生物技术制药重点

生物技术制药重点
生物技术制药重点

重点(单选10个,名词解释4个,简单3个,论述2个。)

1.生物技术制药飞速发展的30年

20世纪70年代中期生物时代(重组DNA、DNA的合成、DNA和蛋白质的微量测序技术、重组蛋白、单克隆抗体人胰岛素)

20世纪80年代中期技术平台时代(新平台:高通量筛选、组合化学、胚胎干细胞技术,药物的探索性研究、治疗的新模式:反义药物、基因治疗以及在治疗中添加使用重组蛋白、胰岛素、干扰素、EPO、细胞集落刺激因子(CSF)、人生长激素等)

20世纪90年代中期基因组时代(新技术:基因组、高通量的测序、基因芯片、生物信息、生物能源、生物光电、生物传感器、蛋白质组学和功能基因组学等

制药工程,新药研发)

2006年后基因组时代

2.质粒三要素、基因工程制药流程、蛋白质纯化技术

质粒载体的三个要素

(1)复制子: 又称复制起始区

(2)选择标记:用于筛选鉴定

(3) 多克隆位点: 限制性内切酶识别序列

基因工程制药流程:

1.目的基因的制备

2.载体

3.载体与目的基因的连接

4.重组DNA导入宿主细胞

5.重组子的筛选和鉴定

6.细胞表达系统的选择

7.基因重组蛋白的分离和纯化

基因重组蛋白的主要纯化技术

1. 离子交换层析

利用蛋白质等电点的差异,通过带电的溶质分子与离子交换剂中可以交换的离子进行交换离子交换剂

阴离子交换剂、阳离子交换剂、两性离子交换剂、选择性离子交换剂

影响因素

盐离子浓度、离子大小、洗脱梯度与流速

2. 亲和层析

利用固定化配基于目的蛋白之间特异的生物亲和力进行吸附

?酶与激活剂/受体/底物

?抗体与抗原

?受体与激素/配体

?蛋白质与DNA/RNA结合域

亲和层析步骤:

?配基固定化

?亲和吸附

?洗涤

?洗脱解离

?再生

3.凝胶过滤

4.反相层析和疏水层析

?反相层析:有机溶液洗脱,蛋白质可能变性

?疏水层析:盐溶液洗脱

3.动物细胞培养常用溶液、培养基、生产用动物细胞

动物细胞培养基是维持动物组织及细胞在体外生存、生长的基本的营养物质。

1.天然培养基:直接采用取自动物体液或组织中提取的成分作培养液,如乳蛋白水解物、酪蛋白水解物、血清、血浆及胚胎浸出液等(维持液:含低浓度或不含小牛血清 /生长液:含5%~20%小牛血清 )

2.合成培养基:化学成分主要为氨基酸、碳水化合物、蛋白质、核酸类物质、维生素、辅酶、激素、生长因子、微量元素及缓冲剂等。

(Eagle培养基含有13种氨基酸、9种维生素、6种无机盐及葡萄糖;

199培养基含21种氨基酸、17种维生素、7种无机盐、4种嘌呤、2种嘧啶、谷胱甘肽、ATP、胆固醇、吐温-80、脱氧核糖、核糖、葡萄糖及醋酸钠。 )

3.血清培养基:不需要添加血清就可以维持细胞在体外较长时间生长繁殖的合成培养基无血清培养基:在培养基中增加某些适于细胞生长的成分,如纤连蛋白、转铁蛋白、胰岛素、表皮生长因子等

3.无血清培养基(serum—free medium)

第一代不含有血清,但含有大量的动物或植物蛋白

第二代完全不用动物来源的蛋白质,蛋白质含量很低

(少于100g/ml),使重组蛋白的纯化简单

第三代完全不含有蛋白质或含量极低,没有任何动物、

人类蛋白或多肽

新一代无血清、无蛋白质、无动物来源、成分确定

动物细胞培养常用的其他溶液

1.平衡盐溶液

2.培养基pH调整液

3.细胞消化液

4.抗生素溶液

1.平衡盐溶液

生理盐水葡萄糖

维持细胞渗透压、调控培养液酸碱度平衡

酚红指示剂 pH 黄/紫红

Hanks液缓冲能力弱

Earle液缓冲能力强

2.培养基pH调整液

合成培养液微酸性,需调整pH

单独配制,单独灭菌,待灭菌后的培养基使用前再加入

3.7%、5.6%、7.4%NaHCO3溶液、羟乙基哌嗪乙磺酸液

3.细胞消化液

(1)胰蛋白酶溶液:

分离自牛、猪等动物胰脏的胰蛋白酶(trypsin)呈黄白色粉末状,极易潮解,注意冷藏干燥保存.常用1:125和1:250两种浓度

(2)EDTA溶液:

一种化学螯合剂,其溶液又称Versen液,对细胞具一定的非酶性解离作用。

常用浓度0.02%(个别细胞系要求浓度较高)使用完,需用Hanks液冲洗净(血清对其无终止作用)

4.抗生素溶液

防止发生微生物污染青霉素、链霉素、卡那霉素、制霉菌素

生产用动物细胞的种类

1.原代细胞:直接将动物组织或器官经过粉碎、消化而制得的悬浮细胞

(需要大量的动物组织原料、不能直接从细胞库获得、生长分裂不旺盛)

2.传代细胞系:原代细胞经过传代、筛选、克隆等步骤,从多种细胞中纯化得到的某种具有一定特征的细胞系

(在生物学特性上与肿瘤细胞有许多相似之处/有时是从肿瘤细胞衍生而来/从动物胚胎组织中获取,有明显的贴壁和接触抑制特性,有正常细胞的核型,一般可传代培养50代,且无致瘤性 /广泛用于人用治疗性药物的生产,不够理想 )

3.转化细胞系:正常细胞经过某个转化过程,失去正常细胞的特点而获得无限增殖的能力得到的细胞系(大规模工业化生产)

(无限的生命力 /较短的倍增时间 /较低的培养条件要求

Vero(正常成年非洲绿猴肾细胞)、CHO细胞(中国仓鼠卵巢细胞)、Namalwa细胞(淋巴瘤细胞)和BHK-21细胞(幼鼠肾细胞) )

4.工程细胞系:采用细胞融合技术或基因工程技术对宿主细胞的遗传物质进行修饰改造或重组,获得具有稳定遗传的独特性状的细胞系

(1)融合细胞系:通过动物细胞融合技术构建

(2)基因工程细胞系:通过表达载体的构建、表达载体的导入以及表达细胞株的筛选而构建

4.抗体的结构、抗体的种类、嵌合抗体、人源化抗体

基本结构:抗体单体由4条多肽链(2条相同的重链和2条相同的轻链)通过二硫键(-S-S-)链接而成,为“Y”字形结构。

1.轻链(L链)

2.重链(H链)

3.可变区(V区):识别并特异性结合抗原:与毒素结合可以中和其毒性 /与病原体结合,可以组织其对机体细胞的黏附和感染

恒定区(C区):

1.激活补体系统

抗体(IgM、IgG)与抗原结合形成复合物可通过启动C1q激活补体经典途径;IgG4、IgA 和IgE的聚合物可以激活补体旁路途径。

2.介导免疫细胞活性

抗体的调理作用;ADCC作用;介导超敏反应

3.穿过胎盘与黏膜

IgG是唯一能够从母体通过胎盘屏障转运到胎儿体内的抗体(胎儿抗感染)

分泌型IgA合成和主要作用部位在黏膜(黏膜局部抗感染)

4.超变区(HVR),又可称为互补决定区(CDR)

骨架区(FR)

5.铰链区

6.抗原特异性结合部位

7.补体结合位点

8.巨噬细胞等的结合位

抗体的种类:Fab和Fv、单链抗体、双链抗体、抗体融合蛋白、嵌合抗体、人源化抗体、超变区多肽、特殊抗

嵌合抗体:是利用DNA重组技术,将异源单抗的轻、重链可变区基因插入含有人抗体恒定区的表达载体中,转化哺乳动物细胞表达的抗体,表达的抗体轻重链V区是异源,而C区是人源的,即整个抗体分子60%-70%是人源的。

人源化抗体:把鼠抗体的CDR序列一直到人抗体的可变区内,所得的抗体。

5.疫苗的种类、各种亚单位疫苗

1.灭活疫苗

2.减毒活疫苗

3.亚单位疫苗

4.联合疫苗

5.核酸疫苗

6.治疗性疫苗

灭活疫苗又称死疫苗,是指利用加热或甲醛等理化方法将人工大量培养的完整的病原微生物杀死,使其丧失感染性和毒性而保持其免疫原性,并结合相应的佐剂而制成的疫苗。

疫苗液中除含有灭活的病毒颗粒外,还含有细胞成分和培养病毒时加入的牛血清等蛋白类物质,多次接种疫苗容易发生过敏反应。

灭活疫苗的优点

制造工艺简单

免疫原性的稳定性高

易于制备多价疫苗

灭活疫苗的缺点

需要严格的灭活操作,保证疫苗中不含有灭活不完全的颗粒。

需要进行多次接种,由于机体反复接受疫苗中的异性蛋白质的刺激,而可能出现不良的过敏反应。

接种灭活疫苗产生的抗体滴度随时间而下降

灭活疫苗需要量大

减毒活疫苗又称弱毒疫苗,是指将微生物的自然强毒株通过物理、化学和生物学的方法,连续传代,使其对原宿主丧失致病力,或只引起亚临床感染,但仍保持良好的免疫原性、遗传特性,用这种毒株制备的疫苗就叫减毒活疫苗。

减毒活疫苗的作用机制最类似自然感染免疫,因而具有类似自然感染的优越性。

当前使用的病毒疫苗多数是减毒活疫苗。

常用的减毒方法:

→体外减毒 ::::::即体外连续传代减毒。在异源宿主中连续传代;在单一宿主中反复连续传代。

→冷适应筛选

?温度可以改变病毒的特性,得到冷适应株。

?病毒冷适应株常伴有毒力减弱和各种特征性标志。

?冷适应筛选稳定的减毒突变株是在传统疫苗设计中较早采用的方法,而且也是最为行之有效的思路。

减毒活疫苗的优点

1)可以诱导更全面的免疫应答

2)可诱导较强的免疫反应,理论上只需要接种一次

3)可能引起水平传播,扩大免疫效果

4)生产工艺简单,价格低廉。

减毒活疫苗的缺点

1)有可能出现毒力回复

2)可能造成环境污染而引发交叉感染等,并可能滞留在环境中形成传染源

3)产品的分析评估较为困难

4)保存、运输条件要求较高

亚单位疫苗是指提取或合成细菌、病毒外壳的特殊蛋白结构,即抗原决定簇制成的疫苗,这类疫苗不是完整的病毒,是病毒的一部分物质,故称亚单位疫苗。

亚单位疫苗仅有几种主要表面蛋白,因而能消除病毒(或细菌)的许多无关抗原决定簇和粗制或半提纯的病毒(或细菌)制剂诱发的不良反应。

亚单位疫苗:

