)重复按照步骤2的方法,将滚轮导入到装配体中。 (2)添加一个“机械约束”中的“凸轮配合”约束

第九章凸轮机构及其设计

第九章凸轮机构及其设计 第一节凸轮机构的应用、特点及分类 1.凸轮机构的应用 在各种机械,特别是自动机械和自动控制装置中,广泛地应用着各种形式的凸轮机构。 例1内燃机的配气机构 当凸轮回转时,其轮廓将迫使推杆作往复摆动,从而使气阀开启或关闭(关闭是借弹簧的作用),以控制可燃物质在适当的时间进入气缸或排出废气。至于气阀开启和关闭时间的长短及其速度和加速度的变化规律,则取决于凸轮轮廓曲线的形状。 例2自动机床的进刀机构 当具有凹槽的圆柱凸轮回转时,其凹槽的侧面通过嵌于凹槽中的滚子迫使推杆绕其轴作往复摆动,从而控制刀架的进刀和退刀运动。至于进刀和退刀的运动规律如何,则决定于凹槽曲线的形状。 2.凸轮机构及其特点 (1)凸轮机构的组成 凸轮是一个具有曲线轮廓或凹槽的构件。凸轮通常作等速转动,但也有作往复摆动或移动的。推杆是被凸轮直接推动的构件。因为在凸轮机构中推杆多是从动件,故又常称其为从动件。凸轮机构就是由凸轮、推杆和机架三个主要构件所组成的高副机构。 (2)凸轮机构的特点

1)优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。 2)缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。 3.凸轮机构的分类 凸轮机构的类型很多,常就凸轮和推杆的形状及其运动形式的不同来分类。 (1)按凸轮的形状分 1)盘形凸轮(移动凸轮) 2)圆柱凸轮 盘形凸轮是一个具有变化向径的盘形构件绕固定轴线回转。移动 凸轮可看作是转轴在无穷远处的盘形凸轮的一部分,它作往复直线移动。圆柱凸轮是一个在圆柱面上开有曲线凹槽,或是在圆柱端面上作 出曲线轮廓的构件,它可看作是将移动凸轮卷于圆柱体上形成的。盘形凸轮机构和移动凸轮机构为平面凸轮机构,而圆柱凸轮机构是一种 空间凸轮机构。盘形凸轮机构的结构比较简单,应用也最广泛,但其推杆的行程不能太大,否则将使凸轮的尺寸过大。 (2)按推杆的形状分 1)尖顶推杆。这种推杆的构造最简单,但易磨损,所以只适用于作用力不大和速度较低的场合(如用于仪表等机构中)。 2)滚子推杆。滚子推杆由于滚子与凸轮轮廓之间为滚动摩擦,所以磨损较小,故可用来传递较大的动力,因而应用较广。

PROE绘制凸轮的基本方程

PROE绘制凸轮的基本方程 h number=20 "Enter h:" rb number=50 "Enter rb:" rr number=10 "Enter the roller radius:" r0 number=12.5 "Enter the cam hole radius:" width number=30 "Enter the cam width:" fai1 number=60 "Enter fai1:" fai2 number=120 "Enter fai2:" fai3 number=60 "Enter fai3:" fai4 number=120 "Enter fai4:" a1=0 /*起始角,角度,单位为degree b1=fai1/2 /*终止角,角度,单位为degree fai=a1*(1-t)+b1*t /*中间角变量,角度,单位为degree s1=2*h*fai*fai/(fai1*fai1) /*升程变量,长度,单位为mm x=(rb+s1)*sin(fai) /*理论轮廓曲线x坐标值,长度,单位为mm y=(rb+s1)*cos(fai) /*理论轮廓曲线y坐标值,长度,单位为mm a2=fai1/2 /*起始角,角度,单位为degree b2=fai1 /*终止角,角度,单位为degree fai=a2*(1-t)+b2*t /*中间角变量,角度,单位为degree je=fai1-fai /*中间角变量,角度,单位为degree s2=h-2*h*je*je/(fai1*fai1) /*升程变量,长度,单位为mm x=(rb+s2)*sin(fai) /*理论轮廓曲线x坐标值,长度,单位为mm y=(rb+s2)*cos(fai) /*理论轮廓曲线y坐标值,长度,单位为mm

