铸造铜合金冲刷腐蚀及机理研究

铸造铜合金冲刷腐蚀及机理研究
铸造铜合金冲刷腐蚀及机理研究

生活饮用水系统零部件用铜合金铸锭

《生活饮用水系统零部件用铜合金铸锭》征求意见稿 编制说明 一、工作简况 根据中色协综字[2010]015号《关于下达2009年第二批有色金属国家标准制(修)订项目计划的通知》的要求,由路达(厦门)工业有限公司负责起草行业标准《生活饮用水系统零部件用铜合金铸锭》(项目序号2009-2042-T-YS)。 通过对生活饮用水系统零部件用铜合金铸锭应用状况的市场调查,我们发现目前由于各铜加工企业的规模、设备技术水平、质量意识不同,铸锭产品质量存在着较大的差别;同时市场上充斥着回收的各类铜合金废料,采用这些废料重熔生产的铜合金锭品质差异大;另外,由于铅黄铜在生产及使用过程中会污染环境,且铅在水中很容易浸出,长期饮用含有铅的自来水将对人的神经系统、骨髓造血机能、消化系统、生殖系统及人体其它功能都有明显毒害作用,特别对老年人、孕妇、婴儿和儿童的健康危害较大(如铅中毒将阻碍儿童的智力发育和骨骼生长,出现贫血、急性铅肾病,免疫力下降,缺锌、缺铁、缺钙等症状),因此其应用受到严格的控制。美日欧等政府已经立法,将逐步在饮用水管道配件中禁止使用含铅产品,且美国NSF/ANSI 61-2007a饮用水标准规定水中铅析出Q值不能超过5μg,因此之前广泛应用的铅黄铜将逐步退出饮用水系统领域,取而代之的是无铅黄铜材料。 随着我国成为世界铜加工中心,对铜及铜合金的需求量越来越大。虽然国内外都有一些的相应铜合金铸锭标准作参考,但这些标准内容比较多,范围比较大,查阅相对困难;同时生活饮用水系统零部件用铜合金铸锭作为铜合金铸锭需求的重要组成部份,目前国内外未见有相应的标准。如果有一个内容较为集中的标准,在客户定牌号及企业新产品试制时,就可以取得时间上的优势,增加竞争力。因此制定一个相应的行业标准十分必要。 接到标准制定任务后,我们成立了《生活饮用水系统零部件用铜合金铸锭》行业标准编制小组。编制小组成员根据标委会的制定精神,进行了全面的市场调

铜合金腐蚀

招专业人才上一览英才 铜合金腐蚀 铜合金具有优良的耐大气和海水腐蚀性能,在一般介质中以均匀腐蚀为主。在有氨存在的溶液中有较强的应力腐蚀敏感性,也存在电偶腐蚀、点蚀、磨损腐蚀等局部腐蚀形式。黄铜脱锌、铝青铜脱铝,白铜脱镍等脱成分腐蚀是铜合金独有的腐独形式。 铜合金在与大气和海洋环境相互作用的过程中,表面能生成钝态或半钝态的保护薄膜,使多种腐蚀受到抑制。因此,多数铜合金在大气环境中显示出优良的耐蚀性能。 铜合金的大气腐蚀金属材料的大气腐蚀主要取决于大气中的水汽和材料表面的水膜。金属大气腐蚀速度开始急剧增加时的大气相对湿度称为临界湿度,铜合金与其他很多金属的临界湿度在50%~70%之间,大气中的污染对铜合金的腐蚀有明显的增强作用。城市工业大气的C02,SO2,NO2等酸性污染物溶解于水膜中,发生水解,使水膜酸化和保护膜不稳定。植物的腐烂和工厂排放的废气,使大气中存在氨和硫化氢气体,氨明显加速铜和铜合金的腐蚀特别是应力腐蚀。 铜及铜合金在不同的大气腐蚀环境中腐蚀敏感性有较大差异。在一般的海洋、工业和农村等大气环境中的腐蚀数据报导已有16~20年历史。多数铜合金为均匀腐蚀,腐蚀速度为0.1~2.5μm/a。苛刻的工业大气、工业海洋大气对铜合金的腐蚀速度比温和的海洋大气、农村大气的腐蚀速度要高一个数量级。被污染的大气可使黄铜的应力腐蚀敏感性明显增强。根据环境因素来预测不同大气对铜合金腐蚀的速度并将其分级分类的工作正在开展之中。 海洋环境腐蚀铜合金在海洋环境的腐蚀除了海洋大气区之外,还有海水飞溅区、潮差区和全浸区等。 飞溅区腐蚀铜合金在海水飞溅区的腐蚀行为和在海洋大气区的十分接近。对苛刻的海洋大气具有良好抗蚀性的任何一种铜合金,在飞溅区也会有良好的耐蚀性。飞溅区提供了充分的氧气对钢的腐蚀起到加速作用,但可使铜及铜合金更容易保持钝态。暴露于飞溅区铜合金的腐蚀速度通常不超过5μm/a。 全浸区腐蚀暴露于全浸区铜合金的腐蚀速度最快。其耐蚀性受海水温度、流速、海洋生物附着、泥沙冲刷沉积和海水污染情况的影响较大。材料的加工状态也是十分敏感的影响因素。铜镍合金、铝黄铜、铝青铜、锡青铜、海军黄铜等是在全浸区耐蚀性优良的铜合金材料。多数铜合金在全浸区都具有优良的抗海洋生物附着性能。而铝黄铜等其他抗污性能差的铜合金,在附着的海洋生物下容易产生局部腐蚀。铜和铜合金经16年全浸腐蚀的年均腐蚀速度为1.3~20μm/a,局部腐蚀深度要高一个数量级,最大局部腐蚀深度可达5mm以上。铜镍合金在高速流动海水中的耐蚀性优良。耐蚀性较差或对于环境因素的变化承受能力较差的铜合金,在全浸条件下可能出现脱成分腐蚀、点蚀、缝隙腐蚀,甚至应力腐蚀开裂等局部腐蚀,其力学性能也会因此有不同程度的下降。 潮差区腐蚀铜和铜合金在潮差区受到的腐蚀,比全浸区轻,比飞溅区重,以均匀腐蚀为主,也有局部腐蚀发生。有些现象,如在潮差区,紫铜出现坑蚀,高锌黄铜出现严重脱锌等,都和全浸区的腐蚀结果类似;锡青铜在潮差区的耐蚀性却不如其他铜合金,这情况与铜tong飞

硫化氢腐蚀的机理及影响因素..