?纯化亚单位疫苗

?合成肽亚单位疫苗

?基因工程亚单位疫苗

合成肽亚单位疫苗(Synthetic peptide subunit vaccine)

?合成肽疫苗是指使用化学方法合成能够诱发机体产生免疫保护的多肽制成的疫苗。

?优点:①纯度和安全性高;②副作用小;③可长期在常温下保存;

?缺点:①其抗原性单一;②免疫原性弱。

因此须用几种合成肽抗原联合使用,还须用多种方法提高合成肽的免疫原性。

基因工程亚单位疫苗:是指在分离出病原体特异抗原编码基因的基础上,将外源基因转入另一个非致病性的微生物内表达基因产物,然后通过分离和纯化而获得特异性的蛋白质。

基因工程亚单位疫苗的优点:

①产量高;

②纯度高;

③安全性高;

④用于病原体难于培养或有潜在致癌性,或有免疫病理作用的疫苗研究。

基因工程亚单位疫苗的缺点:

与传统亚单位疫苗相比,免疫效果较差。

增强其免疫原性的方法:

①调整基因组合使之表达成颗粒性结构

②在体外加以聚团化,包入脂质体或胶囊微球

③加入有免疫增强作用的化合物作为佐剂(adjuvant)。

6.固定化酶的性质和指标、有机相的酶反应

固定化酶性质的改变:

1.酶活力的改变:固定话酶活力小于天然酶,专一性也会发生改变

2.酶稳定性的提高:热稳定性

3.酶最适合PH改变:负电荷载体制备的固定化酶,最适pH提高;反之亦然

4.酶最适温度提高

5.米氏常数KM变化

指标:

1.固定化酶(细胞)的活力

酶催化某特定化学反应的能力,可表示为一定条件下它所催化的某一反应的反应初速度。单位:每毫克干重固定化酶(细胞)每分钟转化底物(或生产产物)的量,表示为mol/(min.mg)

2.偶联率及相对活力的测定:

用以表示影响酶固有性质诸因素的综合效应及固定化期间引起的酶失活

固定化酶的活力回收是指固定化以后固定化酶(或细胞)所显示的活力占被固定的等量游离酶(细胞)总活力的百分数

3.固定化酶(细胞)的半衰期

在连续测定条件下,固定化酶(细胞)的活力下降为最初活力一半所经历的连续工作时间,以t1/2表示

是衡量操作稳定型的指标,而操作稳定性是影响实用的关键因素。

4.固定化酶的热稳定性

将固定化酶在不同温度下温育1h之后,在最适温度下测定酶活力,固定化酶的活力一般应保持在60%以上。

为什么采用有机相进行酶反应?

对于大多数有机化合物来说,水并不是一种适宜的溶剂。因为许多有机化合物(底物)在水介质中难溶或不溶。

水的存在往往有利于如水解、消旋化、聚合和分解等副反应的发生。

有机相中酶反应的优点

减少水引起的副反应

有利于疏水性底物的反应

热力学平衡向产物方向移动

提高酶的稳定性

酶不溶于有机介质,利于回收利用

从低沸点的溶剂中易分离纯化产物

无微生物污染

规模生产

水解反应(脂肪酶、蛋白酶)

腈水解反应(腈水解酶、水合酶)

腈合成反应(羟腈化酶)

酯化/酰化反应(脂肪酶、蛋白酶)

羰基还原反应(酮还原酶、醇脱氢酶)

有机相酶反应的溶剂体系

水-水溶性溶剂均相体系

水-水不溶性溶剂两相体系

反相胶团(束)体系

单向有机溶剂体系

影响有机相酶反应的主要因素:水含量 /有机溶剂 /酶 /固定化载体 /pH

7.发酵过程的影响因素及控制、优良菌种的选育

发酵过程的影响因素及控制

有一个好的菌种以后要有一个配合菌种生长的最佳条件,使菌种的潜能发挥出来

目标是得到最高的产品收率。

发挥菌种的最大生产潜力考虑之点

?菌种本身的代谢特点生长速率、呼吸强度、营养要求(酶系统)、代谢速率?菌代谢与环境的相关性温度、pH、渗透压、离子强度、溶氧浓度、剪切力等(一)菌体浓度的影响及控制

?菌体浓度:是指单位体积培养液中菌体的含量。菌体浓度不仅反映菌体细胞的多少,而且反映菌体细胞生理特性的不同阶段。

?菌体浓度大小主要取决于:菌体的生长速率以及营养物质和环境条件(温度、pH、渗透压和水)。

(二) 菌体浓度与产物产率的关系

在适当的生长速率下,发酵产物的产率与菌体浓度成正比关系。

但是,菌体浓度过高,往往也会产生其他的影响,如营养物质消耗过快,培养液的营养成分发生明显的改变,有毒物质的累积,有可能改变菌体的代谢途径,特别是对培养液中的溶解氧影响尤为明显,影响产物产率。

菌体浓度过低,同样使产物的产率下降。

控制:

?在发酵过程中必须设法使菌体浓度控制在合适的范围内。

?通过调节培养基中营养基质的浓度来控制。首先要有适当的配比,然后通过中间补料来调整。

(二)营养物质对发酵的合成和控制

各种营养物质对微生物生长繁殖和代谢产物的合成都很重要。

1.碳源的影响及控制

2.氮源的影响及控制

3.磷酸盐的影响及控制

4.补料的控制

1.碳源的影响及控制

?碳源可以分为速效碳源和迟效碳源。

?速效碳源能被微生物快速利用,合成菌体和产生能量,因此有利于菌体的生长,但过多的分解代谢产物有时会对目标产物的合成产生分解代谢阻遏作用,不利于产物的合成。

?迟效碳源为菌体缓慢利用,有利于延长代谢产物的合成,特别有利于延长抗生素的分泌期。

?工业上,采用速效和迟效碳源的混合培养基来控制菌体的生长和产物的合成。

?举例:青霉素——乳糖或缓慢滴加葡萄糖

2.氮源的影响与控制

?氮源分为速效氮源和迟效氮源。

?氨基(或铵)态氮(氨基酸、硫酸铵)和玉米浆属速效氮源,能被菌体快速利用,促进菌体生长,但对某些代谢产物的合成,如抗生素的合成产生调节作用,影响产量。

?迟效氮源如黄豆饼粉、花生饼粉、棉籽饼粉等,对延长次级代谢产物的分泌期,提高产量十分重要。

?发酵过程,要选择合适的氮源和含量。一般选用含速效和迟效的混合氮源。

3.磷酸盐的影响和控制

?磷是微生物分解代谢和合成代谢所必须的成分,保证微生物正常生长所必需的磷酸盐浓度一般为0.32~300mmol,而对次级代谢产物而言所允许的最高平均浓度为

1.0mmol,超过10mmol就明显抑制产物合成,因此控制磷酸盐浓度对微生物药物,

特别是次级代谢产物的发酵生产是非常重要的。

4.补料的控制

?补料对发酵起到了重要作用:丰富了培养基,避免了菌体过早衰老,使产物合成期延长;控制pH和代谢方向;改善通气效果;补足因发酵过程中减少的发酵液体积。

?补料的物质包括碳源、氮源、水和其他物质(磷酸盐、前体等)。

?补料在菌体生长旺盛后期,发酵液泡沫液位下降后开始。

?补料的关键:控制补料的时间、速率和料配比。

(三)温度的影响及控制

不同微生物的生长对温度的要求不同,根据它们对温度的要求大致可分为四类:嗜冷菌适应于0~260C生长,嗜温菌适应于15~430C生长,嗜热菌适应于37~650C生长,嗜高温菌适应于650C以上生长

(四)pH的影响和控制

每一类菌都有其最适的和能耐受的pH范围,大多数细菌生长的最适pH范围在6.3~7.5,霉菌和酵母菌生长的最适pH范围为3~6,放线菌生长的最适pH范围为7~8。

微生物生长阶段和产物合成阶段的最适pH往往不一样,这与菌种的特性和产物的化学性质有关。

引起发酵液pH下降的因素:培养基中碳、氮比例不当,碳源过多,特别是葡萄糖过量,或中间补糖过多,加之溶解氧不足,致使有机酸大量积累而使pH下降;消沫剂加的过多,生理酸性物质的存在及氮被利用等。

引起发酵液pH上升的因素:培养基中碳、氮比例不当,氮源过多,氨基酸释放等;生理碱性物质存在,中间补料中氨水或尿素等碱性物质加入过多等。

(五)溶氧的影响和控制

?溶氧是需氧微生物生长所必需的。

?发酵过程中需要不断通气和搅拌,才能满足溶氧要求。

?发酵过程中应保持氧浓度在临界氧浓度以上。

?一般发酵前期,由于产生菌大量繁殖,需氧量大幅度增加,如果此时需氧超过了供养,会使溶解氧明显下降,溶解氧曲线出现一个低峰。

(七)泡沫的影响与控制

?发酵过程起泡的利弊:气体分散、增加气液接触面积,但过多的泡沫是有害的?泡沫的定义:一般来说:泡沫是气体在液体中的粗分散体,属于气液非均相体系?美国道康宁公司对泡沫这样定义:体积密度接近气体,而不接近液体的“气/液”

分散体。

优良菌种的选育

1.遗传性转稳定

2.生长速度快,不易污染

3.目标产物产量尽可能接近理论转化率

4.目标产物最好分泌到胞外

5.尽可能减少类似物的产量

6.其所利用生长的培养基简单,价格低廉

8.羟化反应、脱氢反应、甾体边链降解

1. 甾体的微生物转化:羟化反应

微生物对甾体羟化的位点众多,其中以c9α、c11α,c11β、c14α, c15α, c16α, c16β、c17α、c19角甲基和边链c26位上的羟化较为重要。

微生物转化甾体的羟化酶多是细胞色素P450依赖型,P450作为末端氧化酶,需要利用分子氧以及与NADPH-依赖的脱氢酶相连接的电子转移系统。羟化酶所转化的羟基由空气中的氧直接取代甾体上的氢形成,因此工业上利用黑根霉菌转化甾体时需要充分供氧

