均值不等式基本解题技巧

均值不等式基本解题技巧
均值不等式基本解题技巧

(2)已知c b a >>,求c

b c a b a c a w --+--=的最小值.

技巧二: 分离 技巧三:换元再分离 求x x e e y 52+=的最小值 求2710(1)1

x x y x x ++=>-+的值域。

技巧四:遇等号取不到的情况,应结合函数()a f x x x =+

的单调性。 求函数225

4x y x +=+的值域。

条件求最值

技巧五:直接使用基本不等式拉近问题与条件关系

x+3y-2=0,则3x +27y +1的最小值为 . x,y,z ∈R +

,x -2y +3z =0,则y 2xz 的最小值为____. 若44log log 2x y +=,求11x y

+的最小值.并求x,y 的值

技巧六:整体代换(化1思想):

已知0,0x y >>,且191x y

+=,求x y +的最小值。 已知正数z y x ,,满足1=++z y x ,求

z y x 941++的最小值.

技巧七:利用基本不等式进行放缩再解不等式

已知a ,b 为正实数,2b +ab +a =30,求函数y =ab 的最大值.

已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。

高考均值不等式经典例题

高考均值不等式经典例题 1.已知正数,,a b c 满足2 15b ab bc ca +++=,则58310a b c +++的最小值为 。 2.设M 是ABC V 内一点,且30AB AC A =∠=?u u u r u u u r g ,定义()(,,)f M m n p =,其中,,m n p 分别是 ,,MBC MCA MAB V V V 的面积,若1()(,,)2 f M x y =,则14x y +的最小值为 . 3.已知实数1,12 m n >>,则224211n m m n +--的最小值为 。 4.设22110,21025() a b c a ac c ab a a b >>>++-+-的最小值为 。 5.设,,a b c R ∈,且222 ,2222a b a b a b c a b c ++++=++=,则c 的最大值为 。 6.已知ABC V 中,142, 10sin sin a b A B +=+=,则ABC V 的外接圆半径R 的最大值为 。 7.已知112,,339 a b ab ≥≥=,则a b +的最大值为 。 8. ,,a b c 均为正数,且222412a ab ac bc +++=,则a b c ++的最小值为 。 9. ,,,()4a b c R a a b c bc +∈+++=-2a b c ++的最小值为 。 10. 函数()f x =的最小值为 。 11.已知0,0,228x y x y xy >>++=,则2x y +的最小值为 。 12.若*3()k k N ≥∈,则(1)log k k +与(1)log k k -的大小: 。 13.设正数,,x y z 满足22340x xy y z -+-=,则当xy z 取最大值时,212x y z +-的最大值为 。 14.若平面向量,a b r r 满足23a b -≤r r ,则a b ?r r 的最小值为 。 15. 的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为 。 16.设{}n a 是等比数列, 公比q =n S 为{}n a 的前n 项和,记*21 17()n n n n S S T n N a +-=∈,设0n T 为数列{}n T 的最大项,则0n = 。

基本不等式常见题型训练

必修5 基本不等式基本题型训练 一、选择题 1. [2013·常州质检]已知f (x )=x +1x -2(x <0),则f (x )有( ) A. 最大值为0 B. 最小值为0 C. 最大值为-4 D. 最小值为-4 答案:C 解析:∵x <0,∴-x >0, ∴x +1x -2=-(-x +1-x )-2≤-2(-x )·1 -x -2=-4, 当且仅当-x =1 -x ,即x =-1时,等号成立. 2. [2013·长沙质检]若0-1)的图象最低点的坐标为( ) A. (1,2) B. (1,-2) C. (1,1) D. (0,2) 答案:D 解析:y =(x +1)2 +1x +1=x +1+1 x +1≥2, 当x +1=1 x +1,即x =0时,y 最小值为2,故选D 项.

