喷淋水力计算.doc

喷淋水力计算.doc
喷淋水力计算.doc

除臭设备设计计算书

8、除臭设备设计计算书 8.1、生物除臭塔的容量计算 1#生物除臭系统 参数招标要求计算过程 序 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 2.5×2.0× 3.0m 2000m3/h Q=2000m3/h V=处理能力Q/(滤床接触面积m2)/S=2000/ (2.5×2)/3600=0.1111m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1111=14.4S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa 设备风阻<600Pa 2#生物除臭系统 参数 序 招标要求计算过程 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 4.0×2.0×3.0m 3000m3/h Q=3000m3/h V=处理能力Q/(滤床接触面积m2)/S=3000/ (4×2)/3600=0.1041m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1041=15.36S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa 设备风阻<600Pa

3#生物除臭系统 参数招标要求计算过程 序 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 7.5×3.0×3.3m(两台) 20000m3/h Q=20000m3/h V=处理能力Q/2(滤床接触面积m2)/S=10000/ (7.5×3.0)/3600=0.1234m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.7/0.1234=13.77S 炭质填料风阻220Pa/m×填料高度 1.7m=374Pa 设备风阻<600Pa 4#生物除臭系统 参数 序 招标要求计算过程 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 7.5×3.0×3.0m(两台) 18000m3/h Q=18000m3/h V=处理能力Q/2(滤床接触面积m2)/S=18000/ (7.5×3)/3600=0.1111m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1111=14.4S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa 设备风阻<600Pa 8.2、喷淋散水量(加湿)的计算 生物除臭设备采用生物滤池除臭形式,池体上部设有检修窗,进卸料口,侧面设有观察窗等,其具体计算如下:

自喷系统水力计算

自喷系统水力计算应注意的几个问题 蓝为平 摘要:对自动喷水灭火系统水力计算过程中最不利点喷头工作压力、管径等几个问题进行探讨,并提出一些建议,以便确定合理的计算结果。 关键词:自动喷水灭火系统水力计算工作压力 在自动喷水灭火系统工程设计中,设计人员对火灾危险级别选定、喷头布置、报警阀控制喷头数量等很重视,但往往忽视了水力计算,主要有以下几个问题:一是没有根据规范的流量公式计算,而是以旧规范的作用面积乘以喷水强度来估算系统设计流量;二是系统压力仅根据建筑高度加上估计的水头损失,而不是根据喷头进行逐点计算;三是认为最不利点喷头压力应为0.05MPa(规范要求的最小压力);四是一味强调配水支管压力不能超过0.4MPa。但笔者在工作中发现,根据现行规范公式进行计算得出的压力、流量数值与经验估算或老规范计算方法均相差较大,最不利点喷头压力也不应简单定为0.05MPa,配水管压力并非不能超过0.4MPa。 现对自喷系统水力计算进行举例说明,因出现分歧的地方主要是作用面积内的计算结果,所以本文仅比较作用面积内的计算过程。首先按理论间距布置喷头,再根据计算结果对管径、喷头压力进行比较、调整,最后以实际工程进行核算,以期找出合理的管径、压力。根据不同建筑类型,自喷系统分为6个危险级别,民用建筑设计中经常遇到的有轻危险级、中危险级Ⅰ级、Ⅱ级。 现以中危险级Ⅱ级为例,其设计参数为:喷水强度8L/(min.m2),计算作用面积160 m2,最不利点喷头工作压力不小于0.05MPa,正方形布置喷头间距不大于3.4m。先按标准间距布置喷头,且以规范建议的喷头数采用管径,喷头布置如下图(配水管两边喷头对称布置,实际作用面积为173m2):

