射频基本知识

射频基本知识
射频基本知识

射频基础知识培训

射频基础知识培训 1、无线通信基本概念 利用电磁波的辐射和传播,经过空间传送信息的通信方式称之为无线电通信(Wireless Communication),也称之为无线通信。利用无线通信可以传送电报、电话、传真、数据、图像以及广播和电视节目等通信业务。 目前无线通信使用的频率从超长波波段到亚毫米波段(包括亚毫米波以下) 以至光波。无线通信使用的频率范围和波段见下表1-1

由于种种原因,在一些欧、美、日等西方国家常常把部分微波波段分为、、C、X、Ku、K、Ka 等波段(或称子波段),具体如表1 - 2所示 极长波(极低频ELF)传播 极长波是指波长为1~10万公里(频率为3~30HZ的电磁波。理论研究表明, 这一波段的电磁波沿陆地表面和海水中传播的衰耗极小。 1.2超长波(超低频SLF)传播 超长波是指波长1千公里至1万公里(频率为30~300HZ的电磁波。这一波段的电磁波传播十分稳定,在海水中衰耗很小(频率为75Hz时衰耗系数为m 对海水穿透能力很

强,可深达100 m以上。 甚长波(甚低频VLF)传播 甚长波是指波长10公里~100公里(频率为3~30kHz)的电磁波。无线通信中使用的甚长波的频率为10~30kHz该波段的电磁波可在大地与低层的电离层间形成的波导中进行传播,距离可达数千公里乃至覆盖全球。 长波(低频LF)传播 长波是指波长1公里~10公里(频率为30~300kHZ的电磁波。其可沿地表面传播(地波)和靠电离层反射传播(天波)。 中波(中频MF传播 中波是指波长100米~1000米(频率为300~3000kHZ的电磁波。中波可沿地表面传播(地波)和靠电离层反射传播(天波)。中波沿地表面传播时,受地表面的吸收较长波严重。中波的天波传播与昼夜变化有关。 短波(高频HF)传播 短波是指波长为10米~100米(频率为3~30MHZ的电磁波。短波可沿地表面传播(地波),沿空间以直接或绕射方式传播(空间波)和靠电离层反射传播 (天波)O 超短波(甚高频VHF传播 超短波是指波长为1米~10米(频率为30~300MHZ的电磁波。超短波难以靠地波和天波传播,而主要以直射方式(即所谓的“视距”方式)传播。 微波传播 微波是指波长小于1米(频率高于300MHZ的电磁波。目前又按其波长的不同,分为分米波(特高频UHF、厘米波(超高频SHF、毫米波(极高频EHF和亚毫米波(至高频THF O 微波的传播类似于光波的传播,是一种视距传播。其主要在对流层内进行。总的说 来,这种传播方式比较稳定,但其传播也受到大气折射和地面反射的影响。另外, 对流层中的大气湍流气团对微波有散射作用。利用这种散 射作用可实现微波的超视距传播。

射频基本知识

引言 在进入射频测试前,让我们回顾一下单相交流电的基本知识。 一、单相交流电的产生 在一组线圈中,放一能旋转的磁铁。当磁铁匀速旋转时,线圈内的磁通一会儿大一会 儿小,一会儿正向一会儿反向,也就是说线圈内有呈周期性变化的磁通,从而线圈两端即感生出一个等幅的交流电压,这就是一个原理示意性交流发电机。若磁铁每秒旋转50周,则电压的变化必然也是50周。每秒的周期数称为频率f,其单位为赫芝Hz。103Hz=千赫kHz,,106Hz=兆赫MHz,109Hz=吉赫GHz。b5E2RGbCAP 在示波器上可看出电压的波形呈周期性,每一个周期对应磁铁旋转一周。即转了2π弪,每秒旋转了f个2π,称2πf为ω<常称角频率,实质为角速率)。则单相交流电的表达式可写成:p1EanqFDPw V=Vm=Vm 式中Vm(电压最大值>=Ve(有效值或Vr.m.s.>。t为时间<秒),为初相。 二、对相位的理解 1、由电压产生的角度来看 ·设想有两个相同的单相发电机用连轴器连在一起旋转,当两者转轴<磁铁的磁极)

位置完全相同时,两者发出的电压是同相的。而当两者转轴错开角度时,用双线示波器来看,两个波形在时轴上将错开一个角度;这个角度就叫相位角或初相。相位领先为正,滞后为负。DXDiTa9E3d ·假如在单相发电机上再加一组线圈,两组线圈互成90°<也即两电压之间相位差 90°),即可形成两相电机。假如用三组线圈互成120°<即三电压之间,相位各差120°)即可形成三相电机。两相电机常用于控制系统,三相电机常用于工业系统。RTCrpUDGiT 2、同频信号<电压)之间的叠加 当两个电压同相时,两者会相加;而反相时,两者会抵消。也就是说两者之间为复数运算关系。若用方位平面来表示,也就是矢量关系。矢量的模值<幅值)为标量,矢量的角度为相位。5PCzVD7HxA 虽然人们关心的是幅值,但运算却必须采用矢量。 虽然一般希望信号相加,但作匹配时,却要将反射信号抵消。 三、射频 交流电的频率为50Hz时,称为工频。20Hz到20kHz为音频,20kHz以上为超声波 ,当频率高到100 kHz以上时,交流电的辐射效应显著增强;因此100 kHz以上的频率泛称射频。有时会以3 GHz为界,以上称为微波。常用频段划分见附录。jLBHrnAILg