硫化氢腐蚀的机理及影响因素 作者:安全管理网来源:安全管理网 1. H2S腐蚀机理 自20世纪50年代以来,含有H2S气体的油气田中,钢在H2S介质中的腐蚀破坏现象即被看成开发过程中的重大安全隐患,各国学者为此进行了大量的研究工作。虽然现已普遍承认H2S不仅对钢材具有很强的腐蚀性,而且H2S本身还是一种很强的渗氢介质,H2S腐蚀破裂是由氢引起的;但是,关于H2S促进渗氢过程的机制,氢在钢中存在的状态、运行过程以及氢脆本质等至今看法仍不统一。关于这方面的文献资料虽然不少,但以假说推论占多,而真正的试验依据却仍显不足。 因此,在开发含H2S酸性油气田过程中,为了防止H2S腐蚀,了解H2S腐蚀的基本机理是非常必要的。 (1) 硫化氢电化学腐蚀过程 硫化氢(H2S)的相对分子质量为34.08,密度为1.539kg/m3。硫化氢在水中的溶解度随着温度升高而降低。在760mmHg,30℃时,硫化氢在水中的饱和浓度大约3580mg/L。 1

在油气工业中,含H2S溶液中钢材的各种腐蚀(包括硫化氢腐蚀、应力腐蚀开裂、氢致开裂)已引起了足够重视,并展开了众多的研究。其中包括Armstrong和Henderson对电极反应分两步进行的理论描述;Keddamt等提出的H2S04中铁溶解的反应模型;Bai和Conway对一种产物到另一种产物进行的还原反应机理进行了系统的研究。研究表明,阳极反应是铁作为离子铁进入溶液的,而阴极反应,特别是无氧环境中的阴极反应是源于H2S中的H+的还原反应。总的腐蚀速率随着pH的降低而增加,这归于金属表面硫化铁活性的不同而产生。Sardisco,Wright和Greco研究了30℃时H2S-C02-H20系统中碳钢的腐蚀,结果表明,在H2S分压低于0.1Pa时,金属表面会形成包括FeS2,FeS,Fe1-X S在内的具有保护性的硫化物膜。然而,当H2S分压介于0.1~4Pa时,会形成以Fe1-X S为主的包括FeS,FeS2在内的非保护性膜。此时,腐蚀速率随H2S浓度的增加而迅速增长,同时腐蚀速率也表现出随pH降低而上升的趋势。Sardisco和Pitts发现,在pH处于6.5~8.8时,表面只形成了非保护性的Fe1-X S;当pH处于4~6.3时,观察到有FeS2,FeS,Fe1-X S形成。而FeS保护膜形成之前,首先是形成Fe S1-X;因此,即使在低H2S浓度下,当pH在3~5时,在铁刚浸入溶液的初期,H2S也只起加速腐蚀的作用,而非抑制作用。只有在电极浸入溶液足够长的时间后,随着FeS1-X逐渐转变为FeS2和FeS,抑制腐蚀的效果才表现出来。根据Hausler等人的研究结果,尽管界面反应的重 2

常见的废铜种类

常见的废铜种类 2009-08-26 09:59:17来源: 富宝金属网作者:富宝采编点击次数:7341 废料名称ISRI废料手册要求废料代号 1号铜线No.1 Copper Wire 1级:包括裸露、无涂层、无合金的纯铜线,表面无氧化,不含毛丝,铜线直径不小于1.6mm。2级:包括洁净、无色泽、无涂层、无锡、无合金的纯铜线和铜电缆线,不含毛丝和烧过的易碎的铜线。BarleyBerry 2号铜线No.2 Copper Wire 无合金的废铜线,含有杂料,含铜量为96%(最小含量94%)。不得含有过分铅化和锡化的铜线、焊接过的铜线、黄铜和青铜线、过多的油、废钢铁和非金属、脆的过烧线、绝缘性铜线和过多的细丝线。需用适当方式清除尘垢。Birch 废漆包线—— 1级:纯漆包线,无杂质。2级:经过高温脱漆,表面有氧化层,无杂质。—— 特种紫杂铜各种纯铜废料,主要包括铜材加工厂和铜加工制造厂产生的纯铜的边角料、切头、废次材、半成品、线材、废品等;允许有报废的纯铜裸线和铜管等其它纯铜制品,但不许有水垢、油污、涂层等;废铜料中不允许含有任何杂质和铜合金,也不许含有毛丝、车屑、磨屑和厚度小于1 mm的铜板。 1号紫杂铜No.l Heavy Copper 应包括干净的、无合金、无涂层的加工下脚料、导电板以及直径大于1.6毫米的铜线,材料中允许带有洁净的铜管和其它纯铜块状料,含铜量为98%(最小含铜量大于96%)。不得有焚烧过的脆质铜线。Candy 2号紫杂铜No.2 Copper 应包括混杂纯铜废料,不含铜合金,含铜量为96%(最小含量94%)。不得含有过多的铅和锡、焊接过的废铜、过多的油、钢铁、非金属废料、带非铜接头的铜管或带有残渣的铜管、烧过的或有绝缘性的铜线、毛丝、焚烧后的脆质铜线、泥土等。Cliff 1号铜米No.1 Copper Wire Nodules 应包括1号裸露、无涂层、无合金的废铜线的铜米,最低含铜量为99%,不含毛丝。不含锡、铅、锌、铝、铁及其他金属杂质,无绝缘物,不含其他杂质。Clove 2号铜米Copper Wire NodulesNo.2 Copper Wire Nodules 1级:应包括无合金的废铜线铜米,最低含铜量为99%,不含其它非金属和绝缘物。金属杂质最大限量如下:铝0.05% 镍-0.05% 铁-0.05% 锡-0.25% 锑-0.01%2级:应包括2号无合金的废铜线加工的铜米。最低含铜量为97%,金属杂质铝含量不超过0.5%,其它金属或绝缘物均不超过1%。CocoaCobra

