6082铝合金电化学腐蚀行为及晶间腐蚀机理研究

6082铝合金电化学腐蚀行为及晶间腐蚀机理研究

铝和铝合金的大气腐蚀机理优选稿

铝和铝合金的大气腐蚀 机理

1铝和铝合金的大气腐蚀机理 铝和铝合金的表面氧化膜是铝合金具有耐大气腐蚀性的主要原因.铝的氧化膜(γ- Al 2O 3)在室温的大气中就可以生成,而且非常迅速和致密,厚度为25~30.也就是说,氧化膜在 大气环境中具有自修复功能.若有水存在或者暴露在大气中几个月以后,最初形成的γ-Al 2O 3的外层转变为一薄层γ-AlOOH.然后,在γ-AlOOH 上又会覆盖上一层Al(OH)3(也可写 成Al 2O 3·3H 2O).从铝-水体系的电位-pH 图可知,Al(OH)3在较大的pH 范围内都会保持稳 定.Al(OH)3从pH=4开始溶解;当pH=2.4时,认为Al(OH)3会完全溶解(事实上,即使pH=2.0 时,铝表面的腐蚀类型仍然是孔蚀.).大部分的降雨、差不多所有的雾、表面蒸发浓缩的液层和铝表面小孔内的电解质都会使铝处于腐蚀状态.环境因素对铝的大气腐蚀的影响和其它金属相似,与环境大气的相对湿度、温度、大气中SO 2的浓度、Cl -的含量以及降水的数 量、酸度相关性较大,同时也受到O 3,NO x 及CO 2等污染组分的轻微影响.大气污染物通过干 湿沉降,使得金属表面存在着和大气中同样丰富的化学组分.暴露在大气中的铝合金表面可分为三层:铝合金及其氧化膜、腐蚀产物层和大气污染物形成的污染层或薄液膜.根据大气化学组分对铝和铝合金化学、电化学反应的不同及形成的腐蚀产物的性质不同,存在着不同的腐蚀机制. 1.氯离子的存在是引起铝和铝合金大气腐蚀的重要原因.由于铝的氯化物具有可溶性,在户外暴露的铝表面上并没有大量的氯化物层存在,只有少量的氯离子进入到腐蚀产物层.Cl -通过竟争吸附,逐渐取代Al(OH)3表面上的OH -生成AlCl 3,如方程式(1)~(3)所示: Al(OH)3+Cl -→Al(OH)2Cl+OH -(1) Al(OH)2Cl+Cl -→Al(OH)Cl 2+OH -(2) Al(OH)Cl 2+Cl -→AlCl 3+OH -(3)

晶间腐蚀方法

6.4不锈钢局部腐蚀(晶间腐蚀、点蚀)试验结果与对比 6.4.1不锈钢晶间腐蚀试验方法 1)沸腾硝酸法(E法,用于304、410S、430、409L) 目的:检测304(敏化后)和410S、430、409L(热轧态)的耐晶间腐蚀性能;实验条件:试样在65%硝酸溶液中微沸48h(304)或24h(其他); 试样情况:试样表面抛光,并用乙醇清洗; 检测:测量失重;腐蚀后的特征形貌; 标准:GB 4334.3 2)硫酸-硫酸铜法(用于奥氏体不锈钢304) 目的:检测304(敏化后)的耐晶间腐蚀性能; 实验条件:试样在CuSO4+H2SO4+铜屑的微沸溶剂中24h(对于≤18%C r的不锈钢); 试样情况:试样表面抛光,并用乙醇清洗; 检测:测量失重;腐蚀后的金相特征; 溶剂配方:100g CuSO4+100ml H2SO4加蒸馏水稀释至1000ml。 标准:GB 4334.2 注1:304不锈钢为热轧后再经650℃、2h处理的敏化态,铁素体不锈钢为热轧态。 注2:以上二法对304都适用;对铁素体不锈钢,试验表明:410、430、409L 在硫酸-硫酸铜 溶液中试样表面发生较严重的镀铜现象,故仅采用沸腾硝酸法。因此, 为了便于304与其它3种铁素体不锈钢进行耐晶间腐蚀性能的对比分 析,以下以沸腾硝酸法为主,此外还要与晶间腐蚀的电化学试验、分 析相结合(参6.7)。