自动喷水灭火系统水力计算及配水管径分析

自动喷水灭火系统水力计算及配水管径分析 现如今,自动喷水灭火系统越来越广泛的被用于各种大型建筑中。而对于自动喷水灭火系统水力计算的方法和步聚及配水管径的确定是走关系到整个系统能否有效运行的关键环节,本文我们将结合《自动喷水灭火系统设计规范》和《给水排水设计手册》,并通过实例对中危Ⅱ级管网水力计算进行对比,就自动喷水灭火系统水力计算的原则和管网配水管径的确定方法展开分析。 标签自动喷水灭火系统;水力计算;配水管径 自动喷水灭火系统,是当今世界上公认的最为有效的自救灭火设施,是应用最广泛、用量最大的自动灭火系统。国内外应用实践证明:该系统具有安全可靠、经济实用、灭火成功率高等优点。在自动喷水灭火系统设计中,力求遵循系统基本原理和技术特点,使系统充分发挥自动扑救初期火灾的作用。自动喷水灭火系统的水力计算和配水管径的确定是自喷系统设计的灵魂,是关系到系统可靠性、合理性和经济性的一项重要设计内容。 一、系统水量、水力计算 设计人员针对系统设计流量的计算,通常做法:依据《喷规》首先判定设置场所火灾危险等级,根据系统设计的基本参数,即喷水强度(L/min·m2)×作用面积(m2)确定喷淋系统设计流量,该设计流量是假定作用面积内所有喷头的工作压力和流量等于最不利点喷头的工作压力和流量,忽略管道阻力损失对喷头工作压力的影响,导致系统设计流量小于实际流量。在系统设计流量计算时,为了确保喷头的计算出水量与实际水力条件相符,《给水排水设计手册》第 2 册《建筑给水排水》第2.3.5 节,详细介绍了自动喷水灭火系统水力计算方法:根据设置场所火灾危险等级,作用面积、喷水强度和最不利点处喷头工作压力,首先选定最不利作用面积在管网中的位置,此作用面积的形状宜采用正方形或长方形,当采用长方形布置时,其长边应平行于配水支管,边长宜为作用面积平方根的1.2倍,从系统最不利作用面积内最不利点喷头开始,沿程计算各喷头的水压力、流量和管段的累计流量、水头损失,直到管段累计流量达到设计流量为止;在此后的管段中流量不再增加,仅计算沿程和局部水头损失。在上述计算中,每个喷头流量按特性系数法计算,其流量随喷头处压力变化而变化。其中要求管段累计流量不小于《喷规》规定的对应危险等级的设计流量,此种计算方法的原则,在喷头受建筑结构影响布置较密的情况下,可能会造成在作用面积范围内部分开启喷头出水流量未计算在内的现象,从而导致系统设计流量小于实际出水量或最不利点的压力满足不了喷头最低工作压力要求。《喷规》第9.1.1 至9.1.3 条亦规定了喷淋系统设计流量的计算方法,在最不利作用点喷头处划分最不利作用面积(具体同上),通过特性系数法逐点逐段计算作用面积内所有喷头开启流量之和,即为喷淋系统设计流量,计算公式如下。喷头的流量: (1)

自动喷淋系统的计算

自动喷淋系统的计算 自动喷淋系统由水源、加压贮水设备、喷头、管网、报警阀等组成。自动喷淋系统前十分钟所用水由设在高位水箱提供,十分钟至一小时的喷淋用水由地下室贮水池提供。根据规范中的要求选择闭式喷水灭火系统。 自动喷淋灭火系统的基本数据 (1)喷头的选择《自动喷洒灭火系统设计规范》,闭式湿式自动喷水灭火系统适用范围:因管网及喷头中充水,故适用于环境温度为4~700C之间的建筑物内,所以选用闭式湿式喷头。 (2) 由于该建筑为中度危险等级,喷头总数大于800 个,故需进行分区,地下一层至五层为低区,六至二十七层为高区。本系统设置7个报警阀,每个报阀组控制的最不利喷头处,都设末端试水装置,每层最不利喷头处均设直径为25mm的试水阀。每个报警阀部位都设有排水装置,其排水管径为试水阀直径的2倍,取50mm。 (3)查高规,自动喷水灭火系统的基本设计数据见下表: 表3-1

最不利点喷头最低工作压力不应小于0.05MPa。 (4)管径确定如下表 自动喷洒管径确定表 表3-2 喷头的布置 根据建筑物结构与性质,本设计采用作用温度为68℃闭式吊顶型玻璃球喷头,喷头采用2.5m×3.0m和2.7m×3.0m矩形布置,使保护范围无空白点。 作用面积划分 作用面积选定为矩形,矩形面积长边长度:L=1.2F=(1.2×160)m=15.2m,短边长度为:10.5m。 最不利作用面积在最高层(五层和二十七层处)最远点。矩形长边平行最不利喷头配水支管,短边垂直于该配水支管。 每根支管最大动作喷头数n=(15.2÷2.5)只=6只 作用面积内配水支管N=(10.5÷3)只=3.5只,取4只 动作喷头数:(4×6)=24只 实际作用面积:(15.2×9.8)2m=148.962m﹤1602m

自动喷水灭火系统设计方案说明书

个人资料整理仅限学习使用 课程设计 沈阳金杯汽车办公楼自动喷水灭火系统设计<层高4.4M) 学生姓名:杨志 指导教师:郑丹 专业班级:安全09-2 学号: 0903030221 时间: 综合成绩:

个人资料整理仅限学习使用 摘要 通过对沈阳金杯汽车有限公司办公楼进行自动喷水灭火系统的设计,让我们对自动喷水灭火系统的组成、工作原理及特点有一个全面的了解,对自动喷水灭火系统的设计思路、设计方法及注意事项有了清晰的认识和深刻的理解。自动喷水灭火系统与其他灭火系统的联合应用问题,加深了我们对整个建筑防火问题的认识,对将来建筑防火问题的研究,特别是自动喷水灭火系统的研究有很大的推动作用。 关键词:自动喷水灭火系统;建筑防火;设计

目录 前言 (1) 1建筑特征2 2系统选型3 3自动喷水灭火系统简介5 3.1湿式自动喷水灭火系统的组成及其作用5 3.2湿式自动喷水灭火系统的工作原理6 4系统水力计算7 4.1建筑物的火灾危险等级7 4.2自动喷水灭火系统设计参数8 4.3喷头选型8 4.4喷头布置9 4.5作用面积选定11 4.6流量计算11 4.7管径计算11 4.8水力计算13 4.9有效容积计算16 4.10水泵接合器确定17 5 系统各设施的安装位置18 参考文献19