1)C9α羟化:C9位导入羟基后,容易在C9-C10之间引入双键,并可进一步导入C11β- 羟基或导入氟原子,因此C9α羟化属于甾体药物合成中的一个关键中间步骤。

另一方面,C9α羟化还涉及甾体边链选择性降解,在微生物降解甾体边链过程中,防止甾体母核破裂的关键是抑制9α-羟化酶对9α的羟化。

2)C11α羟化:微生物所特有的C11α羟化反应是最早应用于工业生产的微生物转化反应,它的成功应用替代了困难的化学合成,而其在皮质激素类药物的合成中所得产物具有强抗炎活性,促进了皮质激素类药物的合成。

3)C11β羟化:C11β羟化同样可以应用于甾体激素生产。其中研究较广泛的有新月弯孢霉,该霉菌对底物结构的变化有较广的耐受性,能对许多结构不同的甾体进行11β-羟化。

4)C15α羟化:研究人员将雷斯青霉固定在海藻酸钙凝胶上制成固定化细胞进行生产,生产后15α羟化活性可恢复。

应用β-环糊精无论使用游离细胞还是固定化细胞都能提高转化率。

5)C16α羟化:除C11位点的羟化外,皮质甾体类药物合成中的另一个重要反应是甾体母核的C16α羟化。目前C16α羟化常采用放线菌进行生物转化,导入C16α-羟基后,使其对电解质

影响减小,同时抗炎和糖代谢作用不变。

6)C17α羟化:在甾体母核上引入C17α-羟基后能增加皮质甾体药物的抗炎和糖代谢作用。绿色木霉能对黄体酮的C17α羟化,树枝状孢囊菌和小瓶瘤孢菌也能对甾体母核进行C17α羟化。

7)C19α羟化:C19α羟化产物是制备19-失碳甾体化合物的重要中间体。19-失碳甾体较原甾体具有更显著的生理活性,如19失碳孕甾酮的疗效较孕甾酮活性高4?8倍。

8)双羟基化:目前,甾体母核常见的双羟基化反应一般发生在C7 与C15位置。

并头状菌属的某些菌株能将黄体酮转化为7α, 15β-双羟基黄体酮。

1. 甾体的微生物转化:脱氢反应

在皮质甾体类药物的母核C1,2位置导入双键后,能成倍地增加其抗炎活性。但由于在动物体内缺乏相应的酶,甾体激素类化合物的C1,2脱氢反应不能进行,而通过体外进行c1,2脱氢,即可得到更高效的甾体药物,这也是人工改造获得高效药物的典型例子。

采用化学脱氢的方法,一般用二氧化硒脱除法,产品中带有少量难以除尽的对人体有毒害的硒。

微生物脱氢高效无毒,目前己经成为甾体抗炎激素药物合成中不可缺少的一步。一般情况下,细菌的脱氢能力比真菌强,如棒状杆菌中的节杆菌和分枝杆菌脱氢活力较强。

3-酮基甾体-Δ1-脱氢酶(KS1DH)是微生物体内最常见的脱氢酶。(该反应被广泛应用于制药工业)

KS1DH 可催化Δ4-3-酮甾体的脱氢,其作用是在3-酮基甾体的A环上引入1, 2位双键。KS1DH 同时也是甾体母核降解的关键酶,因为甾体母核降解时也需要甾体A环上1,2位双键的引入。

KS1DH可催化脱氢反应的逆反应即C1,2-氢化反应,该酶的氢化活性对底物的特异性类似于3-酮-4-烯甾体的脱氢反应。

1. 甾体的微生物转化:甾体边链降解

各类具有生理活性的甾体药物的基本母核目前都是从高等植物和动物中的天然甾体化合物经过边链降解、除去厄长的边链得到基本甾体母核

研究发现,许多微生物都能够将固醇类化合物作为碳源利用,最终将甾体母核环戊烷多氢菲和边链完全氧化为CO2和水。

固醇边链降解的机制与脂肪酸的β氧化途径相似。胆固醇的边链降解途径始于C27羟基化,再通过氧化形成C27酸,然后β-氧化后先失去丙酸、醋酸,最后脱去丙酸,形成C17酮化合物

9α-羟化酶 C1,2-脱氢酶(KS1DH)

如何避免甾体母核的降解

(1)对固醇进行结构改造达到选择性降解甾体边链的目的。

在甾体的A 环形成芳香核后不再会发生母核的破裂。

或当C6β-19氧桥存在时会阻碍C1,2双键导入,从而保护甾体母核不被微生物进一步降解。(2)在酶抑制剂存在下对甾体进行选择性边链降解。对甾体母核的选择性边链降解不但方便甾体药物的改造,而且可以防止甾体母核的破裂。在微生物转化过程中抑制甾体母核降

解的关键酶9α-羟化酶或C1,2-脱氢酶的活性,从而达到选择性降解固醇边链的目的。

几类对甾体母核降解有抑制作用的化合物

作用机制化合物

Fe3+络合剂2,2'-双联吡啶、1, 10-二氮杂菲

羟基喹琳、5-硝基-1,10- 二氮杂菲 ,二苯基硫卡巴腙

二乙基硫氨基甲酸酯、异菸酰肼邻苯二胺、

4-异丙基-芳庚酚酮

取代Fe的金属离子Ni2+、Co2+、Pb2+

阻碍巯基功能Se032-、AS02-

氧化还原染料次甲蓝、刀天青

(3)应用诱变或分子生物学技术筛选或构建选择性降解甾体边链的菌株。

采用紫外线、AT-甲基亚硝基胍等诱变剂,通过诱变技术筛选可以得到生化阻断突变株,

由于生化阻断突变株中酶的缺损,可选择性降解甾体边链而不导致甾体母核的降解,且可

以大量积累所需要的中间体。

随着基因工程的发展,人们已大量釆用基因工程的手段如基因同源重组技术改造菌株使之

稳定高效地积累所需化合物——甾体药物中间体。

9.蛋白质化学修饰、蛋白质药物化学修饰、修饰的作用(意义)、修饰策略

蛋白质的化学修饰:通过基团的引入或去除而使蛋白质的一级结构发生改变的过程

蛋白质的药物化学修饰:主要是指在分子水平上对蛋白质药物进行化学改造,通过对主链的

切割、剪接及化学基团的引入,实现对蛋白质药物理化性质和生物活性的改变,属于蛋白

质改性的范畴

蛋白质虎穴修饰的意义:

?循环半衰期延长

?免疫原性降低或消失,毒副作用减小

?物理、化学、生物稳定性增强

修饰策略 :

随机修饰

定点修饰

随机修饰:游离氨基多,同时发生在多个游离-NH2

定点修饰:PEG-醛对α-NH2进行定点修饰

蛋白质分子表面游离赖氨酸残基的ε-NH2和N-末端氨基酸残基的α-NH2,两者具有较高的亲核反应活性,是蛋白质化学修饰中最常用的被修饰基团。

巯基修饰

多为定点修饰。

由于蛋白质分子中巯基含量较少,利用巯基的高亲和性,选取能够特异性与巯基偶联的化学修饰剂,可以对蛋白质分子进行定点修饰。

定点引入巯基:糖蛋白的糖基化位点、蛋白质的抗原决定簇、蛋白质末端等

羧基修饰的位点包括天冬氨酸、谷氨酸及末端羧基。首先把修饰剂(如PEG)分子中的羟基转化为氨基,再在碳二亚胺存在下与蛋白质的羧基缩合,得到修饰的蛋白质。

10.RNA干扰、基因治疗、肿瘤的基因治疗

(新型技术制药PPT)有一条论述大题在这里!!!

RNA干扰(RNA interference,RNAi):是一种由双链RNA诱导的基因表达调控和基因沉默的过程,其广泛存在于从植物、无脊椎动物到哺乳动物的各种生物。

RNAi的作用原理

双链RNA诱导诱导RNAi的过程主要分为两个阶段:

Ⅰ启动阶段Ⅱ执行阶段

启动阶段当细胞中由于感染等原因出现双链RNA分子时,细胞中一种称为Dicer 的核酸酶就会识别这些双链RNA,并将其降解成21-23bp长的小干扰RNA(siRNA),单链siRNA与一些蛋白形成复合体,构成“RNA诱导的沉默小体”(RISC)

执行阶段当目标mRNA与RISC中的siRNA完全配对时, RISC就会切割目标RNA,并由细胞中的核酸酶将其进一步降解,从而抑制目标基因的表达

长链的RNA会诱导细胞合成并分泌干扰素,干扰素又会抑制细胞的蛋白质合成,造成一定的副作用。如果直接用21-23bp的小双链RNA即siRNA,则不会诱导干扰素反应,却能在细胞中激活RISC,发挥抑制基因表达的作用。

siRNA的作用

体外实验和动物模型研究证明siRNA药物可以成功抑制HIV、乙肝病毒、流感病毒、SARS冠状病毒、口蹄疫病毒等的感染。

siRNA还可以治疗一些非感染性疾病:美国正在开发一种治疗老年性黄斑变性的siRNA 药物

优点:与反义RNA相似,siRNA作为药物具有目标基因专一性强

与反义RNA相比,siRNA药物的作用机制更加明确,效果更加肯定

缺点:siRNA的作用需要与目标RNA间发生完全的配对,因此对于目标RNA的突变很敏感。个别位点的突变会使效果大打折扣

在用于抗病毒治疗时,病毒可能出现抗药突变株

siRNA的设计

应选取对于疾病发生具有至关重要作用,而对细胞的其他功能影响不大的保守基因作为目标基因,再根据目标基因的序列设计siRNA

Tom Tuschl根据实验提出了一个设计siRNA的原则:

选择转译起始密码子后50-100碱基的范围,以AA作为正义链的第1,2个核苷酸,GC 比为50﹪左右,同时在正义链和反义链的3′-都有TT两个核苷酸的突变

基因治疗(gene therapy)是向靶细胞导入外源基因,以纠正或补偿基因缺陷,达到治疗遗传病目的。

基因治疗的关键是将正确的基因导入人体

基因导入的方式有两种方式:离体基因导入和体内基因导入

非生物法导入基因

常用的方法是用脂质体包裹DNA分子,此外也将基因连接到一些高分子材料上。

生物法导入基因

生物法导入基因主要利用病毒作为基因载体将基因导入目标细胞,但近年也有利用细胞内寄生菌进行基因导入的实验研究。

常用的病毒载体有:腺病毒/腺相关病毒/反转录病毒

基因治疗的条件:

对导入的基因及其产物有详尽了解;

外源基因有效导入受体细胞、稳定整合、适量表达;

不影响受治细胞基因组及表达调控;

