反应工程乙烯空气氧化法制环氧乙烷课程设计(1)

反应工程乙烯空气氧化法制环氧乙烷课程设计(1)
反应工程乙烯空气氧化法制环氧乙烷课程设计(1)

第二章工艺流程图及说明

2.1 氧化反应部分

流程草图说明

由于此反应为气固相反应,并且催化剂比较贵,所以选择列管式固定床反应器。

反应放出大量的热,所以须采用换热介质进行换热,根据反应的热效应求得反应

的温度在180-250℃,因此选择矿物油作为换热介质,采用外部循环式换热。

来自界区甲烷

V-204

带控制点的氧化流程图

第三章 物料衡算

由设计任务书已知数据如下:

原料气的组成

组分 42H C

2CO

2O 2N

含量(mol%) 3.4 7.7 5.6 83.3

原料进入反应器的温度为210°C

反应温度为250°C 反应压力为1MPa 乙烯转化率为26.0%;选择性为65%;空速为5000h -1 年工作时间7200小时,年产量20000吨 反应产物分离后回收率为90%

反应器内催化剂填充高度为管长95%,每根管长3米

采用间接换热方式:导出液进口温度230°C ,出口温度235°C,导出液对管壁的给热系数为650W/m 2·K

催化剂为球体,D=3mm,床层孔隙率为0.8

在250°C ,1MPa 下反应气体导热系数为0.0304W/m 2K,粘度为4.26×10-5PaS,密度为7.17Kg/m 3

3.1 乙烯催化氧化制取环氧乙烷得物料衡算框图:

其中:FF 新鲜原料气 MF 原料混合气 RP 反应混合气 SP 混合分离气 RC 循环气 P 产品环氧乙烷

W 排空废气 SPC 未脱除二氧化碳的循环气 TC 脱除的二氧化碳 SRC 脱除二氧化碳的循环气

3.2 反应原理

乙烯和氧气在银催化剂上,于一定温度和压力下,直接氧化生产环氧乙烷,反应方程式可表为: (1)主反应:

O H C O H C 422422

1

→+

反应为放热反应,在250°C 时,每生成一摩尔环氧乙烷要放出25.19kcal 的热量。

(2)在主反应进行的同时,还发生其它副反应,其中主要是乙烯的燃烧反应。

副反应:

O H CO O CH CH 22222223+→+= 反应为强放热反应,在250°C ,每反应一摩尔乙烯,可放出315.9kcal 的热量。

3.3 反应器的物料衡算

(1)反应部分的工艺参数环氧乙烷生产能力:2万吨/年; 年操作时间:7200

小时进入反应器的温度:210℃;反应温度:250℃乙烯转化率:26.0%; 选择性:65%反应空速:50001-h ;生产过程安全系数:1.05反应产物分离后回收率:90%

原料气的组成及各组分的分子量

组分 42H C

2CO

2O 2N

含量(mol%)

3.4 7.7 5.6 83.3

各组分的分子量如表所示:(均取自《石油化工基础数据手册》)

各组分的分子量

组分 42H C

2CO

2

O

2N O H C 42 O H 2

分子量

28.054 44.010 31.999 28.013 44.054 18.015

(2)反应部分的基础计算

①以100kmol/h 气体进料为基准,根据已知原料气的组成,计算出每小时进入反应器的各种气体组分的摩尔数。

②根据反应方程式及已知数据,计算反应器出口的气体量。 主反应:

O H C O CH CH 422222

1

→+=

副反应:

O H CO O CH CH 22222223+→+= 已知乙烯转化率为26.0%,选择性为65%,进入反应器的乙烯量为3.4kmol/h ,所以

由主式有 消耗乙烯量:3.4×0.26×0.65=0.5746kmol 消耗氧气量:0.5746×0.5=0.2873kmol 生成环氧乙烷量:0.5746kmol

由副式有 消耗乙烯量:3.4×0.26×(1-0.65)=0.3094kmol 消耗氧气量:0.3094×3=0.9282kmol

生成二氧化碳量:0.2737×2=0.5474kmol 生成水量:0.3034×2=0.6068kmol

则可知 未反应的乙烯量:3.4-0.5746-0.3034=2.522kmol 未反应的氧气量:5.6-0.2873-0.9102=4.425kmol 出反应器的二氧化碳量:7.7+0.6068=8.3068kmol 出反应器的水量:0+0.6068=0.6068kmol

氮气、氩气和甲烷的量在反应过程中不发生变化,所以出口气体中各组分的量如表所示。

反应器入口和出口的气体量(kmol/h)

组分 42H C

2CO

2O

2N

O H C 42

O H 2

入口 3.4 7.7 5.6 83.3 0 0 出口

2.522

8.3068

4.425

83.3

0.5746

0.6068

(3)实际装置每小时生产的环氧乙烷可折算为

h kmol /056.700

9.0054.4472001027

=???