RF测试的基础知识

1. 什么是RF 答:RF 即Radio frequency 射频,主要包括无线收发信机。 2. 当今世界的手机频率各是多少(CDMA,GSM、市话通、小灵通、模拟手机等) 答:EGSM RX: 925-960MHz, TX:880-915MHz; CDMA cellular(IS-95)RX: 869-894MHz, TX:824-849MHz。 3. 从事手机Rf工作没多久的新手,应怎样提高 答:首先应该对RF系统(如功能性)有个系统的认识,然后可以选择一些芯片组,研究一个它们之间的连通性(connectivities among them)。 4. RF仿真软件在手机设计调试中的作用是什么 答:其目的是在实施设计之前,让设计者对将要设计的产品有一些认识。 5. 在设计手机的PCB时的基本原则是什么 答:基本原则是使EMC(电磁兼容性)最小化。 6. 手机的硬件构成有RF/ABB/DBB/MCU/PMU,这里的ABB、DBB和PMU等各代表何意答:ABB是Analog BaseBand, DBB是Ditital Baseband,MCU往往包括在DBB芯片中。 PMU是Power Management Unit,现在有的手机PMU和ABB在一个芯片上面。将来这些芯片(RF,ABB,DBB,MCU,PMU)都会集成到一个芯片上以节省成本和体积。 7. DSP和MCU各自主要完成什么样的功能二者有何区别

答:其实MCU和DSP都是处理器,理论上没有太大的不同。但是在实际系统中,基于效率的考虑,一般是DSP处理各种算法,如信道编解码,加密等,而MCU处理信令和与大部分硬件外设(如LCD等)通信。 8. 刚开始从事RF前段设计的新手要注意些什么 答:首先,可以选择一个RF专题,比如PLL,并学习一些基本理论,然后开始设计一些简单电路,只有在调试中才能获得一些经验,有助加深理解。 9. 推荐RF仿真软件及其特点 答:Agilent ADS仿真软件作RF仿真。这种软件支持分立RF设计和完整系统设计。详情可查看Agilent网站。 10. 哪里可以下载关于手机设计方案的相应知识,包括几大模快、各个模块的功能以及由此对硬件的性能要求等内容 答:可以看看和,或许有所帮助。关于TI的wireless solution,可以看看中的wireless communications. 11. 为什么GSM使用GMSK调制,而W-CDMA采用HPSK调制 答:主要是由于GSM和WCDMA标准所定。有兴趣的话,可以看一些有关数字调制的书,了解使用不同数字调制技术的利与弊。 12. 如何解决LCD model对RF的干扰 答:PCB设计过程中,可以在单个层中进行LCD布线。 13. 手机设计过程中,在新增加的功能里,基带芯片发射数据时对FM产生噪声干扰,如何解决这个问题

射频基础知识点

一、频谱分析仪部分 什么是频谱分析仪? 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。我们现在所用的频谱仪大部分是扫频调谐超外差频谱分析仪。 频谱仪工作原理 输入信号经衰减器以限制信号幅度,经低通输入滤波器滤除不需的频率,然后经混频器与本振(LO)信号混频将输入信号转换到中频(IF)。LO的频率由扫频发生器控制。随着LO频率的改变,混频器的输出信号(它包括两个原始信号,它们的和、差及谐波,)由分辨力带宽滤波器滤出本振比输入信号高的中频,并以对数标度放大或压缩。然后用检波器对通过IF滤波器的信号进行整流,从而得到驱动显示垂直部分的直流电压。随着扫频发生器扫过某一频率范围,屏幕上就会画出一条迹线。该迹线示出了输入信号在所显示频率范围内的频率成分。 输入衰减器 保证频谱仪在宽频范围内保持良好匹配特性,以减小失配误差;保护混频器及其它中频处理电路,防止部件损坏和产生过大的非线性失真。 混频器 完成信号的频谱搬移,将不同频率输入信号变换到相应中频。在低频段(<3G Hz)利用高混频和低通滤波器抑制镜像干扰;在高频段(>3GHz)利用带通跟踪滤波器抑制镜像干扰。 本振(LO) 它是一个压控振荡器,其频率是受扫频发生器控制的。其频率稳定度锁相于参考源。 扫频发生器 除了控制本振频率外,它也能控制水平偏转显示,锯齿波扫描使频谱仪屏幕上从左到右显示信号,然后重复这个扫描不断更新迹线。扫频宽度(Span)是从左fstart到右fstop10格的频率差,例如:Span=1MHz,则100kHz/div.