前言 自动喷水灭火系统是指由洒水喷头、报警阀组、水流报警装置(水流指示器或压力开关>等组件以及管道、供水设施组成的自动灭火系统。自动喷水灭火系统是一种在发生火灾时,能自动打开喷头喷水灭火并同时发出火警信号的消防灭火设施,系统在火灾发生后能通过各种方式自动启动,并能同时通过加压设备将水送入管网维持喷头洒水灭火一定时间。该系统是当今世界上公认的最为有效、应用最广泛的自救灭火设施,具有安全可靠、经济实用、灭火成功率高等优点。自动喷水灭火系统扑灭初期火灾的效率在96%以上。 此次针对沈阳金杯汽车有限公司办公楼进行自动喷水灭火系统设计,可以加强我们对自动喷水灭火系统的理解,熟悉系统的组成、原理和作用,掌握系统的水利计算方法,对做好自动喷水灭火系统条件下的消防安全工作意义重大。

自动喷淋系统计算

自动喷淋系统计算 1、设计数据 设计喷水强度qp=6L/min·m 2,计算作用面积160m 2,最不利点喷头出口压力p=50kpa.。 室内最高温度40℃,采用68℃温级玻璃球吊顶型(或边墙型)d=15闭式喷头。一个喷头的最大保护面积为12.5m 2。布置在电梯前的走廊上。在走廊上单排设置喷头,其实际的作用面积为22.5m 2 轻危险级、中级场所中配水支管 2、流量计算 (1)理论设计流量: s L m L Q /1660 160min /62=??= (2)一个放火分区的实际作用面积的计流量: s L m L q /25.260 5.22min /62=??= 3、喷头布置的间距计算: (1)一个喷头最大保护半径,A=12.5m 2 R= 14 .35 .12=1.9m (2)走廊最宽为1.5m ,所以b=0.75m 喷头的最大间距为: S=222b R -=2275.09.12-=3.4m (3)喷头的个数: n= S L = 54 .32 .16≈个 4、水力计算 最不利层自喷各支管段的计算根据图2--2

1 最不利层喷头计算图 图2—2 (1)各支管段的流量计算: ①a 处的喷头出水量;/94.050133.0S L H k q a a === a-b 管采用DN=25mm ,A=0.4367 h a-b =2 10b a ALq -=2 94.04.34367.010???=13.1Kpa Hb=Ha+ha-b=50+13.1=63.1Kpa ②b 处的喷头出水量;/06.11.63133.0S L H k q b b === q b-c =q a +q b =0.94+1.06=2.00L/S b-c 管采用DN=32mm ,A=0.09386 h b-c =2 10c b ALq -=2 00.24.309386 .010???=12.76Kpa H c = H b +H b-c =63.1+12.76=75.86Kpa ③c 处的喷头出水量;/16.186.75133.0S L H k q c c === ④其它喷头都以上面一样算,为了计算简便以表格的形式。计算结果在下表2-5

吸收塔的相关设计计算

烟气脱硫工艺主要设备吸收塔设计和选型 (2) 喷淋塔吸收区高度设计(二) 对于喷淋塔,液气比范围在8L/m 3-25 L/m 3之间[5],根据相关文献资料可知液气比选择12.2 L/m 3是最佳的数值。 逆流式吸收塔的烟气速度一般在 2.5-5m/s 范围内[5][6],本设计方案选择烟气速度为3.5m/s 。 湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钠硫比(Na/S)一般略微大于1,本次选择的钠硫比(Na/S)为1.02。 (3)喷淋塔吸收区高度的计算 含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。 首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量 ζ= h C K V Q η = (3) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3 η为给定的二氧化硫吸收率,%;本设计方案为95% h 为吸收塔内吸收区高度,m K 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ; K 0=3600u ×273/(273+t) 按照排放标准,要求脱硫效率至少95%。二氧化硫质量浓度应该低于580mg/m 3 (标状态) ζ的单位换算成kg/( m 2.s),可以写成 ζ=3600× h y u t /*273273 *4.22641η+ (7) 在喷淋塔操作温度 10050 752 C ?+=下、烟气流速为 u=3.5m/s 、脱硫效率η=0.95 前面已经求得原来烟气二氧化硫SO 2质量浓度为 a (mg/3m )且 a=0.650×

烟气脱硫设计计算

烟气脱硫设计计算 1?130t/h循环流化床锅炉烟气脱硫方案 主要参数:燃煤含S量% 工况满负荷烟气量 285000m3/h 引风机量 1台,压力满足FGD系统需求 要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程) 出口SO2含量?200mg/Nm3 第一章方案选择 1、氧化镁法脱硫法的原理 锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应, 氧化镁法脱硫法 脱去烟气中的硫份。吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。净烟气经过除雾器降低烟气中的水分后排入烟囱。粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。 吸收过程 吸收过程发生的主要反应如下: Mg(OH)2 + SO2 → MgSO3 + H2O MgSO3 + SO2 + H2O → Mg(HSO3)2 Mg(HSO3)2 + Mg(OH)2 → 2MgSO3 + 2H2O 吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。 氧化过程 由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。这个阶段化学反应如下: MgSO3 + 1/2O2 → MgSO4