图0-1 晶间腐蚀试验装置图0-2 点蚀试验装置(恒温水浴锅)6.7 不锈钢局部腐蚀的电化学分析与对比 6.7.1不锈钢晶间腐蚀电化学试验方法 主要目的:对不锈钢耐晶间腐蚀的电化学性能的测定和对比分析,与浸泡试验结果相辅相成。 测试项目:用动电位再活化法测得晶间腐蚀的电化学曲线,可得阳极化环和再活化环的最大电流Ia和Ir,并以其比值Ir/Ia作为耐晶间腐蚀性能的度量。 试样状态:304---650o C 2h、空冷; 430、410、409L---热轧态;均经机械抛光。 所用仪器:CHI600C电化学分析仪 标准:JIS G0580-1986,ASTM G108,GB/T 15260-1994 晶间腐蚀电化学测定方法: 采用电化学动电位再活化法(EPR):以0.5mol/L的H2SO4为腐蚀介质(30o C),采用双环EPR法,以6V/h的扫描速度从腐蚀电位[约-400mv(SCE)] 极化到+300mv(SCE),一旦达到这个电位则扫描方向反转,以相同速度降低到腐蚀电位。分别测定阳极化环和 再活化环的最大电流Ia和Ir(如图2,单位为A),Ir:Ia比值越小越耐晶间腐蚀。

不锈钢晶间腐蚀控制措施

不锈钢晶间腐蚀控制措施 1 问题的提出 技术统一规定中通常包括“奥氏体不锈钢制容器用于可能引起晶间腐蚀的环境, 焊后应做固 溶或稳定化处理”, 提出这样的要求, 自有其存在的合理性。但即使设计人员在图样的技术要求中提出这一条, 要求制造厂进行不锈钢制容器(比如换热器) 的焊后热处理, 由于实际热处理工艺参数难以控制和其他一些意想不到的困难, 通常难以达到设计人员提出的理想要求, 实际上在役的不锈钢设备绝大部分是在焊后态使用。这就促使我们去思考:晶间腐蚀是奥氏体不锈钢最常见的腐蚀形式, 那么产生晶间腐蚀的机理是什么? 在什么介质环境下会引起晶间腐蚀?防止和控制晶间腐蚀的主要方法有哪些?奥氏体不锈钢制容器用于可能引起晶间腐蚀的环境焊后是否都要热处理?本文查阅有关的标准、规范,专著,结合生产实际谈谈个人看法。 2 晶间腐蚀的产生机理 晶间腐蚀是一种常见的局部腐蚀, 腐蚀沿着金属或合金晶粒边界或它的临近区域发展, 而晶粒腐蚀很轻微,这种腐蚀便称为晶间腐蚀,这种腐蚀使晶粒间的结合力大大削弱。严重的晶间腐蚀,可使金属失去强度和延展性,在正常载荷下碎裂。现代晶间腐蚀理论, 主要有贫铬理论和晶界杂质选择溶解理论。 2. 1 贫铬理论 常用的奥氏体不锈钢, 在氧化性或弱氧化性介质中之所以产生晶间腐蚀, 多半是由于加工或使用时受热不当引起的。所谓受热不当是指钢受热或缓慢冷却通过450~850 ℃温度区, 钢就会对晶间腐蚀产生敏感性。所以这个温度是奥氏体不锈钢使用的危险温度。不锈钢材料在出厂时已经固溶处理,所谓固溶处理就是把钢加热至1050~1150 ℃后进行淬火, 目的是获得均相固溶体。奥氏体钢中含有少量碳, 碳在奥氏体中的固溶度是随温度下降而减小的。如0Cr18Ni9Ti , 在1100 ℃时, 碳的固溶度约为0. 2 % , 在500~700 ℃时, 约为0. 02 %。所以经固溶处理的钢,碳是过饱和的。当钢无论是加热或冷却通过450~850 ℃时,碳便可形成( Fe 、Cr) 23C6 从奥氏体中析出而分布在晶界上。( Fe 、Cr) 23C6 的含铬量比奥氏体基体的含铬量高很多, 它的析出自然消耗了晶界附近大量的铬, 而消耗的铬不能从晶粒中通过扩散及时得到补充, 因为铬的扩散速度很慢, 结果晶界附近的含铬量低于钝化必须的的限量(即12 %Cr) ,形成贫铬区, 因而钝态受到破坏, 晶界附近区域电位下降, 而晶粒本身仍维持钝态, 电位较高, 晶粒与晶界构成活态———钝态微电偶电池, 电池具有大阴极小阳极的面积比,这样就导致晶界区的腐蚀。 2. 2 晶界杂质选择溶解理论 在生产实践中, 我们还了解到奥氏体不锈钢在强氧化性介质(如浓硝酸) 中也能产生晶间腐蚀, 但腐蚀情况和在氧化性或弱氧化性介质中的情况不同。通常发生在经过固溶处理的钢上,经过敏化处理的钢一般不发生。当固溶体中含有磷这种杂质达100ppm时或硅杂质为1000 - 2000ppm 时, 它们便会偏析在晶界上。这些杂质在强氧化性介质作用下便发生溶解, 导致晶间腐蚀。而钢经敏化处理时, 由于碳可以和磷生成(MP) 23C6 , 或由于碳的首先偏析限制了磷向晶界扩散, 这两种情况都会免除或减轻杂质在晶界的偏析, 就消除或减弱了钢对晶间腐蚀的敏感性。 上述两种解释晶间腐蚀机理的理论各自适用于一定合金的组织状态和一定的介质, 不是互相排斥而是互相补充的。生产实践中最常见的不锈钢的晶间腐蚀多数是在弱氧化性或氧化性介质中发生的,因而绝大多数的腐蚀实例都可以用贫铬理论来解释。 3 引起晶间腐蚀的的介质环境