4. 已知m =a +1a -2 (a >2),n =(12)x 2-2(x <0),则m ,n 之间的大小关系是( ) A. m >n B. m 2,x <0, ∴m =(a -2)+1a -2 +2 ≥2(a -2)·1a -2+2=4, n =22-x 2<22=4,∴m >n ,故选A. 5. [2013·商丘模拟]若向量a =(x -1,2),b =(4,y )相互垂直,则9x +3y 的最小值为( ) A. 12 B. 2 3 C. 32 D. 6 答案:D 解析:依题意得4(x -1)+2y =0,即2x +y =2,9x +3y =32x +3y ≥232x ×3y =232x +y =232=6,当且仅当2x =y =1时取等号,因此9x +3y 的最小值是6,选D. 6. 已知a ,b 为正实数且ab =1,若不等式(x +y )(a x +b y )>m 对任意正实数x ,y 恒成立,则实数m 的取值范围是( ) A. [4,+∞) B. (-∞,1] C. (-∞,4] D. (-∞,4) 答案:D 解析:因为(x +y )(a x +b y )=a +b +ay x +bx y ≥a +b +2≥2ab +2=4,当且仅当a =b ,ay x =bx y 时等号成立,即a =b ,x =y 时等号成立,故只要m <4即可,正确选项为D. 二、填空题 7. [2013·金版原创]规定记号“?”表示一种运算,即a ?b =ab +a +b (a ,b 为正实数).若 1?k =3,则k 的值为________,此时函数f (x )=k ?x x 的最小值为________. 答案:1 3 解析:1?k =k +1+k =3, 即k +k -2=0,

数列难题放缩法的技巧

数列难题放缩法的技巧 一、基本方法 1.“添舍”放缩 通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。 例1. 设a ,b 为不相等的两正数,且a 3 -b 3 =a 2 -b 2 ,求证143 <+<a b 。 例2. 已知a 、b 、c 不全为零,求证: a a b b b b c c c ac a a b c 22222232 ++++++++++>() [变式训练]已知* 21().n n a n N =-∈求证: *12 231 1...().23n n a a a n n N a a a +-<+++∈ 2. 分式放缩 一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分 母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。 例3. 已知a 、b 、c 为三角形的三边,求证:12<++<a b c b a c c a b +++。 3. 裂项放缩 若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。 例4. 已知n ∈N*,求n 2n 13 12 11<…+ ++ + 。 例5. 已知* N n ∈且)1n (n 3221a n +++?+?=Λ,求证:2 )1(2)1(2 +< <+n a n n n 对所有正整数n 都成立。 4. 公式放缩 利用已知的公式或恒不等式,把欲证不等式变形后再放缩,可获简解。 例6. 已知函数1212)(+-=x x x f ,证明:对于* N n ∈且3≥n 都有1 )(+>n n n f 。 例7. 已知2x 1)x (f +=,求证:当a b ≠时f a f b a b ()()-<-。 5. 换元放缩 对于不等式的某个部分进行换元,可显露问题的本质,然后随机进行放缩,可达解题目

均值不等式习题大全

均值不等式题型汇总 杨社锋 均值不等式是每年高考必考内容,它以形式灵活多变而备受出题人的青睐,下面我们来细数近几年来均值不等式在高考试题中的应用。 类型一:证明题 1. 设*,,1,a b R a b ∈+=求证:1 125()()4 a b a b ++≥ 2. 设,,(0,),a b c ∈+∞)a b c ≥++ 3. 设,,(0,),a b c ∈+∞求证:222 b c a a b c a b c ++≥++ 4. 设,,(0,),a b c ∈+∞求证:222 a b c ab bc ac ++≥++ 5. 已知实数,,x y z 满足:222 1x y z ++=,求xy yz +得最大值。 6. 已知正实数,,a b c ,且1abc =9≥ 7. (2010辽宁)已知,,a b c 均为正实数,证明:22221 11()a b c a b c +++++≥,并确定,,a b c 为何值时,等号成立。 类型二:求最值: 利用均值不等式求最值是近几年高考中考查频率最高的题型之一。使用均值不等式的核心在于配凑,配凑的精髓在于使得均值不等式取等号的条件成立。 1. 设11,(0,)1x y x y ∈+∞+=且,求x y +的最小值。 2. 设,(0,)1x y x y ∈+∞+=且,求 112x y +的最小值。 3. 已知,a b 为正实数,且1a b +=求1ab ab +的最小值。 4. 求函数11(01)1y x x x =+<<-的最小值。