机械原理大作业3凸轮结构设计说明

机械原理大作业(二) 作业名称:机械原理 设计题目:凸轮机构设计 院系:机电工程学院 班级: 设计者: 学号: 指导教师:丁刚明 设计时间: 工业大学机械设计

1.设计题目 如图所示直动从动件盘形凸轮机构,根据其原始参数设计该凸轮。 表一:凸轮机构原始参数 序号升程(mm) 升程运动 角(o)升程运动 规律 升程许用 压力角 (o) 回程运动 角(o) 回程运动 规律 回程许用 压力角 (o) 远休止角 (o) 近休止角 (o) 12 80 150 正弦加速 度30 100 正弦加速 度 60 60 50 2.凸轮推杆运动规律 (1)推杆升程运动方程 S=h[φ/Φ0-sin(2πφ/Φ0)]

V=hω1/Φ0[1-cos(2πφ/Φ0)] a=2πhω12sin(2πφ/Φ0)/Φ02 式中: h=150,Φ0=5π/6,0<=φ<=Φ0,ω1=1(为方便计算) (2)推杆回程运动方程 S=h[1-T/Φ1+sin(2πT/Φ1)/2π] V= -hω1/Φ1[1-cos(2πT/Φ1)] a= -2πhω12sin(2πT/Φ1)/Φ12 式中: h=150,Φ1=5π/9,7π/6<=φ<=31π/18,T=φ-7π/6 3.运动线图及凸轮线图 运动线图: 用Matlab编程所得源程序如下: t=0:pi/500:2*pi; w1=1;h=150; leng=length(t); for m=1:leng; if t(m)<=5*pi/6 S(m) = h*(t(m)/(5*pi/6)-sin(2*pi*t(m)/(5*pi/6))/(2*pi)); v(m)=h*w1*(1-cos(2*pi*t(m)/(5*pi/6)))/(5*pi/6); a(m)=2*h*w1*w1*sin(2*pi*t(m)/(5*pi/6))/((5*pi/6)*(5*pi/6)); % 求退程位移,速度,加速度 elseif t(m)<=7*pi/6 S(m)=h; v(m)=0; a(m)=0; % 求远休止位移,速度,加速度 elseif t(m)<=31*pi/18 T(m)=t(m)-21*pi/18; S(m)=h*(1-T(m)/(5*pi/9)+sin(2*pi*T(m)/(5*pi/9))/(2*pi)); v(m)=-h/(5*pi/9)*(1-cos(2*pi*T(m)/(5*pi/9))); a(m)=-2*pi*h/(5*pi/9)^2*sin(2*pi*T(m)/(5*pi/9)); % 求回程位移,速度,加速度

哈工大机械原理大作业_凸轮机构设计(第3题)

机械原理大作业二 课程名称:机械原理 设计题目:凸轮设计 院系:机电学院 班级: 1208103 完成者: xxxxxxx 学号: 11208103xx 指导教师:林琳 设计时间: 2014.5.2

工业大学 凸轮设计 一、设计题目 如图所示直动从动件盘形凸轮,其原始参数见表,据此设计该凸轮。 二、凸轮推杆升程、回程运动方程及其线图 1 、凸轮推杆升程运动方程(6 50π?≤≤) 升程采用正弦加速度运动规律,故将已知条件mm h 50=,650π= Φ带入正弦加速度运动规律的升程段方程式中得: ????? ???? ??-=512sin 215650?ππ?S ;

?? ??????? ??-=512cos 1601ππωv ; ?? ? ??=512sin 1442 1?πωa ; 2、凸轮推杆推程远休止角运动方程( π?π≤≤6 5) mm h s 50==; 0==a v ; 3、凸轮推杆回程运动方程(914π?π≤≤) 回程采用余弦加速度运动规律,故将已知条件mm h 50=,95' 0π= Φ,6s π =Φ带入余弦加速度运动规律的回程段方程式中得: ?? ????-+=)(59cos 125π?s ; ()π?ω--=5 9sin 451v ; ()π?ω-=5 9cos 81-a 21; 4、凸轮推杆回程近休止角运动方程(π?π29 14≤≤) 0===a v s ; 5、凸轮推杆位移、速度、加速度线图 根据以上所列的运动方程,利用matlab 绘制出位移、速度、加速度线图。 ①位移线图 编程如下: %用t 代替转角 t=0:0.01:5*pi/6; s=50*((6*t)/(5*pi)-1/(2*pi)*sin(12*t/5)); hold on plot(t,s); t=5*pi/6:0.01:pi; s=50; hold on plot(t,s); t=pi:0.01:14*pi/9; s=25*(1+cos(9*(t-pi)/5));