金属腐蚀研究报告方法

金属腐蚀研究方法 院(系):材料科学与工程学院专业班级:金材1101班 学生姓名:卢阳 学号:9 完成日期:2014年11月16日

金属腐蚀研究方法 ——缝隙腐蚀的研究 缝隙腐蚀是在电解质溶液(特别是含有卤族离子的介质)中,在金属与金属或金属与非金属表面之间狭窄的缝隙内,溶液的移动受到阻滞,当缝隙内溶液中的氧耗竭后,氯离子从缝隙外向缝隙内迁移,金属氯化物的水解酸化过程发生,导致钝化膜的破裂而产生与自催化点腐蚀相类似的局部腐蚀。缝隙腐蚀现象非常普遍,对一些耐蚀金属材料的危害尤其明显[1]。 1、缝隙腐蚀的机理[2] 缝隙腐蚀可分为初期阶段和后期阶段。在初期阶段,发生金属的溶解和阴极的氧还原为氢氧离子的反应: 阳极:M→M++e 阴极:O2+2H2O+4e→4OH- 阳极阴极此时金属和溶液之间电荷是守恒的,金属溶解产生的电子立即被氧还原消耗掉。在经过一段时间后,缝内的氧消耗完后,氧的还原反应不再进行。这时缝内缺氧,缝外富氧,形成了氧浓差电池,金属M在缝内继续溶解,缝内溶液中M+过剩,为了保持电荷平衡,缝隙外部迁移性大的阴离子(如氯离子)迁移到缝内,同时阴极过程转到缝外。缝内已形成金属的盐类(包括氯化物和硫酸盐)发生水解: M+CI+H2O→MOH↓+H+CI- 结果使缝内pH值下降,可达2至3,这就促使缝内金属溶解速度增加,相应缝外邻近表面的阴极过程,即氧的还原速度也增加,使外部表面得到阴极保护,而加速了缝内金属的腐蚀。 而Myer等人认为,至少还有氢离子、中性盐和缓蚀剂的浓差电池存在于缝隙腐蚀过程中,Brown以水解后局部酸化引起局部腐蚀的依据,提出了闭塞腐蚀电池(occluded corrosion cell)的概念。另外,Fontana和Rosefeld等人,指出了蚀孔或缝隙闭塞电池的自催化理论。 缝内外溶液的对流和扩散受阻,导致闭塞区贫氧,缝隙外仍然富氧,造成的氧浓差电池使缝隙内金属的电位低于缝隙外金属的电位,pH值的降低以及H+和Cl-的作用(HCl)使金属处于活化状态,促进闭塞区内金属的溶解,形成二次腐蚀产物Fe(OH)3在缝口,造成正电荷过剩,Cl-迁入。而氯化物在水中发生水解,使缝隙内介质(H+离浓度增加)酸化,pH值下降,因此,加速了阳极的溶解。阳极的加速溶解,又引起更多的Cl-离子迁入,氯化物浓度又增加,氯化物的水解又使介质进一步酸化,如此反复循环,形成了一个闭塞电池内的自催化效应。 2、缝隙腐蚀试验方法 在相对闭塞的狭小缝隙中存留的溶液容量甚微,因此必须设计一些特殊的研究方法

微生物电活性及其腐蚀影响机理研究

微生物电活性及其腐蚀影响机理研究 微生物与金属间的氧化还原反应其本质上是由微生物代谢活动引起的金属与微生物间的电子传递。微生物具有电活性与否将对腐蚀过程产生重大的影响。 因此研究微生物电活性及其对腐蚀的影响,对深入认识金属的微生物腐蚀,探索防腐蚀策略具有重要意义。本文在研究大肠埃希氏菌和荧光假单胞菌电活性的基础上,利用电化学方法、表面分析技术和微生物学方法,对再生水中微生物电活性对碳钢腐蚀影响机理进行了研究。 主要得出如下结论:(1)采用循环伏安法研究了大肠埃希氏菌和荧光假单胞菌的微生物电活性,结果表明,大肠埃希氏菌在培养基和PBS缓冲液中未表现出电活性,荧光假单胞菌出现还原峰,可能是由于其分泌的黄色色素引起的。大肠埃希氏菌和荧光假单胞菌在厌氧状态下电活性无明显变化。 大肠埃希氏菌和荧光假单胞菌都可以利用AQS作为电子穿梭体进行胞外电子传递,10ppm浓度下可逆性较好。同浓度AQS下,微生物浓度越大,电位越正,电子转移速率越快。 (2)以AQS为电子穿梭体,研究了大肠埃希氏菌电活性对碳钢的腐蚀影响机理。结果表明,AQS进一步抑制了大肠埃希氏菌对碳钢的腐蚀,平均腐蚀速率降低了17.24%。 大肠埃希氏菌代谢产生的电子在AQS作用下促进了Fe OOH向Fe3O4转化,加速腐蚀层分层,由Fe3O4和菌体组成致密的腐蚀内层阻隔了DO扩 散,Fe2+在腐蚀内层附近起到了替代阳极的作用。(3)以AQS为电子穿梭体,研究了荧光假单胞菌电活性对碳钢的腐蚀影响机理。 结果表明,AQS进一步促进了荧光假单胞菌对碳钢的腐蚀,平均腐蚀速率升

高了23%。AQS对荧光假单胞菌有较强的生物毒性,同时,荧光假单胞菌自身分泌的铁载体可与铁离子螯合,减少了Fe2+数量,降低了Fe3O4的含量,使由Fe3O4和菌体组成的腐蚀内层不够致密,并减弱了Fe2+的阳极替代作用。

