紫外-可见漫反射光谱

紫外-可见漫反射光谱
紫外-可见漫反射光谱

紫外可见漫反射光谱基本原理

紫外可见漫反射光谱基本原理 前言: 1、紫外可见光谱利用的哪个波段的光? 紫外光的波长范围为:10-400 nm; 可见光的波长范围:400-760 nm; 波长大于760 nm为红外光。波长在10-200 nm范围内的称为远紫外光,波长在200-400 nm的为近紫外光。而对于紫外可见光谱仪而言,人们一般利用近紫外光与可见光,一般测试范围为200-800 nm、 2、紫外可见漫反射光谱可以做什么? 紫外可见漫反射(UV-Vis DRS)可用于研究固体样品的光吸收性能,催化剂表面过渡金属离子及其配合物的结构、氧化状态、配位状态、配位对称性等。 备注:这里不作详细展开,我们后面会结合实例进行分析。 3、漫反射就是什么? 当光束入射至粉末状的晶面层时,一部分光在表层各晶粒面产生镜面反射(specular reflection);另一部分光则折射入表层晶粒的内部,经部分吸收后射至内部晶粒界面,再发生反射、折射吸收。如此多次重复,最后由粉末表层朝各个方向反射出来,这种辐射称为漫反射光(diffuse reflection)。 4、紫外可见光谱的基本原理 对于紫外可见光谱而言,不论就是紫外可见吸收还就是紫外可见漫反射,其产生的根本原因多为电子跃迁、 有机物的电子跃迁包括n-π,π-π跃迁等将放在紫外可见分光分度法中来介绍。 对于无机物而言:

a、在过渡金属离子-配位体体系中,一方就是电子给予体,另一方为电子接受体。在光激发下,发生电荷转移,电子吸收某能量光子从给予体转移到接受体,在紫外区产生吸收光谱。其中,电荷从金属(Metal)向配体(Ligand)进行转移,称为MLCT;反之,电荷从配体向金属转移,称为LMCT、 b、当过渡金属离子本身吸收光子激发发生内部d轨道内的跃迁(d-d)跃迁,引起配位场吸收带,需要能量较低,表现为在可见光区或近红外区的吸收光谱。 c、贵金属的表面等离子体共振: 贵金属可瞧作自由电子体系,由导带电子决定其光学与电学性质。在金属等离子体理论中,若等离子体内部受到某种电磁扰动而使其一些区域电荷密度不为零,就会产生静电回复力,使其电荷分布发生振荡,当电磁波的频率与等离子体振荡频率相同时,就会产生共振。这种共振,在宏观上就表现为金属纳米粒子对光的吸收。金属的表面等离子体共振就是决定金属纳米颗粒光学性质的重要因素。由于金属粒子内部等离子体共振激发或由于带间吸收,它们在紫外可见光区域具有吸收谱带。 5、紫外可见漫反射光谱的测试方法——积分球法 积分球又称为光通球,就是一个中空的完整球壳, 其典型功能就就是收集光。积分球内壁涂白色漫反射层(一般为MgO或者BaSO4),且球内壁各点漫反射均匀。光源S在球壁上任意一点B上产生的光照度就是由多次反射光产生的光照度叠加而成的。

(完整版)紫外可见漫反射光谱基本原理

紫外可见漫反射光谱基本原理 前言: 1.紫外可见光谱利用的哪个波段的光? 紫外光的波长范围为:10-400 nm; 可见光的波长范围:400-760 nm; 波长大于760 nm为红外光。波长在10-200 nm范围内的称为远紫外光,波长在200-400 nm的为近紫外光。而对于紫外可见光谱仪而言,人们一般利用近紫外光和可见光,一般测试范围为200-800 nm. 2. 紫外可见漫反射光谱可以做什么? 紫外可见漫反射(UV-Vis DRS)可用于研究固体样品的光吸收性能,催化剂表面过渡金属离子及其配合物的结构、氧化状态、配位状态、配位对称性等。 备注:这里不作详细展开,我们后面会结合实例进行分析。 3. 漫反射是什么? 当光束入射至粉末状的晶面层时,一部分光在表层各晶粒面产生镜面反射(specular reflection);另一部分光则折射入表层晶粒的内部,经部分吸收后射至内部晶粒界面,再发生反射、折射吸收。如此多次重复,最后由粉末表层朝各个方向反射出来,这种辐射称为漫反射光(diffuse reflection)。 4. 紫外可见光谱的基本原理 对于紫外可见光谱而言,不论是紫外可见吸收还是紫外可见漫反射,其产生的根本原因多为电子跃迁. 有机物的电子跃迁包括n-π,π-π跃迁等将放在紫外可见分光分度法中来介绍。