导入基因方法安全,载体对靶细胞无害

基因疗法的步骤

?目的(治疗)基因的选择

根据基因治疗类型选择相应目的基因(增补、替换、添加)

?基因载体的构建

使目的基因在受体细胞内高效、可控、稳定地表达

?受体细胞选择

易分离获取,体外增殖存活,大量扩增。如成纤维细胞、淋巴细胞、骨髓造血干细胞

肿瘤的基因治疗

肿瘤的基因治疗与遗传病的基因治疗不同,不强调基因长期表达和持续发挥作用,而是要求快速杀伤肿瘤细胞,抑制肿瘤的生长和转移。因此对肿瘤基因载体的要求也就不同,不强调基因整合,而是强调通过基因治疗调动多种途径杀伤肿瘤细胞。这些途径包括:

1. 通过治疗基因抑制肿瘤细胞生长、诱导细胞凋亡

2. 选用在肿瘤细胞可复制的病毒载体,通过病毒感染杀伤肿瘤细胞

3. 通过诱导免疫系统识别并杀伤肿瘤细胞

4. 通过病毒载体表达药物前体的转化酶基因

生物技术制药考试题库

选择 ABC分子印迹可以应用于下列哪些方面:模拟抗体,生物传感器的构建,手性药物的分离,新药的构建 ABD酶促反应的特点包括:催化效率高,酶的催化活性不受调节和控制,专一性强,反应条件温和 ABCD体细胞基因治疗常用的靶细胞主要有:造血干细胞成纤维细胞肌细胞、肾细胞肝细胞、淋巴组织 B世界上第一个基因工程药物是:人白细胞干扰素INFa 重组人胰岛素人鼠源性单克隆抗体尿激酶 C下列不属于脂类药物的是:胆酸固醇灵芝大豆异黄酮 C下列能够产生抗体的细胞是:肝细胞,巨噬细胞,浆细胞,血红细胞 ABCD下列属于细胞代谢过程中的生理活性物质的是:维生素,植物激素,抗生素,生物碱 C下列属于细胞工程内容的是:染色体改造的理论和技术,酶改造的理论和技术,细胞融合的理论和技术,有关产物提取纯化的理论和技术 ABD工业上下列哪些是使用大肠杆菌生产的:谷氨酸脱羧酶,天门冬氨酸酶,丙酮酸脱羧酶,青霉素酰化酶 D被称为药剂学鼻祖的是:张仲景,希波克拉底,华佗,格林 AB造血生长因子的作用是:促进骨髓造血细胞分化,促进骨髓造血细胞增殖和定向成熟,动员祖细胞从骨髓移动到外周血,促进血液生产和血液循环 D下列不属于按分子大小分离的方法是:有超滤法,凝胶过滤法,超速离心法,沉淀法 ABCD下列可以作为生物药物的是:氨基酸及其衍生物,酶与辅酶,糖类,细胞生长因子 D基因工程中,载体的本质是:DNA,RNA ,蛋白质,DNA或RNA ABCD能够用作蛋白质药品冷冻干燥保护剂的是:糖类/多元醇,表面活性剂,氨基酸、盐和胺,聚合物 ABC才才下列属于酶反应器的是:鼓泡塔反应器,填充床反应器,流化床反应器,淤浆反应器

生物技术制药复习资料

第二章生物药物概论 一、生物药物生产原料选择的主要原则、生物药物的特性及种类。 主要原则:有效成分含量高,原料新鲜;来源丰富,易得;原料产地较近;杂质含量少;原料成本低;易提取。 特性:(1)药理学特性:治疗的针对性强;药理学活性高;毒副作用小,营养价值高;生理副作用常有发生。 (2)生产、制备中的特殊性:原料中的有效物质含量低;稳定性差;易腐败;注射用药有特殊要求。 (3)检验上的特殊性:要有理化检验指标,和生物活性检验指标。 分类: 按药物化学本质和化学特性分类:(1)氨基酸及基衍生物类(2)多肽和蛋白质类(3)酶和辅酶类(4)核酸及其降解物和衍生物类(5)糖类(6)脂类(7)细胞生长因子类(8)生物制品类(9)小动物制剂(10)动物器官或组织制剂。 按原料来源分类:(1)人体组织(2)动物组织(3)植物组织(4)微生物(5)海洋生物来源的药物。 按生理功能和用途分类:(1)治疗药物(2)预防药物(3)诊断药物(4)其他。 二、生物药物提取分离制备方法的工艺过程。在对生物药物进行提取操作时,选择提取试剂需注意的问题。 工艺流程:1、生物药物原料的选择、预处理与保存(保存方法: 冷冻法,-40℃;②有机溶剂脱水法;③防腐剂保鲜,多用于液体)。 2、生物药物的提取:(1)生物组织与细胞破碎:磨切法,压力法,反复冻融法,超声波震荡破碎法,自溶法,酶溶法(2)选择合适的溶剂进行提取(考虑提取剂的用量、提取时间、提取次数,注意温度、变性剂等因素)。 3、生物药物的分离纯化:(1)蛋白质类药物的分离纯化:沉淀法,亲和层析法,疏水层析法(2)核酸类药物的分离纯化:提取法,发酵法(3)糖类:沉淀法,离子交换层析法(4)脂类:沉淀法,吸附层析法,离子交换层析法(5)氨基酸类:沉淀法,吸附法,离子交换法。 试剂的选择:1、对所需要提取的活性成分溶出度较高,对杂质较低。2、不破坏活性成分。 3、利于后续预处理。 4、对环境影响较小,有利于回收和处理。 5、对设备要求不高。 6、成本较低。 7、最好对人体无害。 第三章基因工程制药 一、基因工程制药的主要工艺过程。 获得目的基因→组建重组质粒→构建基因工程菌(或细胞)→培养工程菌→产物的分离纯化→质量控制→产品检验包装 二、什么是目的基因?有几种获取方法?用于构建基因工程菌的目的基因应该达到什么要求? 目的基因既是人们所需要的特定基因,一般也是接受目的基因的细胞或个体原本没有的基因。 获取方法:(1)直接从生物体中提取总DNA,构建基因文库,从中调用目的基因;(2)以mRNA为模板,反转录合成互补的DNA片段;(3)利用聚合酶链式反应(PCR)特异性地扩增所需要的目的基因片段(4)化学合成法;⑸逆转录(RT)-PCR法合成cDNA。 基本要求:不含多余干扰成分,纯度高;片段大小适合重组操作;结构、序列正确,达到一定数量。

(完整版)生物技术制药考试题复习

一:选择题 1、酶的主要来源是( C) A、生物体中分离纯化 B、化学合成 C、微生物生产 D、动/ 植物细胞与 组织培养 2、所谓“第三代生物技术”是指(A) A、海洋生物技术 B、细胞融合技术 C、单克隆技术 D、干细胞技术 3、菌体生长所需能量与菌体有氧代谢所能提供的能量在什么情况下,菌体往往会产生代谢副产物乙酸:(A) A、大于 B、等于 C、小于 D、无关 4、促红细胞生长素( EPO)基因能在大肠杆菌中表达,但却不能用大肠杆菌的基因工程菌生产人的促红细胞生长素,这是因为:( E) A、人的促红细胞生长素对大肠杆菌有毒性作用 B、人促红细胞生长素基因在大肠杆菌中极不稳定 C、大肠杆菌内毒素与人的促红细胞生长素特异性结合并使其灭活 D、人的促红细胞生长素对大肠杆菌蛋白水解酶极为敏感 E、大肠杆菌不能使人的促红细胞生长素糖基化 5、目前基因治疗最常用的载体是:(B) A、腺病毒 B、反转录病毒 C、腺相关病毒 D、痘苗病毒 E、疱疹病毒 6、cDNA第一链合成所需的引物是:( D) A、Poly A B、Poly C C、Poly G D、Poly T E、发夹结构 7、为了减轻工程菌的代谢负荷,提高外源基因的表达水平,可以采取的措施有:(A) A将宿主细胞生长和外源基因的表达分成两个阶段 B、在宿主细胞快速生长的同时诱导基因表达 C、当宿主细胞快速生长时抑制重组质粒的表达 D、当宿主细胞快速生长时诱导重组质粒的复制 8、基因工程制药在选择基因表达系统时,首先应考虑的是:(A) A、表达产 物的功能B、表达产物的产量 C.表达产物的稳定性 D.表达产物分离纯化的难易 9、疫苗出产前需进行理化鉴定、效力鉴定和(安全性鉴定)。 10、基因工程药物的化学本质属于:(C) A. 糖类 B.脂类 C.蛋白质和多肽类 D.氨基酸类 11、用聚二乙醇( PEG)诱导细胞融合时,下列错误的是:(C) A、PEG的相 对分子量大,促进融合率高B、PEG的浓度高,促进融合率高C、PEG 的相对分子量小,促进融合率高D、PEG的最佳相对分子量为 4000 12、以大肠杆菌为目的基因的表达体系,下列正确的是:(C) A、表达产物 为糖基化蛋白质B、表达产物存在的部位是在菌体内 C、容易培养,产物提纯简单 D 、表达产物为天然产物 13、人类第一个基因工程药物是:(A) A、人胰岛素 B、重组链激酶 C、促红细胞生成素 D、乙型肝炎疫苗 14、下列不属于加工改造后的抗体是:(C) A、人-鼠嵌合抗体 B、单链抗体C 、鼠源性单克隆抗体D、单域抗体 15、动物细胞培养的条件中,不正确的是:(D)