综上所述,气体进料为100kmol /h 时,可生产环氧乙烷0.5746kmol/h 。若要达到560.48kmol/h 的环氧乙烷生产能力,则所需原料量为

h kmol /83.219215746

.0100

056.07=?。为了保证所设计的装置能够达到所要求的生产

能力,必须考虑到原料损失等因素,一般取安全系数为1.05。 则实际进料量为 1.05×12192.83kmol/h =13412.113kmol/h (4)原料气与氧化气的组成计算

根据基准气体进料为100kmol/h 时的计算结果,可以折算出实际进料量为13412.113kmol/h 时的物料衡算情况。如表所示。

实际进料时的物料衡算

(a)原料气的物料衡算

组分

kmol/h kg/h mol% wt% 42H C

456.012 12792.956 3.4 3.24 2O

737.67

23604.58

5.5

5.98

2CO 1019.32 44907.19 7.6 11.36 2N

11199.11

313720.79

83.5 79.42 O H C 42

0 0 0 0 O H 2

0 0 0 0 合计

13412.112

395025.52

100

100

(b)氧化气的物料衡算

组分

kmol/h kg/h mol% wt% 42H C

307.26 8619.87 2.52 2.42 2O

540.12 17283.84 4.43 4.86 2CO 1012 40480.12 8.30 11.38 2N

10187.11 285239.08 83.55 80.18 O H C 42

69.50 3061.89 0.57 0.86 O H 2

76.81 1383.73 0.63 0.30 合计 12192.8

355768.53

100

100

第四章 热量衡算

4.2 热量衡算 ①原料气带入的热量Q l

原料气的入口温度为483.15 K ,以273.15 K 为基准温度,则

)/()(1h kJ T T C n Q i

pi i ∑-=基入

(4-4)

计算结果列于表4-10中。

表4-10原料气带入的热量

组分

Cp (J /mol ·K)

ni X

pi ni C X

42H C

61.523

0.034 2.092

2O

31.260 0.056 1.751 2CO 44.476 0.077 3.425 2N

29.738 0.833 24.772 合计

-

1.00

30.040

由计算结果可知

入t C NX Q pi ni =1 由公式可得1Q =13412.113×30.04×(483.15-273.15)=8.46×107kJ/h ②反应热Q 2 在操作条件下,主副反应的热效应分别为 主反应:

mol kcal O H C O H C /19.252

1

42242+→+

副反应:

mol kcal O H CO O H C /9.31522322242++→+ (以上两式均由《环氧乙烷与乙二醇生产》查得)。查得主反应放热量为:

h

kJ Q /1013.81886.41019.2565.062.0012.5646321?=?????=

副反应的放热量为:

h

kJ Q /1049.51886.4109.31562.035.0012.5647322?=?????=

总反应热为:h kJ Q Q Q /10303.67

22

212?=+= ③氧化气带出的热量Q 3

氧化气出口温度为523.15 K ,以273.15 K 为基准温度,则 )/()(1

h kJ T T C n Q i

pi i ∑-=基出

氧化气带出的热量

组分

Cp (J /mol ·K)

ni X

pi ni C X

42H C

64.887 0.0273 1.771 2O

31.534 0.0468 1.475 2CO 45.532 0.0469 2.135 2N 29.926 0.8349 24.985 O H 2

38.321 0.0045 0.172 O H C 42

81.098 0.0046 0.373 合计 -

1.00

30.912

由计算结果可知

出t C NX Q pi ni =3 由公式可得3Q =13412.113×30. 912×250=1.04×108kJ/h ④反应器的撤热量Q 4

Q 1+Q 2=Q 3+Q 4

可得反应器的撤热量Q 4=Q 1+Q2-Q 3=(6.891+4.814-8.319)×108=4.363×107kJ/h

第五章 反应器的设计

设计生产能力: 2万吨/年;生产过程安全系数:1.05;年操作时间:7200小时;本设计采用两台反应器并联进行反应。

已知:(1)每小时输入的原料气量总为13412.113kmol/h ;

(2)以银为催化剂,颗粒为球形,d=3mm ,空隙率5.0=ε; (3)反应温度为250℃,操作压力为1MPa ,空速为5000h -1; (4)反应器列管规格为32×3.5mm ;

(5)反应热用油撤走,导出液进口温度230℃,导出液出口温度235℃; (6)原料气进口温度为210℃,氧化气出口温度为250℃。 由计算可知

1.94766=m a 05-

2.7211E =m b 代入运用直接迭代法,查《化工热力学》可知RK 方程的直接迭代方程为

夹套搅拌反应器设计(DOCX 30页)

夹套搅拌反应器设计(DOCX 30页)

夹套搅拌反应器设计 课程设计说明书设计题目夹套搅拌反应器设计 学生 学号 专业班级 指导老师耿绍辉 化工设备基础 Nefu.20121228

夹套搅拌反应器设计 目录 第一章设计方案简介 1.1反应釜的基本结构 1.2反应釜的机械设计依据 第二章反应釜机械设计的内容和步骤 第三章反应釜釜体的设计 3.1 罐体和夹套计算 3.2厚度的选择 3.3设备支座 3.4手孔 3.5选择接管、管法兰、设备法兰 第四章搅拌转动系统设计 4.1转动系统设计方案 4.2转动设计计算:定出带型、带轮相关计算 4.3选择轴承 4.4选择联轴器 4.5罐体搅拌轴的结构设计、搅拌器与搅拌轴的连接结构设计4.6电动机选择 第五章绘制装配图 第六章绘制大V带轮零件图 第七章本设计的评价及心得体会 第八章参考文献

夹套搅拌反应器设计 第一章设计方案简介 搅拌设备在石油、化工、食品等工业生产中应用范围很广,尤其是化学工业中,很多的化工生产或多或少地应用着搅拌操作,化学工艺过程的种种物理过程与化学过程,往往要采用搅拌操作才能得到好的效果。搅拌设备在许多场合时作为反应器来应用的,而带搅拌的反应器则以液相物料为特征,有液-液、液-固、液-气等相反应。 搅拌的目的是:1、使互不相溶液体混合均匀,制备均匀混合液、乳化液、强化传质过程;2、使气体在液体中充分分散,强化传质或化学反应;3、制备均匀悬浮液,促使固体加速溶解、浸取或发生液-固化学反应;4、强化传热,防止局部过热或过冷。所以根据搅拌的不同目的,搅拌效果有不同的表示方法。 搅拌操作分为机械搅拌和气流搅拌。气流搅拌是利用气体鼓泡通过液体层,对液体产生搅拌作用,或使气泡群以密集状态上升借所谓气升作用促进液体产生对流循环。与机械搅拌相比,仅气泡的作用对液体所进行的搅拌时比较弱的,所以在工业生产,大多数的搅拌操作均是机械搅拌。本设计实验要求的就是机械搅拌搅拌器设备的设计遵循以下三个过程:1根据搅拌目的和物理性质进行搅拌设备的选型。2在选型的基础进行工艺设计与计算。3进行搅拌设备的机械设计与费用评价。在工艺与计算中最重要的是搅拌功率的计算和传热计算。 1.1反应釜的基本结构