飞机铝合金零件腐蚀机理与防护

据统计,铝和铝合金要占一架飞机总重量的70%,而飞机的结构件大部分是由铝合金材料构成。铝合金构件的损伤形式有多种,如疲劳断裂、裂纹、变形、磨损等,其中腐蚀是最常见的损伤形式之一。由于腐蚀造成的事故占飞机全部损伤事故的20%,这个问题在老龄飞机上变现的尤为突出。由于腐蚀问题的存在,往往缩短飞机结构件的使用寿命,甚至还危及飞行安全。如1988年Aloha航空公司的波音737飞机发生空中事故,经过事故调查后认为:由于机身增压舱纵向蒙皮搭接接头处一排铆钉孔,在服役的热带海洋环境和循环增压载荷作用下,引起了不可检测的多条腐蚀疲劳裂纹,从而引起事故。因此,腐蚀问题不容忽视,这就需要我们在航空维修过程中加强检查与控制。 飞机结构件的腐蚀是飞机在使用环境中随着时间推移而发生的化学累积性损伤。作为电化学反应,必须同时具备三个条件才能发生,即活性金属、腐蚀环境(介质)和导电通路。同时,它又作为与时间有关的损伤,需要一定时间的累积才能发生,并且要求在一定的损失范围之内就进行维护和修理。一般民航和军航的飞机维修规定:腐蚀损失深度不超过蒙皮厚度的10%。 腐蚀的种类很多,通过对飞机铝合金材料构件腐蚀情况的统计和分析得知,点蚀、剥蚀缝隙腐蚀这三类是腐蚀的主要表现形式。其中,点蚀改变飞机结构的应力分布,引起局部应力集中,从而形成腐蚀疲劳裂纹;剥蚀和缝隙腐蚀使蒙皮、桁条等构件的厚度减薄,大大降低材料的强度,增大应力,最终导致构件裂纹,甚至断裂。 在飞机结构修理中,构件中存在应力腐蚀裂纹是一个常遇到的实