生物技术制药试题及重点

第一章绪论 填空题 1. 生物技术制药的特征 _高技术、高投入、高风险、高收益、长周期。 2. 生物药物广泛应用于医学各领域,按功能用途可分为三类,分别是_治疗药物、预防药物、诊断药物。 3. 现代生物药物已形成四大类型:一是应用DNA重组技术制造的基因重组多肽、蛋白 质类治疗剂;二是基因药物_______________ ;三是来自动物植物和微生物的天然生物药 物;四是合成与部分合成的生物药物; 4. 生物技术的发展按其技术特征来看,可分为 三个不同的发展阶段,传统生物技术阶段;近代生物技术阶段;现代生物技术阶段。 5. 生物技术所含的主要技术范畴有基因工程; 细胞工程;酶工程;发酵工程;蛋白质核酸工程和生化工程; 选择题 1?生物技术的核心和关键是(A ) A细胞工程B蛋白质工程C酶工程D 基因工程 2. 第三代生物技术(A )的出现,大大扩大了现在生物技术的研究范围 A基因工程技术B蛋白质工程技术C海 洋生物技术D细胞工程技术 3. 下列哪个产品不是用生物技术生产的(D)A青霉素B淀粉酶C乙醇D氯化钠 4. 下列哪组描述(A )符合是生物技术制 药的特征 A高技术、高投入、高风险、高收益、长周期B 高技术、高投入、低风险、高收益、长周期 C高技术、低投入、高风险、高收益、长周期 D高技术、高投入、高风险、低收益、短周期 5. 我国科学家承担了人类基因组计划(C )的测序工作 A10% B5% C 1% D 7% 名词解释 (2)近代生物技术阶段的技术特征是微生物 发酵技术,所得产品的类型多,不但有菌体的初 级代谢产物、次级代谢产物,还有生物转化和酶 反应等的产品,生产技术要求高、规模巨大,技 术发展速度快。代表产品有青霉素,链霉素,红 霉素等抗生素,氨基酸,工业酶制剂等。 (3)现代生物技术阶段的技术特征是DNA 重 组技术。所得的产品结构复杂,治疗针对性强, 疗效高,不足之处是稳定性差,分离 纯化工艺更复杂。代表产品有胰岛素,干扰素和 疫苗等。 3. 生物技术在制药中有那些应用? 生物技术应用于制药工业可大量生产廉价的防治 人类重大疾病及疑难症的新型药物,具体体现在 以下几个方面: (1)基因工程制药,利用基因工程技术可生 产岀具有生理活性的肽类和蛋白质类药物,基因 工程疫苗和抗体,还可建立更有效的药物筛选模 型,改良现有发酵菌种,改进生产工艺,提供更 准确的诊断技术和更有效的治疗技术等。随着基 因技术的发展,应用前景会更广阔。 (2)细胞工程和酶工程制药 该技术的发展为现代制药技术提供了更强大的技 术手段,使人类可控制或干预生物体初次生代谢 产物和生物转化等过程,使动植物能更有效的满 足人类健康方面的需求。 (3)发酵工程制药 发酵工程制药的发展主要体现在对传统工艺的改 进,新药的研制和高效菌株的筛选和改造等。 第二章基因工程制药 填空题 1. 基因工 程药物制造的主要步骤是:目的 基因的获得;构建DNA重组体;构建工程菌;目 的基因的表达;产物的分离纯化; 产品的检 验。 1. 生物技术制药 采用现代生物技术可以人为的创 造一些条件,借助某些微生物、 植物或动物来生产所需的医学药 品,称为生物技术制药。 2. 生物技术药物 一般说来,采用DNA重组技术 或其它生物新技术研制的蛋白 质或核酸来药物称为生物技术药 物。 3. 生物药物 生物技术药物是重组产品概念在 医药领域的扩大应用,并与天然 药物、微生物药物、海洋药物和 生物制品一起归类为生物生物药 物。 简答题 1.生物技术药物的特性是什 么? 生物技术药物的特征是: (1)分子结构复杂 (2)具有种属差异特异性 (3)治疗针对性强、疗效高 (4)稳定性差 (5)免疫原性 (6)基因稳定性 (7)体内半衰期短 (8)受体效应 (9)多效应和网络效应 (10)检验特殊性 2.简述生物技术发展的不同阶段 的技术特征和代表产品? (1)传统生物技术的技术特征 是酿造技术,所得产品的结构较 为简单,属于微生物的初级代谢 产物。代表产品如酒、醋、乙 醇,乳酸,柠檬酸等。

生物技术制药

1. 生物技术制药:采用现代生物技术人为地创造一些条件, 借助某 些微生物、植物或动物来生产所需 的医药品。 2. 抗体:能与相应抗原特异性结合的具有免疫功能的球蛋白。 3.疫苗:是指将病原微生物(细菌、病毒、真菌、立克次氏体、支 原体、衣原体等)及其代谢产物,经过人工减毒、灭火或利用基因工程等方法制成的用于预防传染病的免疫制剂。 4.反义核酸:包括反义DNA分子,或由部分RNA和部分DNA形成的RNA-DNA 嵌合分子,以及经高度化学修饰的寡聚核酸类似物。 5.载体分为:质粒载体和λ噬菌体载体。①质粒载体涉及三个要素:复制子、选择标记、多克隆位点、几种质粒载体(克隆载体、表达载体、突变载体、报告载体)②λ噬菌体载体:常用于构建基因组文库和cDNA 文库。λ噬菌体载体通常分为插入型载体和置换型载体,插入型载体是指载体中一个酶切位点用于外源DNA的插入,置换型载体是指外源DNA通过置换载体上非必需序列插入载体。 6.目的基因常用的制备方法:化学合成法、PCR法、基因文库法、cDNA 文库法。 7.基因工程药物制造程序:获得目的基因→构建基因工程菌→工程菌大规模培养→产物分离纯化→除菌过滤→半成品检测→成品加工→成品检测。 8.基因工程菌的培养过程:(1)摇瓶操作:了解工程菌生长的基础条件(温度、pH、培养基组分及C/N),分析表达产物的合成、积累对受体细胞的影响。(2)培养罐操作:确定培养参数、控制方案及顺序。基因工程菌的培养方式:(1)补料分批培养:将种子接入发酵反应器中进行培养,经过一段时间后,间歇或连续地补加新鲜培养基,使菌体进一步生长的培养方式。(2)连续培养: 将种子接入发酵反应器中,搅拌培养至一定浓度后,开动进料和出料的蠕动泵,以控制一定稀释率进行不间断的培养。 两阶段连续培养,控制和优化诱导水平、 稀释率、细胞比生长速率。(3)透析培养:利用膜的半透性原理使代谢产物和培养基分离,通过去除培养液中的代谢产物来解除其生产菌的不利影响。(4)固定化培养:维持质粒稳定性(5)分批培养:DO-Stat 法: 调节搅拌转速和通气速率控制溶氧在 20%,补料的流加速率是关键。Balanced DO-Stat 法: 控制溶氧、搅拌转速、糖的流加速率,使乙酸维持在低浓度。 控制菌体比生长速率的方法:在最优表达水平获得高密度、高表达。9.基因工程菌发酵工艺的影响因素:(1)培养基的影响(2)接种量的影响(3)温度的影响(4)溶解氧的影响(5)诱导时机的影响(温度、氧、营养)(6)pH的影响(细胞生长期、外蛋白表达期)(7)诱

2018年生物技术制药习题及答案

2018年生物技术制药习题及答案 一、选择填空题 1. 酶的主要来源是什么? 微生物生产。 2. 第三代生物技术是什么? 基因组时代。 3. 基因治疗最常用的载体是什么? 质粒载体和λ噬菌体载体。 4. 促红细胞生长素基因可在大肠杆菌中表达。但不能用大肠杆菌工程菌生产人的促红细胞生产素为什么? 因为大肠杆菌不能使人的促红细胞生长素糖基化, 人的促红细胞生长素对大肠杆菌有毒性作用。 5. 菌体生存所需能量已菌有氧代谢所需能量在什么情况下产生代谢产物乙酸?

菌体生长所需能量 (大于) 菌体有氧代谢所能提供的能量时, 菌体往往会产生代谢副产物乙酸。 6.cDNA 第一链所合成所需的引物是什么? cDNA 第一条链合成所需引物为 PolyT 。 7. 基因工程制药在选择基因表达系统时首先考虑什么? 表达产物的功能。 8. 为了减轻工程菌代谢负荷,提高外源基因表达水平可采取什么措施? 将宿主细胞生长和外源基因的表达分成两个阶段。 9. 根据中国生物制品规定要求,疫苗出厂需要经过哪些检验? 理化检定、安全检定、效力检定。 10. 基因工程药物化学本质是什么? 蛋白质。

11.PEG 诱导细胞融合? PEG 可能与可能与临近膜的水分相结合, 使细胞之间只有微笑空间的水分被 PEG 取代, 从而降低了细胞表面的极性,导致双脂层的不稳定,使细胞膜发生融合。 12. 以大肠杆菌为目的基因表达系统的表达产物,产物位置是什么? 胞内、周质、胞外。 13. 人类第一个基因工程药物是什么? 重组胰岛素。 14. 动物细胞培养的条件是什么? 温度 :哺乳类 37昆虫 25~28, ph7.2~7.4,通氧量:使 co2培养箱,不同动物比例不同。防止污染, 基本营养物质:三大营养物质维生素, 激素, 促细胞生长因子, 渗透压:大多数 260~320。 15. 不属于加工改造抗体的是什么? 单域抗体。 16. 第三代抗体是什么?

生物技术制药要点

生物技术制药要点概括 1.现代生物技术发展大事记: 年代主要发现和进展 1953 Watson和Crick阐明了DNA的双螺旋结构 1958 分离得到DNA聚合酶I,并在试管内制得人工DNA 1960 发现mRNA,并阐明了mRNA在蛋白质合成中的作用 1966 破译遗传密码 1967 分离得到DNA连接酶 1970 分离出第一个限制性内切酶 1971 第一次用限制性内切酶和连接酶获得重组DNA 1972 合成了完整了tRNA基因 1974 Boyer和Cohen建立了DNA重组技术 1975 Kohler和Milstein建立了单克隆抗体技术 1976 DNA测序技术诞生 1978 Genentech公司在大肠杆菌中表达出胰岛素 1981 第一个单克隆抗体诊断试剂盒在美国被批准使用 1981 第一台商业化生产DNA自动测序仪诞生 1982 用DNA重组技术生产的第一个动物疫苗在欧洲获得批准 1983 基因工程Ti质粒用于植物转化 1988 PCR(聚合酶链式反应)技术诞生 1990 美国批准第一个体细胞基因治疗方案 1997 英国培育出世界上第一只克隆羊多莉 1998 美国批准艾滋病疫苗进行人体实验 2001 人类基因组草图完成 2003 世界上第一个正式批准的基因治疗药物重组腺病毒-p53注射液在中国上市 2008 人类将表皮细胞激活为干细胞 2.生物技术药物(biopharmaceutics):广义是是指所有以生物质为原料只去的各种生物活性物质及其人工合成类似物、以及通过现代生物技术制的的药物,狭义指利用生物体、生物组织、细胞及其成分,综合应用化学。生物学和医药学各学科原理和技术方法制得的用于预防、诊断、治疗和康复保健的制品,而这里特指采用DNA重组技术或其他现代生物技术研制的蛋白质或核算类药物。 3.生物技术药物的四大类型:基因重组药物、基因药物、天然药物、合成的半合成的生物技术药物。 4.生物技术药物的主要特点:剂量小,活性高;分子结构复杂,分子量一般较大;稳定性较差,易失活或分解,体内半衰期短;具有种属特异性;具有免疫原性;分析检验的特殊性。 5.生物技术药物与化学药物的区别:

生物技术制药考试题复习

生物技术制药考试题复 习 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

一:选择题 1、酶的主要来源是(C) A、生物体中分离纯化 B、化学合成 C、微生物生产 D、动/植物细胞与组织培养 2、所谓“第三代生物技术”是指 (A) A、海洋生物技术 B、细胞融合技术 C、单克隆技术 D、干细胞技术 3、菌体生长所需能量与菌体有氧代谢所能提供的能量在什么情况下,菌体往往会产生代谢副产物乙酸:(A) A、大于 B、等于 C、小于 D、无关 4、促红细胞生长素(EPO)基因能在大肠杆菌中表达,但却不能用大肠杆菌的基因工程菌生产人的促红细胞生长素,这是因为:(E) A、人的促红细胞生长素对大肠杆菌有毒性作用? B、人促红细胞生长素基因在大肠杆菌中极不稳定? C、大肠杆菌内毒素与人的促红细胞生长素特异性结合并使其灭活 D、人的促红细胞生长素对大肠杆菌蛋白水解酶极为敏感 E、大肠杆菌不能使人的促红细胞生长素糖基化 5、目前基因治疗最常用的载体是:(B) A、腺病毒? B、反转录病毒 C、腺相关病毒 D、痘苗病毒 E、疱疹病毒 6、cDNA第一链合成所需的引物是:(D) A、Poly?A B、PolyC C、PolyG D、PolyT E、发夹结构 7、为了减轻工程菌的代谢负荷,提高外源基因的表达水平,可以采取的措施有:(A) A将宿主细胞生长和外源基因的表达分成两个阶段 B、在宿主细胞快速生长的同时诱导基因表达? C、当宿主细胞快速生长时抑制重组质粒的表达? D、当宿主细胞快速生长时诱导重组质粒的复制 8、基因工程制药在选择基因表达系统时,首先应考虑的是:(A) A、表达产物的功能 B、表达产物的产量C.表达产物的稳定性 D.表达产物分离纯化的难易? 9、疫苗出产前需进行理化鉴定、效力鉴定和(安全性鉴定)。 10、基因工程药物的化学本质属于:(C) A.糖类 B.脂类 C.蛋白质和多肽类 D.氨基酸类 11、用聚二乙醇(PEG)诱导细胞融合时,下列错误的是:(C) A、PEG的相对分子量大,促进融合率高 B、PEG的浓度高,促进融合率高 C、PEG的相对分子量小,促进融合率高 D、PEG的最佳相对分子量为4000 12、以大肠杆菌为目的基因的表达体系,下列正确的是:(C) A、表达产物为糖基化蛋白质 B、表达产物存在的部位是在菌体内

生物技术制药 第二版 课后习题(全)..

1.生物技术制药分为哪些类型? 生物技术制药分为四大类: (1)应用重组DNA技术(包括基因工程技术、蛋白质工程技术)制造的基因重组多肽,蛋白质类治疗剂。 (2)基因药物,如基因治疗剂,基因疫苗,反义药物和核酶等 (3)来自动物、植物和微生物的天然生物药物 (4)合成与部分合成的生物药物 2.生物技术制药具有什么特征? (1)分子结构复杂 (2)具有种属特异性 (3)治疗针对性强,疗效高 (4)稳定性差 (5)基因稳定性 (6)免疫原性 (7)体内的半衰期短 (8)受体效应 (9)多效性 (10)检验的特殊性 3.生物技术制药中有哪些应用? 应用主要有: (1)基因工程制药:包括基因工程药物品种的开发,基因工程疫苗,基因工程抗体,基因诊断与基因治疗,应用基因工程技术建立新药的筛选模型,应用基 因工程技术改良菌种,产生新的微生物药物,基因工程技术在改进药物生产 工艺中的应用,利用转基因动植物生产蛋白质类药物 (2)细胞工程制药:包括单克隆抗体,动物细胞培养,植物细胞培养生产次生代谢产物 (3)抗体工程制药 (4)酶工程制药 (5)发酵工程制药 4.基因工程药物制造的主要程序有哪些? 基因工程药物制造的主要步骤有: ①目的基因的克隆, ②构造DNA重组体, ③构造工程菌, ④目的基因的表达, ⑤外源基因表达产物的分离纯化产品的检验 5.影响目的的基因在大肠杆菌中表达的因素有哪些? (1)外源基因的计量 (2)外源基因的表达效率:a、启动子的强弱 b、核糖体的结合位点 c、SD序列和起始密码的间距 d、密码子组成 (3)表达产物的稳定性 (4)细胞的代谢付荷(5)工程菌的培养条件

生物技术制药 及 名词解释

生物技术制药 第一章绪论 药学一级学科分类:药物化学、药剂学、药理学、药物分析、生药学及微生物与生化药学二级学科 ★生物技术与生物技术药物的概念 生物技术药物的分类 ?按用途分类:治疗药物、预防药物、作为诊断药物(免疫诊断试剂、酶诊断试剂、器官功能诊断药物、放射性核素诊断药物、诊断用单克隆抗体(McAb)、诊断用DNA芯片) ?按作用类型分类:细胞因子类药物、激素类药物、酶与辅酶类药物、疫苗、单克隆抗体药物、反义核酸药物、RNA干扰(RNAi)药物、基因治疗药物 ?按生化特性分类:多肽类药物、蛋白质类药物、核酸类药物、聚乙二醇(PEG)化多肽或蛋白质药物 ★生物技术药物的特性 ?理化性质特性:相对分子量大、结构复杂、稳定性差 ?药理学作用特性:活性与作用机制明确、作用针对性强、毒性低、体内半衰期短、有种属特异性、可产生免疫原性 ?生产制备特性:药物分子在原料中的含量低、原料液中长存在降解目标产物的杂质、制备工艺条件温和、分离纯化困难、产品易受有害物质污染 ?质量控制特性:质量标准内容的特殊性、制造项下的特殊规定、检定项下的特殊规定(原液、半成品及成品检定等等) 第二章基因工程制药 蛋白类药物的特点:结构确证不完全性、具有种属特异性、多功能性、免疫原性 临床前安全性评价的特殊性:蛋白类药物安全性担忧的性质和来源;受试物的纯度;相关动物的选择;给药剂量的选择;免疫原性;遗传毒性和致癌性(一般不进行常规的遗传毒性实验);药代动力学 真核细胞表达制品的安全性问题:生产细胞DNA残留的影响、生产用血清的影响 基因工程药物稳定性研究的相关问题:药物浓度、温度、湿度和水分、氧、光照、pH 基因工程药物的缺陷:生物利用度低,半衰期短;异体蛋白具有免疫原性 基因工程菌的修饰改造方法:构建突变体、构建融合蛋白、PEG修饰(降低免疫原性、增加水溶性、延长t1/2) 基因工程制药基本环节 ?上游阶段:制备目的基因→构建重组质粒→构建工程细胞 ?下游阶段:培养工程细胞→分离纯化产物→除菌→半成品、成品检定→包装 基本工具:目的基因、各种酶(切割酶、连接酶、修饰酶等)、载体、宿主细胞 ?酶切结果:5’粘性末端、3’粘性末端、平头末端 ?1U核酸内切酶的酶活性:指在最佳反应条件下反应1小时,完全水解1mg标准DNA所需的酶量?影响限制性内切酶反应的因素: ?DNA样品的纯度: ?DNA的甲基化程度:核酸限制性内切酶不能够切割甲基化的核苷酸序列。在基因克隆中要使用甲基化酶缺陷型细菌菌株制备质粒DNA。 ?酶切反应的温度 ?DNA的分子结构 ?反应缓冲液组成 ?反应时间、反应体积等

生物技术制药考试题复习修订稿

生物技术制药考试题复 习 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

一:选择题 1、酶的主要来源是(C) A、生物体中分离纯化 B、化学合成 C、微生物生产 D、动/植物细胞与组织培养 2、所谓“第三代生物技术”是指 (A) A、海洋生物技术 B、细胞融合技术 C、单克隆技术 D、干细胞技术 3、菌体生长所需能量与菌体有氧代谢所能提供的能量在什么情况下,菌体往往会产生代谢副产物乙酸:(A) A、大于 B、等于 C、小于 D、无关 4、促红细胞生长素(EPO)基因能在大肠杆菌中表达,但却不能用大肠杆菌的基因工程菌生产人的促红细胞生长素,这是因为:(E) A、人的促红细胞生长素对大肠杆菌有毒性作用? B、人促红细胞生长素基因在大肠杆菌中极不稳定? C、大肠杆菌内毒素与人的促红细胞生长素特异性结合并使其灭活 D、人的促红细胞生长素对大肠杆菌蛋白水解酶极为敏感 E、大肠杆菌不能使人的促红细胞生长素糖基化 5、目前基因治疗最常用的载体是:(B) A、腺病毒? B、反转录病毒 C、腺相关病毒 D、痘苗病毒 E、疱疹病毒 6、cDNA第一链合成所需的引物是:(D) A、Poly?A B、PolyC C、PolyG D、PolyT E、发夹结构

7、为了减轻工程菌的代谢负荷,提高外源基因的表达水平,可以采取的措施有:(A) A将宿主细胞生长和外源基因的表达分成两个阶段 B、在宿主细胞快速生长的同时诱导基因表达? C、当宿主细胞快速生长时抑制重组质粒的表达? D、当宿主细胞快速生长时诱导重组质粒的复制 8、基因工程制药在选择基因表达系统时,首先应考虑的是:(A) A、表达产物的功能 B、表达产物的产量C.表达产物的稳定性 D.表达产物分离纯化的难易? 9、疫苗出产前需进行理化鉴定、效力鉴定和(安全性鉴定)。 10、基因工程药物的化学本质属于:(C) A.糖类 B.脂类 C.蛋白质和多肽类 D.氨基酸类 11、用聚二乙醇(PEG)诱导细胞融合时,下列错误的是:(C) A、PEG的相对分子量大,促进融合率高 B、PEG的浓度高,促进融合率高 C、PEG的相对分子量小,促进融合率高 D、PEG的最佳相对分子量为4000 12、以大肠杆菌为目的基因的表达体系,下列正确的是:(C) A、表达产物为糖基化蛋白质 B、表达产物存在的部位是在菌体内 C、容易培养,产物提纯简单 D、表达产物为天然产物? 13、人类第一个基因工程药物是:(A)