变式:求函数291(0)122 y x x x =+<<-的最小值。 5. 设,(0,)x y ∈+∞,35x y xy +=,求34x y +的最小值。 6. 设,(0,)x y ∈+∞,6x y xy ++=求x y +的最小值。 7. 设,(0,)x y ∈+∞,6x y xy ++=求xy 的最大值。 8. (2010浙江高考)设,x y 为实数,若22 41x y xy ++=,求2x y +的最大值。 9. 求函数y = 的最大值。 变式:y = 10. 设0x >求函数21x x y x ++=的最小值。 11. 设设1x >-求函数211 x x y x ++=+的最小值。 12. (2010山东高考)若任意0x >,231 x a x x ≤++恒成立,求a 的取值范围. 13. 求函数22233(1)22 x x y x x x -+=>-+的最大值。 类型三、应用题 1.(2009湖北)围建一个面积为2 360m 的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需要维修),其它三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45/m 元,新墙的造价为180/m 元,设利用旧墙的长度为x (单位:m )。 (1)将y 表示为x 的函数(y 表示总费用)。 (2)试确定x ,使修建此矩形场地围墙的总费用最少。并求出最小总费用。 2.(2008广东)某单位用2160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2000平方米的楼房。经测算,如果将楼房建为x 层(10x ≥),则每平方米的平均建筑费用为56048x +(单位:元)。为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层? (注:平均综合费用=平均建筑费用+平均购地费用,

均值不等式求最值的常用技巧及习题

利用基本不等式求最值的常用技巧及练习题(含解答)(经典) 一.基本不等式的常用变形 1.若0x >,则12x x + ≥ (当且仅当1x =时取“=” );若0x <,则1 2x x +≤- (当且仅当 _____________时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当____________时取“=”) 2.若0>ab ,则2≥+a b b a (当且仅当____________时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当_________时取“=” ) 注:(1)当两个正数的积为定植时,可以求它们和的最小值,当两个正数的和为定植时, 可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的重要条件“一正,二定,三取等” 二、利用基本不等式求最值的技巧: 技巧一:直接求: 例1 已知,x y R + ∈,且满足 134 x y +=,则xy 的最大值为 ________。 解:因为x >0,y>0 ,所以 34x y +≥=当且仅当34x y =,即x=6,y=8时取等 号) 1, 3.xy ∴≤,故xy 的最大值3. 变式:若44log log 2x y +=,求11 x y +的最小值.并求x ,y 的值 解:∵44log log 2x y += 2log 4=∴xy 即xy=16 2 1211211==≥+∴xy y x y x 当且仅当x=y 时等号成立 技巧二:配凑项求 例2:已知5 4x < ,求函数14245 y x x =-+-的最大值。

专题:基本不等式常见题型归纳(学生版)