Mg(HSO3)2 + 1/2O2 → MgSO4 + H2SO3 H2SO3 + Mg(OH)2 → MgSO3 + 2H2O MgSO3 + 1/2O2 → MgSO4 循环过程 是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。塔底吸收液pH由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。20 %氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。 镁法脱硫优点 技术成熟 氧化镁脱硫技术是一种成熟度仅次于钙法的脱硫工艺,氧化镁脱硫工艺在世界各地都有非常多的应用业绩,其中在日本已经应用了100多个项目,台湾的电站95%是用氧化镁法,另外在美国、德国等地都已经应用,并且目前在我国部分地区已经有了应用的业绩。 原料来源充足 在我国氧化镁的储量十分可观,目前已探明的氧化镁储藏量约为160亿吨,占全世界的80%左右。其资源主要分布在辽宁、山东、四川、河北等省,其中辽宁占总量的%,其次是山东莱州,占总量的10%,其它主要是在河北邢台大河,四川干洛岩岱、汉源,甘肃肃北、别盖等地。因此氧化镁完全能够作为脱硫剂应用于电厂的脱硫系统中去。 脱硫效率高 在化学反应活性方面氧化镁要远远大于钙基脱硫剂,并且由于氧化镁的分子量较碳酸钙和氧化钙都比较小。因此其它条件相同的情况下氧化镁的脱硫效率要高于钙法的脱硫效率。一般情况下氧化镁的脱硫效率可达到95-98%以上,而石灰石/石膏法的脱硫效率仅达到90-95%左右。

临时高压喷淋系统中水力计算和高位消防水箱架设高度的探讨

临时高压喷淋系统中水力计算和高位消防水箱架设高度的探讨 临时高压喷淋系统中水力计算和高位消防水箱架设高度的探讨 【摘要】:现行规范对临时高压喷淋系统中的水力计算以及高位消防水箱架设高度的要求不明确,实际工程中较难执行,提出建议的设计方法。 【关键词】:临时高压,喷淋系统,消防水箱高度 中图分类号: TU761.1+1 文献标识码: A 文章编号: 一喷淋系统水力计算问题: 1 相关条文的阐述和说明 在此先将下面要阐述的《自动喷水灭火系统设计规范》GB 50084-2001 (2005年版)(以下简称《喷规05》中的条文说明:第7.1.2条直立型、下垂型喷头的布置,包括同一根配水支管上喷头的间距及相邻配水支管的间距,应根据系统的喷水强度、喷头的流量系数和工作压力确定,并不应大于表7.1.2的规定,且不宜小于2.4m。 第9.1.4条系统设计流量的计算,应保证任意作用面积内的平均喷水强度不低于本规范表5.0.1和表5.0.5-1~表5.0.5.6的规定值。最不利点处作用面积内任意四只喷头围合范围内的平均喷水强度,轻危险级、中危险级不应低于本规范表5.0.1规定值的85%;严重危险级和仓库危险级不应低于本规范表5.0.1和表5.0.5-1~表5.0.5.6的规定值。 2 在实际工程设计中遇到的问题 笔者曾设计过上海地区一单层通用厂房(厂房按中危险级Ⅱ级设计),其喷淋系统供水由靠近厂区主入口的的室外泵房内的喷淋泵供给。当时考虑到结构梁、柱的间距,喷头的布置采用间距为3.2m的正方形布置,距墙1.6m。最不利点处喷头(K=80)采用的工作压力为0.08MPa。经计算最不利点处作用面积内任意四只喷头围合范围内的平均喷水强度达到87%。但有同仁提出了异议,认为在喷头工作压力为0.08MPa时按照《喷规05》条文说明第7.1.2条说明中介绍的

除臭设备设计计算书

除臭设备设计计算 书 1

8、除臭设备设计计算书 8.1、生物除臭塔的容量计算 1#生物除臭系统 参数 招标要求 计算过程 序 号 太仓市港城组团污水处理厂改扩建工程设备采购、安装 项目 1 2 设备尺寸 处理能力 2.5×2.0×3.0m m3/h Q= m3/h V=处理能力 Q/(滤床接触面积 m2)/S= / (2.5×2)/3600=0.1111m/s 3 空塔流速 <0.2 m/s 臭气停留 时间 4 5 ≥12s S=填料高度 H/空塔流速 V(s)=1.6/0.1111=14.4S 炭质填料风阻 220Pa/m×填料高度 1.6m=352Pa 设备风阻 <600Pa 2#生物除臭系统 参数 序 招标要求 计算过程 号 太仓市港城组团污水处理厂改扩建工程设备采购、安装 项目 1 2 设备尺寸 处理能力 4.0×2.0×3.0m 3000m3/h Q=3000m3/h V=处理能力 Q/(滤床接触面积 m2) /S=3000/ (4×2)/3600=0.1041m/s 3 空塔流速 <0.2 m/s 臭气停留 时间 4 5 ≥12s S=填料高度 H/空塔流速 V(s)=1.6/0.1041=15.36S 炭质填料风阻 220Pa/m×填料高度 1.6m=352Pa 设备风阻 <600Pa