环境工程学B大气污染工程课程设计讲解

大型作业报告 班级:12级机械设计与制造(环保设备) 姓名: 学号: 完成时间: 2013年12月30日 环境科学与工程学院

大气污染控制工程课程设计任务书 设计题目: 某冶炼厂工艺设备每小时产生3000(3200)Nm 3的含尘烟气,烟气含尘浓度85(90)g/Nm 3,烟气进口温度为250℃,除尘器内平均静压P s = -340 Pa ,试设计一台双筒CLT/A 型旋风除尘器作为除尘系统的第一级除尘设备。 设计参数: 烟气密度:3/293.1Nm kg g =ρ 烟气粘度:26/10849.1m s kg ??=-μ 粉尘密度:3/2160Nm kg p =ρ 旋风除尘器进口粉尘的粒径分布 平均粒径 )(m d p μ 1.5 3.5 5 10 15 22 28 36 44 粒径分布 (%)D ? 3.5 6 15 17 24 16 11 5 2.5

前言 除尘器是控制尘粒污染的有效措施,也是研究应用较早的一项技术。但在尘粒初始量增加,排放量进一步严格的情况下,企业必须重新计划自己的操作条件和排放控制系统,开发或应用更高效的除尘器,以满足现行法规的要求。所以本设计要求完成一台CLT/A型旋风除尘器作为除尘系统的第一级除尘设备的设计。 旋风除尘器是除尘装置的一类。除沉机理是使含尘气流作旋转运动,借助于离心力降尘粒从气流中分离并捕集于器壁,再借助重力作用使尘粒落入灰斗。旋风除尘器结构简单,易于制造、安装和维护管理,设备投资和操作费用都较低,已广泛用来从气流中分离固体和液体粒子,或从液体中分离固体粒子。在普通操作条件下,作用于粒子上的离心力是重力的5~2500倍,所以旋风除尘器的效率显著高于重力沉降室。在机械式除尘器中,旋风式除尘器是效率最高的一种。它适用于非黏性及非纤维性粉尘的去除,大多用来去除5μm以上的粒子,并联的多管旋风除尘器装置对3μm的粒子也具有80~85%的除尘效率。因此,它属于中效除尘器,且可用于高温烟气的净化,是应用广泛的一种除尘器,多应用于锅炉烟气除尘、多级除尘及预除尘。 旋风除尘器在我国应用还不是很广泛,但是随着工业的发展以及人们生活水平和对环境质量要求的提高,旋风除尘器必将有越来越重要的应用,而管式以其显著的优点将会在除尘器的未来发展中显示越来越重要的作用,这可从发达国家除尘器发展的过程中得到证明;另一方面,开发新型除尘装置也是大势所趋。基于我国的特殊国庆,这个过程可能还需要较长的一段时间,但无论如何,由中小型,低效除尘设备向大型高效除尘设备发展是一个必然的趋势。

搅拌反应釜课程设计(优选.)

课程设计说明书 专业: 班级: 姓名: 学号: 指导教师: 设计时间:

要求与说明 一、学生采用本报告完成课程设计总结。 二、要求文字(一律用计算机)填写,工整、清晰。所附设备安 装用计算机绘图画出。 三、本报告填写完成后,交指导老师批阅,并由学院统一存档。

目录 一、设计任务书 (5) 二、设计方案简介 (6) 1.1罐体几何尺寸计算 (7) 1.1.1确定筒体内径 (7) 1.1.2确定封头尺寸 (8) 1.1.3确定筒体高度 (9) 1.2夹套几何计算 (10) 1.2.1夹套内径 (10) 1.2.2夹套高度计算 (10) 1.2.3传热面积的计算 (10) 1.3夹套反应釜的强度计算 (11) 1.3.1强度计算的原则及依据 (11) 1.3.2按内压对筒体和封头进行强度计算 (12) 1.3.2.1压力计算 (12) 1.3.2.2罐体及夹套厚度计算 (12) 1.3.3按外压对筒体和封头进行稳定性校核 (14) 1.3.4水压试验校核 (16) (二)、搅拌传动系统 (16) 2.1进行传动系统方案设计 (17) 2.2作带传动设计计算 (17) 2.2.1计算设计功率Pc (17) 2.2.2选择V形带型号 (17) 2.2.3选取小带轮及大带轮 (17) 2.2.4验算带速V (18) 2.2.5确定中心距 (18) (18) 2.2.6 验算小带轮包角 1 2.2.7确定带的根数Z (18) 2.2.8确定初拉力Q (19) 2.3搅拌器设计 (19) 2.4搅拌轴的设计及强度校核 (19) 2.5选择轴承 (20) 2.6选择联轴器 (20) 2.7选择轴封型式 (21) (三)、设计机架结构 (21) (四)、凸缘法兰及安装底盖 (22) 4.1凸缘法兰 (22) 4.2安装底盖 (23) (五)、支座形式 (24) 5.1 支座的选型 (24) 5.2支座载荷的校核计算 (26)