对于无机物而言: a. 在过渡金属离子-配位体体系中,一方是电子给予体,另一方为电子接受体。在光激发下,发生电荷转移,电子吸收某能量光子从给予体转移到接受体,在紫外区产生吸收光谱。其中,电荷从金属(Metal)向配体(Ligand)进行转移,称为MLCT;反之,电荷从配体向金属转移,称为LMCT. b. 当过渡金属离子本身吸收光子激发发生内部d轨道内的跃迁(d-d)跃迁,引起配位场吸收带,需要能量较低,表现为在可见光区或近红外区的吸收光谱。 c. 贵金属的表面等离子体共振: 贵金属可看作自由电子体系,由导带电子决定其光学和电学性质。在金属等离子体理论中,若等离子体内部受到某种电磁扰动而使其一些区域电荷密度不为零,就会产生静电回复力,使其电荷分布发生振荡,当电磁波的频率和等离子体振荡频率相同时,就会产生共振。这种共振,在宏观上就表现为金属纳米粒子对光的吸收。金属的表面等离子体共振是决定金属纳米颗粒光学性质的重要因素。由于金属粒子内部等离子体共振激发或由于带间吸收,它们在紫外可见光区域具有吸收谱带。 5. 紫外可见漫反射光谱的测试方法——积分球法 积分球又称为光通球,是一个中空的完整球壳, 其典型功能就是收集光。积分球内壁涂白色漫反射层(一般为MgO或者BaSO4),且球内壁各点漫反射均匀。光源S在球壁上任意一点B上产生的光照度是由多次反射光产生的光照度叠加而成的。

岛津UV-3600紫外可见近红外分光光度计操作规范

岛津UV-3600紫外可见近红外分光光度计操作规范 1.软件安装(仪器管理员操作) 1)软盘中双击setup,选择安装地址安装操作软件; 2)安装时与工程师联系,很多参数需要设置。 2. UVProbe2.33操作软件介绍 “窗口”选项不动(设定软件显示窗口); “仪器”→“配制”→“维护”不动,“电灯时间”有效2000h,不要调节;“图像”→“选图”右侧显示,“自定义”可选图线颜色; “操作”→“处理”图像;例:类型→导数→次数、峰面积、峰值、波长值等;“视图”操作软件显示; “文件”→“属性”→删图和调用图谱时使用。 3.仪器准备 1)仪器单机测试(紫外可见近红外分光计,不加积分球),取下光导出器(带把手)(开关主机暗室时,上侧暗室门要注意太高后再拉开,避免顶片划坏),安装测样架(方向有箭头,从右向左),样品放到主机暗室中的样品架上; 2)如果积分球测试,则取下测样架,安装上光导出器,样品则要放到MPC-3100样品架或样品夹上; 3)仪器电源打开后(右侧电源开关),仪器一声报警为开机,二声报警为可测定实验(PbSO4降温到0℃)。 4.测试 1)打开计算机,找到UVProbe2.33操作软件双击打开; 2)在UVProbe2.33操作软件中找到“仪器”选项,点击“仪器”→“配制”→“初始化”→选择“快速初始化”,以后测定时都应保持在快速初始化状态,在实验前检查一次即可,以后会自动默认为“快速初始化”; 3)在UVProbe界面上点击“连机”按钮进行连机;连机并开始初始化,初始化大约需要1分钟左右,进行一系列的检查和初置,如一切顺利通过就可以开始测定(系统初始化→仪器元件(电池与马达)→显示“正常”→点击“确定”);4)数据测定 ①光谱测定(仪器最大测定范围 A.首先是仪器的基线校正: 一般情况下,主机应该烘干1-2h后再进行基线校正(单机校正基线时,样品架上没有参比物和样品); ,然后点击调零。即基线校正完毕。