际问题。例如,1L-18飞机上翼面处的大量B94铝合金铆钉产生了应力腐蚀裂纹。应力腐蚀裂纹通常都很小,宽度较窄,没有引起人们注意的特征,又因常被腐蚀产物覆盖,所以很难发现,有时需要采用无损探伤技术进行检查。构件发生应力腐蚀断裂时,常常是在事先没有明显预兆的情况下突然发生,因此对飞机的飞行安全危害较大。一般来说,腐蚀坑洞是应力腐蚀裂纹的主要萌生源。通常情况下,存在应力腐蚀裂纹构件的表面,常有不同程度的腐蚀痕迹。当然,由交变应力引起的疲劳裂纹以及焊接裂纹、热处理裂纹也可转化为应力腐蚀裂纹。应力腐蚀裂纹具有较多的二次裂纹,这种现象在铝合金、镁合金、高强度钢及钛合金中都可看到。主裂纹的扩展方向垂直于最大正应力的方向。从宏观看应力腐蚀断裂的断口一般有三个区:1.开裂源区。该区的断口腐蚀较为严重,开裂源的根部往往有蚀坑。2.应力腐蚀裂纹的扩展区。这是应力腐蚀裂纹缓慢扩展过程中所形成区域,;裂纹扩展过程是材料的组织与应力及介质相互作用的过程。从宏观上来看,这个过程的特性是呈脆性的,即使是具有高塑形的Cr-Ni奥氏体不锈钢也如此。由于裂纹是沿着材料的某一结晶学方向(如解理面),所以断口的粗糙不平的。而这种不平度是随着材料的组织与晶粒度而变化的。由于腐蚀产物的存在,在应力腐蚀断口上,可以明显看到,裂纹缓慢扩展区和因为构件的有效载面不能承受静应力而断裂的区域是截然不同的。3.最后一个区域就是快速拉断或撕裂区。从应力腐蚀开裂的方式来看,它的微观开裂途径通常有三种类型,即穿晶型、沿晶型和混合型。一般说来,应力腐蚀的微观开裂途径与材料的晶体结

电化学腐蚀力学

电化学腐蚀动力学 20世纪40年代末50年代初发展起来的电化学动力学是研究非平衡体系的电化学行为及动力学过程的一门科学,它的应用很广,涉及能量转换(从化学能、光能转化为电能)、金属的腐蚀与防护、电解以及电镀等领域,特别在探索具有特殊性能的新能源和新材料时更突出地显示出它的重要性,其理论研究对腐蚀电化学的发展也起着重要作用。 电化学动力学中的一些理论在金属腐蚀与防护领域中的应用就构成了电化学腐蚀动力学的研究内容,主要研究范围包括金属电化学腐蚀的电极行为与机理、金属电化学腐蚀速度及其影响因素等。例如,就化学性质而论,铝是一种非常活泼的金属,它的标准电极电位为-1.662V。从热力学上分析,铝和铝合金在潮湿的空气和许多电解质溶液中,本应迅速发生腐蚀,但在实际服役环境中铝合金变得相当的稳定。这不是热力学原理在金属腐蚀与防护领域的局限,而是腐蚀过程中反应的阻力显著增大,使得腐蚀速度大幅度下降所致,这些都是腐蚀动力学因素在起作用。除此之外,氢去极化腐蚀、氧去极化腐蚀、金属的钝化及电化学保护等有关内容也都是以电化学腐蚀动力学的理论为基础的。电化学腐蚀动力学在金属腐蚀与防护的研究中具有重要的意义。 第一节腐蚀速度与极化作用 电化学腐蚀通常是按原电池作用的历程进行的,腐蚀着的金属作为电池的阳极发生氧化(溶解)反应,因此电化学腐蚀速度可以用阳极电流密度表示。 例如,将面积各为10m2的一块铜片和一块锌片分别浸在盛有3%的氯化钠溶液的同一容器中,外电路用导线连接上电流表和电键,这样就构成一个腐蚀电池,如2-1。 图2-1 腐蚀电池及其电流变化示意图

查表得知铜和锌在该溶液中的开路电位分别为+0.05伏和-0.83伏,并测得外 电路电阻R 外=110欧姆,内电路电阻R 内=90欧姆。 让我们观察一下该腐蚀电池接通后其放电流随时间变化的情况。 外电路接通前,外电阻相当于无穷大,电流为零。 在外电路接通的瞬间,观察到一个很大的起始电流,根据欧姆定律其数值为 o o 3k a -0.05(0.83)= 4.41011090 I R ??---==?+始安培 式中o k ?-——阴极(铜)的开路电位,伏; o a ?——阳极(锌)的开路电位,伏; R ——电池系统的总电阻,欧姆 在达到最大值I 始 后,电流又很快减小,经过数分钟后减小到一个稳定的电 流值I 稳=1.5×10-4 安培,比I 始 小约30倍 。 为什么腐蚀电池开始作用后,其电流会减少呢?根据欧姆定律可知,影响电 流强度的因素是电池两极间的电位差和电池内外电路的总电阻。因为电池接通后 其内外电路的电阻不会随时间而发生显著变化,所以电流强度的减少只能是由于 电池两极间的电位差发生变化的结果。实验测量证明确实如此。 图2-2表示电池电路接通后,两极电位变化的情况。从图上可以看出,当电 路接通后,阴极(铜)的电位变得越来越小。最后,当电流减小到稳定值I 稳时两 极间的电位差减小到(k ?-a ?),而k ?和a ? 分别是对应于稳定电流时阴极和阳极 的有效电位。由于k a -??()比(o o k a -??)小很多,所以,在R 不变的情况下, I 稳 = k a -R ?? 必然要比I 始小很多。