苯-甲苯精馏塔课程设计报告书

课程设计任务书 一、课题名称 苯——甲苯混合体系分离过程设计 二、课题条件(原始数据) 1、设计方案的选定 原料:苯、甲苯 年处理量:108000t 原料组成(甲苯的质量分率):0.5 塔顶产品组成:%99>D x 塔底产品组成:%2

设计容 摘要:精馏是分离液体混合物最常用的一种单元操作,在化工﹑炼油﹑石油化工等工业中得到广泛的应用。本设计的题目是苯—甲苯二元物系板式精馏塔的设计。在确定的工艺要求下,确定设计方案,设计容包括精馏塔工艺设计计算,塔辅助设备设计计算,精馏工艺过程流程图,精馏塔设备结构图,设计说明书。关键词:板式塔;苯--甲苯;工艺计算;结构图 一、简介 塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。根据塔气液接触部件的结构型式,可分为板式塔和填料塔。板式塔设置一定数目的塔板,气体以鼓泡或喷射形式穿过板上液层进行质热传递,气液相组成呈阶梯变化,属逐级接触逆流操作过程。填料塔装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上(也有并流向下者)与液相接触进行质热传递,气液相组成沿塔高连续变化,属微分接触操作过程。 工业上对塔设备的主要要:(1)生产能力大;(2)传热、传质效率高;(3)气流的摩擦阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量少;(6)制造安装容易,操作维修方便。此外,还要求不易堵塞、耐腐蚀等。 板式塔大致可分为两类:(1)有降液管的塔板,如泡罩、浮阀、筛板、导向筛板、新型垂直筛板、蛇形、S型、多降液管塔板;(2)无降液管的塔板,如穿流式筛板(栅板)、穿流式波纹板等。工业应用较多的是有降液管的塔板,如浮阀、筛板、泡罩塔板等。 苯的沸点为80.1℃,熔点为5.5℃,在常温下是一种无色、味甜、有芳香气味的透明液体,易挥发。苯比水密度低,密度为0.88g/ml,但其分子质量比水重。苯难溶于水,1升水中最多溶解1.7g苯;但苯是一种良好的有机溶剂,溶解有机分子和一些非极性的无机分子的能力很强。 甲苯是最简单,最重要的芳烃化合物之一。在空气中,甲苯只能不完全燃烧,火焰呈黄色。甲苯的熔点为-95 ℃,沸点为111 ℃。甲苯带有一种特殊的芳香味(与苯的气味类似),在常温常压下是一种无色透明,清澈如水的液体,密度为0.866克/厘米3,对光有很强的折射作用(折射率:1,4961)。甲苯

夹套式反应器温度串级控制控制方案设计

目录 一.概述……………………………………………………………2-6页 1.1化学反应器的基本介绍………………………………… 2-3页 1.2夹套式反应器的控制要求…………………………………3 页 1.3夹套式反应器的扰动变量………………………………3-4页 1.4基本动态方程式…………………………………………4-6页二.控制系统方案的确定…………………………………………6-7页三.控制系统设计…………………………………………………7-18页 3.1被控变量和控制变量的选择………………………………7-8页 3.2主、副回路的设计…………………………………………8-9页 3.3现场仪表选型………………………………………………9-12页 3.4主、副控制器正反作用选择………………………………12-13页 3.5控制系统方框图……………………………………………13页 3.6分析被控对象特性及控制算法的选择……………………13-14页 3.7控制系统整定及参数整定…………………………………14-18页四.课程设计总结……………………………………………………18页五.结束语……………………………………………………………18页六.参考文献…………………………………………………………19页

一概述 1.1 化学反应器的基本介绍 反应器(或称反应釜)是化工生产中常用的典型设备,种类很多。化学反应器在结构、物料流程、反应机理、传热、传质等方面存在差异,使自控的难易程度相差很大,自控方案差别也比较大。 化学反应器可以按进出物料状况、流程的进行方式、结构形式、传热情况四 个方面分类: 一、按反应器进出物料状况可分为间歇式和连续式反应器 通常将半连续和间歇生产方式称为间歇生产过程。间歇式反应器是将反应物 料分次获一次加入反应器中,经过一定反应时间后取出反应中所有的物料,然后重新加料在进行反应。间歇式反应器通常适用于小批量、多品种、多功能、高附加值、技术密集型产品的生产,这类生产反应时间长活对反应过程的反应温度有严格程序要求。 连续反应器则是物料连续加入,化学反应连续不断地进行,产品不断的取出,是工业生产最常用的一种。一些大型的、基本化工产品的反应器都采用连续的形式。 二、从物料流程的进行方式可分为单程与循环两类 物料在通过反应器后不再进行循环的流程称为单程,当反应的转化率和产率都较高时,可采用单程的排列。如果反应速度较慢,祸首化学平衡的限制,物料一次通过反应器转化不完全,则必须在产品进行分离后,把没有反应的物料与新鲜物料混合后,再送送入反应器进行反应。这种流程称为循环流程。 三、从反应器结构形式可分为釜式、管式、塔式、固定床、流化床、移动床反应器等。 四、从传热情况可分为绝热式反应器和非绝热式反应器[1]。 绝热式反应器与外界不进行热量交换,非绝热式反应器与外界进行热量交换。一般当反应过程的热效应大时,必须对反应器进行换热,其换热方式有夹套式、蛇管式、列管式等。如今用的最广泛的是夹套传热方式,且采用最普通的夹套结构居多。随着化学工业的发展,单套生产装置的产量越来越大,促使了反应设备的大型化。也大大促进了夹套反应器的反展。 夹套式反应器是一类重要的化工生产设备,由于化学反应过程伴有许多化学和物理现象以及能量、物料平衡和物料、动量、热量和物质传递等过程,因此夹套反应器操作一般都比较复杂,夹套反应器的自动控制就尤为重要,他直接关系到产品的质量、产量和安全生产。