基于紫外_可见光谱分析的水质监测技术研究进展

第31卷,第4期 光谱学与光谱分析Vol 31,No 4,pp1074 1077 2011年4月 Spectro sco py and Spectr al Analysis A pril,2011 基于紫外 可见光谱分析的水质监测技术研究进展 魏康林,温志渝*,武 新,张中卫,曾甜玲 重庆大学新型微纳器件与系统国家重点学科实验室,微系统研究中心,光电技术及系统教育部重点实验室,重庆 400044 摘 要 光谱分析在水质监测领域的应用是现代环境监测技术的一个重要发展方向。文章论述了基于紫外 可见光谱分析的现代水质监测技术的原理与特点,并从在线监测和原位监测两个方面论述了该技术的主要研究现状与进展,指出了尚需突破的关键技术问题,展望了基于集成化微型光谱仪的多参数水质监测微系统及水质监测微系统网络的技术发展趋势,对我国水资源环境监测技术的发展及现代科学仪器的研发具有一定的参考价值。 关键词 水质监测;光谱分析;微型光谱仪 中图分类号:T P27 文献标识码:A DOI :10 3964/j issn 1000 0593(2011)04 1074 04 收稿日期:2010 07 22,修订日期:2010 11 07 基金项目:科技部国际科技合作项目(2007DFC00040)和国家 863计划 项目(2007AA042101)资助 作者简介:魏康林,1976年生,重庆大学微系统研究中心博士研究生 e mail:zeyu anw ei@https://www.360docs.net/doc/8311698204.html, *通讯联系人 e mail:w zy@https://www.360docs.net/doc/8311698204.html,.en 引 言 基于光谱分析的水质监测技术是现代环境监测的一个重要发展方向,与传统的化学分析、电化学分析和色谱分析等 分析方法相比,光谱分析技术更具有操作简便、消耗试剂量小、重复性好、测量精度高和检测快速的优点,非常适合对环境水样的快速在线监测。目前该技术主要有原子吸收光谱法、分子吸收光谱法以及高光谱遥感法,其中高光谱遥感法由于测量精度不高多数用于定性分析,而原子吸收光谱法精度虽高,但由于首先要把样品汽化,因而耗能较高,系统体积大,不适合广泛使用,比较而言,分子吸收光谱法是目前应用较为广泛的水质分析技术,其中紫外 可见光谱分析法可直接或间接地测定水中大多数金属离子、非金属离子和有机污染物的含量,具有灵敏、快速、准确、简单等优点,并可实现对多种水质参数的检测,在对饮用水、地表水、工业废水等水体的在线监测中具有显著的技术优势,是国内外科研机构与主要分析仪表厂商竞相研发的现代水质监测技术。本文介绍了基于紫外 可见分子吸收光谱分析的现代水质监测技术的原理、特点和主要研究现状与进展,展望了该技术在多参数水质监测方面的发展趋势,并对需要解决的关键技术作了评述。 1 原 理 紫外 可见分子吸收光谱分析是根据物质的吸收光谱来分析物质的成分、结构和浓度的方法,其基本原理是是朗伯 比尔吸收定律(图1),即在一定的吸收光程下,物质的浓度与吸光度成正比,见式(1)。 A =lg I I 0 =kbc (1) 式中:A 为吸光度;I 0为入射光强度;I 为透射光强度;k 为摩尔吸光系数,单位为L (mol cm)-1;b 为液层厚度(吸收光程),单位为cm ;c 为吸光物质的浓度,单位为mol L -1。 Fig 1 Principle of spectrum measurement 在多组分共存的情况下,如各吸光组分的浓度均比较稀,可忽略相互之间的作用,这时体系的总吸光度等于各组 分的吸光度之和如式(2)所示 A =A 1+A 2+A 3+ +A N (2)式中A 为溶液总的吸光度,A i 式第i 个组分的吸光度,依据 吸光度的加和性,可以进行多组分分析和多参数测量。不同化学物质各自不同的特征吸收光谱是对水质进行定性、定量分析的基础。通过紫外/可见光谱仪,采集环境水样在紫外区或可见光区的全波段连续光谱,可以获得待测物质的特征

根据紫外可见光谱计算半导体能带Eg

根据紫外可见光谱计算半导体能带E g Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

根据紫外-可见光谱计算半导体能带Eg 光学吸收系数满足方程:α=(A/hν)(hν-Eg)1/2,其中A 是比例常数,hν是光子能量,Eg是ZnO的能隙。Eg可以通过画(αhν)2与hν的曲线,然后把线性部分延长到α=0得出。这些数据先用excel计算出来,再导入origin画出曲线图,然后做切线,切线与和横坐标的交点数值就是禁带宽度 在origin中做曲线的切线的话~那个切点是怎么确定的 下一个画切线的插件targent,它会自动画,切点选一个最陡峭的点 1.薄膜:需要的数据:薄膜厚度d,透过谱T%,并且还要知道半导体是直接还是间接型。首先需要求吸收系数(absorption coefficiency, a) a=-ln(T%)/d A α= d hv的计算在origin里进行,大概可以使用hv=1240/(wavelength(nm))得到 间接半导体:纵坐标为(ahv)^2,横坐标为hv 直接半导体:纵坐标为(ahv)^(1/2),横坐标为hv 最后,做出曲线的切线(这方面我是自己拉一条直线),与横轴的交点就是Eg。 2.粉体:需要的数据:粉体的漫反射谱Rx。同样也需要换算成吸收系数,使用a=(1-Rx)2/2Rx (这个就是Kubelka-Munk Function)。其他的就是按照薄膜同样的方法进行了。 当然,这些方法都是近似的,其中还会存在粉体颗粒对光的散射,薄膜岛状结构对光的散射而对最后结果产生的误差,所以,在研究化学和材料方面可以作为一定知道的数据。 方法1:利用紫外可见漫反射测量中的吸光度与波长数据作图,利用截线法做出吸收波长阈值λg(nm), 利用公式 Eg=1240/λg (eV) 计算禁带宽度。 方法2:利用(Ahν)2 对 hν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。也可利用(Ahν) 对 hν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。前者为间接半导体禁带宽度值,后者为直 接半导体禁带宽度值。A (Absorbance) 即为紫外可见漫反射中的吸光度。 方法3:利用(αhν)2 对 hν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。也可利用(αhν) 对 hν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。前者为间接半导体禁带宽度值,后者为 直接半导体禁带宽度值。α (Absorption Coefficient ) 即为紫外可见漫反射中的吸收系数。α与A成正比。