3#生物除臭系统 参数 招标要求 计算过程 序 号 太仓市港城组团污水处理厂改扩建工程设备采购、安装 项目 1 2 设备尺寸 处理能力 7.5×3.0×3.3m (两 台) 0m3/h Q= 0m3/h V=处理能力 Q/2(滤床接触面积 m2) /S=10000/ (7.5×3.0)/3600=0.1234m/s 3 空塔流速 <0.2 m/s 臭气停留 时间 4 5 ≥12s S=填料高度 H/空塔流速 V(s)=1.7/0.1234=13.77S 炭质填料风阻 220Pa/m×填料高度 1.7m=374Pa 设备风阻 <600Pa 4#生物除臭系统 参数 序 招标要求 计算过程 号 太仓市港城组团污水处理厂改扩建工程设备采购、安装 项目 1 2 设备尺寸 处理能力 7.5×3.0×3.0m (两 台) 18000m3/h Q=18000m3/h V=处理能力 Q/2(滤床接触面积 m2) /S=18000/ (7.5×3)/3600=0.1111m/s 3 空塔流速 <0.2 m/s 臭气停留 时间 4 5 ≥12s S=填料高度 H/空塔流速 V(s)=1.6/0.1111=14.4S 炭质填料风阻 220Pa/m×填料高度 1.6m=352Pa 设备风阻 <600Pa 8.2、喷淋散水量(加湿)的计算 生物除臭设备采用生物滤池除臭形式,池体上部设有检修窗,进卸料口,侧面设

喷淋系统水力计算注意事项

【转贴】喷淋系统水力计算注意事项 2水力计算 水力计算将决定系统投入灭火的水量及对灭火水量的分配,是关系系统可靠性、合理性和经济性的一项重要设计内容。根据对《喷规》的理解和大量相关资料及部分工程实例的分析,觉得水力计算应采用"矩形面积-逐点法",也就是首先确定最不利作用面积在管网中的位置(必要时可由水力计算确定),作用面积的形状宜为矩形,仅在作用面积内所包含的喷头计算其喷头量;之后选定最不利计算路线,采用节点流量法将最不利作用面积内的每个喷头的压力值和出流是一一求出,当两个分支交汇时,根据两分支的压力差对压力较高的分支进行流量修正,然后将作用面积内经过流量修正之后的所有喷头出流量的总和作为整个自动喷水灭火系统的设计流量,在此以后的管段流量不再增加,仅计算沿程和局部水头损失,一直算到管网起点。 实际火灾发生时,一般都是火源点呈辐射状向四周扩大蔓延,而只有失火区上方的喷头才会开启喷水。 [3]。因此采用作用面积保护方法及仅在作用面积内的喷头才计算喷水量是合理的。同时由于火灾时对流及风的影响,作用面积的形状以呈矩更为合理,且矩形面积在管道水力计算时也是最不利的。因而这种"矩形面积-逐点法"符合火场实际,科学严谨,并与欧美等国接轨,是合理的、安全的,也是《喷规》的推荐作法。 (1)矩形面积的确定:作用面积的形状宜为矩形,其长边平行于配水支管,其长度不小于作用面积平方根的1.2倍,喷头数若有小数就进位成整数。当配水支管的实际长度小于边长的计算值时,作用面积要扩展到该配水管邻近支管上的喷头。 (2)经济流速和最不利点处水压 ①经济流速: 自动喷水灭火系统最主要的组成部分是配水管道,而配水管道管径的确定,不仅影响到整个系统的造价,更关系到系统消防的安全性。在流量确定的条件下,流速是确定管径的重要参数。采用经济流速是给水系统设计的基础要素,生产、生活给水管道的流速一般采用经济流速,以使管道的基建投资与经常性的运行能耗得到优化匹配。所谓经济流速是一次投资与经常费用之和最小时的流速为经济流速,而相应的管径即为经济管径。所以选择输配水管管径的大小涉及投资与耗电的大小,管径大基建费用高,电费却省,管径小一次投资省,但水头损失大,水泵扬程高,电费高。 《喷规》在管道水力计算9.2.1条也规定"管道内的水流速度宜采用经济流速,必要时可超过5m/s,但不应大于10m/s"。然而,自喷给水管道只是在火灾时短时间运行,不同于生产、生活给水管道始终处支运行状态,故可以提高流速,减小管径以降低基建投资,这同样是经济的。但同时如果自喷系统管内水流速度较高,水头损失就较大,配水管支管管径往往就会偏小,造成在设计流量下,喷头实际保护面积可能满足不了规范有关作用面积的要求。此时尽管作用面积内喷头动作时,其平均喷水强度符合规范,但上下游喷头因压力不同而流量有差异,此外,由于管径小,管网水头损失大,消防水泵扬程高,喷头喷水极不均匀,其出水量必然过大,将过早地用完消防贮水。因而管道流速宜采用较低值,管径小时尤宜采用低值。 同时,从上述分析中也不难看出,《喷规》中提到的经济流速应是经济性、合理性、可靠