环境工程 大气课程设计计算说明书

环境工程专业课程设计 题目 ________________________________ 燃煤锅炉烟气电除尘设计 指导教师 学生姓名 学生学号 学院专业班 年月日

目录 一、设计说明书 (1) 1.1课程设计题目 (1) 1.2大气污染控制工程课程设计简介 (1) 1.3课程设计的任务 (1) 1.4课程设计目的 (1) 1.5课程设计的基本内容和要求 (2) 1.6 设计原始数据 (2) 1.7设计依据和原则 (3) 1.8工艺流程描述 (3) 二、设计方案 (4) 2.1烟气计算 (4) 2.3除尘效率 (5) 2.4电除尘器电场风速选择及有效断面计算 (5) 2.5静电除尘器简介 (7) 2.6烟囱设计 (7) 2.6.1烟囱高度确定 (7) 2.6.2烟囱出口内径计算 (8) 2.6.3烟囱进口内径 (8) 2.6.4烟囱抽力的计算 (8) 2.7除尘系统阻力损失计算 (10) 2.7.1管径的确定 (10) 2.7.2烟道及风管沿程阻力损失计算 (10) 2.7.3计算从锅炉出口到除尘器进口段阻力损失, (10) 2.7.4除尘器出口到风机段沿程阻力损失计算 (11) 2.7.5风机出口到烟囱段的阻力损失 (12) 2.8 风机的选择与计算 (13) 2.8.1烟气量的计算 (13) 2.8.2风机风压的计算 (13) 2.8.3电动机功率计算 (14) 2.8.4 确定风机型号 (14) 三、总结 (16)

一、设计说明书 1.1课程设计题目 150 t/h燃煤锅炉烟气电除尘系统设计。 1.2大气污染控制工程课程设计简介 (1)大气污染防控制工程设计的内容:包括厂址选择,总体设计,工艺设计等。其中工艺设计包括:生产方式选择、生产工业流程设计,工艺计算(物料及能量平衡),设备工艺计算与造型,设备和管道的配置,并提供工艺设计的条件及对公用工程要求等。 (2)大气污染控制工程课程设计:大气污染控制工程课程设计是学完基础课程及大气污染控制工程后,进一步学习大气污染控制工程设计的基础知识,培养学生大气污染控制工程设计能力的重要教学环节。也是学生综合运用《大气污染控制工程》和相关选修课的知识,联系大气污染控制工程实际,完成以控制单元操作为主的一次大气污染控制工程设计的实践。 1.3课程设计的任务 本次设计得目标是对燃煤锅炉烟气除尘预处理系统设计,其主要内容包括以下几方面。 (1)了解燃煤锅炉的排污特性,确定烟尘预处理系统工艺流程,具体包括确定烟尘处理系统的主要管道、除尘器、风机、烟囱等的结构及型号; (2)本次设计是在了解燃煤锅炉排污特性的基础上,设计整个烟尘预处理系统及其辅助设备,其中主要包括根据锅炉烟气参数来进行烟尘吹系统的设计,计算除尘系统设备的尺寸、压力损失,选择风机; (3)还包括烟囱高度、烟囱直径等的计算,确定除尘器、风机及烟囱位置; (4)绘制烟尘处理设施系统平面布置图,高程布置图、除尘设备图等; (5)编写课程设计说明书。 1.4课程设计目的 通过课程设计,初步掌握控制单元操作设计的基本程序和方法,熟悉查阅技

乙酸乙酯间歇反应釜课程设计

乙酸乙酯间歇反应釜 工 艺 设 计 说 明 书

目录 前言 (3) 摘要 (4) 一.设计条件和任务 (4) 二.工艺设计 (6) 1. 原料的处理量 (6) 2. 原料液起始浓度 (7) 3. 反应时间 (7) 4. 反应体积 (8) 三. 热量核算 (8) 1. 物料衡算 (8) 2. 能量衡算 (9) 3. 换热设计 (12) 四. 反应釜釜体设计 (13) 1. 反应器的直径和高度 (13) 2. 筒体的壁厚 (14) 3. 釜体封头厚度 (15) 五. 反应釜夹套的设计 (15) 1. 夹套DN、PN的确定 (15) 2. 夹套筒体的壁厚 (15) 3. 夹套筒体的高度 (16) 4. 夹套的封头厚度 (16) 六. 搅拌器的选型 (17) 1. 搅拌桨的尺寸及安装位置 (17) 2. 搅拌功率的计算 (18) 3. 搅拌轴的的初步计算 (18) 结论 (19) 主要符号一览表 (20) 总结 (21) 参考书目 (22)

前言 反应工程课程设计是《化工设备机械基础》和《反应工程》课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是学生体察工程实际问题复杂性,学习初次尝试反应釜机械设计。化工设计不同于平时的作业,在设计中需要同学独立自主的解决所遇到的问题、自己做出决策,根据老师给定的设计要求自己选择方案、查取数据、进行过程和设备的设计计算,并要对自己的选择做出论证和核算,经过反复的比较分析,择优选定最理想的方案和合理的设计。 反应工程是培养学生设计能力的重要实践教学环节。在教师指导下,通过裸程设计,培养学生独立地运用所学到的基本理论并结合生产实际的知识,综合地分析和解决生产实际问题的能力。因此,当学生首次完成该课程设计后,应达到一下几个目的: 1、熟练掌握查阅文献资料、收集相关数据、正确选择公式,当缺乏必要的 数据时,尚需要自己通过实验测定或到生产现场进行实际查定。 2、在兼顾技术先进性、可行性、经济合理的前提下,综合分析设计任务要 求,确定化工工艺流程,进行设备选型,并提出保证过程正常、安全可行所需的检测和计量参数,同时还要考虑改善劳动条件和环境保护的有效措施。 3、准确而迅速的进行过程计算及主要设备的工艺设计计算及选型。 4、用精炼的语言、简洁的文字、清晰地图表来表达自己的设计思想和计算 结果。 化工设备机械基础课程设计是一项很繁琐的设计工作,而且在设计中除了要考虑经济因素外,环保也是一项不得不考虑的问题。除此之外,还要考虑诸多的政策、法规,因此在课程设计中要有耐心,注意多专业、多学科的综合和相互协调。