铜的腐蚀及防护措施

铜的腐蚀及防护措施 铜的腐蚀种类及腐蚀产物 影响铜及其合金腐蚀的因素有材料因素(包括成分、杂质、第二相及热处理、表面状态、变形和应力等)和环境因素(包括腐蚀环境如大气、土壤、海水、工业酸碱盐有机溶剂等及环境因素的影响如介质的pH值、介质的成分和浓度、介质的温度和压力、介质流动速度、电偶、环境的细节和可变化的影响等)。铜的腐蚀按照其使用地点和腐蚀介质可分为大气腐蚀、水中腐蚀、土壤腐蚀,铜的腐蚀产物一般为氧化物、硫酸盐和氯化物。 铜的腐蚀种类 大气腐蚀当铜暴露于大气之中,其表面通常形成绿棕色或者蓝绿色的腐蚀薄层,称为铜绿。铜在大气中的腐蚀主要受到气候条件、大气中有害气体及悬浮物的影响。气候条件包括大气相对湿度、气温及日光照射、风向、风速等。大气中有害气体及悬浮物主要指SO2、NH3、H2S等腐蚀性气体及盐的细小尘埃。Lobnig R E发现,如果大气中只含SO2或只含水分,铜的腐蚀行为没有多大变化,但如果二者都存在,且相对湿度超过75%,腐蚀是显著的。这主要是因为在铜表面上吸附水膜下SO2增加了阳极的去钝化作用,在高湿度条件下,由于水膜凝结增厚,SO2参与了阴极的去极化作用,尤其是当SO2的质量分数>0.5%时,此作用明显增大,因而加速了腐蚀的进行。虽然大气中SO2含量很低,但它在水溶液中的溶解度很大,SO2溶于水膜生成的H2SO3是强去极化剂,对大气腐蚀有加剧作用。 水中腐蚀:铜及铜合金在在水中的腐蚀可分为纯水腐蚀和海水腐蚀。铜及铜合金在含氧纯水中的腐蚀是吸氧腐蚀,在一定条件下,阳极反应产生的Cu2O可在铜表面形成完整的保护膜,其表层的Cu2O在水中溶解氧的作用下被部分氧化成CuO。因此,铜表面的氧化物保护膜具有双层结构,其内层为Cu2O,外层则由Cu2O 和CuO组成。铜表面这种保护膜的形成防止了铜在水中的进一步腐蚀,其完整性和稳定性也就决定了铜在水中的腐蚀速度。铜及铜合金在海洋环境中以均匀腐蚀为主,其中全浸区最重,潮汐区次之,飞溅区最轻。通过铜及其合金的长期暴露试验[7]发现,随着暴露时间增加,铜及铜合金平均腐蚀速度降低,然而随着海水温度升高,多数铜及其合金在全浸区平均腐蚀速度会增加,在潮汐和飞溅区,腐蚀速度会下降。 土壤腐蚀:铜是一种耐土壤腐蚀的材料,一般情况发生均匀腐蚀。王永红等人[8]采用试件自然埋藏法对内陆盐土地铜的腐蚀进行了研究,发现Cl-、SO42-及土壤微生物使铜表面发生了严重的点蚀,经过一的实验,试件表面布满蚀坑,最大腐蚀孔深度为0.36mm,平均腐蚀率为1.1884g/(dm2?a)。铜在内陆盐土中呈局部斑点腐蚀,同时还注意到铜的土壤腐蚀具有季节周期性,其腐蚀率最小值发生在秋冬季(11月至1月)。

铜冶炼铜电解铜废渣废物废泥铜合金硫化铜矿铜精矿回收处理工艺技术与设备专利技术资料汇编样本

4铜冶炼、铜电解、铜废渣泥、铜合金、硫化铜矿、铜精矿、回收处理工艺与方法、专利技术资料汇编( 全套80元) 1.铜锌物料鼓风炉熔炼铜锌分离方法 2.铜回收法 3.铜沉淀方法 4.印制线路板碱性蚀刻铜废液处理方法 5.分离回收镀白铜针铜锡的方法及其阳极滚筒装置 6.废铜箔回收的方法1 7.废铜箔的回收方法2 8.在印刷电路板制造中利用对铜箔的金属化处理来产生细线条并替代氧化过程 9.铜锌钴分离的熔炼法 10.用不污染环境的方法回收覆铜板的铜 11.一种铜电解液净化除杂质的方法 12.紫杂铜一步电解生产阴极铜方法 13.湿法提铜工艺 14.电解铜废液处理工艺 15.一种铜转炉烟灰矿渣成团冶炼铅的新工艺及其成团配方 16.铜回收的方法 17.由电解含铜萃取有机相制备高纯铜的方法 18.含砷硫化铜精矿湿法冶炼新工艺 19.冶炼炉渣中的有价金属细菌回收方法 20.一种废锌铜镍合金的湿法分离方法 21.黑铜提锡工艺 22.双金属银铜复合边角料分离回收法 23.氯化铜废液的处理方法 24.用碳铵溶液电解退除铁基体铜,镍镀层的方法 25.一种新的硫酸铜制备方法 26.不锈钢阳极框杂铜直接电解精炼法 27.铜系废催化剂的回收方法

28.氧化铜矿直接制取硫酸铜工艺 29.从稀溶液中电解回收铜或银的装置 30.液-液萃取法净化铜电解液 31.使用卤化物的铜蚀刻方法 32.从黄杂铜中分离铜、锌、铅、铁、锡的工艺方法 33.铜及铜合金制品表面上铅锡的回收 34.一种从氧化铜矿中回收铜的湿法冶金方法 35.湿法冶铜新工艺 36.铜矿石生产硫酸铜的方法 37.氨浸沉淀法处理低品位铜渣或氧化铜矿的工艺 38.铜精矿粉末冶炼备料新工艺 39.废复铜板回收工艺 40.从硫化物铜矿中浸提回收铜、银、金、铅、铁、硫的方法及设备 41.一种从含铜较高的金精矿中提取铜的方法 42.从炼铜废渣中回收锡、铜、铅、锌等金属的方法 43.含铜废料直接电解精炼的方法 44.一种铜精矿粉制块工艺 45.回收铜的方法 46.生产一水硫酸铜的方法 47.从矿石中水冶提取铜、镍、钴的简易方法及其装置 48.从铅阳极泥提取金、银及回收锑、铋、铜、铅的方法 49.从绕组回收铜的方法 50.一种硫化铜镍矿选矿方法 51.铜的回收方法 52.铜、镍硫化矿无污染火冶法 53.由硫化镍精矿中提取镍、铜、钴、镁及制造镍铁的工艺 54.一种湿法分离锌、铜、镉、铅冶金物料的方法及应用 55.回收铜和镍 56.电路板的铜箔回收方法