根据紫外-可见光谱计算半导体能带Eg

根据紫外-可见光谱计算半导体能带Eg 光学吸收系数满足方程:α=(A/hν)(hν-Eg)1/2,其中 A 是比例常数,hν是光子能量,Eg 是ZnO的能隙。Eg可以通过画(αhν)2与hν的曲线,然后把线性部分延长到α=0得出。这些数据先用excel计算出来,再导入origin画出曲线图,然后做切线,切线与和横坐标的交点数值就是禁带宽度 在origin中做曲线的切线的话~那个切点是怎么确定的 下一个画切线的插件targent,它会自动画,切点选一个最陡峭的点 1.薄膜:需要的数据:薄膜厚度d,透过谱T%,并且还要知道半导体是直接还是间接型。首先需要求吸收系数(absorption coefficiency, a) a=-ln(T%)/d A α= d hv的计算在origin里进行,大概可以使用hv=1240/(wavelength(nm))得到 间接半导体:纵坐标为(ahv)^2,横坐标为hv 直接半导体:纵坐标为(ahv)^(1/2),横坐标为hv 最后,做出曲线的切线(这方面我是自己拉一条直线),与横轴的交点就是Eg。 2.粉体:需要的数据:粉体的漫反射谱Rx。同样也需要换算成吸收系数,使用a=(1-Rx)2/2Rx (这个就是Kubelka-Munk Function)。其他的就是按照薄膜同样的方法进行了。 当然,这些方法都是近似的,其中还会存在粉体颗粒对光的散射,薄膜岛状结构对光的散射而对最后结果产生的误差,所以,在研究化学和材料方面可以作为一定知道的数据。 方法1:利用紫外可见漫反射测量中的吸光度与波长数据作图,利用截线法做出吸收波长阈值λg(nm), 利用公式Eg=1240/λg (eV) 计算禁带宽度。 方法2:利用(Ahν)2 对hν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。也可利用(Ahν)0.5 对hν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。前者为间接半导体禁带宽度值,后者为直 接半导体禁带宽度值。A (Absorbance) 即为紫外可见漫反射中的吸光度。 方法3:利用(αhν)2 对hν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。也可利用(αhν)0.5 对hν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。前者为间接半导体禁带宽度值,后者为 直接半导体禁带宽度值。α(Absorption Coefficient ) 即为紫外可见漫反射中的吸收系数。α与A成正比。 方法4:利用[F(R∞)hν]2 对hν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。也可利用 [F(R∞)hν]0.5 对hν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。前者为间接半导体禁带宽度

漫反射光谱学

第13章 漫反射光谱学 José Torrent and Vidal Barrón, University of Córdoba, Spain 翻译:胡鹏翔 校对:姜兆霞 土壤各组分和入射光之间的相互作用决定了土壤的外观。颜色和土壤外观的其他属性敏感地反应了土壤性质,各组分比例,颗粒大小,形态以及土壤矿物和有机质的空间结构。事实上,用土壤颜色来获得土壤性质信息,从而描述区分土壤类型的研究已有75年的历史。 1949年美国土壤勘测计划和1959年国际土壤学会应用Munsell符号建立了描述土壤颜色的标准方法(1949年,美国土壤勘测计划利用Munsell标记法建立了描述土壤颜色的标准方法,10年后,该方法被国际土壤学会采用。)。之后,土壤学家开始广泛利用Munsell土壤比色表。然而,由于各种心理学和物理学因素,视觉上对土壤颜色的估计很容易产生本质上的错误。因此,色度计和分光光度计作为准确和精确测量土壤颜色的方法,被科学家所广泛接受。与此同时,不同类型分光光度计的使用可以从不同角度来阐述光照下土壤反射光谱的特性。 反射系数,即反射辐射通量(能量)和入射辐射通量(能量)之间的比值,是描述反射过程的基本参数(Wyszecki and Stiles, 1982)。一般来说,土壤在任何波长下的反射都由两部分组成:镜面反射(定向反射)和漫反射(不定向反射)。反射系数的野外测量通常在相对较大的面积上进行的(>10cm2)。因此,无论是镜面反射还是漫反射对土壤表面的总反射都有贡献,贡献的大小取决于土壤的颗粒大小,结构,微地貌和其他属性,这些属性称为土壤的表面状态(Escadafal, 1989)。然而在实验室中,土壤反射系数的测量是在相对小的面积上进行(<10cm2),测量使用的土壤也经过了研磨过筛。此时,漫反射系数占主导地位,