管式反应器课程设计样本

化学化工学院 化工专业课程设计 设计题目: 管式反应器设计 化工系

化工专业课程设计——设计文档质量评分表( 100分)

评委签名: 日期:

目录 绪论 (1) 1设计内容与方法介绍 (2) 1.1反应器设计概述 (2) 1.2设计内容 (3) 1.3生产方法介绍 (4) 1.4反应器类型特点 (6) 1.5反应器选择及操作条件说明 (7) 2工艺计算 (8) 2.1主要物性数据 (8) 2.2MATLAB 计算,确定管长,主副反应收率 (8) 2.3管数计算 (10) 3压降计算公式 (10) 4催化剂用量计算 (11) 5换热面积计算 (11) 6反应器外径计算 (12) 7壁厚计算 (13) 8筒体封头计算 (13) 9管板厚度计算 (14) 10设计结果汇总 (14) 11设计小结 (15)

绪论 管式反应器一种呈管状、长径比很大的连续操作反应器。这种反应器能够很长, 如丙烯二聚的反应器管长以公里计。反应器的结构能够是单管, 也能够是多管并联, 能够是空管, 如管式裂解炉, 也能够是在管内填充颗粒状催化剂的填充管, 以进行多相催化反应, 如列管式固定床反应器。一般, 反应物流处于湍流状态时, 空管的长径比大于50, 填充段长与粒径之比大于100(气体)或200( 液体) , 物料的流动可近似地视为平推流。管式反应器返混小, 因而容积效率( 单位容积生产能力) 高, 对要求转化率较高或有串联副反应的场合尤为适用。另外, 管式反应器可实现分段温度控制。管式反应器在近40年里, 由于其体积小, 效率高的特点, 在化工中的应用与发展十分迅速。因此, 对管式反应器的研究具有深远的意义。 中国自20世纪80年代引进这一先进技术后, 由上海化工研究院、南华集团设计院和郑州工业大学在”七五”期间承担了管式反应器的国家攻关项目, 四川大学在”八五”、”九五”、”十五”期间也承担了管式反应器的国家攻关项目和有关基础研究工作。一些研究、设计院和高校大力协同, 积极开展基础研究工作和承担工程项目, 至今取得了很大的成绩, 填补了这一领域的空白。随着现代高科技的发展, 中国研制的新型管式反应器也必将赶上世界先进水平, 在化工界占有一席之地。

大气课设

1概述 .......................................................................................................................................... - 1 - 1.1任务来源........................................................................................................................ - 1 - 1.2设计目的........................................................................................................................ - 1 - 1.3设计依据........................................................................................................................ - 1 - 1.4设计原则........................................................................................................................ - 1 - 1.5气象资料........................................................................................................................ - 1 - 2处理要求及方案的选择........................................................................................................... - 2 - 2.1处理要求........................................................................................................................ - 2 - 2.2 处理方法简介............................................................................................................... - 2 - 2.3处理方法的比较............................................................................................................ - 2 - 2.4处理方法选择................................................................................................................ - 3 - 3工艺流程................................................................................................................................... - 4 - 3. 1 工艺流程图.................................................................................................................. - 4 - 3. 2 工艺流程简介.............................................................................................................. - 4 - 3. 2.1 集气罩............................................................................................................... - 4 - 3.2.2吸收塔................................................................................................................. - 4 - 3.2.3管道..................................................................................................................... - 4 - 3.2.4风机及电机......................................................................................................... - 5 - 4平面布置................................................................................................................................... - 6 - 5参考文献................................................................................................................................... - 6 - 1集气罩的设计........................................................................................................................... - 7 - 1.1集气罩的基本参数的确定............................................................................................ - 7 - 1.2集气罩入口风量的确定................................................................................................ - 7 - 1.2.1冬季..................................................................................................................... - 7 - 1.2.2夏季..................................................................................................................... - 8 - 2集气罩压力损失的确定........................................................................................................... - 9 - 3管道设计................................................................................................................................... - 9 - 3.1阻力计算........................................................................................................................ - 9 - 4动力系统选择......................................................................................................................... - 12 - 4.1安全系数修正.............................................................................................................. - 12 - 4.2风机标定工况计算...................................................................................................... - 13 - 4.3动力系统的选择.......................................................................................................... - 13 -

课程设计——反应测试器的设计与开发解析

电子技术课程设计报告设计课题:反应测试器的设计与开发 专业班级:电气工程及其自动化 学生姓名:陈旭亮 指导教师:于爱华、张震宇、郑玉珍、瞿晓设计时间:2013/7/3——2013/7/11 自动化与电气工程学院