土壤中的微生物腐蚀与防护

微生物腐蚀与防护 摘要:本文概括介绍了微生物腐蚀的常见菌种,如硫酸盐还原菌、铁细菌等,其中主要介绍了硫酸盐还原菌的腐蚀机理。针对微生物腐蚀,目前国内外的防腐技术分为物理方法、化学方法和生物方法,文章对主要的防腐技术进行了介绍。 关键词:微生物腐蚀硫酸盐还原菌防腐技术 Abstract: This paper presents the bacteria species involved in micro-biologically influenced corrosion, such assulfate-reducingbacteria and iron bacteria.The corrosion mechanisms by sulfate-reducing bacteria (SRB) was mainlyreviewed.Anti-corrosion techniques,including physical method,chemical method and biological method, were also introduced in thispaper. Keywords: Micro-biologically influenced corrosion; sulfate-reducing bacteria; anti-corrosion technique 1.前言 微生物腐蚀(Micro-biologically Influenced Corrosion,简称MIC)是指微生物引起的腐蚀或受微生物影响的腐蚀。其本质是微生物新陈代谢的产物通过影响腐蚀反应的阴极过程或阳极过程,从而影响腐蚀速率和类型。为了找到针对 MIC 的既环保又有效的防腐措施,必须首先了解腐蚀微生物的种类及作用机理,了解当今国内外防腐技术的研究现状。

腐蚀机理

混凝土盐渍土腐蚀机理及影响因素 [摘要]通过对盐渍土地区混凝土腐蚀的机理分析, 指出了西部盐渍区富含的硫酸盐是造成混凝土物耐久性差的主要原因; 并详细阐述了国内外关于混凝土硫酸盐侵蚀影响因素的现状研究。 [关键词]盐渍土耐久性硫酸盐侵蚀 盐渍土就是指含盐分较高的土壤, 一般超过3% 的盐含量就可归结到盐渍 土的范围。我国西部地区盐渍土分布广泛, 新疆、青海、西藏、甘肃、宁夏以及内蒙古等地均有大面积的盐渍区。我国正在实施西部大开发战略, 因此大量基础设施就要建于盐渍土之上。以往的资料和调查表明, 一些道路、桥梁、建筑物、地下管道乃至电线杆等, 仅使用几年就遭受严重的腐蚀破坏, 不得不进行工程修复, 造成巨大经济损失。因此, 研究抗腐蚀混凝土在盐渍地区的耐久性问题, 具有非常重要的现实意义和深远的社会影响。 1、盐渍土对混凝土结构的腐蚀机理 盐渍土含盐量及含盐种类有很大差别, 其腐蚀性也有差异。氯盐主要腐蚀混凝土中的钢筋从而引起结构破坏; 硫酸盐主要是通过物理、化学作用破坏水泥水化产物, 使混凝土分化、脱落和丧失强度。1. 1 硫酸盐的化学腐蚀机理实际上硫酸盐侵蚀是一个比较复杂的过程。硫酸盐侵蚀引起的危害性包括混凝土的整体开裂和膨胀以及水泥浆体的软化和分解。不同的Ca、N a、K、M g 和Fe 的阳离子会产生不同的侵蚀机理和破坏原因, 如硫酸钠和硫酸镁的侵蚀机理就截然不同。1) 硫酸钠侵蚀首先是N a2SO 4 和水泥水化产物Ca (OH) 2 的反应, 生成的石膏(CaSO4·2H2O ) , 再与单硫型硫铝酸钙和含铝的胶体反应生成次生的钙矾石, 由于钙矾石具有膨胀性, 所以钙矾石膨胀破坏的特点是混凝土试件表面出现少数较粗大的裂缝。当侵蚀溶液中SO 2-4 浓度大于1000mg?L 时, 水泥石的毛细孔若为饱和石灰溶液所填充, 不仅有钙矾石生成, 而且在水泥石内部还会有二水石膏结晶析出。从氢氧化钙转变为石膏, 体积增大为原来的两倍, 使混凝土因内应力过大而导致膨胀破坏。石膏膨胀破坏的特点是试件没有粗大裂纹但遍体溃散。B iczok 认为: 侵蚀溶液浓度改变, 反应机理也发生变化。以N a2SO 4 侵蚀为例, 低SO 2-4 浓度(< 1000mg?L SO 2-4 ) , 反应产物主要是钙矾石; 而在高浓度下(> 8000mg?L SO 2-4 ) , 主要产物是石膏; 在中等程度浓度下(1000mg? L~8000mg?L SO 2-4 ) , 钙矾石和石膏同时生成。在M gSO4 侵蚀情况下, 在低SO 2-4 浓度(< 4000mg?L SO 2-4 ) , 反应产物主要是钙矾石; 在中等程度浓度下(4000mg? L~7500mg?L SO 2-4 ) , 钙矾石和石膏同时生成; 而在高浓度下(> 7500mg?L SO 2-4 ) , 镁离子腐蚀占主导地位。2) 硫酸镁与水化水泥产物的反应方程式如下:Ca (OH) 2+ M gSO4+ 2H2O→CaSO4·2H2O + M g (OH) 2 (3)硫酸镁侵蚀首先发生上式的反应, 然而上式生成的M g(OH) 2 与N aOH 不同, 它的溶解度很低(0. 01g?L , 而Ca (OH ) 2是1. 37g?L ) , 饱和溶液的PH 值是10. 5 (Ca (OH) 2 是12. 4,N aOH是13. 5) , 在此PH 值下钙矾石和C- S- H 均不稳定, 低的PH 值环境将产生以下结果: (1) 次生钙矾石不能生