铝合金防护

一.引言 1.1 金属防腐蚀的重要意义 金属材料是现代最重要的工程材料,人类社会的文明和发展与金属材料的使用、发展与进步有着极为密切的联系。 但是金属材料及其制品会受到各种不同形式的损坏,其中最重要、最常见的损坏形式腐蚀。金属腐蚀问题存在于国民经济的各个领域,而且随着经济建设和科学技术的 发展,腐蚀的危害越来越严重,对于国民经济的发展的制约作用越来越突出。使得腐蚀科学在国民经济中所处的地位越来越重要。据统计,人们每年冶炼出来的金属约有1/10 被腐蚀破坏, 相当于每年约有1/10 的冶炼厂因腐蚀的存在而做了无用功;而1/10 被腐蚀破坏的金属所殃及的金属制品的破坏,其损失要远远大于金属本身的价值。据美国国家标准局(NBS)调查, 1975 年美国因腐蚀造成的损失高达700 亿美元,即当年国民经济总产值(GNP)的4.2%;《光明日报》1999 年 1 月20 日报道,1997 年因腐蚀给我国国民经济带来的损失高达2800 亿人民币。 以上所说仅就经济损失而言,在有些领域,尤其在化学工业、石油化工、原子能等工业中,由于金属材料腐蚀造成的跑、冒、滴、漏,不仅造成大量的、宝贵而有限的资源与能源的严重浪费, 还能使许多有害物质甚至放射性物质泄漏而污染环境,危害人民的健康,有的甚至会长期造成严重的后果;而由于金属腐蚀所造成的灾难性事故严重地威胁着人们的生命安全;

许多局部腐蚀引起的事故,如氧脆和应力腐蚀断裂这一类的失效事故,往往会引起爆炸、火灾等灾难性恶果,在一定程度上威胁着人类的生存与发展,所以对于金属腐蚀问题的研究显得尤为 重要。 1.2 铝合金及其腐蚀机理 铝合金是近代发展起来的一类重要的金属材料。铝合金具有强度高、密度小、导电导热性强、力学性能优异、可加工性好等优点而广泛应用于化学工业、航空 航天工业、汽车制造业、食品工业、电子、仪器仪表业以及海洋船舶工业等领域。但是铝合金与其他金属一样,也面临着严重的腐蚀问题。虽然在自然条件下,铝合金表面容易形成一层厚约 4 nm 的自然氧化膜,但是这层膜多孔、不均匀且抗蚀性差,难以抵抗恶劣环境的腐蚀的。为了解决上述问题,有必要对铝合金的腐蚀机理有所了解。一般而言,金属在满足以下 5 个基本条件下 就会受到腐蚀:(1)阳极;(2)阴极;(3)阴一阳之间存在着连续接触;(4)电解质溶液;(5)阴极反应物(如氧气、水或氢气)。铝合金的腐蚀电化学反应为:Al A l3++ 3e( 1) O2 + 2H20 + 4 e 4 0H (中性/碱性) (2) + 2H + 2 e H 2(g)(酸性) (3) 由于原电池作用加速了铝腐蚀,有机或无机阻隔层和钝化剂可避免合金与电解质接触而发生阴极反应,与此同时也抑制腐蚀电子向金属界面的 传导;另外钝化剂(如铬酸盐)形成的不溶性氧化物沉积在受腐点,使活性腐蚀点(如晶界、晶族、凹坑、沉淀析出处)减少,从而阻挡水、