紫外-可见光谱分析方法

紫外—可见光谱分析方法在环境监测中的应用 紫外—可见光谱分析水质监测技术是现代环境监测的一个重要发展方向, 与传统的化学分析、电化学分析和色谱分析等分析方法相比, 光谱分析技术更具有操作简便、消耗试剂量小、重复性好、测量精度高和检测快速的优点, 非常适合对环境水样的快速在线监测。目前该技术主要有原子吸收光谱法、分子吸收光谱法以及高光谱遥感法, 其中高光谱遥感法由于测量精度不高多数用于定性分析, 而原子吸收光谱法精度虽高, 但由于首先要把样品汽化, 因而耗能较高, 系统体积大, 不适合广泛使用, 比较而言, 分子吸收光谱法是目前应用较为广泛的水质分析技术, 其中紫外—可见光谱分析法可直接或间接地测定水中大多数金属离子、非金属离子和有机污染物的含量, 具有灵敏、快速、准确、简单等优点, 并可实现对多种水质参数的检测, 在对饮用水、地表水、工业废水等水体的在线监测中具有显著的技术优势, 是国内外科研机构与主要分析仪表厂商竞相研发的现代水质监测技术。 1、UV-VIS分光光度计的发展情况 紫外可见分光光度计的发展从历史上看,分光光度计按其光路可分为两类。第一类是单光束仪器,这类仪器的优点是光效率高,结构简单和价格便宜,缺点是稳定性差,漂移较大。第二类是双光束仪器,这类仪器具有稳定性高、漂移小的优点,但结构复杂、价格较贵、效率较低。后来开发的一种分光束系统吸取了单光束仪器光效率高的优点,它使初始光束的小部分直接导向光强检测器,大部分经过样品,从而可使仪器信噪比高、反应快。 随着计算机技术在分析仪器领域的广泛应用,单光束、双光束UV-VIS分光光度计均得到了极大的发展。如利用计算机技术在单光束型分光光度计上可实现波长自动扫描的功能。在微机控制下,这种仪器(如国内的721型)还可实现光门开闭、调零、透过率与吸光度测定的自动化及部分校正仪器漂移的功能。在实验室常规分析、在线分析及流动注射分析中均有应用。双光束型仪器在计算机控制下,可以任意选择单光束、双光束或双、单光束模式进行扫描。如有些仪器可进行固定波长分析、全波长扫描和时间动力学测定等,在固定波长方式下,最多可同时测定12个波长,同时读取相应波长下的吸光度或透过率,并可同时乘以相应的计算因子在波长扫描方式下,可以在全波长范围内任意选择所需要的扫描波段,并可计算拾取的峰、谷、点、一至多阶导数、对数光密度、散射光校正、光谱的相加、减、相乘和净吸收值,可完成多次重复的扫描并将光谱图显示在同一屏幕上,根据需要对图形进行电子图形放大、自动标尺处理、峰形平滑处理,时间动力学测定方式适用于测定不同反应时间样品光密度或透过率的动态变化。双光束型仪器可

实用文档之紫外-可见光谱法优缺点

实用文档之"紫外-可见光谱分析仪的优点:" 1.操作简单方便,不需要复杂的程序,可直接取待测样品置于比色皿中,并且能对待测液体或溶液进行直接测定,检测成本低。 2.分析速度快,一般样品可在1-2 min内完成,比较适用于现场分析或快速分析。 3.检测过程中不破坏样品,可称为无损检测,并可对改样品进行多次重复测量实验且重现性好。 4.检测范围广,根据物质分子对波长为200-760nm这一范围的电磁波的吸收特性所建立起来的一种定性、定量和结构分析方法。 5.稳定性好,抗干扰能力强,易实现在线分析及监测,适合于生产过程和恶劣环境下的样品分析。 6.电子光谱的强度较大,灵敏度高,一般可达4 10-—8 10-g/ml主要用于微量分析。 7.准确度较高,浓度测量相对误差仅有1%左右。 8.分辨率高,在定量分析上,不仅可以进行单一组分的测定,而且还可以对多种混合物同时进行测定。 9.分析结果的准确性是建立在化学分析标样的基础上,因此分析的结果真实可靠。