自动喷水灭火系统设计流量的计算与分析

1前言 自动喷水灭火系统,是当今世界上公认的最为有效的自救灭火设施,是应用最广泛、用量最大的自动灭火系统。其自动化程度高、能够及时扑灭初期火灾,在国内外都被普遍采用。应用实践证明:该系统具有安全可靠、经济实用、灭火成功率高等优点。 国外应用自动喷水灭火系统已有一百多年的历史。在长达一个多世纪的时间内,一些经济发达的国家,从研究到应用,从局部应用到普遍推广使用,有过许许多多成功和失败的教训。自动喷水灭火系统不仅已经在高层建筑、公共建工业厂房和仓库中推广应用,而且发达国家已在住宅建筑中开始安装使用[1]。因此对自动喷淋系统进行研究分析显得尤为重要。 《自动喷水灭火系统设计规范》GB50084-2001( 2005年版)中9.1系统的设计流量中规定了设计流量的计算方法,但设计人员在计算喷淋系统的流量时,通常先确定设置喷淋系统的场所的火灾危险等级,然后将 该等级对应的喷水强度与作用面积相乘,即得到喷淋系统的设计流量,该设计流量是假定作用面积内所有喷头的工作压力和流量都等于最不利点喷头的工作压力和流量,忽略了管道阻力损失对喷头工作压力的影响,使设计流量有时就偏离于实际系统流量,有时会对系统的灭火效果产生一定的影响。因此,设计流量应按自动喷水灭火系统设计规范中9.1规定的计算方法进行详细的计算,与估算值进行比对,选择合理的喷淋泵,才能满足火灾情况下喷淋系统的实际需水量,达到灭火效果。 2研究对象 笔者对四个不同功能、不同危险等级的自动喷淋系统进行流量计算,并将计算结果与平时估算值相比较,进行分析与探讨。其中,进行水力计算时,选定的最不利点处作用面积均为矩形,其长边应平行于配水支管,其长度不宜小于作用面积平方根的1.2倍。 选取计算分析的四个自动喷淋系统概况如下: (1)建筑名称:齐鲁软件大厦B座敞开式办公楼;危险等级:中危险I级;喷水强度:6L/min.m2;末端最不利作用面积:160平方米;末端压力:0.05、0.10MPa;选取喷头数量:18个k80喷头。 (2)建筑名称:齐鲁外包城奥盛大厦办公楼;危险等级:中危险I级;喷水强度:6L/min.m2;末端最不利作用面积:160平方米;末端压力:0.05、0.10MPa;选取喷头数量:21个k80喷头。 (3)建筑名称:济南齐源大厦地下二层车库;危险等级:中危险II级;喷水强度:8L/min.m2;末端最不利作用面积:160平方米;末端压力:0.05、0.10MPa;选取喷头数量:17个k80喷头。 (4)建筑名称:莱芜银座超市商场;危险等级:中危险II级;喷水强度:8L/min.m2;末端最不利作用面积:160平方米;末端压力:0.05、0.10MPa;选取喷头数量:19个k80喷头。——一览消防英才网 3计算方法 根据《自动喷水灭火系统设计规范》GB50084-2001(2005年版)第9.1.3条规定:自动喷水灭火系统的设计流量,应按最不利点处作用面积内喷头同时喷水的总流量确定。 自动喷水灭火系统流量计算公式如下所示: (1)Q=d v (2)(V≥1.2m/s) (3) 其中,i—管道单位长度的水头损失(MPa/m) Q—管道内的平均流量(m3/s);

喷淋塔自动加药装置设计说明书Word版

喷淋塔自动加药装置设计说明书 一、高锰酸钾几个重要特性 1、高锰酸钾粉末放置时间太长会吸潮板结; 高锰酸钾粉末本身不吸收水分,但其中的少量杂质会吸收水分而结成饼块。 2、高锰酸钾在水中的溶解度为6.4g/100ml; 3、高锰酸钾溶液具有一定的腐蚀性; 4、高锰酸钾溶液具有强氧化性,其作为氧化剂的反应产物是锰的氧化物,是土 壤成分之一,不会造成环境污染; 5、高锰酸钾能破坏部分有机化合物中的碳碳双键(C=C),将这部分有机化合物 降解; 6、高锰酸钾溶液在空气中的保存时间不长。 医学上用于口腔消炎的高锰酸钾溶液浓度为0.002%,其在空气中的存放时间仅有2小时。浓度越高其保存时间会越长。 二、在喷淋塔循环冷却水中投放高锰酸钾的作用 1、利用高锰酸钾的强氧化性杀灭部分细菌、微生物; 2、除去部分有机污染物。 三、原有方案 原有方案采用的是干粉投料的方式,依靠“插板阀+翻板阀”的装置进行投料,在投料的过程中计量不准确。 四、新方案 新方案采用溶液加药的方式。具体做法是:将高锰酸钾粉末投进搅拌罐中配置成一定浓度的高锰酸钾溶液,再用水泵定量抽取到喷淋塔中。采用新方案主要是为了使投药量更加准确、高效。 1、新方案目标参数 ①喷淋塔内高锰酸钾浓度控制在0.05%~0.2%范围内; ②搅拌罐内高锰酸钾的浓度控制在5g/100ml左右; ③喷淋塔每周换水量大于50%,每月清空一次; ④每季度(或半年)人工加高锰酸钾粉料1次(配套料位计,能发出少料 警报)。