晶间腐蚀性能弯曲评价影响实证探讨

晶间腐蚀性能弯曲评价影响实证探讨 引言 目前在国内不锈钢晶间腐蚀敏感性的评价过程中采用最为广泛的是硫酸-硫酸铜-铜屑沸腾溶液浸泡法,对应的标准为GB4334-2008E《不锈钢硫酸-硫酸铜腐蚀试验方法》。 在GB 4334-2008 E法中,通常是用直径为5mm的压头将腐蚀后的试样弯曲到180°后观察是否产生裂纹来判定材料对晶间腐蚀的敏感性。用这一弯曲方法评定材料的晶间腐蚀的倾向性,实际是用适量的变形来加速晶间腐蚀裂纹的暴露,使晶间腐蚀微裂纹扩大,以弯曲后拉伸面是否有宏观裂纹来判定试样是否产生了晶间腐蚀。这一方法可行的前提是弯曲拉伸面的变形量不超过试样允许的不发生塑性开裂的变形量。实际上,在试样弯曲拉伸面上出现裂纹不一定能代表其有晶间腐蚀倾向,当弯曲变形量超过了塑性开裂的极限,也可能引起开裂。不同材料的塑性开裂极限是不同的,在既定的标准下,很难保证所有的材料在弯曲过程中拉伸面的塑性变形都不超过材料本身允许的塑性开裂变形量。因此在实际的检验过程中,对于不同的材料评价标准的准确性和可靠性需要考虑。尤其是对于塑性较差的焊接接头材料, 按标准用直径为5mm的压头将试样弯曲到180°时, 即使没有晶间腐蚀裂纹,也可能发生开裂[引用文献]。为此,需要研究材料力学性能(强度,塑性及断裂阻力等)对于晶间腐蚀评价方法的影响。由于核电焊接接头材料在高温高压水环境中容易发生由晶间腐蚀引起的应力腐蚀开裂, 对核电设备的安全可靠性产生很大影响。因此,对GB 4334-2008 E法对核电焊接接头材料的适用性尤其需要进行研究。本章用ABAQUS软件通过三维有限元对晶间腐蚀性能评价方法中的弯曲试验进行了模拟计算,研究不同材料力学性能对于晶间腐蚀评价方法的影响,讨论了GB 4334-2008 E法标准对核电焊接接头材料试样的适用性,为研究核级焊材晶间腐蚀性能评价方法奠定基础,对开展核级焊接材料的国产化研究工作,并掌握核级焊接材料焊接腐蚀性能评价技术具有重要意义。 1.1有限元模型及分析方法 为了探究晶间腐蚀裂纹弯曲评价方法的影响因素,模拟计算了三点弯曲试验过程,分析弯曲试样的应变分布和起裂以及裂纹的扩展情况。 1.1.1 模型结构和尺寸 1

金属的电化学腐蚀与防护习题

金属的电化学腐蚀与防 护习题 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

训练5 金属的电化学腐蚀与防护 一、金属的腐蚀 1.关于金属腐蚀的叙述中,正确的是 ( ) A .金属被腐蚀的本质是M +n H 2O===M(OH)n +n 2 H 2↑ B .马口铁(镀锡铁)镀层破损后被腐蚀时,首先是镀层被氧化 C .金属在一般情况下发生的电化学腐蚀主要是吸氧腐蚀 D .常温下,置于空气中的金属主要发生化学腐蚀 2.下列事实与电化学腐蚀无关的是 ( ) A .光亮的自行车钢圈不易生锈 B .黄铜(Cu 、Zn 合金)制的铜锣不易生锈 C .铜、铝电线一般不连接起来作导线 D .生铁比熟铁(几乎是纯铁)容易生锈 3.出土的锡青铜(铜锡合金)文物常有Cu 2(OH)3Cl 覆盖在其表面。下列说 法不正确的是( ) A .锡青铜的熔点比纯铜低 B .在自然环境中,锡青铜中的锡可对铜起保护作用 C .锡青铜文物在潮湿环境中的腐蚀比干燥环境中快 D .生成Cu 2(OH)3Cl 覆盖物是电化学腐蚀过程,但不是化学反应过程 二、铁的析氢腐蚀和吸氧腐蚀 4.下列关于钢铁的析氢腐蚀的说法中正确的是 ( ) A .铁为正极 B .碳为正极 C .溶液中氢离子浓度不变 D .析氢腐蚀在任何溶液中都会发生 5.在铁的吸氧腐蚀过程中,下列5种变化可能发生的是 ( ) ①Fe 由+2价转化成+3价 ②O 2被还原 ③产生H 2 ④Fe(OH)3失水 形成Fe 2O 3·x H 2O ⑤杂质C 被氧化除去 A .①②④ B .③④ C .①②③④ D .①②③④⑤ 6.钢铁在潮湿的空气中会被腐蚀,发生的原电池反应为2Fe +2H 2O + O 2===2Fe(OH)2。以下说法正确的是 ( ) A .负极发生的反应为Fe -2e -===Fe 2+