紫外-可见光谱分析仪的缺点: 1.紫外-可见光谱仪仅适用于微量分析,对于高浓度(一般是指浓度>0.01mol/L)物质,物质的吸光度和浓度之间的关系发生偏离,因此朗伯比尔定律不适用。 2.影响比尔定律偏离的因素较多,如非单色光,杂散光,噪声,化学因素等。且影响光学系统参数等外部或内部因素较多,误差难以很好的修正,对检测结果的准确度影响较大。 3. 不是原始方法,是一种间接测定物质浓度的方式,不能作为仲裁分析方法,检测结果不能做为国家认证依据。 4. 受各企业产品相对垄断的因素,仪器购买和维护成本都比较高,性价比较低。 5. 需要大量代表性样品进行化学分析建模,并建立相应化学体系复杂,实验过程较为复杂,工作量大,并且对于显色剂的选择难度较大,已知文献中并无相关研究。

(推荐)紫外固体样品测定

紫外可见分光光度计 固体样品测定培训 1. 固体样品的测定 1-1. 测定方法种类???????????????????????????????????????????????????????? 1 2. 固体样品的透射测定 2-1. 透射测定的种类????????????????????????????????????????????????????? 2 2-2. 直线透射测定方法????????????????????????????????????????????????????? 3 2-3. 全透射测定方法??????????????????????????????????????????????????????? 7 2-4. 散射透射测定???????????????????????????????????????????????????????11 3. 固体样品的反射测定 3-1. 反射测定的种类?????????????????????????????????????????????????????15 3-2. 不含镜面反射的漫反射测定方法???????????????????????????????????17 3-3. 含镜面反射的漫反射反射测定方法?????????????????????????????????23 3-4. 绝对反射测定方法(绝对镜面反射测定)????????????????????????????????? 29

3-5. 镜面反射测定方法(相对镜面反射测定)????????????????????????????????? 35 4. 固体样品的其他测定(附录) 4-1. 色彩测定??????????????????????????????????????????????????????????????39 4-2. 膜厚测定??????????????????????????????????????????????????????????????40

各种物质漫反射光谱的测定

093858 张亚辉 应化 实验三:各种物质漫反射光谱的测定 一.实验目的 通过各种样品的紫外-可见漫反射光谱测定,掌握紫外-可见漫反射原理,熟悉InstantSpec BWS003的使用。 二.实验原理 光是一种电磁辐射,具有波粒二相性。太阳光是全色光,人眼只能看到380-750nm 的光,称为可见光。 紫外-可见漫反射光谱与紫外-可见吸收光谱相比,所测样品的局限性要小很多。后者符合朗伯-比尔定律,对透射光进行分析,溶液必须是稀溶液才能测量,否则将破坏吸光度与浓度之间的线性关系。而前者,紫外-可见漫反射光谱则可以浑浊溶液、悬浊溶液及固体和固体粉末等,试样产生的漫反射符合Kublka —Munk 方程式 式中K -吸收系数 S -为散射系数 R∞ 表示无限厚样品的反射系数R 的极限值,其数值为一个常数。 实际上,反射系数R 通常是采用与一已知的高反射系数的标准物质(本实验采用PTFE ,其反射系数在紫外可见光区高达98%左右)比较来测量,测定R∞(样品)/ R∞(标准物质)比值,将此比值对波长作图,构成一定波长范围内该物质的反射光谱。 积分球是漫反射测量中的常用附件之一.其内表面的漫反射物质反射系数高达98%,使得光在积分球内部的损失接近零。漫反射光是指从光源发出的光进入样品内部,经过多次反射、折射、散射及吸收后返回样品表面的光。这些光在积分球内经过多次漫反射后到达检测器. 2(1)/2/R R K S ∞∞ -=

三.实验仪器和试剂 1.InstantSpec BWS003 紫外可见漫反射光谱仪; 2.有颜色的纸张;

3.不同颜色的树叶; 4.手臂上的某处皮肤(测试者自己选择)。 四.实验步骤 1.双击打开软件,从菜单栏中选择“Option”-“Enable Reference Material File”-“Set”。 2. 设置“Integration Time”为800。 3. 点击“Open FlashLight”。 4. Dark scan (1)将port reducer装在取样口,拧紧螺丝; (2)将light trap罩在取样口上。 (3)点击软件上的“dark scan”。 5. Reference scan] (1) 将Spectralon Reference Standard(参比)放置在样品口 (2)点击“Reference Scan”。 6. Sample scan (1)取下参比,将样品放置在取样口,点击“Acquire one Spectrum”; (2)选择“%T/R”得到漫反射光谱曲线。 (3)换另一个样品,点击“Acquire Overlay”得到该样品的漫反射光谱曲线。 五.数据处理 以λ为横坐标,R%为纵坐标作所测样品的反射光谱图。 1)下面为红、黄、蓝三种纸片的漫反射光谱图 从图中可看出红黄蓝分别在其对应波长处的反射率最大,并且各种颜色对应的最