反应测试器的设计与开发 一、设计任务与要求: 设计任务:设计一个反应能力测试电路,当被测对象看到第一个LED点亮后,即迅速按下按键,用LED发光二极管指示人的反应速度的快慢。 除了LED显示,还可以增加蜂鸣器电路,按键过程中可以让它鸣叫, 也可以超时后鸣叫。 设计内容: 1、数字电路部分设计:用555芯片和CD4017芯片,设计一个反应能力测 试电路,当被测对象看到第一个LED点亮后,即迅速按 下按键,用LED发光二极管指示人的反应速度的快慢。 除了LED显示,还有蜂鸣器,过程中可以让它鸣叫,也 可以超时后鸣叫。该部分还用到相关的与非门、或非门、 非门等芯片(如74HC00、74HC02、74HC04等)以及三 极管(如8050,用于放大驱动)等器件。 2、模拟电路部分设计:用7805芯片和相关外围电容,设计一个5V 稳压电 源。考虑到安全性,不做降压和整流部分,而是直接通入 DC,如9V DC适配器。5V电源用于给数字部分供电。 设计要求: 1、基本部分:实现反应能力LED显示,LED显示要能区分出人反应速度的 快慢。可以用单个点亮(不同的LED点亮代表不同的反应速度)、 或多个点亮(点亮的LED越少,代表反应能力越快)的方法,诸 如此类,具体不作规定。 2、发挥部分:在基本部分基础上加入声音功能,可以在测试过程中让其鸣叫, 也可以测试超时后让其鸣叫,具体不作规定。 二、方案设计与论证: 反应测试器总体方框图如图所示:

乙酸乙酯反应器课程设计

《反应工程》 课程设计说明书 院(部)名称化学与材料工程学院学生姓名 设计项目乙酸乙酯的反应器设计 指导教师 专业班级化学工程与工艺

前言 反应工程课程设计是《化工设备机械基础》和《反应工程》课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是学生体察工程实际问题复杂性,学习初次尝试反应釜机械设计。化工设计不同于平时的作业,在设计中需要同学独立自主的解决所遇到的问题、自己做出决策,根据老师给定的设计要求自己选择方案、查取数据、进行过程和设备的设计计算,并要对自己的选择做出论证和核算,经过反复的比较分析,择优选定最理想的方案和合理的设计。 反应工程是培养学生设计能力的重要实践教学环节。在教师指导下,通过裸程设计,培养学生独立地运用所学到的基本理论并结合生产实际的知识,综合地分析和解决生产实际问题的能力。因此,当学生首次完成该课程设计后,应达到一下几个目的: 1、熟练掌握查阅文献资料、收集相关数据、正确选择公式,当缺乏必要的 数据时,尚需要自己通过实验测定或到生产现场进行实际查定。 2、在兼顾技术先进性、可行性、经济合理的前提下,综合分析设计任务要 求,确定化工工艺流程,进行设备选型,并提出保证过程正常、安全可行所需的检测和计量参数,同时还要考虑改善劳动条件和环境保护的有效措施。 3、准确而迅速的进行过程计算及主要设备的工艺设计计算及选型。 4、用精炼的语言、简洁的文字、清晰地图表来表达自己的设计思想和计算 结果。 化工设备机械基础课程设计是一项很繁琐的设计工作,而且在设计中除了要考虑经济因素外,环保也是一项不得不考虑的问题。除此之外,还要考虑诸多的政策、法规,因此在课程设计中要有耐心,注意多专业、多学科的综合和相互协调。

环境工程大气课程设计

大型作业报告 班级 : 12级机械设计与制造(环保设备) 姓名: 学号 完成时间: 2013年12月30日 环境科学与工程学院

目录 1概述?错误!未定义书签。 2 燃煤锅炉排烟量、烟尘及二氧化硫浓度的计算 ........................................ 错误!未定义书签。 2.1排烟量及浓度计算?错误!未定义书签。 2.1.1实际需湿空气量?错误!未定义书签。 2.1.2产生的烟气量................................................................................ 错误!未定义书签。3净化系统除尘方案的分析确定 .................................................................. 错误!未定义书签。 3.1工艺比较.......................................................................... 错误!未定义书签。 3.2旋风除尘器的工作原理、应用及特点?错误!未定义书签。 3.2.1旋风除尘器简介........................................................................... 错误!未定义书签。 3.3.1烟气氨法脱硫系统.................................................................... 错误!未定义书签。 3.3.3硫铵工艺....................................................................................... 错误!未定义书签。 3.3.4脱硫方法的选择?错误!未定义书签。 4 除尘装置及相关计算?错误!未定义书签。 4.1各装置及管道布置的原则?错误!未定义书签。 4.2除尘器的选择?错误!未定义书签。 4.3烟道管径的确定.............................................................. 错误!未定义书签。 4.4烟囱的设计................................................................... 错误!未定义书签。 4.4.1烟囱高度的确定.......................................................................... 错误!未定义书签。 4.4.2烟囱直径与抽力的计算............................................................ 错误!未定义书签。 4.4.3系统阻力的计算......................................................................... 错误!未定义书签。 5 风机及电动机的选择?错误!未定义书签。 主要参考书目 .................................................................................................... 错误!未定义书签。结束语: ............................................................................................................... 错误!未定义书签。大型作业成绩评定表?错误!未定义书签。

甲醇-水溶液连续精馏塔课程设计91604

目录 设计任务书 一、概述 1、精馏操作对塔设备的要求和类型 (4) 2、精馏塔的设计步骤 (5) 二、精馏塔工艺设计计算 1、设计方案的确定 (6) 2、精馏塔物料衡算 (6) 3、塔板数的确定 (7) 的求取 (7) 3.1理论板层数N T 3.2实际板层数的求取 (8) 4、精馏塔的工艺条件及有关物性数据的计算 4.1操作温度的计算 (11) 4.2平均摩尔质量的计算 (11) 4.3平均密度的计算 (12) 4.4液相平均表面张力计算 (12) 4.5液体平均粘度计算 (13) 5、精馏塔塔体工艺尺寸计算 5.1塔径的计算 (14) 5.2精馏塔有效高度的计算 (15) 6、塔板主要工艺尺寸计算 6.1溢流装置计算 (16) 6.2塔板的布置 (17) 6.3浮阀计算及排列 (17) 7、浮阀塔流体力学性能验算 (19) 8、塔附件设计 (26) 7、精馏塔结构设计 (30)