专题:基本不等式 基本不等式求最值 利用基本不等式求最值:一正、二定、三等号. 三个不等式关系: (1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R + ,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R ,a 2+b 22≤(a +b 2)2 ,当且仅当a =b 时取等号. 上述三个不等关系揭示了a 2+b 2 ,ab ,a +b 三者间的不等关系. 其中,基本不等式及其变形:a ,b ∈R + ,a +b ≥2ab (或ab ≤(a +b 2)2),当且仅当a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值. 【题型一】利用拼凑法构造不等关系 【典例1】已知1>>b a 且7log 3log 2=+a b b a ,则 1 12 -+b a 的最小值为 . 练习:1.若实数满足,且,则的最小值为 . 2.若实数,x y 满足1 33(0)2xy x x +=<< ,则313 x y +-的最小值为 . 3.已知0,0,2a b c >>>,且2a b += ,则 2ac c c b ab +-+ 的最小值为 . 【典例2】已知x ,y 为正实数,则4x 4x +y +y x +y 的最大值为 . 【典例3】若正数a 、b 满足3ab a b =++,则a b +的最小值为__________. 变式:1.若,a b R +∈,且满足22 a b a b +=+,则a b +的最大值为_________. 2.设0,0>>y x ,822=++xy y x ,则y x 2+的最小值为_______ 3.设R y x ∈,,142 2 =++xy y x ,则y x +2的最大值为_________ 4.已知正数a ,b 满足 19 5a b +=,则ab 的最小值为 ,x y 0x y >>22log log 1x y +=22 x y x y +-

用用放缩法证明与数列和有关的不等式

用放缩法证明与数列和有关的不等 数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1 a a ,又由条

高中数学公式完全总结归纳(均值不等式)及常见题型

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当 b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若* ,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 11 22-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2 (22 2b a b a +≤+(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的 和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

应用一:求最值 例1:求下列函数的值域 (1)y=3x 2+1 2x 2(2)y=x+ 1 x 解:(1)y=3x 2+1 2x 2≥23x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞)

均值不等式练习题

均值不等式知识点: 二、习题讲解: 例1: (1)求y = x+Z(x>O)的最小值 (2)求y = x + 2(x ≥ 2)的最小值 X (3)己知x>2,求y = x+ —的最小值x-2 变式训练: 4 1.已知x>o,求y = 2- X -一的最大值 X 2.当x>-l时,求f(x)= x+ —的最小值 x + 1 3?已知xv-?求函数y=4x-2+—-一的最上值 4 4x-5 4?己知JU b. c ∈ R ?求证:a2 +b2 + c2≥ ab+bc+ ac y= 2-3x--(x>0)的最大值是2-4石 5?X 6.y = ZxH—-—,x>3 x-3 7.y = 2sinx÷-—,xu(O,τr) Sin X

例2: (1)已知OVXV丄,求y =ZX(I-2x)的最衣值 2 2 (2)已知:a、b都是正数,Ka + b = l, α=a÷i, β = b+-f求a+β的最小值a b 变式训练: 1.己知OVXV 求函数y =x(l - 3x)的最大值 2.当0 Cx <4时,求y =χ(8 - 2x)的最人值。 3.设0

2.设x ∈f θ,-1,则函数y = 2血x + 1的最小值为 2 丿 sin2x 5 Z X Y - — 4x+ S 3.己知Xnz 则f(x)=-~~ 的最小值 2 2x-4 y=手宀的最小值是 4. √X 2 + 2 IK X 2 + 7x+10 “ 一… 求y= (x>-l)的值域。 χ- + 5 6求函数y =-==的值域。 7?设x ,y,z 为正实数.且满足x-2y+3z = 0 ?则的最小值 例 4:己知a,b,cwR+,且a + b+c = l?求证:丄 + —+ - ≥9 变式训练: 1 4 1.己知a >0,b >0,a +b= 2 >则y = — +二的最小值是 2正数x 5y 满足X +2y = l,求l∕x+l∕ y 的最小值。 例3:求函数y = X - +3x+3 x+1 (x>-l)的1?小值 变式训 练:

高中不等式所有知识及典型例题(超全)