紫外可见光谱分析技术

紫外可见光谱分析技术及其发展和应用 医学院宋宗辉2016201632 紫外-可见吸收光谱法概述 分子的紫外-可见吸收光谱法是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析法。分子在紫外-可见区的吸收与其电子结构紧密相关。紫外光谱的研究对象大多是具有共轭双键结构的分子。紫外-可见以及近红外光谱区域的详细划分如下图所示。紫外-可见光区一般用波长(nm)表示。其研究对象大多在200-380 nm的近紫外光区和/或380-780 nm的可见光区有吸收。紫外-可见吸收测定的灵敏度取决于产生光吸收分子的摩尔吸光系数。该法仪器设备简单,应用十分广泛。如医院的常规化验中,95%的定量分析都用紫外-可见分光光度法。在化学研究中,如平衡常数的测定、求算主-客体结合常数等都离不开紫外-可见吸收光谱。 紫外可见区域 1.1分子结构与吸收光谱 1.1电子能级和跃迁 从化学键性质考虑,与有机物分子紫外-可见吸收光谱有关的电子是:形成单键的σ电子,形成双键的π电子以及未共享的或称为非键的n电子。有机物分子内各种电子的能级高低次序下图所示,σ*>π*>n>π>σ。标有*者为反键电子。

电子能级及电子跃迁示意图 可见,σ→σ*跃迁所需能量最大,λmax<170 nm,位于远紫外区或真空紫外区。一般紫外-可见分光光度计不能用来研究远紫外吸收光谱。如甲烷,λmax =125 nm。饱和有机化合物的电子跃迁在远紫外区。 1.2生色团 π→π*所需能量较少,并且随双键共轭程度增加,所需能量降低。若两个以上的双键被单键隔开,则所呈现的吸收是所有双键吸收的叠加;若双键共轭,则吸收大大增强,波长红移,λmax和εmax均增加。如单个双键,一般λmax为150-200nm,乙烯的λmax = 185nm;而共轭双键如丁二烯λmax = 217nm,己三烯λmax = 258nm。 n→π*所需能量最低,在近紫外区,有时在可见区。但π→π*跃迁几率大,是强吸收带;而n→π*跃迁几率小,是弱吸收带,一般εmax<500。许多化合物既有π电子又有n 电子,在外来辐射作用下,既有π→π*又有n→π*跃迁。如-COOR基团,π→π*跃迁λmax=165 nm,εmax=4000;而n→π*跃迁λmax=205nm,εmax=50。π→π*和n→π*跃迁都要求有机化合物分子中含有不饱和基团,以提供π轨道。含有π键的不饱和基团引入饱和化合物中,使饱和化合物的最大吸收波长移入紫外-可见区。这类能产生紫外-可见吸收的官能团,如一个或几个不饱和键,C=C,C=O,N=N,N=O等称为生色团(chromophore)。某些生色团的吸收特性见下表。 某些生色团及相应化合物的吸收特性