凸轮运动Matlab仿真-Matlab课程设计

Matlab 课程设计 李俊机自091 设计题目一:凸轮机构设计 已知轮廓为圆形的凸轮(圆的半径为100mm、偏心距为20mm),推杆与凸轮运动中心的距离20mm,滚子半径为10mm,请利用matlab仿真出凸轮推杆的运动轨迹和运动特性(速度,加速度),并利用动画演示出相关轨迹和运动特性。 %总程序代码 clc; clf; clear; p=figure('position',[100 100 1200 600]); for i=1:360 %画圆形凸轮 R=100; %圆形凸轮半径 A=0:0.006:2*pi; B=i*pi/180; e=20; %偏心距 a=e*cos(B);

b=e*sin(B); x=R*cos(A)+a; y=R*sin(A)+b; subplot(1,2,1) plot(x,y,'b','LineWidth',3); %填充 fill(x,y,'y') axis([-R-e,R+e,-R-e,R+e+100]); set(gca,'Xlim',[-R-e,R+e]) set(gca,'Ylim',[-R-e,R+e+100]) axis equal; axis manual; axis off; hold on; plot(a,b,'og') plot(e,0,'or') plot(0,0,'or','LineWidth',3)

%画滚子 gcx=0; %滚子中心X坐标r=10; %滚子半径 gcy=sqrt((R+r)^2-a^2)+b; %滚子中心Y坐标 gx=r*cos(A)+gcx; %滚子X坐标 gy=r*sin(A)+gcy; %滚子Y坐标 plot(gx,gy,'b','LineWidth',2); %画其它部分 plot([0 a],[0 b],'k','LineWidth',4) plot([3 3],[170 190],'m','LineWidth',4) plot([-3 -3],[170 190],'m','LineWidth',4) %画顶杆 gc=120; dgx=[0 0]; dgy=[gcy gcy+gc]; plot(dgx,dgy,'LineWidth',4); hold off

机械原理 凸轮机构及其设计

第六讲凸轮机构及其设计 (一)凸轮机构的应用和分类 一、凸轮机构 1.组成:凸轮,推杆,机架。 2.优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。 二、凸轮机构的分类 1.按凸轮的形状分:盘形凸轮圆柱凸轮 2.按推杆的形状分 尖顶推杆:结构简单,能与复杂的凸轮轮廓保持接触,实现任意预期运动。易遭磨损,只适用于作用力不大和速度较低的场合 滚子推杆:滚动摩擦力小,承载力大,可用于传递较大的动力。不能与凹槽的凸轮轮廓时时处处保持接触。 平底推杆:不考虑摩擦时,凸轮对推杆的作用力与从动件平底垂直,受力平稳;易形成油膜,润滑好;效率高。不能与凹槽的凸轮轮廓时时处处保持接触。 3.按从动件的运动形式分(1)往复直线运动:直动推杆,又有对心和偏心式两种。(2)往复摆动运动:摆动推杆,也有对心和偏心式两种。 4.根据凸轮与推杆接触方法不同分: (1)力封闭的凸轮机构:通过其它外力(如重力,弹性力)使推杆始终与凸轮保持接触,(2)几何形状封闭的凸轮机构:利用凸轮或推杆的特殊几何结构使凸轮与推杆始终保持接触。①等宽凸轮机构②等径凸轮机构③共轭凸轮 (二)推杆的运动规律 一、基本名词:以凸轮的回转轴心O为圆心,以凸轮的最小半径r0为半径所作的圆称为凸轮的基圆,r0称为基圆半径。推程:当凸轮以角速度转动时,推杆被推到距凸轮转动中心最远的位置的过程称为推程。推杆上升的最大距离称为推杆的行程,相应的凸轮转角称为推程运动角。回程:推杆由最远位置回到起始位置的过程称为回程,对应的凸轮转角称为回程运动角。休止:推杆处于静止不动的阶段。推杆在最远处静止不动,对应的凸轮转角称为远休止角;推杆在最近处静止不动,对应的凸轮转角称为近休止角 二、推杆常用的运动规律 1.刚性冲击:推杆在运动开始和终止时,速度突变,加速度在理论上将出现瞬时的无穷大值,致使推杆产生非常大的惯性力,因而使凸轮受到极大冲击,这种冲击叫刚性冲击。 2.柔性冲击:加速度有突变,因而推杆的惯性力也将有突变,不过这一突变为有限值,因而引起有限