一.不等式的性质: 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。其中比较法(作差、作商)是最基本的方法。 三.重要不等式 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”); 若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 (2 22b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求 它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 5.a 3+b 3+c 3≥3abc (a,b,c ∈ R +), a +b +c 3 ≥3abc (当且仅当a =b =c 时取等号); 6. 1 n (a 1+a 2+……+a n )≥12n n a a a (a i ∈ R +,i=1,2,…,n),当且仅当a 1=a 2=…=a n 取等号; 变式:a 2+b 2+c 2≥ab+bc+ca; ab ≤( a +b 2 )2 (a,b ∈ R +) ; abc ≤( a +b +c 3 )3(a,b,c ∈ R +) a ≤ 2a b a +b ≤ab ≤ a +b 2 ≤ a 2+b 2 2 ≤b.(0b>n>0,m>0; 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1 x

数列与不等式知识点及练习

数列与不等式 一、看数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=--②211-++=n n n a a a (2≥n )③b kn a n +=(k n ,为常数). 二、看数列是不是等比数列有以下两种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n ②112 -+?=n n n a a a (2≥n ,011≠-+n n n a a a ) (2)在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足?? ? ≤≥+0 01m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足?? ?≥≤+0 1m m a a 的项数m 使得m s 取最小值.在解含绝 对值的数列最值问题时,注意转化思想的应用。 四.数列通项的常用方法: (1)利用观察法求数列的通项.(2)利用公式法求数列的通项:①;②{}n a 等差、等比数列{}n a 公式.(3)应用迭加(迭乘、迭代)法求数列的通项:①;②(4)造等差、等比数列求通项:;②;③;④.第一节通项公式常用方法题型1 利用公式法求通项 例1:1.已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 2.已知为数列{}n a 的前项和,求下列数列{}n a 的通项公式: ⑴ ; ⑵.总结:任何一个数列,它的前项和n S 与通项n a 都存在关系:???≥-==-)2() 1(11n S S n S a n n n 若1a 适合n a ,则把它们 统一起来,否则就用分段函数表示. 题型2 应用迭加(迭乘、迭代)法求通项 例2:⑴已知数列{}n a 中,,求数列{}n a 的通项公式; ⑵已知为数列{}n a 的前项和,,,求数列{}n a 的通项公式. 总结:⑴迭加法适用于求递推关系形如“”; 迭乘法适用于求递推关系形如““;⑵迭加法、迭乘法公式:① ② . 题型3 构造等比数列求通项 例3已知数列{}n a 中,,求数列{}n a 的通项公式. 总结:递推关系形如“” 适用于待定系数法或特征根法: ①令;② 在中令,;③由得,. 例4已知数列{}n a 中,,求数列{}n a 的通项公式. 总结:递推关系形如“”通过适当变形可转化为: “”或“求解. 数列求和的常用方法

0.均值不等式的常见题型

均值不等式的常见题型 一基本习题 2、已知正数a,b 满足ab=4,那么2a+3b 的最小值为() A10B12C43D46 3、已知a >0,b >0,a+b=1则 b a 11+的取值范围是() A(2,+∞)B[2,+∞)C(4,+∞)D[4,+∞) 4、设x,y 为正数,(x+y)( +x 1y 4)的最小值为() A 6B 9C 12D 15 5、设+∈R b a ,,则下列不等式中不成立的是() A 4)11)((≥++b a b a B ab ab b a 22 2≥+C 21≥+ab ab D ab b a ab ≤+2 6、设0,0>>b a ,则下列不等式中成立的是() A 221≥++ab b a B 4)11)((≥++b a b a C b a ab b a +≥+22D ab b a ab >+2 8、已知下列不等式:①)(233+∈>+R x x x ;②),(322355+∈+≥+R b a b a b a b a ;③)1(222--≥+b a b a .其中正确的个数是() A0个B1个C2个D3个 9、已知1,01a b ><<则log log a b b a +的取值范围是() A (2,)+∞ B [2,)+∞ C (,2)-∞- D (,2]-∞- 二有关范围问题 1、若正数b a ,满足3++=b a ab ,则ab 的取值范围是. 以及b a +的取值范围. 2、已知x >0,y >0且x+2y+xy=30,求xy 的最大值. 3、已知0,0x y >>且211x y +=,若222x y m m +>+恒成立,则实数m 的取值范围是——————————。