1第1章 射频基本知识

引言在进入射频测试前,让我们回顾一下单相交流电的基本知识。 一、单相交流电的产生在一组线圈中,放一能旋转的磁铁。当磁铁匀 速旋转时,线圈内的磁通一会儿大一会儿小,一会儿正向一会儿反向, 也就是说线圈内有呈周期性变化的磁通,从而线圈两端即感生出一个等 幅的交流电压,这就是一个原理示意性交流发电机。若磁铁每秒旋转50 周,3则电压的变化必然也是50周。每秒的周期数称为频率f,其单位为 赫芝Hz。10Hz=千赫69kHz,,10Hz=兆赫MHz,10Hz=吉赫GHz。在示波 器上可看出电压的波形呈周期性,每一个周期对应磁铁旋转一周。即转 了2π弪,每秒旋转了f个2π,称2πf为ω(常称角频率,实质为角速 ft )sin(t ) 率)。则单相交流电的表达式可写成: sin(2 V=V=V mm00 2式中V(电压最大值)=V(有效值或V)。t为时间(秒),为初相。 mer.m.s.0二、对相位的理解1、由电压产生的角度来看 2设想有两个相同的单相发电机用连轴器连在一起旋转,当两者转轴(磁铁的磁极) 位置完全相同时,两者发出的电压是同相的。而当两者转轴错开角度时,用双线示波器0来看,两个波形在时轴上将错开一个角度;这个角度就叫相位角或初相。相位领先为正,滞后为负。 2假如在单相发电机上再加一组线圈,两组线圈互成90°(也即两电压之间相位差90°),即可形成两相电机。假如用三组线圈互成120°(即三电压之间,相位各差120°)即可形成三相电机。两相电机常用于控制系统,三相电机常用于工业系统。 2、同频信号(电压)之间的叠加当两个电压同相时,两者会相加;而反相时,两者会抵消。也就是说两者之间为复数运算关系。若用方位平面来表示,也就是矢量关系。矢量的模值(幅值)为标

移动通信直放站系统基础知识

移动通信直放站系统基 础知识 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

√移动通信直放站系统基础知识 综合覆盖系统 综合覆盖系统工程材料介绍 工程作业指导书 工程施工规范 汇编:林书沉、黄环球 2004、3

移动通信概述 1.移动通信概述 移动通信是指通信双方至少有一方在移动状态中进行信息的传输和交换。由于广泛地利用了通信工具,替代了出差、联系工作,即可大量节约能源,又可节约大量的旅途时间,提高了社会生产、流通领域各个环节的速度和效率,创造出更多、更高的社会经济价值。 移动通信发展 移动通信起始于20世纪20年代,是20世纪的重大成就之一。在1895年发明了无线电之后,有关人士将莫尔斯电报用于船舶通信上,曾在1912年的一次海难中起到了通信作用,使得695人获救生还。从此开始了移动通信的发展。 自20世纪70年代后期第一代蜂窝网(1G)在美国、日本和欧洲国家为公众开放使用以来,频谱资源的不足和模拟电子技术的局限性制约着蜂窝移动通信的发展。直至1990年,泛欧数字蜂窝网正式向公众开放使用,采用数字时分多址(TDMA)技术,信道带宽200kHz,使用新的900MHz频谱,称为GSM (全球移动通信系统)系统,属于第二代蜂窝网(2G),这是具有现代网络特征的第一个全球数字蜂窝移动通信系统,从而使GSM成为世界上最流行的数字蜂窝网标准,随后,世界各国政府又联合制定了GSM的等效技术标准――DCS1800,它在1.8~2GHz上提供个人通信业务(PCS)。1991年开始使用数字时分多址(TDMA),1993年又有基于码分多址(CDMA)的数字蜂窝移动通信系统,分别称为IS-54和IS-95。20世纪90年代后,第二代数字蜂窝网广泛使用,数字通信技术成为大势所趋,2G除了提供移动手机互通电话外,还

射频基础知识

第一部分射频基本概念 第一章常用概念 一、特性阻抗 特征阻抗是微波传输线的固有特性,它等于模式电压与模式电流之比。对于TEM波传输线,特征阻抗又等于单位长度分布电抗与导纳之比。无耗传输线的特征阻抗为实数,有耗传输线的特征阻抗为复数。 在做射频PCB板设计时,一定要考虑匹配问题,考虑信号线的特征阻抗是否等于所连接前后级部件的阻抗。当不相等时则会产生反射,造成失真和功率损失。反射系数(此处指电压反射系数)可以由下式计算得出: z1 二、驻波系数 驻波系数式衡量负载匹配程度的一个指标,它在数值上等于: 由反射系数的定义我们知道,反射系数的取值范围是0~1,而驻波系数的取值范围是1~正无穷大。射频很多接口的驻波系数指标规定小于1.5。 三、信号的峰值功率 解释:很多信号从时域观测并不是恒定包络,而是如下面图形所示。峰值功率即是指以某种概率出现的尖峰的瞬态功率。通常概率取为0.1%。

四、功率的dB表示 射频信号的功率常用dBm、dBW表示,它与mW、W的换算关系如下: dBm=10logmW dBW=10logW 例如信号功率为x W,利用dBm表示时其大小为 五、噪声 噪声是指在信号处理过程中遇到的无法确切预测的干扰信号(各类点频干扰不是算噪声)。常见的噪声有来自外部的天电噪声,汽车的点火噪声,来自系统内部的热噪声,晶体管等在工作时产生的散粒噪声,信号与噪声的互调产物。 六、相位噪声

相位噪声是用来衡量本振等单音信号频谱纯度的一个指标,在时域表现为信号过零点的抖动。理想的单音信号,在频域应为一脉冲,而实际的单音总有一定的频谱宽度,如下页所示。一般的本振信号可以认为是随机过程对单音调相的过程,因此信号所具有的边带信号被称为相位噪声。相位噪声在频域的可以这样定量描述:偏离中心频率多少Hz处,单位带宽内的功率与总信号功率相比。 例如晶体的相位噪声可以这样描述: 七、噪声系数 噪声系数是用来衡量射频部件对小信号的处理能力,通常这样定义:单元输入信噪比除输出信噪比,如下图:

RF测试原理小结

RF 测试原理小结 本文旨在阐述RF 测试项目的有关原理性知识,基本不涉及具体的测试方法,测试方法请参照相关文档。 首先学习射频离不开天线,要对天线知识有所了解。 天线(antenna )是RF 系统中最关键的零件,发送的时候它负责将线路中的电信号转化为电波发射出去,接收的时候它负责将电波转化为电信号。根据洛伦兹定理,变化的电场会产生磁场,因施加在天线上的电流不同,就会产生电波;当无线电波遇到天线时,电子就会流入天线导体而产生电流。 天线分为全向型和定向型两种。全向型天线收发所有方向的信号,定向性天线只收发天线所指向方向上的信号,可以将能量传送到更远的距离,信号也比较清楚,实际上根本没有真正意义上的全向天线。 天线的长度取决于频率:频率越高,天线越短。根据经验,一般的简易型天线为其波长的一般。波长和频率的计算公式是:8(310/)c c m s f λ= =?其中,例如使用830KHz 的调幅广播电台,其电波的波长约为360米,因此必须使用约180米的大型天线。当然天线工程师可以运用一些技巧,进一步缩短天线,甚至可以做到随身携带的程度。 一般在天线的前端还会有个功率放大器PA(power amplifier),其实将功率提升到做大功率后发送。 然后具体了解RF 测试中各个参数的含义及其影响因素。 一、调制带宽: 调制子载波占用的频带宽度,有20MHz (11b/g )和40MHz (11n )的,我们从频谱模板的波形中也可以看出来。 二、EVM :Error Vector Magnitude ,误差矢量幅度: 其是调制后的射频信号与理想原始信号的矢量差,反映了调制的精度,是衡量信号质量的重要参数。原理上是接收到的码片信号,经过解调、解扰、解扩之后,再重复一遍发射端点的过程,即调制、加扰、扩频,然后再拿这个码矢量信号与接收到的矢量信号做矢量差,将其做统计平均,即为EVM 值。EVM 越大,说明信号受到的干扰越大,接收到的信号质量越差;反之,干扰小,接收到的信号质量就好。 EVM 有幅度偏差、频率偏差、相位偏差之分。功率放大器的非线性失真影响幅度偏差,I/Q 信号同步影响相位偏差,本振的噪声和电源噪声影响频率偏差, 影响EVM 因素主要有功率放大器的非线性失真、噪声、以及供电环境。 EVM 标准有IEEE 标准和一些国家电信的标准,下面列出IEEE 的标准供参考。

RF的一些基本知识

1. 什么是RF? 答:RF 即Radio frequency 射频,主要包括无线收发信机。 2. 当今世界的手机频率各是多少(CDMA,GSM、市话通、小灵通、模拟手机等)? 答:EGSM RX: 925-960MHz, TX:880-915MHz; CDMA cellular(IS-95)RX: 869-894MHz, TX:824-849MHz。 3. 从事手机Rf工作没多久的新手,应怎样提高? 答:首先应该对RF系统(如功能性)有个系统的认识,然后可以选择一些芯片组,研究一个它们之间的连通性(connectivities among them)。 4. RF仿真软件在手机设计调试中的作用是什么? 答:其目的是在实施设计之前,让设计者对将要设计的产品有一些认识。 5. 在设计手机的PCB时的基本原则是什么? 答:基本原则是使EMC最小化。 6. 手机的硬件构成有RF/ABB/DBB/MCU/PMU,这里的ABB、DBB和PMU等各代表何意? 答:ABB是Analog BaseBand, DBB是Ditital Baseband,MCU往往包括在DBB芯片中。 PMU是Power Management Unit,现在有的手机PMU和ABB在一个芯片上面。将来这些芯片(RF,ABB,DBB,MCU,PMU)都会集成到一个芯片上以节省成本和体积。 7. DSP和MCU各自主要完成什么样的功能?二者有何区别? 答:其实MCU和DSP都是处理器,理论上没有太大的不同。但是在实际系统中,基于效率的考虑,一般是DSP处理各种算法,如信道编解码,加密等,而MCU处理信令和与大部分硬件外设(如LCD等)通信。 8. 刚开始从事RF前段设计的新手要注意些什么? 答:首先,可以选择一个RF专题,比如PLL,并学习一些基本理论,然后开始设计一些简单电路,只有在调试中才能获得一些经验,有助加深理解。 9. 推荐RF仿真软件及其特点? 答:Agilent ADS仿真软件作RF仿真。这种软件支持分立RF设计和完整系统设计。详情可查看Agilent网站。 10. 哪里可以下载关于手机设计方案的相应知识,包括几大模快、各个模块的功能以及由此 对硬件的性能要求等内容? 答:可以看看https://www.360docs.net/doc/82927192.html,/和https://www.360docs.net/doc/82927192.html,,或许有所帮助。关于TI的wireless solution,可以看看https://www.360docs.net/doc/82927192.html,/中的wireless communications. 11. 为什么GSM使用GMSK调制,而W-CDMA采用HPSK调制? 答:主要是由于GSM和WCDMA标准所定。有兴趣的话,可以看一些有关数字调制的书,了解使用不同数字调制技术的利与弊。