基于Proe与Adams凸轮机构虚拟样机仿真分析研究-2

基于Pro/E和Adams的凸轮机构虚拟样机仿真分析研究 张悦刊1,肖林京1,杨俊茹1,李瑞川2 (1.山东科技大学机电学院,山东青岛266590;2.山东五征集团,山东日照262306) 摘要:构建了虚拟样机系统框架,通过Pro/E软件建立了凸轮机构的虚拟样机数字化模型,导入Adams进行模拟仿真分析,将仿真结果数据读入到matlab进行处理,结果完全一致。基于Pro/E和Adams的虚拟样机仿真方法及仿真结构为凸轮的优化设计提供了可靠依据。 关键词:Pro/E,Adams,凸轮,虚拟样机 1引言 虚拟样机技术已经逐渐成为复杂产品开发的重要手段,它提供了虚拟化产品的开发模式,能够很好地解决由于物理样机开发模式带来的种种弊端[1]。本文用Pro/E软件对凸轮机构进行三维建模,用Adams 软件对凸轮机构进行了动力学仿真分析,得到了凸轮机构的位移、速度、加速度、接触力等曲线,为凸轮机构优化设计提供了理论指导。 Adams[2]是世界上著名的以计算多体系统动力学仿真软件,但是对于复杂模型,比较专业的CAD软件来说,其建模能力就明显不足。众所周知,Proe/E的建模能力十分强大,通过与Adams的数据接口,能够方便地将Proe/E模型转换到ADAMS中,从而实现两者之间的数据传输,进行联合仿真,充分发挥两个软件的专长,实现机械产品的高效仿真。 2 凸轮机构虚拟样机系统 图1虚拟样机系统结构框图 为了实现虚拟样机的功能要求,构建如图1所示的虚拟样机系统。该系统是在三维数字化建模平台上,由静力学仿真、动力学仿真、运动学仿真三大模块组成。本文采用Proe/Engineering Wildfire5.0 [3]软件对凸轮机构进行三维建模,然后导入ADAMS,通过对构件编辑材料属性,添加约束,施加驱动和载荷,对凸轮机构进行动力学仿真分析,对产品开发中的结构进行验证,同时发现缺陷,避免设计中存在的失误。 凸轮机构的装配模型可以看作由凸轮、滚子、导轨、推杆等零部件组成。装配后的三维数字模型如图2所示。

凸轮机构的运动学仿真实验_02

机构与零部件设计(Ⅰ)实验报告姓名 凸轮机构运动学仿真班号 成绩 凸轮机构的运动学仿真 一、实验目的: 1.理解凸轮轮廓线与从动件运动之间的相互关系,巩固凸轮机构设计及运动分析的理论知识。 2.用虚拟样机技术模拟仿真凸轮机构的设计。 二、实验内容: 1.凸轮轮廓线的构建; 2.凸轮机构的三维建模; 3.凸轮机构的运动学仿真。 具体要求:设计对心直动滚子从动件凸轮机构 已知从动件的运动规律为:当凸轮转过Φ=600时,从动件以等加速等减速运动规律上升h=10mm;凸轮再转过Φ'=1200,从动件停止不动;当凸轮再转过Φ=600时,从动件以等加速等减速运动规律下降h=10mm;其余Φs'=1200,从动件静止不动。 已知基圆r b=50mm,滚子半径r=10mm,凸轮厚度10mm。凸轮以等角速度顺时针转动,试设计凸轮机构,并输出从动件运动规律。 实验步骤:

三、实验报告: 将所建立的凸轮廓线、凸轮机构的三维模型、凸轮机构的从运件运动规律附在实验报告中。 机构与零部件设计(Ⅰ)实验报告 凸轮机构运动学仿真

对设计结果进行分析 思考题: 1.在构建凸轮轮廓线的曲线应注意哪些事项?在建立凸轮机构的三维建模时又应注意哪些事项? 建凸轮轮廓曲线时首先该凸轮轮廓曲线分为四段推程阶段(等加速、等减速)、远休止阶段、回程阶段、近休止阶段。建立表达式时较复杂,例如要将上诉规律分为六小段,即b1=30,b2=60,b3=180,b4=210,b5=240,b6=360且a1=0,a2=b1,a3=b2,a4=b3,a5=b4,a6=b5(单位皆为度)。 另知 在最后插入曲线时要将输入的x1、y1等相互对应,且将Z 值变为0. 还要根据设计任务的要求选择凸轮的类型和从动件运动规律 确定凸轮的基圆半径,确定凸轮的轮廓 在建立三维模型,表达式的建立时,要注意参数化曲线的建立以及连杆,运动副的定义,特别注意高副的定义。 2.凸轮轮廓线与从动件运动规律之间有什么内在联系? 答:凸轮轮廓曲线由从动件的运动规律来决定,要根据从动件的运动规律来设计凸轮轮廓的曲线。 ? ?cos )(sin )(s r y s r x b B b B +=+=

参数化圆柱凸轮的proe做法

4.1 参数化设计原理 采用Pro/ENGINEER 进行参数化设计,所谓参数化设计就是用数学运算方式建立模型各尺寸参数间的关系式,使之成为可任意调整的参数。当改变某个尺寸参数值时,将自动改变所有与它相关的尺寸,实现了通过调整参数来修改和控制零件几何形状的功能。采用参数化造型的优点在于它彻底克服了自由建模的无约束状态,几何形状均以尺寸参数的形式被有效的控制,再需要修改零件形状的时候,只需要修改与该形状相关的尺寸参数值,零件的形状会根据尺寸的变化自动进行相应的改变 【17】 。参数化设计不同于传统的设计, 它储存了设计的整个过程,能设计出一族而非单一的形状和功能上具有相似性的产品模型。参数化为产品模型的可变性、可重用性、并行设计等提供了手段,使用户可以利用以前的模型方便地重建模型,并可以在遵循原设计意图的情况下方便地改动模型,生成系列产品 【18】 。 4.2 建立滚轮中心轨迹曲线方程 圆柱凸轮最小外径为: min 2m D r B =?+ (37) 由式(37)、(7)、(31)得:

4 1m in 4 1 4100095.161080003224tan cos 100095.1610800032tan cos 2000 95.1610380002tan cos m h Ft h D r B h Ft h h Ft h D D ρα α ραα α α ---????+ ? ??=?+=? + ????+ ? ??= + ????+ ? ??= + (38) 圆柱周长L 4 200095.1610380002tan cos h Ft h D D L D ππαα-??????+ ? ??? ?==+ ? ??? (39) 单个滚轮中心轨迹按周长展开,如图10所示: 图10 单个滚轮中心轨迹按周长展开

!凸轮机构设计及应用-知识扩展

凸轮机构的发展应用 凸轮机构的应用 自动机床进刀机构的应用(结构原理、实际机械) 圆珠笔生产线、绕线机排线等速运动凸轮机构、圆柱凸轮送料机构 圆柱凸轮间歇分度机构、蜗杆凸轮间歇分度机构 转动-转动凸轮间歇机构(应用:PU-心軸型凸轮分度器) 凸轮间歇分度器、圆柱凸轮电风扇摇头机构、 实现点的轨迹(双凸轮组合机构) 凸轮连杆组合:凸轮-连杆机构1、凸轮-连杆机构2、凸轮-连杆机构3 工业应用(需剪部分视频拆分)、相位可调凸轮机构 平底从动件顶杆式力封闭型配气凸轮机构、V型双缸发动机配气机构 BMW S1000 RR 配气凸轮机构 发动机配气机构的应用 1. 摩托车发动机配气机构 1)CB系列顶置式配气机构 顶置式配气机构如图6所示,O1为曲轴回转中心,O2为凸轮回转中心,两者由链传动连接,其传动比为i12=0.5。 (a)配气凸轮机构 (b) 摇臂 CB系列顶置式配气机构 CB系列顶置式配气机构设计分析 设计最终归结为气门位移的配气定时,如图7所示。

气门位移的配气定时 排气提前角1α=55.284°,进气提前角2α=29.674°,排气迟闭角 3α=45.716°,进气迟闭角4α=46.326°,而气门重叠角2α+3α=75.39°。调整正 时角β和桃尖角γ,可改配气定时,后面谈到的可变气门正时技术,即是按此方式进行。 对用于摩托车的高速发动机,为追求高转速时的大功率,应具有较大的气门重叠角。观察下述仿真分析软件知: CG 配气定时仿真分析 2) CG 系列下置式配气机构 下置式配气机构如图8所示,O q 为曲轴回转中心,O ’为凸轮回转中心,两者由一对齿轮传动连接,其传动比为i =0.5。凸轮驱动下摇臂,推动顶杆,由上摇臂实现对气门的打开与关闭。 图8 CG 系列下置式配气机构 下置式配气机构对配气定时的要求与顶置式配气机构相同。 CG 系列顶置式配气机构设计分析 CG 配气定时仿真分析