紫外光漫反射测带隙

REVISTA MEXICANA DE F′ISICA S53(5)18–22SEPTIEMBRE2007 Use of diffuse re?ectance spectroscopy for optical characterization of un-supported nanostructures A.Escobedo Morales,E.S′a nchez Mora,and U.Pal Instituto de F′?sica,Benem′e rita Universidad Aut′o noma de Puebla, Apartado Postal J-48,72570,Puebla,Pue.,M′e xico, e-mail:aescobe@sirio.ifuap.buap.mx,esanchez@sirio.ifuap.buap.mx, upal@sirio.ifuap.buap.mx Recibido el7de julio de2006;aceptado el7de diciembre de2006 Optical properties of un-supported or powdered nanostructures are frequently determined through UV-Vis absorption spectroscopy of their dispersed solutions in liquid media.Though the peak position of the absorption band of semiconductor nanostructures could be de?ned well from such measurements,precise determination of their band gap energies(E g)is dif?cult.However,using the Kubelka-Munk treatment on the diffuse re?ectance spectra of such powdered semiconductor nanostructures,it is possible to extract their E g unambiguously.We discussed the advantages of using Diffuse Re?ectance Spectroscopy(DRS)over UV-Vis absorption spectroscopy in powdered nanostructured materials. Un-doped and In-doped ZnO nanostructures of needle-like morphology,grown by a low-temperature hydrothermal technique are used for the optical studies.Possible sources of mistake in estimating E g from UV-Vis absorption spectra of dispersed samples are discussed. Keywords:Diffuse re?ectance spectroscopy;nanostructures;zinc oxide. Frecuentemente las propiedades′o pticas de nanoestructuras en forma de polvo o no soportadas son determinadas dispersando el material en medios l′?quidos y efectuando espectroscopia de absorci′o n UV-Vis.Aunque la posici′o n de la banda de absorci′o n para estos semiconductores nanoestructurados puede estar bien de?nida,la determinaci′o n precisa del valor de la energ′?a de la banda prohibida(E g)es dif′?cil.Sin embargo,usando el formalismo de Kubelka-Munk en los espectros de re?ectancia difusa obtenidos de las muestras,es posible conocer E g sin ambig¨u edad.Aqu′?se discuten las ventajas de usar la espectroscopia de re?ectancia difusa(DRS)sobre la espectroscopia de absorci′o n UV-Vis en semiconductores nanoestructurados en forma de polvo.Nanoestructuras de ZnO con morfolog′?a tipo aguja,dopadas y no-dopadas con indio crecidas por una t′e cnica hidrot′e rmica a baja temperatura son usadas para los estudios′o pticos.Posibles fuentes de error en la estimaci′o n de E g usando los espectros de absorci′o n UV-Vis de muestras dispersadas son discutidas. Descriptores:Espectroscopia de re?ectancia difusa;nanoestructuras;oxido de zinc. PACS:78.40.-q;78.67.Bf;78.67.-n 1.Introduction The energy gap(E g)is an important feature of semicon-ductors which determines their applications in optoelectron-ics[1-4].The UV-Vis absorption spectroscopy is frequently used to characterize semiconductors thin?lms[5].Due to low scattering in solid?lms,it is easy to extract the E g values from their absorption spectra knowing their thickness.How-ever,in colloidal samples,the scattering effect is enhanced since more super?cial area is exposed to the light beam.In normal incidence mode,dispersed light is counted as ab-sorbed light and the technique(optical absorption)does not distinguish between the two phenomena.On the other hand, it is common to obtain powdered samples instead of thin?lms or colloids,and frequently UV-Vis absorption spectroscopy is carried out dispersing the sample in liquid media like water, ethanol or methanol.If the particle size of the sample is not small enough,it precipitates and the absorption spectrum is even more dif?cult to interpret.In order to avoid these com-plications,it is desirable to use DRS,which enables to obtain E g of un-supported materials[6]. The theory which makes possible to use DR spectra was proposed by Kubelka and Munk[7].Originally they pro-posed a model to describe the behavior of light traveling in-side a light-scattering specimen,which is based on the fol-lowing differential equations: ?di=?(S+K)idx+Sjdx dj=?(S+K)jdx+Sidx(1) where i and j are the intensities of light traveling inside the sample towards its un-illuminated and illuminated surfaces, respectively;dx is the differential segment along the light path;S and K are the so called K-M scattering and absorp-tion coef?cients,respectively.These last two quantities have no direct physical meaning on their own,even thought they appear to represent portions of light scattered and absorbed, respectively,per unit vertical length[8].This model holds when the particle size is comparable to,or smaller than the wavelength of the incident light,and the diffuse re?ection no longer allows to separate the contributions of the re?ection, refraction,and diffraction(i.e.scattering occurs). In the limiting case of an in?nitely thick sample,thick-ness and sample holder have no in?uence on the value of re-?ectance(R).In this case,the Kubelka-Munk equation at any wavelength becomes: K S = (1?R∞)2 2R∞ ≡F(R∞);(2)

光催化剂禁带宽度值Eg计算方法

光催化剂光催化剂禁带宽度值禁带宽度值Eg 计算计算方法方法方法 方法1:利用紫外可见漫反射测量中的吸光度与波长数据作图,利用截线法做出吸收波长阈值λg(nm),利用公式 Eg=1240/λg (eV) 计算禁带宽度。 方法2: 利用 (Ah ν)2 对 h ν 做图,利用直线部分外推至横坐标交点,即为禁带宽度值。也可利用 (Ah ν)0.5 对h ν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。前者为间接半导体禁带宽度值,后者为直接半导体禁带宽度值。A (Absorbance) 即为紫外可见漫反射中的吸光度吸光度 吸光度。 方法3:利用 (αh ν)2 对h ν 做图,利用直线部分外推至横坐标交点,即为禁带宽度值。也可利用 (αh ν)0.5 对 h ν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。前者为间接半导体禁带宽度值,后者为直接半导体禁带宽度值。α (Absorption Coefficient ) 即为紫外可见漫反射中的吸收系数吸收系数 吸收系数。α与A 成正比。 方法4:利用 [F(R ∞)h ν]2 对 h ν 做图,利用直线部分外推至横坐标交点,即为禁带宽度值。也可利用 [F(R ∞)h ν]0.5 对h ν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。前者为间接半导体禁带宽度值,后者为直接半导体禁带宽度值。 F(R ∞) 即为Kubelka-Munk 函数函数,,简写为K-M 函数函数,∞∞∞?=R R R F 2/)1() (2 R ∞ 即为相对漫反射率即为相对漫反射率,,简称漫反射率简称漫反射率,)(/)(''参比样品∞∞∞=R R R R ‘∞ 即为绝对漫反射率绝对漫反射率,,常用参比样品为BaSO 4,其绝对漫反射率R ‘∞约等于1。 漫反射吸光度A 与漫反射率R ∞ 之间关系为之间关系为::A=log(1/ R ∞)

相关文档
最新文档