射频基本知识

引 言 在进入射频测试前,让我们回顾一下单相交流电的基本知识。 一、 单相交流电的产生 在一组线圈中,放一能旋转的磁铁。当磁铁匀速旋转时,线圈内的磁通一会儿大一会 儿小,一会儿正向一会儿反向,也就是说线圈内有呈周期性变化的磁通,从而线圈两端即感生出一个等幅的交流电压,这就是一个原理示意性交流发电机。若磁铁每秒旋转50周,则电压的变化必然也是50周。每秒的周期数称为频率f ,其单位为赫芝Hz 。103Hz=千赫kHz,,106Hz=兆赫MHz ,109Hz=吉赫GHz 。 在示波器上可看出电压的波形呈周期性,每一个周期对应磁铁旋转一周。即转了2π弪,每秒旋转了f 个2π,称2πf 为ω(常称角频率,实质为角速率)。则单相交流电的表达式可写成: V=V m )sin(0?ω+t =V m )2sin(0?π+ft 式中V m (电压最大值)=2V e (有效值或V r.m.s.)。t 为时间(秒),0?为初相。 二、 对相位的理解 1、 由电压产生的角度来看 2设想有两个相同的单相发电机用连轴器连在一起旋转,当两者转轴(磁铁的磁极) 位置完全相同时,两者发出的电压是同相的。而当两者转轴错开0?角度时,用双线示波器来看,两个波形在时轴上将错开一个角度;这个角度就叫相位角或初相。相位领先为正,滞后为负。 2假如在单相发电机上再加一组线圈,两组线圈互成90°(也即两电压之间相位差 90°),即可形成两相电机。假如用三组线圈互成120°(即三电压之间,相位各差120°)即可形成三相电机。两相电机常用于控制系统,三相电机常用于工业系统。 2、 同频信号(电压)之间的叠加 当两个电压同相时,两者会相加;而反相时,两者会抵消。也就是说两者之间为复数运算关系。若用方位平面来表示,也就是矢量关系。矢量的模值(幅值)为标量,矢量的角度为相位。 虽然人们关心的是幅值,但运算却必须采用矢量。 虽然一般希望信号相加,但作匹配时,却要将反射信号抵消。 三、 射频 交流电的频率为50Hz 时,称为工频。20Hz 到20kHz 为音频,20kHz 以上为超声波 ,当频率高到100 kHz 以上时,交流电的辐射效应显著增强;因此100 kHz 以上的频率泛称射频。有时会以3 GHz 为界,以上称为微波。常用频段划分见附录。

射频知识基本概念和术语

射频知识———基本概念和术语 一、基础知识 概念辨析:dBm, dBi, dBd, dB, dBc 1、dBm dBm是一个考征功率绝对值的值,计算公式为:10lgP(功率值/1mw)。 [例1] 如果发射功率P为1mw,折算为dBm后为0dBm。 [例2] 对于40W的功率,按dBm单位进行折算后的值应为: 10lg(40W/1mw)=10lg(40000)=10lg4+10lg10+10lg1000=46dBm。 2、dBi 和dBd dBi和dBd是考征增益的值(功率增益),两者都是一个相对值,但参考基准不一样。dBi 的参考基准为全方向性天线,dBd的参考基准为偶极子,所以两者略有不同。一般认为,表示同一个增益,用dBi表示出来比用dBd表示出来要大2. 15。 [例3] 对于一面增益为16dBd的天线,其增益折算成单位为dBi时,则为18.15dBi(一般忽略小数位,为18dBi)。 [例4] 0dBd=2.15dBi。 [例5] GSM900天线增益可以为13dBd(15dBi),GSM1800天线增益可以为15dBd(17dBi)。 3、dB dB是一个表征相对值的值,当考虑甲的功率相比于乙功率大或小多少个dB时,按下面计算公式:10lg(甲功率/乙功率) [例6] 甲功率比乙功率大一倍,那么10lg(甲功率/乙功率)=10lg2=3dB。也就是说,甲的功率比乙的功率大3 dB。 [例7] 7/8 英寸GSM900馈线的100米传输损耗约为3.9dB。 [例8] 如果甲的功率为46dBm,乙的功率为40dBm,则可以说,甲比乙大6 dB。 [例9] 如果甲天线为12dBd,乙天线为14dBd,可以说甲比乙小2 dB。 4、dBc 有时也会看到dBc,它也是一个表示功率相对值的单位,与dB的计算方法完全一样。一般 来说,dBc 是相对于载波(Carrier)功率而言,在许多情况下,用来度量与载波功率的相对值,如用来度量干扰(同频干扰、互调干扰、交调干扰、带外干扰等)以及耦合、杂散等的相对量值。在采用dBc的地方,原则上也可以使用dB替代。 1、功率/电平(dBm):放大器的输出能力,一般单位为w、mw、dBm 注:dBm是取1mw作基准值,以分贝表示的绝对功率电平。换算公式: 电平(dBm)=10lgw 5W → 10lg5000=37dBm 10W → 10lg10000=40dBm 20W → 10lg20000=43dBm 从上不难看出,功率每增加一倍,电平值增加3dBm 2、增益(dB):即放大倍数,单位可表示为分贝(dB)。 即:dB=10lgA(A为功率放大倍数) 3、插损:当某一器件或部件接入传输电路后所增加的衰减,单位用dB 表示。 4、选择性:衡量工作频带内的增益及带外辐射的抑制能力。-3dB带宽即