生物技术制药名词解释

一、名词解释:每个概念5分,共50分 1. 生物技术制药 生物技术制药是指运用微生物学、生物学、医学、生物化学等的研究成果,从生物体、生物组织、细胞、体液等,综合利用微生物学、化学、生物化学、生物技术、药学等科学的原理和方法进行药物制造的技术。 2. 基因表达 基因表达(gene expression)是指细胞在生命过程中,把储存在DNA顺序中遗传信息经过转录和翻译,转变成具有生物活性的蛋白质分子.生物体内的各种功能蛋白质和酶都是同相应的结构基因编码的。 3. 质粒的分裂不稳定 通常将质粒不稳定性分为两类:一类是结构不稳定性,也就是质粒由于碱基突变、缺失、插入等引起的遗传信息变化;另一类是分离不稳定性,指在细胞分裂过程中质粒不能分配到子代细胞中,从而使部分子代细胞不带质粒(即P-细胞)。在连续和分批培养过程中均能观察到此两类现象发生。一般情况下具有质粒的细胞(即P +细胞)需要合成较多的DNA、RNA和蛋白质,因此其比生长速率低于P-细胞,从而P-细胞一旦形成能较快速地生长繁殖并占据培养物中的大多数。 4. 补料分批培养 发酵培养基发酵培养基是供菌种生长、繁殖和合成产物之用。它既要使种子接种后能迅速生长,达到一定的菌丝浓度,又要使长好的菌体能迅速合成需产物。因此,发酵培养基的组成除有菌体生长所必需的元素和化合物外,还要有产物所需的特定元素、前体和促进剂等。但若因生长和生物合成产物需要的总的碳源、氮源、磷源等的浓度太高,或生长和合成两阶段各需的最佳条件要求不同时,则可考虑培养基用分批补料来加以满足。 5. 人-鼠嵌合抗体 嵌合抗体(chimeric atibody )是最早制备成功的基因工程抗体。它是由鼠源性抗体的V 区基因与人抗体的 C 区基因拼接为嵌合基因,然后插入载体,转染骨髓瘤组织表达的抗体分子。因其减少了鼠源成分,从而降低了鼠源性抗体引起的不良反应,并有助于提高疗效。 6. 悬浮培养 非贴壁依赖性细胞的一种培养方式。细胞悬浮于培养基中生长或维持。某些贴壁依赖性细胞经过适应和选择也可用此方法培养。增加悬浮培养规模相对比较简单,只要增加体积就可以子。深度超过5mm,需要搅动培养基,超过10cm,还需要深层通入CO2和空气,以保证足够的气体交换。通过振荡或转动装置使细胞始终处于分散悬浮于培养液内的培养方法。 7. 贴壁培养 也称为细胞贴壁,贴壁后的细胞呈单层生长,所以此法又叫单层细胞培养。大多数哺乳动物细胞的培养必须采用这种方法。 8. 固定化酶 不溶于水的酶。是用物理的或化学的方法使酶与水不溶性大分子载体结合或把酶包埋在水不溶性凝胶或半透膜的微囊体中制成的。酶固定化后一般稳定性增加,易从反应系统中分离,且易于控制,能反复多次使用。便于运输和贮存,有利于自动化生产。 9. 双功能抗体 将识别效应细胞的抗体和识别靶细胞的抗体联结在一起,制成双功能性抗体,称为双特异性抗体。如由识别肿瘤抗原的抗体和识别细胞毒性免疫效应细胞(CTL 细胞、NK 细胞、LAK 细胞)表面分子的抗体(CD3 抗体或CD16 抗体)制成的双特异性抗体,有利于免疫效应细胞发挥抗肿瘤作用。 10. 组织工程 应用生命科学与工程学的原理与技术,在正确认识哺乳动物的正常及病理两种状态下的组织结构与功能关系的基础上,研究、开发用于修复、维护、促进人体各种组织或器官损伤后的功能和形态的生物替代物的一门新兴学科。 11抗体:由B细胞接受刺激后分化为浆细胞产生的能与相应抗原特异性结合的具有免疫功能的球蛋白。

生物技术制药知识点总结(1)(DOC)

生物技术制药知识点纲要 生物技术制药:采用现代生物技术,借助某些微生物、植物、动物生产药品。 生物技术药物一般来说,采用DNA重组技术或其他生物新技术研制的蛋白质或核酸类药物。 生物药物:生物技术药物是重组产品概念在医药领域的扩大应用,并与天然药物.微生物药物.海洋药物和生物制品一起归类为生物药物。 生物技术:基因工程、细胞工程、酶工程、发酵工程、生化工程、蛋白质工程、抗体工程等。 基因工程是生物技术的核心和关键,是主导技术; 细胞工程是生物技术的基础;酶工程是生物技术的条件; 发酵工程是生物技术获得最终产品的手段。 生物技术:从广义角度来看,是人类对生物资源(包括微生物、植物、动物)的利用、改造并为人类服务的技术。 第三代生物技术是海洋生物技术 我国科学家承担了人类基因组计划1%的测序工作 现代生物技术包括: ⑴重组DNA技术 ⑵细胞和原生质体融合技术 ⑶酶和细胞的固定化技术 ⑷植物脱毒和快速繁殖技术 ⑸动物和植物细胞的大量培养技术 ⑹动物胚胎工程技术 ⑺现代微生物发酵技术 ⑻现代生物反应工程和分离工程技术 ⑼蛋白质工程技术⑽海洋生物技术 现代生物技术的发展趋势主要体现在下列几个方面: ①基因操作技术日新月异,不断完善。 ②新技术、新方法一经产生便迅速地通过商业渠道出售专项技术,并在市场上加以应用。 ③基因工程药物和疫苗的研究和开发突发猛进。 ④新的生物治疗制剂的产业化前景十分光明,21世纪整个医药工业将面临全面的更新改造。 ⑤转基因植物和动物取得重大突破 ⑥现代生物技术在农业上的广泛应用将给农业和畜牧业生产带来新的飞跃。 ⑦阐明生物体基因组及其编码蛋白质的结构与功能是当今生命科学发展的一个主流方向, ⑧基因治疗取得重大进展,有可能革新整个疾病的预防和治疗领域。

生物技术制药考试复习资料整理版

第一章、绪论 1. 生物技术制药:采用现代生物技术,借助某些微生物、植物或动物来生产所需的医药品,称为生物技术制药。 2. 生物技术药物:采用DNA重组技术或其他生物新技术研制的蛋白质或核酸类药物,称为生物技术药物。 3. 生物药物:指运用生物学、医学、生物化学等的研究成果,综合利用物理学、化学、生物化学、生物技术和药学等学科的原理和方法,利用生物体、生物组织、细胞、体液等制造的一类用于预防、治疗和诊断的制品。 4. 现代生物药物四大类型:⑴应用重组DNA技术制造的基因重组多肽,蛋白质类治疗剂; ⑵基因药物 ⑶来自动物、植物和微生物的天然药物; ⑷合成与部分合成的生物药物。 5. 生物药物功能用途分类:⑴治疗药物,⑵预防药物⑶诊断药物。 6. 生物技术制药的特征:⑴高技术⑵高投入⑶长周期⑷高风险⑸高收益 7. 生物技术在制药中的应用:⑴基因工程制药:①基因工程药物品种的开发、②基因工程疫苗、③基因工程抗体、④基因诊断与基因治疗、⑤应用基因工程技术建立新药的筛选模型、⑥应用基因工程技术改良菌种,产生新的微生物药物、⑦基因工程技术在改进药物生产工艺中的应用、⑧利用转基因动、⑨植物生产蛋白质类药物 ⑵细胞工程制药:①单克隆抗体技术、②动物细胞培养 ⑶酶工程制药 ⑷发酵工程制药 8. 我国生物技术制药现状和发展前景(自己阐述观点)

第二章基因工程制药 1.基因工程生产哪些药:⑴免疫性蛋白,如各种抗原和单克隆抗体。⑵细胞因子,如各种干扰素、白细胞介素、集落刺激生长因子、表皮生长因子及凝血因子。⑶激素,如胰岛素、生长激素、心钠素⑷酶类,如尿激酶、链激酶、葡激酶、组织型纤维蛋白溶酶原激活剂及超氧化物歧化酶等。 2. 利用基因工程技术生产药品的优点在于: ⑴利用基因工程技术可大量生产过去难以获得的生理活性蛋白和多肽(如胰岛素、干扰素、细胞因子等),为临床使用建立有效的保障。 ⑵可以提供足够数量的生理活性物质,以便对其生理、生化和结构进行深入的研究,从而扩大这些物质的应用范围。 ⑶利用基因工程可以发现挖掘更多的内源性生理活性物质。 ⑷内源生理活性物质在作为药物使用时,存在不足之处,可以通过基因工程和蛋白质工程读起进行改造。 ⑸利用基因工程技术可以获得新型化合物,扩大药物筛选来源。 3. 上游阶段:是研究开发比不可少的基础,主要是分离目的基因、构建工程菌(细胞)。上游阶段的工作主要咋实验室内完成。 4. 下游阶段:是从工程菌(细胞)的大规模培养直到产品的分离纯化、质量控制等。下游阶段是将实验室成果产业化、商品化。 5. 制备基因工程药物的基本过程:获得目的基因→组建重组质粒→构建基因工程菌(或细胞)→培养工程菌→产物分离纯化→除菌过滤→半成品检定→成品检定→包装 6. 宿主菌应该满足以下要求:⑴具有高浓度、高产量、高产率;⑵能利用易得廉价原料; ⑶不致病、不产生内毒素;⑷发热量低,需氧低,适当的发酵温度和细胞形态;⑸容易进行代谢调控;⑹容易进行重组DNA技术;⑺产物容易提取纯化 7. 宿主细胞分为两大类:⑴原核细胞:大肠杆菌、枯草杆菌、芽孢杆菌、链霉菌等;⑵真核细胞:酵母、丝状真菌 8. 表达载体必须具备以下条件(特点): ⑴载体能够独立地复制 ⑵应具有灵活的克隆位点和方便的筛选标记,以利于外源基因的克隆、鉴定和筛选。而且克隆位点应位于启动子序列后,以使克隆的外源基因得以表达。 ⑶应具有很强的启动子,能为大肠杆菌的RNA聚合酶所识别。 ⑷应具有阻遏子,使启动子收到控制,只有当诱导时候才能进行转录。 ⑸应具有很强的终止子,以便使RNA聚合酶集中力量转录克隆的外源基因,而不转录其他无关的基因,同时很强的终止子所产生的mRNA较为稳定。 ⑹所产生的mRNA必须具有反义的起始信号,即起始密码AUG和SD序列,以便转录后能顺利翻译。 ⒐密码子的偏爱性:在基因组中把使用频率高的同义密码子称为主密码子或偏爱密码子。此现象被称为密码子偏爱性 ⒑融合蛋白:由一条短的原核多肽和真核蛋白结合在一起的,称为融合蛋白。 ⒒酵母的复制序列的几种不同载体:⑴YEp类(酵母附加体质粒) ⑵YRp类(酵母复制型质粒) ⑶YCp类(酵母着丝粒质粒) ⑷Yip类(酵母整合型质粒) ⒓基因工程菌的不稳定性:基因工程菌在传代过程中经常出现质粒不稳定的现象,质粒不稳定分为分裂不稳定和结构不稳定。

生物技术制药课后习题..