(③喷淋塔每天运行8小时,每隔4小时更换部分循环水,每天2次。 ④搅拌罐每天自动加高锰酸钾并且自动补水1次; ⑤每周(5天)人工加高锰酸钾粉料1次(配套料位计,能发出少料警报)。) 2、新方案中需要解决的几个问题: ①搅拌罐中的高锰酸钾溶液如何保证浓度? 解决方法:用小型螺旋机来投放高锰酸钾粉末,通过控制螺旋输送机的运转时间来控制每次的投放量,而且螺旋机自带破拱机构,可以防止粉末板结,保证粉末的输送连续、均匀;另外,用液位传感器来控制每次的补水量。 ②从搅拌罐到喷淋塔的高锰酸钾溶液投放量如何保证? 解决方法:用计量泵定量加药。 ③如何避免设备被高锰酸钾溶液腐蚀? 解决方法:搅拌罐采用SUS321不锈钢材料,喷淋塔采用SUS304不锈钢材料,输送管道采用SUS321不锈钢管。 3、新方案所需的设备 新方案所需的设备主要有:搅拌罐、小型螺旋输送机、搅拌器、液位计、液位传感器、干粉料位计、计量泵、Y型过滤器、脉冲阻尼器、背压阀、安全阀、密度计、管路、支架等,详见图纸。 4、加药流程 喷淋塔水箱加药流程:喷淋塔加药设定两个程序,程序一为喷淋塔水箱清空的首次加料,程序二为过程排放50%的加料。具体步骤如下: ①首次加料:喷淋塔水箱进水泵启动,计量泵延时一定时间(120s)后启动, 达到设定的加药量后计量泵关闭,水箱水位到达设定位置后(水位感应器)停止进水; ②过程加料:喷淋塔运行一段时间后排水阀自动打开,当水位达到水位感应 器设定的水位下限后自动关闭;此时喷淋塔补水阀打开,计量泵同时启动,达到设定的加药量后计量泵关闭,水箱水位到达设定位置后(水位感应器)停止进水;

脱硫吸收塔的直径和喷淋塔高度设计

吸收塔的直径和喷淋塔高度设计 脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计 1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU=)ln() ()(***2 2*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =9.81×1025.07.04W G -]4[ 82.0W a k L ?=]4[ (2) 其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B) *1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B) k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a ) x 2,x 1为喷淋塔石灰石浆液进出塔时的SO 2组分摩尔比,kmol(A)/kmol(B) G 气相空塔质量流速,kg/(m 2﹒h) W 液相空塔质量流速,kg/(m 2﹒h) y 1×=mx 1, y 2×=mx 2 (m 为相平衡常数,或称分配系数,无量纲) k Y a 为气体膜体积吸收系数,kg/(m 2﹒h ﹒kPa) k L a 为液体膜体积吸收系数,kg/(m 2﹒h ﹒kmol/m 3)

自动喷水灭火系统的水力计算

第3章建筑消防系统 3.4自动喷水灭火系统的水力计算

3.4 自动喷水灭火系统的水力计算 3.4.1 消防用水量及水压 3.4.1 消防用水量及水压 自动喷水灭火系统设计的基本参数应按《自动喷水灭火系统设计规范》GB50084—2001的规定选取,民用建筑和工业厂房的自动喷水灭火系统设计基本参数应按表3-13确定,仓库的自动喷水灭火系统设计基本参数按表3-14确定。 自动喷水灭火系统的持续喷水时间,应按火灾持续时间不小于1小时确定。

民用建筑和工业厂房的自动喷水灭火系统设计参数表3-13

仓库的系统设计基本参数表3-14 开式喷雾灭火系统的消防用水量及喷头要求工作压力见附表3-7。

3.4.2 管网水力计算 自动喷水灭火系统管网水力计算的目的在于确定管网各管段管径、计算管网所需的供水压力、确定高位水箱的设置高度和选 择消防水泵。 目前我国关于自动喷水灭火系统管道水力计算方法有两种: 1.作用面积法 作用面积法是《自动喷水灭火系统设计规范》推荐的计算方法。