废旧有色金属回收技术标准

废旧有色金属回收技术标准 我国对于废杂有色金属的评价与回收利用管理,目前尚没有明确的规定。据悉,新的《铜及铜合金废料废件分类和技术条件》、《铝及铝合金废料废件分类和技术条件》等一系列技术标准正在编制中。预计,将会有较多的参考美国和欧洲的成功经验。对于废旧有色金属,本书暂引用1992年由国家技术监督局颁布的推荐GB和1996年国家环境保护局颁布的进口废物控制标准,备读者查阅。 1.标准号 GB/T13587~1992《铜及铜合金废料、废件分类和技术条件》 GB/T13588~1992《铅及铅合金废料、废件分类和技术条件》 GB/T13889~1992《锌及锌合金废料、废件分类和技术条件》 GB/T13586~1992《铝及铝合金废料、废件分类和技术条件》 GB16487.7~1996《进口废物环境保护控制标准,废有色金属(试行)》 GBl6487.8~1996《进口废物环境保护控制标准,废电机(试行)》 GB16487.9~1996《进口废物环境保护控制标准,废电线电缆(试行)》 GB16487.10~1996《进口废物环境保护控制标准,废五金电器(试行)》 2.有色金属废料、废件的种类 铜、铝、铅、锌、锡、镍 锑、钴、镁、钛、锰、镉、铬、金、银、铂、钯、钉、铑、锇、铱 锂、铍、铷、铯、钨、钼、钮、钽、锆、铪、钒、钛、铼、镓、铟、铊、锗、硒、碲、镧、铈、镨、钕、 钐、铕、钆、铽、镱、钇、钪、钜、镝、铒、镥、铥、钬 紫铜板、带、箔、管、棒、杆、线、型材 黄铜板、带、箔、管、棒、线、型材 锌白铜板、带、管、丝材 镍自铜板、带、管、丝材 锡磷青铜带材、铍青铜带材 铝合金板、带、箔、管、棒、线、型材 铅合金材、铅锡合金焊丝、金、银、铂、钯、铱及其合金带、箔、丝材 铝铜复合板带、紫铜复银带、青铜复银带、镀锡黄铜带 铜、铝、铅、锌合金锭及铸件 钛及钛合金带、箔、管、棒和铸件 锆及锆合金管、棒材 铌及铌合金管材 钼带、箔材 高纯稀土金属、单一稀土氧化物、共沉淀稀土氧化物 彩电荧光粉、灯用三基色荧光粉、计算机用终端显示粉 钐钴粉、钐钴磁钢

点蚀腐蚀机理

点蚀的理论模型 M M e +→+ 22244O H O e OH -++→ 点蚀研究方法: 1) 电化学方法 2) 氯化铁试验法: 试验溶液为10%FeCl ·6H2O 溶液,其中稍许加入1/20NHCl 溶液以进行酸化,根据试样的孔蚀数量、大小、深度或是重量的改变来评定。 2 应力腐蚀测试方法 1) 四点弯曲法: δ=12Ety/(3L 2-4A 2) L :外侧支点间的距离; A :内外支点间的距离。 2) C 形环法 Δ=d 0-d 外径=δπD 2/4EtZ ; 3) WOL 试样 3/2(3.46 2.38)I Pa H K BH a =+ Δ应力加载前后的外径变化,δ应力值,t 厚度,D 平均直径,Z 修正项,E 弹性系数。 环境脆化机理主要包括活性通道腐蚀机理(APC )和氢脆开裂(HE )。不足处是没有与裂纹内溶液化学性质的研究结合起来。 不锈钢的开裂主要理论有: 1) 吸附理论 B 原子吸附于裂纹尖端,造成A-A0之间的结合力下降和破坏。这个理论能很好的解释SC C 对环境物质的依赖关系以及很好的解释缓蚀剂的作用。 2) 电化学理论 应力腐蚀开裂是一种因金属表面阳极溶解而产生的现象,应力有加速阳极溶解的作用。 3) 膜破裂理论 应力作用导致膜破裂形成新鲜表面,促进阳极溶解。 4) 隧道腐蚀理论 腐蚀从(111)面上生成的蚀孔底部和缝隙部分开始发展,与此同时,在应力的作用下产生塑性破裂,左右隧道相互连接,在应力作用下产生塑性破裂,左右隧道相互连接,最后造成断裂。 5) 腐蚀产物楔入理论 裂纹内产生的腐蚀产物的楔入作用造成裂纹的扩展。 6) 氢脆理论 奥氏体主要是阳极溶解,但是马氏体容易形成氢脆。在裂纹尖端有与阳极反应相应的阴极反应,所生成的氢进入钢中。

腐蚀现象与研究

腐蚀现象与研究 腐蚀现象非常普遍,从天上(飞机)到地上(火车,汽车,各种用具――),从地上到地下(地下管道,设施),无不存在腐蚀问题。有些是我们可直接观察到的――宏观腐蚀,有些是我们眼睛观察不到的微观腐蚀。 目前,广泛理解和接受的材料腐蚀定义是“材料腐蚀是材料受环境介质的化学作用而破坏的现象”。 腐蚀对于各种材料都可能发生,金属腐蚀现象我们经常见到,其它非金属材料的腐蚀也是普遍存在的, 由于时间所限,这里我们还是以金属的腐蚀为讨论对象。 所谓金属腐蚀指金属与周围环境发生化学或者电化学作用而引起的变质和破坏,多数情况下,金属腐蚀后失去金属特性,往往变成某种化合物。如金属构件在大气、酸、碱、盐水种的腐蚀,金属在热加工时氧化皮的形成。 一金属腐蚀与防护科学在发展国民经济中的意义 1.金属腐蚀问题遍及国民经济各个领域 从发展历程来看,人们首先并且仍在广泛地研究金属腐蚀。这种趋向是由于两方面因素引起的:一方面,从性能和经济两方面考虑,由于“物美价廉”,金属材料仍是人类广泛而大量使用的材料;另一方面,在地球上,绝大多数金属是以化合态——定义(1—37)中的腐蚀态——存在的,金属腐蚀是一种自然趋势,这种趋势可用热力学第二定律(熵增原理,0 G ?<过程可自 ?>时,过程可自发进行)及自由能变化(0 S 发进行)来定量地表述。 19世纪的赫胥黎在介绍达尔文的进化论时,对于宇宙过程(即自然过程)得到如下的精辟而富于哲理的看法:… “大自然常常有这样一种倾向,就是讨回她的儿子——人——从她那儿借去而加以安排结合的、那些不为普遍的宇宙过程所赞同的东西”。(1—48) 在金属界,确是如此。人类从大自然通过采掘“借来”矿石,耗费能量将矿石还 1