生物技术制药课后习题 by xx Yua n 1生物技术制药分为哪些类型? 生物技术制药分为四大类: (1)应用重组DNA技术(包括基因工程技术、蛋白质工程技术)制造的基因重组多肽, 蛋白质类治疗剂。 (2)基因药物,如基因治疗剂,基因疫苗,反义药物和核酶等 (3)来自动物、植物和微生物的天然生物药物 4)合成与部分合成的生物药物2、生物技术制药具有什么特征? (1)分子结构复杂 (2)具有种属特异性 (3)治疗针对性强,疗效高 (4)稳定性差 (5)基因稳定性 (6)免疫原性 (7)体内的半衰期短 (8)受体效应 (9)多效性 (10)检验的特殊性 3、生物技术制药中有哪些应用? 应用主要有: (1)基因工程制药:包括基因工程药物品种的开发,基因工程疫苗,基因工程抗体,基 因诊断与基因治疗,应用基因工程技术建立新药的筛选模型,应用基因工程技术改良菌种,产生新的微生物药物,基因工程技术在改进药物生产工艺中的应用,利用转基因动植物生产 蛋白质类药物 (2)细胞工程制药:包括单克隆抗体,动物细胞培养,植物细胞培养生产次生代谢产 物 (3)酶工程制药 (4 ) 发酵工程制药 4、基因工程药物制造的主要程序有哪些? 基因工程药物制造的主要步骤有: 目的基因的克隆,构造DNA重组体,构造工程菌,目的基因的表达,外源基因表达产物的分离纯化产品的检验 5、影响目的的基因在大肠杆菌中表达的因素有哪些? (1)外源基因的计量 (2)外源基因的表达效率: a、启动子的强弱

b、核糖体的结合位点 c、S D序列和起始密码的间距 d、密码子组成 (3)表达产物的稳定性 (4)细胞的代谢付荷 (5)工程菌的培养条件 6、质粒不稳定分为哪两类,如何解决质粒不稳定性? 质粒不稳定分为分裂分为分裂不稳定和结构不稳定。质粒的分裂不稳定是指工程菌分裂时出现一定比例不含质粒的子代菌的现象;质粒的结构不稳定是DNA从质粒上丢失或碱基重排,缺失所致工程菌性能的改变。 提高质粒稳定性的方法如下: (1)选择合适的宿主细菌 2)选择合适的载体 (3)选择压力 (4)分阶段控制培养 (5)控制培养条件 (6)固定化 7、影响基因工程菌发酵的因素有哪些?如何控制发酵的各种参数? 影响因素: (1)培养基 (2)接种量 (3)温度 (4) 溶解氧 (5) 诱导时机的影响 (6) 诱导表达程序 (7) PH值 &什么是高密度发酵?影响高密度发酵的因素有哪些?可采取哪些方法来实现高密度发酵? 高密度发酵:是指培养液中工程菌的菌体浓度在50gDCW/L以上,理论上的最高值可达200gDCW/L 影响因素:(1)培养基(2)溶氧浓度(3)PH(4)温度(5)代谢副产物 实现高密度发酵的方法: (1)改进发酵条件:a培养基b、建立流加式培养基c、提高供养能力 (2)构建出产乙酸能力低的工程菌宿主菌:a阻断乙酸产生的主要途径b、对碳代谢流 进行分流c、限制进入糖酵解途径的碳代谢流d、引入血红蛋白基因 (3)构建蛋白水解酶活力低的工程化宿主菌 9、分离纯化常用的色谱分离方法有哪些?它们的原理是什么? 方法有离子交换色谱、疏水色谱、反相色谱、亲和色谱、凝胶过滤色谱及高压液相色谱。 (1)离子交换色谱IEC :是以离子交换剂为固定相,依据流动相中的组分离子与交换 剂

生物技术制药重点

生物技术制药(Biotechnological Pharmaceutics)是不断引进现代生物化学、分子生物学、细胞生物学、微生物学和制剂学及现代基因工程等多学科先进技术而形成与发展起来的实用制药技术。 基因工程药物的生产分为上游和下游两个阶段:①上游阶段:主要是分离目的基因、构建工程菌(细胞)。目的基因获得后,最主要的就是目的基因的表达。选择基因表达系统主要考虑的是保证表达的蛋白质的功能,其次是表达的量和分离纯化的难易。此阶段的工作主要在实验室内完成。、 ②下游阶段:从工程菌的大量培养一直到产品的分离纯化和质量控制。此阶段是将实验室成果产业化、商品化,主要包括工程菌大规模发酵最佳参数的确立,新型生物反应器的研制,高效分离介质及装置的开发,分离纯化的优化控制,高纯度产品的制备技术,生物传感器等一系列仪器仪表的设计和制造,电子计算机的优化控制等。 基因工程药物制药的主要程序:⒈目的基因的克隆⒉构建DNA重组体⒊DNA重组体转入宿主菌⒋构建工程菌⒌工程菌发酵⒍表达产物的分离纯化⒎产品的检验等 反转录法就是分离纯化目的基因的mRNA,再反转录成cDNA,然后进行cDNA克隆表达。 反转录-聚合酶链反应(RT-PCR):RT-PCR是将以RNA为模板的cDNA合成同PCR 结合在一起,该法是mRNA经反转录合成cDNA第一链,在以随机引物、oligo(dT)或基因特异性的引物(GSP)起始协助下,PCR扩增,特异性的合成目的cDNA链(目的基因)。 化学合成法:较小的蛋白质和多肽的编码基因可以用人工化学合成法获得。合成目的基因DNA不同部位的两条链的寡核苷酸短片段,再退火成为两端形成粘性末端的DNA 双链片段,然后将这些双链片段按正确的次序进行退火连接成较长的DNA片段,再用连接酶连接成完整的基因。 基因表达:是指结构基因在生物体中的转录、翻译以及所有加工过程 进行基因表达研究的主要问题是目的基因的表达产量、表达产物的稳定性、产物的生物学活性和表达产物的分离纯化。因此,建立最佳的基因表达体系,是基因表达设计的关键。 表达载体必须具备的条件(1)载体能够独立的复制;(2)具有灵活的克隆位点和方便的筛选标记。并且克隆位点应在启动子序列后,以使克隆的外源基因得以表达;(3)具有很强的Promoter,能为大肠杆菌的RNA聚合酶所识别;(4)具有Repressor,使启动子受到控制,只有当诱导时才能进行转录;(5)具有很强的终止子,以便使RNA聚合酶集中力量转录克隆的外源基因,而不转录无关的基因。

生物技术制药 第二版 课后思考题及答案(全)

1. 生物技术制药分为哪些类型?生物技术制药分为四大类: (1)应用重组DNA技术(包括基因工程技术、蛋白质工程技术)制造的基因重组多肽, 蛋白质类治疗剂。 (2)基因药物,如基因治疗剂,基因疫苗,反义药物和核酶等(3)来自动物、植物和微生物的天然生物药物(4)合成与部分合成的生物药物 2.生物技术制药具有什么特征? (1)分子结构复杂(2)具有种属特异性 (3)治疗针对性强,疗效高(4)稳定性差(5)基因稳定性(6)免疫原性 (7)体内的半衰期短(8)受体效应(9)多效性 (10)检验的特殊性 3.生物技术制药中有哪些应用?应用主要有: (1)基因工程制药:包括基因工程药物品种的开发,基因工程疫苗,基因工程抗体, 基因诊断与基因治疗,应用基因工程技术建立新药的筛选模型,应用基因工程技术改良菌种,产生新的微生物药物,基因工程技术在改进药物生产工艺中的应用,利用转基因动植物生产蛋白质类药物 (2)细胞工程制药:包括单克隆抗体,动物细胞培养,植物细胞培养生产次生代谢 产物 (3)酶工程制药(4)发酵工程制药 4.基因工程药物制造的主要程序有哪些? 基因工程药物制造的主要步骤有:目的基因的克隆,构造DNA重组体,构造工程菌,目的基因的表达,外源基因表达产物的分离纯化产品的检验 5.影响目的的基因在大肠杆菌中表达的因素有哪些? (1)外源基因的计量 (2)外源基因的表达效率:a、启动子的强弱 b、核糖体的结合位点 c、SD序列和起始密码的间距 d、密码子组成(3)表达产物的稳定性(4)细胞的代谢付荷(5)工程菌的培养条件 6.质粒不稳定分为哪两类,如何解决质粒不稳定性? 质粒不稳定分为分裂分为分裂不稳定和结构不稳定。质粒的分裂不稳定是指工程菌分裂时出现一定比例不含质粒的子代菌的现象;质粒的结构不稳定是DNA从质粒上丢失或碱基重排,缺失所致工程菌性能的改变。提高质粒稳定性的方法如下:(1)选择合适的宿主细菌2)选择合适的载体(3)选择压力 (4)分阶段控制培养(5)控制培养条件(6)固定化 7.影响基因工程菌发酵的因素有哪些?如何控制发酵的各种参数? 影响因素:(1)培养基(2)接种量(3)温度(4)溶解氧 (5)诱导时机的影响(6)诱导表达程序(7) PH值 8.什么是高密度发酵?影响高密度发酵的因素有哪些?可采取哪些方法来实现高密度发酵? 高密度发酵:是指培养液中工程菌的菌体浓度在50gDCW/L以上,理论上的最高值可达200gDCW/L 影响因素:(1)培养基(2)溶氧浓度(3)PH (4)温度(5)代谢副产物实现高密度发酵的方法: (1)改进发酵条件:a、培养基 b、建立流加式培养基 c、提高供养能力 (2)构建出产乙酸能力低的工程菌宿主菌:a、阻断乙酸产生的主要途径 b、对碳代谢流进行分流 c、限制进入糖酵解途径的碳代谢流 d、引入血红蛋白基因 (3)构建蛋白水解酶活力低的工程化宿主菌

相关文档
最新文档