金属材料的电化学腐蚀与防护

金属材料的电化学腐蚀与防护 一、实验目的 1.了解金属电化学腐蚀的基本原理。 2.了解防止金属腐蚀的基本原理和常用方法。 二、实验原理 1.金属的电化学腐蚀类型 (1)微电池腐蚀 ①差异充气腐蚀 同一种金属在中性条件下,如果不同部位溶解氧气浓度不同,则氧气浓度较小的部位作为腐蚀电池的阳极,金属失去电子受到腐蚀;而氧气浓度较大的部位作为阴极,氧气得电子生成氢氧根离子。如果也有K3[Fe(CN)6]和酚酞存在,则阳极金属亚铁离子进一步与K3[Fe(CN)6]反应,生成蓝色的Fe3[Fe(CN)6]2沉淀;在阴极,由于氢氧根离子的不断生成使得酚酞变红(亦属于吸氧腐蚀)。两极反应式如下: 阳极(氧气浓度小的部位)反应式: Fe = Fe2++2e- 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) 阴极(氧气浓度大的部位)反应式: O2+2H2O +4e-= 4OH- ②析氢腐蚀 金属铁浸在含有K3[Fe(CN)6]2的盐酸溶液中,铁作为阳极失去电子,受腐蚀,杂质作为阴极,在其表面H+得电子被还原析出氢气。两极反应式为: 阳极:Fe = Fe2++2e- 阴极:2H++2e-= H2↑ 在其中加入K3[Fe(CN)6],则阳极附近的Fe2+进一步反应: 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) (2)宏电池腐蚀 ①金属铁和铜直接接触,置于含有NaCl、K3[Fe(CN)6]、酚酞的混合溶液里,由于?O(Fe2+/Fe)< ?O(Cu2+/Cu),两者构成了宏电池,铁作为阳极,失去电子受到腐蚀(属于吸氧腐蚀)。两极的电极反应式分别如下: 阳极反应式: Fe = Fe2++2e- 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) 阴极(铜表面)反应式: O2+2H2O +4e-= 4OH- 在阴极由于有OH-生成,使c(OH-)增大,所以酚酞变红。

铝合金的腐蚀与防护

一.引言 1.1金属防腐蚀的重要意义 金属材料是现代最重要的工程材料,人类社会的文明和发展与金属材料的使用、发展与进步有着极为密切的联系。但是金属材料及其制品会受到各种不同形式的损坏,其中最重要、最常见的损坏形式腐蚀。 金属腐蚀问题存在于国民经济的各个领域,而且随着经济建设和科学技术的发展,腐蚀的危害越来越严重,对于国民经济的发展的制约作用越来越突出。使得腐蚀科学在国民经济中所处的地位越来越重要。据统计,人们每年冶炼出来的金属约有1/10被腐蚀破坏,相当于每年约有1/10 的冶炼厂因腐蚀的存在而做了无用功;而1/10 被腐蚀破坏的金属所殃及的金属制品的破坏,其损失要远远大于金属本身的价值。据美国国家标准局(NBS)调查,1975年美国因腐蚀造成的损失高达700亿美元,即当年国民经济总产值(GNP)的4.2%;《光明日报》1999年1月20日报道,1997年因腐蚀给我国国民经济带来的损失高达2800亿人民币。 以上所说仅就经济损失而言,在有些领域,尤其在化学工业、石油化工、原子能等工业中,由于金属材料腐蚀造成的跑、冒、滴、漏,不仅造成大量的、宝贵而有限的资源与能源的严重浪费,还能使许多有害物质甚至放射性物质泄漏而污染环境,危害人民的健康,有的甚至会长期造成严重的后果;而由于金属腐蚀所造成的灾难性事故严重地威胁着人们的生命安全;许多局部腐蚀引起的事故,如氧脆和应力腐蚀断裂这一类的失效事故,往往会引起爆炸、火灾等灾难性恶果,在一定程度上威胁着人类的生存与发展,所以对于金属腐蚀问题的研究显得尤为重要。 1.2铝合金及其腐蚀机理 铝合金是近代发展起来的一类重要的金属材料。铝合金具有强度高、密度小、导电导热性强、力学性能优异、可加工性好等优点而广泛应用于化学工业、航空航天工业、汽车制造业、食品工业、电子、仪器仪表业以及海洋船舶工业等领域。但是铝合金与其他金属一样,也面临着严重的腐蚀问题。虽然在自然条件下,铝合金表面容易形成一层厚约4 nm 的自然氧化膜,但是这层膜多孔、不均匀且抗蚀性差,难以抵抗恶劣环境的腐蚀的。 为了解决上述问题,有必要对铝合金的腐蚀机理有所了解。一般而言,金属在满足以下5个基本条件下就会受到腐蚀:(1)阳极;(2)阴极;(3)阴一阳之间存在着连续接触;(4)电解质溶液;(5)阴极反应物(如氧气、水或氢气)。 铝合金的腐蚀电化学反应为: Al 3++ 3e-( 1) O2 + 2H20 + 4 e - -(中性/碱性) (2) 2H ++ 2 e-H 2(g)(酸性) (3) 由于原电池作用加速了铝腐蚀,有机或无机阻隔层和钝化剂可避免合金与电解质接触而发生阴极反应,与此同时也抑制腐蚀电子向金属界面的传导;另外钝化剂(如铬酸盐)形成的不溶性氧化物沉积在受腐点,使活性腐蚀点(如晶界、晶族、凹坑、沉淀析出处)减少,从而阻挡水、氧或电解质的进一步渗透,降低腐蚀速率。