铜及其合金的腐蚀问题

铜及其合金的腐蚀问题 材研1001 杜伟 602080502038 第一章绪论 一研究铜及铜合金腐蚀的意义 铜及铜合金色泽美观,性能优异,广泛应用于机械、化学、电子等众多工业领域。铜的化学性质较为活泼,长时间暴露于空气或水中,尤其是在有腐蚀介质存在的环境中很容易发生腐蚀。因此铜的腐蚀与防护问题是腐蚀学领域一个亟待解决的重要问题。 在有色金属的生产中,铜的产量仅次于铝,居第二位。在电化学顺序中,铜具有比氢更高的正电位(+0.35 VSHE),故铜有较高的热力学稳定性,不会发生氢的去极化作用,被列为耐腐蚀金属之一。但是在湿度较高、腐蚀性介质(如含二氧化硫的空气、含氧的水、氧化性酸以及在含有CN-、NH4+等能与铜形成络合离子的液体)中,铜则发生较为严重的腐蚀。 铜合金表现出比纯铜更高的耐腐蚀性,如:黄铜(Cu Zn合金)耐冲击腐蚀性好;铜镍合金具有耐酸耐碱、耐海水的性能以及抗应力腐蚀开裂的特性;锡青铜合金可耐各种腐蚀;硅青铜合金机械强度高、耐应力腐蚀开裂性能好。 铜会发生腐蚀早已为人们所知,可以说人类一开始使用铜就发现了这一现象。虽然金属腐蚀现象极其广泛和常见,但作为一门科学对其进行研究却还是近百年的事。在现代科学中,金属腐蚀的定义是:“金属在环境介质的作用下,由于化学反应、电化学反应或物理作用而产生的破坏”[1,2]。由此定义可见,金属腐蚀的发生必须有包括金属材料和环境介质在内的相界面上的作用体系,金属发生腐蚀需要外部环境。腐蚀是对金属材料的一种破坏,这种破坏使许多金属设备的使用寿命大为缩短甚至报废,带来巨大的经济损失,它会使生产停顿、物质流失、资源耗损、产品质量降低、环境受到污染、影响新技术的发展。 二铜的腐蚀环境 铜的腐蚀按铜的使用环境可分为气相腐蚀和液相腐蚀,而液相腐蚀可按酸碱度进一步分为酸性液体、中性液体和碱性液体中的腐蚀。在过去的数十年里,人们对铜在酸性溶液中、碱性溶液中和中性盐类溶液中以及自来水供水系统中的腐蚀进行了深入广泛的研究。铜及其合金暴露在通常的中性大气环境中,在其表面

行业标准冶炼用铜废料取制样方法

《冶炼用铜废料取制样方法》 编制说明 (预审稿) 东营方圆有色金属有限公司

《冶炼用铜废料取制样方法》编制说明 1、任务由来及说明 工业和信息化部办公厅“工业和信息化部办公厅关于印发2015年第批行业标准制修订计划的通知”(工信厅科[2015]号)《冶炼用铜废料取制样方法》行业标准由东营方圆有色金属有限公司负责起草 2、标准制定的目的和意义 2.1 现状 根据我国目前废杂铜拆解企业的工艺水平和设备能力,可将原装进口和国内的废杂铜分类拆解、加工为以下种类:光亮铜、马达线、铜米、红多支铜米、锡米、油米、杂米、铜粉、1#、2#铜管、烧线、水洗铜、覆铜板、线头线尾、杂铜、洗银铜、磷青铜、喇叭铜线、铜针等。 当前国内废杂铜的分类有一个国家标准GB/T13587-2006《铜及铜合金废料》,而废杂铜的品位检验,没有具有指导性的行业标准。而废杂铜准确的品位检验是与废杂铜企业的金属平衡、经济效益密切相连的。 目前原料市场上,大多数商家采购废杂铜多以目估法来估算品位进行结算,其原理为根据废杂铜性质特征,市场认同度和工艺成熟程度目测评估,得出最终废杂铜铜品位。其优点为可以针对各类废杂铜,检验速度快,适用于大批量检验;但最主要的缺点为,对评估人员的技能要求较高,需要长期工作经验和大量的市场、工艺调查,评估结果受人为因素影响较大,由于其中多种不确定因素,严重影响到了铜品位的准确性。 2.2存在问题 目视评估法,主要存在的问题有: (1)对评估的技能要求较高,专业技能人员较少,无法应付多批次大批量的到货。 (2)评估结果人为影响因素过大,存在争议的时候只能够协商解决。 (3)相当部分原料无法通过目视评估法进行判断。 目前国内年回收废铜约60.70万吨,进口400万吨。到2015年,再生铜占当年铜产量的比例将达到40%。对废杂铜进行合理分类以及准确检验时非常重要的。 2.3目前国内外废杂铜标准的现状 当前中国国内废杂铜的检验,没有国家标准和行业标准,废杂铜的特殊性也导致取样很那具有代表性,采用常规的取样化验方法来进行废杂铜检验时不科学的。目前该废杂铜原料市场上,大多数商家采购废杂铜多以目测法来估算铜品味,其中有很多不确定因素,严重影响了铜品味的准确度,产生很多争执。 因此,将废杂铜进行合理的细化分类,制订科学的取制样方法,对规范废杂铜市场,减少争议,良性发展是必不可少的。 3、标准编写原则和编写格式 本标准是根据GB/T1.1-2009《标准化工作导则第1部分:标准的结构和编写规则》和GB/T20001.4-2001《标准编写规则第4部分:化学分析方法》的要求进行编写的。 4、标准适用范围 本标准适用的废杂铜区间为以下三类: 一类:1#铜废料,纯度在96%以上,铜边角料,铜圈、干净铜管或管道、1#铜线和粗导线(不包括被烧焦的和易碎的细铜线)等干净的非合金铜材料。 二类:2#铜废料,纯度在94%-96%之间,干净的、氧化的、带皮的铜边角料、铜圈、整流器部件、较干净的带少量焊锡的铜管材,氧化或带皮铜线(不是被烧焦的铜线)等铜废料。