7.1设计条件 (30) 7.2壳体厚度计算………………………………………………… 7.3风载荷与风弯矩计算………………………………………… 7.4地震弯矩的计算………………………………………………… 三、总结 (27) 化工原理课程设计任务书 一、设计题目: 甲醇-水溶液连续精馏塔设计 二、设计条件: 年产量: 95%的甲醇17000吨 料液组成(质量分数): (25%甲醇,75%水) 塔顶产品组成(质量分数): (95%甲醇,5%水) 塔底釜残液甲醇含量为6% 每年实际生产时间: 300天/年,每天24小时连续工作 连续操作、中间加料、泡点回流。 操作压力:常压 塔顶压力4kPa(表压) 塔板类型:浮阀塔 进料状况:泡点进料 单板压降:kPa 7.0 厂址:安徽省合肥市 塔釜间接蒸汽加热,加热蒸汽压力为0.5Mpa 三、设计任务 完成精馏塔的工艺设计,有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配图,编写设计说明书. 设计内容包括: 1、 精馏装置流程设计与论证 2、 浮阀塔内精馏过程的工艺计算 3、 浮阀塔主要工艺尺寸的确定 4、 塔盘设计 5、 流体力学条件校核、作负荷性能图 6、 主要辅助设备的选型 四、设计说明书内容 1 目录 2 概述(精馏基本原理) 3 工艺计算 4 结构计算 5 附属装置评价 6 参考文献 7 对设计自我评价 摘要:设计一座连续浮阀塔,通过对原料,产品的要求和物性参数的确定及对主

反应釜温度过程控制课程设计

过程控制系统课程课题:反应釜温度控制系统 系另I」:电气与控制工程学院 专业:自动化_____________ 姓名: ________ 彭俊峰_____________ 学号:__________________ 指导教师: _______ 李晓辉_____________ 河南城建学院 2016年6月15日

反应器是任何化学品生产过程中的关键设备,决定了化工产品的品质、品种和生产能力。釜式反应器是一种最为常见的反应器,广泛的应用于化工生产的各个领域。釜式反应器有一些非常重要的过程参数,如:进料流量(进料流量比)、液体反应物液位、反应压力、反应温度等等。对于这些参数的控制至关重要,其不但决定着产品的质量和生产的效率,也很大程度上决定了生产过程的安全性。 由于非线性和温度滞后因素很多,使得常规方法对釜式反应器的控制效果不是很理想。本文以带搅拌釜式反应器的温度作为工业生产被控对象,结合PID 控制方式,选用FX2N-PLC 调节模块,同时为了提高系统安全性,设计了报警和紧急停车系统,最终设计了一套反应釜氏的温度过程控制系统。

1系统工艺过程及被控对象特性选取 被控对象的工艺过程 本设计以工业常见的带搅拌釜式反应器(CSTR)为过程系统被控对象。 反应器为标准3盆头釜,反应釜直径1000mm,釜底到上端盖法兰高度1376mm, 反应器总容积,耐压。为安全起见,要求反应器在系统开、停车全过程中压力不超过。反应器压力报警上限组态值为。反应器的工艺流程如图1-1所示。 S8Q A a珑厲娜口 图1-1釜式反应器工艺流程图 该装置主要参数如表1-1所示。各个阀门的设备参数如表1-2所示,其中,D g为阀门公称直径、K v为国际标准流通能力。 表1-1主要测控参数表

大气课程设计

大气污染控制工程 课程设计报告 30、武汉钢铁公司火力发电厂锅炉的烟气治理 姓名:宁文识 学号:1020320132 专业:环境工程 指导教师:赵素芬 2013年11月25日

1、设计任务 1.1 设计题目 发电厂锅炉的烟气治理系统设计 1.2 设计原数据 2台670T/h的燃煤锅炉(WCZ670/73.7-87型)排放的烟气,烟气量为Q =161.5×104m3/h,含尘浓度为19.62g/Nm3,SO2浓度为6.72 g/Nm3。烟尘浓度和SO2排放达到空气质量二级标准。废气最终排放温度为420℃,当地年平均气温为22.3℃。 设计要求 (1)根据已知的气象条件,计算出各方向的污染系数,求得最佳位置,以免污染到居民区。 (2)计算脱硫装置的主要设备尺寸。 (3)计算和选择风机型号及风管管径。 (4)烟囱的排放口直径3.0m,试确定烟囱高度。 一年内风向风速频率%风向频率频率频率频率频率 N 0.460.630.09 1.730.27 NNE 0.45 2.460.640 2.01 NE 0.450.63 3.560.270 ENE 0.54 4.20.45 2.740.37 E 0.360.99 4.390.82 1.82 ESE 1.187.590.91 1.090.09 SE 0.91 1.73 4.760.550.55 SSE 0.45 5.58 1.73 3.010.09 S 0.630.9 3.190.370.46 SSW 0.72 3.20.720.640.18 SW 0.55 1.45100.18 WSW 0.81 1.280.730.540.36 W 0.360.910.920.090 WNW 0.64 1.830.720.180 NW 01 1.2800.27 NNW 0.82 2.460.360.820 C(静风)8.13 风速(m/s)<1.5 1.5<u <3 3<u< 5 5<u< 7 >7

相关文档
最新文档