(完整版)均值不等式测试题(含详解)

均值不等式测试题 一、选择题 1.已知a 、b ∈(0,1)且a ≠b ,下列各式中最大的是( ) A.a 2+b 2 B.2ab C.2a b D.a +b 2.x ∈R ,下列不等式恒成立的是( ) A .x 2+1≥x B .1 12+x <1 C .lg(x 2+1)≥lg(2x) D .x 2+4>4x 3.已知x+3y-1=0,则关于y x 82+的说法正确的是( ) A.有最大值8 B.有最小值22 C.有最小值8 D.有最大值22 4.A设实数x ,y ,m ,n 满足x 2+y 2=1,m 2+n 2=3那么mx+ny 的最大值是( ) A.3 B.2 C.5 D. 210 5.设a>0,b>0,则以下不等式中不恒成立的是( ) A.(a+b )(b a 11+)≥4 B.a 3+ b 3≥2ab 2 C.a 2+b 2+2≥2a+2b D.b a b a -≥- 6.下列结论正确的是( ) A .当x>0且x ≠1时,lgx+ x lg 1≥2 B .当x>0时,x +x 1≥2 C .当x ≥2时,x +x 1 ≥2 D .当00且a(a+b+c)+bc=324-,则2a+b+c 的最小值为( ) A .13- B .13+ C .223+ D .223- 二.填空题: 8.设x>0,则函数y=2-x 4-x 的最大值为 ;此时x 的值是 。 9.若x>1,则log x 2+log 2x 的最小值为 ;此时x 的值是 。 10.函数y=1 42-+-x x x 在x>1的条件下的最小值为 ;此时x=_________. 11.函数f(x)=2 42 +x x (x ≠0)的最大值是 ;此时的x 值为 _______________.

基本不等式求值的类型与方法-经典大全

基本不等式求最值的类型与方法-经典大全

————————————————————————————————作者:————————————————————————————————日期: 2

5 6 专题:基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链:b a 112 +2a b ab +≤≤≤ 2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab Y ; ②单调递增区间:(,]b a -∞-,[,)b a +∞;单调递减区间:(0, ]b a ,[,0)b a -. 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1) x x x x --=+++>- 3 2 111 31222(1) x x x --≥??+-312≥+52=, 当且仅当 211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是5 2 。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①23 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:①30,3202 x x << ->Q ∴, ∴23(32)(0)(32)2y x x x x x x =-<<=??-3 (32)[]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ②0,sin 0,cos 02 x x x π << >>Q ∴,则0y >,欲求y 的最大值,可先求2y 的最 大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2 x x x =??22231sin sin 2cos 4()2327x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π << tan 2x ?=,即tan 2x arc =时 “=”号成立,故 此函数最大值是 23 9 。 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则 x a b ab 2-ab 2a b - o y

高考数学数列不等式证明题放缩法十种方法技巧总结

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n Λ求证 .2 )1(2)1(2 +<<+n S n n n 例2 已知函数 bx a x f 211 )(?+= ,若5 4)1(= f ,且 )(x f 在[0,1]上的最小值为21,求证: .2 1 21)()2()1(1 -+ >++++n n n f f f Λ 例3 求证),1(22 1321 N n n n C C C C n n n n n n ∈>?>++++-Λ. 例4 已知222121n a a a +++=L ,222 121n x x x +++=L ,求证:n n x a x a x a +++Λ2 211≤1. 2.利用有用结论 例5 求证.12)1 21 1()511)(311)(11(+>-+++ +n n Λ 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 1211 1,(1).2 n n n a a a n n +==+ ++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828e ≈L ) 例8 已知不等式 21111 [log ],,2232 n n N n n *+++>∈>L 。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,] [log 222≥+

(完整版)均值不等式常考题型

均值不等式及其应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当 b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三相等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