微生物腐蚀机理及对埋地管道腐蚀防护的影响_夏双辉

全面腐蚀控制2005年第19卷第3期1 引言 微生物腐蚀(MIC)是由细菌和真菌的存在及其活动所引起的腐蚀。据相关调查研究表明,管道外部的腐蚀沉积有27%与MIC有关。下面是有关微生物的一般描述: (1 ) 个体微生物很小(从0.2微米长到几百微米,宽2~3微米),该特性使它们很容易进入缝隙及其它地方。细菌和真菌可以生长成为宏观规模。 (2 ) 菌是可移动的,他可以移居到适合其生存的环境或者离开不利于其生存的环境,也就是说移向食物表面而离开有毒的材料。 (3 ) 菌具有对某种化学物质特定的接收功能,该功能使他们能够找到大量的食物源。 营养物质、尤其是有机营养物通常在大多数水环境中很短缺,但是表面包括金属,吸收这些物质后,会使这些营养物相对增加。 (4 ) 微生物能够承受较大范围的温度变化(至少-10~99℃)、pH值变化(0~10.5)及氧浓度的变化(0~100%标准大气压)。 (5 ) 它们以群体方式生长,这有助于个体间食物交叉供给,并使它们更可能在不利的环境中生存。 (6 ) 它们繁殖得很快(据报告繁殖期约18分钟)。 (7 ) 个体细胞能够由水、风、动物、飞行物或其他手段广泛而迅速地扩散,因而在该群体中的某些细胞到达有利于其生存环境的可能性很大。 (8 ) 许多微生物能够很快适应大量的不同营养源。例如:荧光假单胞菌能够利用100多种不同的化合物作为单一的碳源和能量,这些化合物包括糖脂类、乙醇、甲醇、有机酸及其它化合物。 (9 ) 许多微生物形成胞外多糖物质(胶囊或黏物质层)。产生的黏泥具有黏性,能捕捉有机物及垃圾(食物),阻止某些有毒物质(如:杀菌剂)或其他物质(缓蚀剂)的渗透,以及把细胞保持在营养液(大量流体)和这些物质扩散的界面之间。 (10 ) 许多细菌和真菌产生孢子,这些孢子对温度(有些甚至可以在沸点温度生存一小时以上)、酸、乙醇、杀虫剂、干燥、冷冻及许多其他不利的因素具有很强的抵抗能力。这些孢子可以存活上百年并在遇到合适环境时迅速成长。在自然环境中,存活与生长之间存在着不同。微生物能够抵抗长期的饥饿和干燥,如果环境在潮湿与干燥之间交替变化,微生物可以在干旱期存活,在潮湿期生长。 (11 ) 微生物依靠对化学物质的降解能力或通过利用黏泥、细胞壁和细胞膜的防渗透能力的特性而具 微生物腐蚀机理及对埋地管道腐蚀防护的影响 夏双辉1 戚明友1 李建秀2 (1、 合肥钢铁公司动力厂,合肥230011; 2、西施兰联合企业有限公司,河南南阳473100) 摘 要:本文简要叙述了产生微生物腐蚀的几类菌落及相应腐蚀的机理,并叙述了微生物腐蚀与埋地管道所处的环境、表面涂层及辅加的阴极保护的相互影响关系,这对于从事埋地管道的防腐蚀研究和实施保护有一定的参考作用。 关键词:微生物腐蚀 埋地管道 沉积 阴极保护 C o r r o s i o n M e c h a n i s m o f M I C a n d I n f l u e n c e s o n C o r r o s i o n a n d P r o t e c t i o n o f U n d e r g r o u n d P i p e l i n e Xia Shuanghui1 Qi Mingyou1 Li Jianxiu2 (1. Power Plant of Hefei Steel and Iron Corporation, Hefei 230011;2. Sislan Complex Enterprises Co., Ltd, Nanyang473100,Henan ) Abstract: This paper described the microorganisms and their corrosion mechanism, then described the environment, coatingsand cathodic protection of pipeline and MIC. The influences to each other were also introduced. Keywords: MIC; underground pipeline; deposits; cathodic protection 全 面 腐 蚀 控 制 T O T A L C O R R O S I O N C O N T R O L 第19卷第3期2005年6月 Vol.19 No.3 June. 2005

一种汽车典型部件腐蚀当量研究方法-

Method of Equivalent Research of Typical Automotive Parts Chunbin Wang, Zaiqi Yao, Zhihua Li, Li Li, Fangwu Ma, Qiang Liu, Fuquan Zhao NVH and Materials Engineering Division Geely Automobile Research Institute Hangzhou, People’s Republic of China lion-21@https://www.360docs.net/doc/8312377960.html, Abstract—The sample corrosion shape and appearance are compared between vehicle accelerated corrosion test and laboratory accelerated corrosion test. An equivalent relationship between laboratory accelerated corrosion and actual service condition is obtained on the basis of the research of distribution characteristics for two corrosion damage. The calculation indicates that this relationship of typical component: y = 32.86 e0.5x (where, y is time of laboratory accelerated corrosion, x is time of actual service condition), thereby laying a foundation for anti-corrosion design and coating selection. Keywords-Automobile; Accelerated Corrosion; Equivalent; Coating I引言 随着近年来我国汽车产业的快速发展,人们对汽车品质 的要求也越来越高,各汽车生产厂把汽车的可靠性、安全性、舒适性等作为考核项目,而汽车各零部件的抗腐蚀性 能明显影响这些性能,因此对汽车的抗腐蚀性能的开发显 得越来越重要。调查表明,除交通事故和零部件磨损外, 汽车腐蚀是汽车损坏报废的最重要原因,不仅直接影响汽 车的质量和使用寿命,还会导致环境污染和严重的交通事故。 实际腐蚀过程如何用试验室加速腐蚀来再现,现在航空 航天方面已有研究[1~7]。而在汽车行业还没有相关的进展,本文探讨汽车典型零部件在试验室加速腐蚀与实际服役腐 蚀之间的当量关系,从而简化到用试验室的静态试验来模 拟汽车在实际行驶中零部件的腐蚀行为。 II实验方法 本文主要研究汽车零部件在腐蚀较严重区域--底盘位置的腐蚀,为了较好的观察分析,制作如图1的样件12个,试验件材料为宝钢生产的冷轧钢板DC01,尺寸为60×60×1 mm2,为了研究方便,使其短期出现锈蚀,选用镀锌蓝白钝化处理,其中非实验区域的一侧和边缘用防水胶涂好,以防被腐蚀。 试验分为两组,选第一组6件样件放到整车底盘做挂片试验,挂片试验按照汽车行业标准QC/T 732-2005《乘用车强化腐蚀试验方法》进行试验,强化腐蚀在海南试验所完成,海南所整车强化腐蚀试验由下列几部分组成[8]:试验车预处理、正式强化腐蚀试验、试后的全面检查及腐蚀结果评价。每个试验循环为24 h,道路行驶时间约为160 min,其余的时间均在室内或环境试验室内进行,所以外界环境条件的变化不会对试验结果造成太大影响,重复性较好。每个试验循环过程中各流程时间分配表及示意图见表1和图2。 图1 镀蓝白锌的试验件 表1 腐蚀试验循环中各流程时间分配表 路行驶湿热试验自然干燥盐雾喷射试车检验总计160 min16 h 270 min 20 min 30 min 24 h

相关文档
最新文档