射频(RF)基础知识

●什么是RF? 答:RF 即Radio frequency 射频,主要包括无线收发信机。 2. 当今世界的手机频率各是多少(CDMA,GSM、市话通、小灵通、模拟手机等)? 答:EGSM RX: 925-960MHz, TX:880-915MHz; CDMA cellular(IS-95)RX: 869-894MHz, TX:824-849MHz。 3. 从事手机Rf工作没多久的新手,应怎样提高? 答:首先应该对RF系统(如功能性)有个系统的认识,然后可以选择一些芯片组,研究一个它们之间的连通性(connectivities among them)。 ● 4. RF仿真软件在手机设计调试中的作用是什么? 答:其目的是在实施设计之前,让设计者对将要设计的产品有一些认识。 5. 在设计手机的PCB时的基本原则是什么? 答:基本原则是使EMC最小化。 6. 手机的硬件构成有RF/ABB/DBB/MCU/PMU,这里的ABB、DBB和PMU等各代 表何意? 答:ABB是Analog BaseBand, DBB是Ditital Baseband,MCU往往包括在DBB芯片中。 PMU是Power Management Unit,现在有的手机PMU和ABB在一个芯片上面。将来这些芯片(RF,ABB,DBB,MCU,PMU)都会集成到一个芯片上以节省成本和体积。 7. DSP和MCU各自主要完成什么样的功能?二者有何区别? 答:其实MCU和DSP都是处理器,理论上没有太大的不同。但是在实际系统中,基于效率的考虑,一般是DSP处理各种算法,如信道编解码,加密等,而MCU处理信令和与大部分硬件外设(如LCD等)通信。 8. 刚开始从事RF前段设计的新手要注意些什么? 答:首先,可以选择一个RF专题,比如PLL,并学习一些基本理论,然后开始设计一些简单电路,只有在调试中才能获得一些经验,有助加深理解。 9. 推荐RF仿真软件及其特点? 答:Agilent ADS仿真软件作RF仿真。这种软件支持分立RF设计和完整系统设计。 详情可查看Agilent网站。 10. 哪里可以下载关于手机设计方案的相应知识,包括几大模快、各个模块的功能以 及由此对硬件的性能要求等内容? 答:可以看看https://www.360docs.net/doc/82927192.html,和https://www.360docs.net/doc/82927192.html,,或许有所帮助。关于TI的wireless solution,可以看看https://www.360docs.net/doc/82927192.html,中的wireless communications.

基本射频和天线基础知识

基本射频知识

培训目录 移动通信频谱划分 射频几个基本参数 无源器件基本知识

电信和广播电视的工作频带分配

移动通信频率 FDMA 30 kHz Frequency Time 1 2 3 1 TDMA 30 kHz Frequency Time 1.23 MHz Frequency Time CDMA 多址方式

当前中国2G与3G频谱分配 DCS1800 Rx 1710 –1785 DCS1800 Tx 1805 –1880 8 2 5 - 8 3 5 8 3 5 - 8 3 9 8 7 - 8 8 8 8 - 8 8 6 8 9 - 9 3 9 3 - 9 9 9 3 1 - 9 3 5 9 3 5 - 9 4 8 9 4 8 - 9 5 4 9 5 4 - 9 6 0 8 3 9 - 8 4 5 8 8 6 - 8 9 9 9 - 9 1 5 R e s e r v e d TACS-C (Rx) AMPS-A (Rx) 825-835 AMPS-B (Rx) 835-845 TACS-A (Rx) 890-897.5 TACS-B (Rx) 897.5-905 GSM (Rx) 905-915 TACS-A (Tx) 935-942.5 TACS-B (Tx) 942.5-950 GSM (Tx) 950-960 TACS-C (Tx) 924-935 联通 CDMA CT2 (空)中移动GSM 联通 GSM M O R G S M - R 中移动GSM联通 GSM AMPS-A (Tx) 870-880 AMPS-B (Tx) 880-890 M O R G S M - R 联通 CDMA r e s e r v e 保 留 中移动联通 信产部 尚未发放 美国标准中国电信 ITU标准 TDD 频谱 C M C C D C S 1 8 T D D T D - S C D M A DCS 1800 未发放联 通 D C S 1 8 DCS 1800 未发放联 通 D C S 1 8 中 移 动 D C S 1 8 SCD MA 中国 电信 CDM A WLL PCS1900 Rx 1850 -1910 PCS1900 Tx 1930 -1990 中 移 动 D C S 1 8 I T U M S S 1 9 8 - 2 1 PHS 1 8 5 - 1 8 2 1 9 - 1 9 1 1 8 5 - 1 8 6 5 1 8 6 5 - 1 8 8 1 8 8 - 1 9 1 9 4 5 - 1 9 6 1 9 6 - 1 9 8 1 7 1 - 1 7 2 5 1 7 4 5 - 1 7 5 5 1 8 4 - 1 8 5 1 7 5 5 - 1 7 8 5 1 7 8 5 - 1 8 5 2 1 - 2 2 5 1 9 8 - 2 1 1 9 1 - 1 9 2 CDMA PCS ITU IMT-2000 Rx 1920 -1980 中国 电信 CDM A WLL 2 1 1 - 2 1 7 2 3 - 2 4 ITU IMT-2000 Tx 2110 -2170 FDD 补充频段 TDD 主要 FDD 补充频段 FDD 主要频段 FDD 主要频段 TDD 主要频段 TDD 补充 信产部 3G规划