基于Adams的凸轮机构运动仿真教程

基于adams的凸轮机构运动仿真 摘要:虚拟样机技术是一种崭新的产品开发技术,其中ADAMS软件是目前最著名的虚拟样机分析软件之一。本文阐述了虚拟样机技术和ADAMS软件的特点及其应用,以凸轮机构为研究对象,对其进行动力学分析。主要运用我们学习过的机械原理等理论知识对机构进行运动学和动力学的相关理论计算;利用ADAMS软件在图形显示方面的优势,采用其基本模块ADAMS/View(界面模块)进行一系列建模、运动分析和动态模拟仿真工作,验证模型的正确性,并对机构在整个周期内的可行性进行计算分析,记录相应信息,输出所需要的位置、速度、加速度等曲线与理论结果比较,充分展现虚拟样机技术的优越性,为虚拟样机技术的深入研究打下基础。 关键词:ADAMS;凸轮机构;运动学分析;仿真 引言 凸轮机构的应用十分广泛,在生产机械中应用凸轮机构可以较容易的实现不同的工作要求。特别是实现间歇式的运动过程!但是,目前对于该类模型的动态仿真很少。本例主要就推程、回程等要求进行预设。力图通过adams实现对该凸轮机构的构建以及后续的仿真,并尝试进行一定的机构优化。 1.研究内容 这里,我主要研究内容为理论凸轮设计在adams中的设计及其动态仿真。后续,根据输出的相应的速度、加速度曲线等将进行一定的设计优化。力图真实还原凸轮机构在设计中的真实过程。 2.工作原理 凸轮机构是由凸轮,从动件和机架三个基本构件组成的高副机构。凸轮是一个具有曲线轮廓或凹槽的构件,一般为主动件,作等速回转运动或往复直线运动。通过对凸轮轮廓进行不同的设计,可以实现从动件不同形式的运动。以此来满足机械设计中对于运动的精细控制过程。 3.动力学建模 (1)建模前期准备 情景设想:某公司需要设计一凸轮机构实现对物料的间歇夹紧过程。其给出相应数据如下。 注:其他的暂 不作要求。 (2)设计

凸轮机构设计及运动分析

凸轮机构设计及运动分析 问题描述: 如图1所示为以对心直动尖顶盘形凸轮机构。从动杆位移s随时间变化曲线如图2所示。要求设计凸轮机构并分析从动件速度v,加速度a随时间变化的规律,及应力、应变随时间变化的规律。 任务与要求 1.设计满图2运动规律的凸轮机构;(要有设计计算步骤) 2.对所设计的机构运用ansys软件分析从动件速度、加速度随时间变化的规律; 3.查阅资料、了解所给机构的在生产、生活中的应用,说明其工作原理,并附相应的图片或视频。 凸轮机构设计及运动分析指导书

一、设计的目的 通过设计,训练学生机构设计的能力,掌握运用ANSYS Workbench进行瞬态动力学分析的方法、步骤和过程,提高学生解决实际问题的能力。 二、设计报告的主要要求 设计报告包括设计报告书Word文档和Powerpoint演示文稿两部分。 1.设计报告书内容包括目录、任务书、正文、参考文献、组员工作内容表。 (1)文档格式严格遵守设计书文档规范要求。 (2)目录必须层次清楚,并标有页码数。 (3)正文按章节编写,按照任务书要求合理安排内容,并附有参考文献。 2.Powerpoint演示文稿要求内容简洁,重点突出。 三、人员要求:1人 四、时间安排 1.布置任务、准备、查阅资料:2天; 2.机构设计及动画:6天; 3.Ansys分析:6天; 4.编写报告书、Powerpint演示文稿、验收:2天。 5.答辩。 五、成绩形成: 设计报告书:50分;答辩:50分 组内成员按实际完成工作量评定每位学生最终成绩;不参加答辩的学生没有答辩成绩。 六、参考资料:机械原理的平面机构,ansys机械工程应用精华59例

相关文档
最新文档