首先按照表3-13的基本设计参数选定自动喷水灭火系统中最不利工作作用面积(以F表示)的位置,此作用面积的形状宜采用正方形或长方形,当采用长方形布置时,其长边应平行于配水支管,边长宜为1.2F1/2。 在计算喷水量时,仅包括作用面积内的喷头。对于轻危险级和中危险级建筑物的自动喷水灭火系统,计算时可假定作用面积内每只喷头的喷水量相等,均以最不利点喷头喷水量取值,且应保证作用面积内的平均喷水强度不小于表3-13中的规定,最不利点4个喷头组成的保护面积内的平均 喷水强度,轻危险级、中危险级不应低于表3-13规定值的85%;对于严重危险级和仓库危险级不应低于表3-13和表3-14的规定值。

喷淋水力计算

计算原理参照《自动喷水灭火系统设计规范GB 50084-2001》(2005年版) 基本计算公式: 1、喷头流量: P K q 10= 式中:q -- 喷头处节点流量,L/min P -- 喷头处水压(喷头工作压力)MPa K -- 喷头流量系数 2、流速V : 2 π4j xh D q v = 式中:Q -- 管段流量L/s D j --管道的计算内径(m ) 3、水力坡降: 3.12 00107.0j d v i = 式中:i -- 每米管道的水头损失(mH 20/m ) V -- 管道内水的平均流速(m/s ) d j -- 管道的计算内径(m ),取值应按管道的内径减1mm 确定 4、沿程水头损失: L i h ×=沿程 式中:L -- 管段长度m 5、局部损失(采用当量长度法): L i h ×=局部(当量) 式中:L(当量) -- 管段当量长度,单位m(《自动喷水灭火系统设计规范》附录C) 6、总损失: 沿程局部h h h += 7、终点压力: h h h n n +=+1

计算结果: 所选作用面积:161.0平方米 总流量:25.79 L/s 平均喷水强度:9.61 L/min.平方米入口压力:43.93 米水柱

3、高差计算 泵房水池吸水管标高为—10米,最高处喷头标高为7.00,高差Z =6+7=17米。 4、主干管沿程损失及局部损失 自吸水管路至三楼最不利区域入口处管路为DN150,管长为120米。 按流量25.79L/s,计算沿程损失和局部损失共计4米。 5、泵站损失取5米。 6、湿式报警阀及水流指示器水损取6米。 7、喷淋泵扬程 H=43.93+17+4+5+6=76米。 三、计算结果 1、喷淋泵参数 现选择的喷淋泵参数为流量100m3/h,扬程76米。

吸收塔的设计和选型

烟气脱硫工艺主要设备吸收塔设计和选型 4.1吸收塔的设计 吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。 4.1.1 吸收塔的直径和喷淋塔高度设计 本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设 计、喷淋塔的直径设计 4.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU= )ln() ()(*** 2 2* 11* 22*112 121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =9.81×1025.07.04W G -]4[ 82 .0W a k L ?=] 4[ (2) 其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B) *1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B) k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )

烟气脱硫设计计算

烟气脱硫设计计算 1?130循环流化床锅炉烟气脱硫方案 主要参数:燃煤含S量1.5% 工况满负荷烟气量285000m3 引风机量1台,压力满足系统需求 要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程) 出口2含量?2003 第一章方案选择 1、氧化镁法脱硫法的原理 锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应, 氧化镁法脱硫法 脱去烟气中的硫份。吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。净烟气经过除雾器降低烟气中的水分后排入烟囱。粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。 吸收过程 吸收过程发生的主要反应如下: ()2 + 2 → 3 + H2O 3 + 2 + H2O → (3)2 (3)2 + ()2 → 23 + 2H2O 吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。

氧化过程 由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的3氧化成4。这个阶段化学反应如下: 3 + 1/2O2 → 4 (3)2 + 1/2O2 → 4 + H23 H23 + ()2 → 3 + 2H2O 3 + 1/2O2 → 4 循环过程 是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。塔底吸收液由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。当塔底浆液低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至达到设定值时停止补充氢氧化镁浆液。20 %氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。镁法脱硫优点 技术成熟 氧化镁脱硫技术是一种成熟度仅次于钙法的脱硫工艺,氧化镁脱硫工艺在世界各地都有非常多的应用业绩,其中在日本已经应用了100多个项目,台湾的电站95%是用氧化镁法,另外在美国、德国等地都已经应用,并且目前在我国部分地区已经有了应用的业绩。 原料来源充足 在我国氧化镁的储量十分可观,目前已探明的氧化镁储藏量约为160亿吨,占全世界的80%左右。其资源主要分布在辽宁、山东、四川、河北等省,其中辽宁占总量的84.7%,其次是山东莱州,占总量的10%,其它主要是在河北邢台大河,四川干洛岩岱、汉源,甘肃肃北、别盖等地。因此氧化镁完全能够作为脱硫剂应用于电厂的脱硫系统中去。 脱硫效率高 在化学反应活性方面氧化镁要远远大于钙基脱硫剂,并且由于氧化镁的分子量较碳酸钙

相关文档
最新文档