均值不等式常见题型整理

均值不等式 一、 基本知识梳理 1.算术平均值:如果a﹑b ∈R +,那么 叫做这两个正数的算术平均值. 2.几何平均值:如果a ﹑b ∈R+,那么 叫做这两个正数的几何平均值 3.重要不等式:如果a ﹑b ∈R,那么a 2+b 2 ≥ (当且仅当a=b时,取“=”) 均值定理:如果a ﹑b ∈R +,那么 2 a b +≥ (当且仅当a=b 时,取“=”) 均值定理可叙述为: 4.变式变形: ()()() ()()() 22 2 2 1;2 2; 230;425a b ab a b b a ab a b a b +≤ +??≤ ??? +≥>+?? ≤ ??? ≤; 5.利用均值不等式求最值,“和定,积最大;积定,和最小”,即两个正数的和为定值,则 可求其积的最大值;积为定值,则可求其和的最小值。 注意三个条件:“一正,二定,三相等”即:(1)各项或各因式非负;(2)和或积为定值; (3)各项或各因式都能取得相等的值。 6.若多次用均值不等式求最值,必须保持每次取“=”号的一致性。 有时为了达到利用均值不等式的条件,需要经过配凑﹑裂项﹑转化﹑分离常数等变形手段,创设一个应用均值不等式的情景。 二、 常见题型: 1、分式函数求最值,如果)(x f y =可表示为B x g A x mg y ++ =) ()(的形式,且)(x g 在定义域内恒正或恒负,,0,0>>m A 则可运用均值不等式来求最值。 例:求函数)01(11 2>->+++= a x x x ax y 且的最小值。 解:1 )1(11112++-+=++-+=+++=x a a ax x x ax ax x x ax y

不等式常见考试题型总结

不等式常见考试题型总结 Prepared on 22 November 2020

《不等式》常见考试题型总结一、高考与不等式 高考试题,有关不等式的试题约占总分的12% 左右,主要考查不等式的基本知识,基本技能,以及学生的运算能力,逻辑思维能力,分析问题和解决问题的能力.选择题和填空题主要考查不等式的性质、比较大小和解简单不等式,还可能与函数、方程等内容相结合的小综合.解答题主要是解不等式或证明不等式或以其他知识为载体的综合题。不等式常与下列知识相结合考查: ①不等式的性质的考查常与指数函数、对数函数、三角函数的性质的考查相结合,一般多以选择题的形式出现,有时也与充要条件、函数单调性等知识结合,且试题难度不大; ②解不等式的试题主要在解答中出现,常常是解含参不等式较多,且多与二次函数、指数、对数、可能还会出现导数相结合命题; ③证明不等式是理科考查的重点,经常同一次函数、二次函数、数列、解析几何,甚至还可能与平面向量等结合起来考查. 二、常见考试题型 (1)求解不等式解集的题型 (分式不等式的解法,根式不等式的解法,绝对值不等式的解法,含参不等式的解法,简单的一元高次不等式的解法) (2)不等式的恒成立问题 (不等式恒成立问题的常规处理方式常应用函数方程思想,分离变量法,数形结合 法) (3)不等式大小比较 常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法;

4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。 (4)不等式求函数最值 技巧一:凑项 例:已知5 4x < ,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例. 当 时,求(82)y x x =-的最大值。 技巧三: 分离 例. 求2710 (1)1 x x y x x ++= >-+的值域。 技巧四:换元 例. 求2710 (1)1x x y x x ++= >-+的值域。 技巧五:函数的单调性 (注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。) 例:求函数22 4 y x = +的值域。 技巧六:整体代换 (多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。) 例:(1)已知0,0x y >>,且19 1x y +=,求x y +的最小值。 (2)若+ ∈R y x ,且12=+y x ,求y x 11+的最小值 (3)已知+ ∈R y x b a ,,,且1=+y b x a ,求y x +的最小值

相关文档
最新文档