射频开关基础知识详细讲解

射频开关基础知识详细讲解 射频和微波开关可在传输路径内高效发送信号。此类开关的功能可由四个基本电气参数加以表征。 虽然多个参数与射频和微波开关的性能相关,然而以下四个由于其相互间较强的相关性而被视为至关重要的参数:隔离度,插入损耗,开关时间,功率处理能力。 隔离度即电路输入端和输出端之间的衰减度,是衡量开关截止有效性的指标。插入损耗(也称传输损耗)为开关处于导通状态下时损耗的总功率。由于插入损耗可直接导致系统噪声系数的增大,因此对于设计者而言,插入损耗是最为关键的参数。 开关时间是指开关从“导通”状态转变为“截止”状态以及从“截止”状态转变为“导通”状态所需要的时间。该时间上可达高功率开关的数微秒级,下可至低功率高速开关的数纳秒级。开关时间的最常见定义为自输入控制电压达到其50%至最终射频输出功率达到其90%所需的时间。此外,功率处理能力定义为开关在不发生任何永久性电气性能劣化的前提下所能承受的最大射频输入功率。

图示为使用12个不同SMA母同轴连接器的单刀十二掷机电式开关一 例 射频和微波开关可分为机电式继电器开关以及固态开关两大类。这些开关可设计为多种不同构型——从单刀单掷到可将单个输入转换成16种不同输出状态的单刀十六掷,或更多掷的构型。切换开关为一种双刀双掷构型的开关。此类开关具有四个端口以及两种可能的开关状态,从而可将负载在两个源之间切换。 机电式继电器开关的插入损耗较低(《0.1dB),隔离度较高(》 85dB),且可以毫秒级的速度切换信号。此类开关的主要优点在于,其可在直流~毫米波(》50 GHz)频率范围内工作,而且对静电放电不敏感。此外,机电式继电器开关可处理较高的功率水平(达数千瓦的峰值功率)且不发生视频泄漏。

射频基础二级工程师考试题及答案

射频基础二级工程师考试题及答案 射频基础考试题(共100分) 分支机构名称:员工姓名:得分: 一.填空题(共40分)< 每题2分> 1.移动通信射频指的是VHF(米)波和UHF(分米)波波段; 2.1G指的TACS 制式,2G指的GSM900/1800 和CDMA800 制式; 3G指的TD-SCDMA制式、WCDMA制式和CDMA2000制式; 3.GSM手机发射功率2W为33 dBm,基站输出功率46dBm为40W; 4.GSM规范中,最大时间提前量TA=63bit,推算小区覆盖半径为35Km; 5.G网设计中选用BCCH信道作为发射参考功率,通常该信道不进行功率控制; 6.GSM中射频调制采用GMSK调制,EDGE采用8PSK调制 7.移动通信电波在自由空间中传播是扩散损耗,在金属表面传播由于趋肤效应会产 生热损耗; 8.两个载频f1和f2,其三阶互调产物公式为2f1-f2和2f2-f1。 9.半波偶极子天线增益2.1 dBi,.或0 dBd 10. 当基站天线增益相同时,频率越低其天线长度越长。 11.电压驻波比越大反射损耗越小。 12、GSM规范中,工程上同频干扰保护比C/I≥(12 ) 13、GSM规范中,每个TDMA定义为一个载频,每载频包含(8 )个信道,每载波间隔为(200 )KHZ。 14、GSM系统跳频有(射频跳频)(基带跳频)两种方式。 15、WCDMA载波宽度为(5)MHZ。 16、3G支持的高速运动、步行和室内环境的数据业务最高速率分别为(144Kbit/S、384 Kbit/S、2 Mbit/S )。 17、TD-SCDMA系统是一个(TDD )双工系统。 18、某设备带外杂散指标为-67 dBm/100kHz,则相当于(-64 )dBm/200kHz。 19、通信系统中采用的“先建立,后断开”的切换方式称为(软切换),“先断开,后建立” 的切换方式称为(硬切换)。 20、由于衰落具有频率、时间和空间的选择性,因此分集技术主要包括(空间分集)、(频率分集)、(时间分集)和(极化分集)。 二.选择题(共18分)< 每题2分> 1. 1dBm+(-1dBm)= C dBm。A. 0 dBm B. 2.1 dBm C. 3.1dBm 2. 电压驻波最大点对应是电流 B 。A. 最大点 B. 最小点 3. 由于导线中通过电流,周围将有磁场,表明导线存在 B 。 A. 分布电容效应 B. 分布电感效应 C. 分布电导效应

射频基础知识点

一、频谱分析仪部分 什么是频谱分析仪? 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交 调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的 电子测量仪器。我们现在所用的频谱仪大部分是扫频调谐超外差频谱分析仪。 中 频谱仪工作原理 输入信号经衰减器以限制信号幅度,经低通输入滤波器滤除不需的频率,然后经混频器与本振 (L0)信号混频将输入信号转换到中频(IF)。LO的频率由扫频发生器控制。随着LO频率的改变,混频器的输出信号(它包括两个原始信号,它们的和、差及谐波,)由分辨力带宽滤波器滤出本振 比输入信号高的中频,并以对数标度放大或压缩。然后用检波器对通过IF滤波器的信号进行整 流,从而得到驱动显示垂直部分的直流电压。随着扫频发生器扫过某一频率范围,屏幕上就会画出一条迹线。该迹线示出了输入信号在所显示频率范围内的频率成分。 输入衰减器 保证频谱仪在宽频范围内保持良好匹配特性,以减小失配误差;保护混频器及其它中频处理电路,防止部件损坏和产生过大的非线性失真。 混频器 完成信号的频谱搬移,将不同频率输入信号变换到相应中频。在低频段(<3GHz)利用高混频和低通滤波器抑制镜像干扰;在高频段(>3GHz)利用带通跟踪滤波器抑制镜像干扰。 本振(L0) 它是一个压控振荡器,其频率是受扫频发生器控制的。其频率稳定度锁相于参考源。 扫频发生器 除了控制本振频率外,它也能控制水平偏转显示,锯齿波扫描使频谱仪屏幕上从左到右显示信号, 然后重复这个扫描不断更新迹线。扫频宽度(Span)是从左fstart到右fstopIO格的频率差,例如:

射频基础知识知识讲解

第一部分 射频基础知识 目录 第一章与移动通信相关的射频知识简介 (1) 1.1 何谓射频 (1) 1.1.1长线和分布参数的概念 (1) 1.1.2射频传输线终端短路 (3) 1.1.3射频传输线终端开路 (4) 1.1.4射频传输线终端完全匹配 (4) 1.1.5射频传输线终端不完全匹配 (5) 1.1.6电压驻波分布 (5) 1.1.7射频各种馈线 (6) 1.1.8从低频的集中参数的谐振回路向射频圆柱形谐振腔过渡 (9) 1.2 无线电频段和波段命名 (9) 1.3 移动通信系统使用频段 (9) 1.4 第一代移动通信系统及其主要特点 (12) 1.5 第二代移动通信系统及其主要特点 (12) 1.6 第三代移动通信系统及其主要特点 (12) 1.7 何谓“双工”方式?何谓“多址”方式 (12) 1.8 发信功率及其单位换算 (13) 1.9 接收机的热噪声功率电平 (13) 1.10 接收机底噪及接收灵敏度 (13) 1.11 电场强度、电压及功率电平的换算 (14) 1.12 G网的全速率和半速率信道 (14) 1.13 G网设计中选用哪个信道的发射功率作为参考功率 (15) 1.14 G网的传输时延,时间提前量和最大小区半径的限制 (15)

1.15 GPRS的基本概念 (15) 1.16 EDGE的基本概念 (16) 第二章天线 (16) 2.1天线概述 (16) 2.1.1天线 (16) 2.1.2天线的起源和发展 (17) 2.1.3天线在移动通信中的应用 (17) 2.1.4无线电波 (17) 2.1.5 无线电波的频率与波长 (17) 2.1.6偶极子 (18) 2.1.7频率范围 (19) 2.1.8天线如何控制无线辐射能量走向 (19) 2.2天线的基本特性 (21) 2.2.1增益 (21) 2.2.2波瓣宽度 (22) 2.2.3下倾角 (23) 2.2.4前后比 (24) 2.2.5阻抗 (24) 2.2.6回波损耗 (25) 2.2.7隔离度 (27) 2.2.8极化 (29) 2.2.9交调 (31) 2.2.10天线参数在无线组网中的作用 (31) 2.2.11通信方程式 (32) 2.3.网络优化中天线 (33) 2.3.1网络优化中天线的作用 (33) 2.3.2天线分集技术 (34) 2.3.3遥控电调电下倾天线 (1) 第三章电波传播 (3) 3.1 陆地移动通信中无线电波传播的主要特点 (3) 3.2 快衰落遵循什么分布规律,基本特征和克服方法 (4)

RF测试原理小结

RF测试原理小结

RF 测试原理小结 本文旨在阐述RF 测试项目的有关原理性知识,基本不涉及具体的测试方法,测试方法请参照相关文档。 首先学习射频离不开天线,要对天线知识有所了解。 天线(antenna )是RF 系统中最关键的零件,发送的时候它负责将线路中的电信号转化为电波发射出去,接收的时候它负责将电波转化为电信号。根据洛伦兹定理,变化的电场会产生磁场,因施加在天线上的电流不同,就会产生电波;当无线电波遇到天线时,电子就会流入天线导体而产生电流。 天线分为全向型和定向型两种。全向型天线收发所有方向的信号,定向性天线只收发天线所指向方向上的信号,可以将能量传送到更远的距离,信号也比较清楚,实际上根本没有真正意义上的全向天线。 天线的长度取决于频率:频率越高,天线越短。根据经验,一般的简易型天线为其波长的一般。波长和频率的计算公式是:8 (310/)c c m s f λ==?其中,例

如使用830KHz的调幅广播电台,其电波的波长约为360米,因此必须使用约180米的大型天线。当然天线工程师可以运用一些技巧,进一步缩短天线,甚至可以做到随身携带的程度。 一般在天线的前端还会有个功率放大器PA(power amplifier),其实将功率提升到做大功率后发送。 然后具体了解RF测试中各个参数的含义及其影响因素。 一、调制带宽: 调制子载波占用的频带宽度,有20MHz (11b/g)和40MHz(11n)的,我们从频谱模板的波形中也可以看出来。 二、EVM:Error Vector Magnitude,误差矢 量幅度: 其是调制后的射频信号与理想原始信号的矢量差,反映了调制的精度,是衡量信号质量的重要参数。原理上是接收到的码片信号,经过解调、解扰、解扩之后,再重复一遍发射端点的过程,即调制、加扰、扩频,然后再拿这个码矢量信号与接收到的矢量信号做矢量差,将其做统计平均,即为EVM值。EVM越大,说明信号受到的干扰越大,接收到的信号质量

相关文档
最新文档