晶间腐蚀的定义

晶间腐蚀 英文名称:intergranular corrosion;intercrystalline corrosion 说明:局部腐蚀的一种。沿着金属晶粒间的分界面向内部扩展的腐蚀。主要由于晶粒表面和内部间化学成分的差异以及晶界杂质或内应力的存在。晶间腐蚀破坏晶粒间的结合,大大降低金属的机械强度。而且腐蚀发生后金属和合金的表面仍保持一定的金属光泽,看不出被破坏的迹象,但晶粒间结合力显著减弱,力学性能恶化, 不能经受敲击,所以是一种很危险的腐蚀。通常出现于黄铜、硬铝合金和一些不锈钢、镍基合中。不锈钢焊缝的晶间腐蚀是化学工厂的一个重大问题。 不锈钢的晶间腐蚀: 不锈钢在腐蚀介质作用下,在晶粒之间产生的一种腐蚀现象称为晶间腐蚀。 产生晶间腐蚀的不锈钢,当受到应力作用时,即会沿晶界断裂、强度几乎完全消失,这是不锈钢的一种最危险的破坏形式。晶间腐蚀可以分别产生在焊接接头的热影响区(HAZ)、焊缝或熔合线上,在熔合线上产生的晶间腐蚀又称刀线腐蚀(KLA)。 不锈钢具有耐腐蚀能力的必要条件是铬的质量分数必须大于10~12%。当温度升高时,碳在不锈钢晶粒内部的扩散速度大于铬的扩散速度。因为室温时碳在奥氏体中的溶解度很小,约为0.02%~0.03%,而一般奥氏体不锈钢中的含碳量均超过此值,故多余的碳就不断地向奥氏体晶粒边界扩散,并和铬化合,在晶间形成碳化铬的化合物,如(CrFe)23C6等。数据表明,铬沿晶界扩散的活化能力162~252KJ/mol,而铬由晶粒内扩散活化能约540KJ/mol,即:铬由晶粒内扩散速度比铬沿晶界扩散速度小,内部的铬来不及向晶界扩散,所以在晶间所形成的碳化铬所需的铬主要不是来自奥氏体晶粒内部,而是来自晶界附近,结果就使晶界附近的含铬量大为减少,当晶界的铬的质量分数低到小于12%时,就形成所谓的“贫铬区”,在腐蚀介质作用下,贫铬区就会失去耐腐蚀能力,而产生晶间腐蚀。 不锈钢的敏化及预防措施 含碳量超过0.03%的不稳定的奥氏体型不锈钢(即不含钛或铌的0Cr18Ni9不锈钢),如果热处理不当则在某些环境中易产生晶间腐蚀。这些钢在425-815℃之间加热时,或者缓慢冷却通过这个温度区间时,都会产生晶间腐蚀。这样的热处理造成碳

腐蚀电化学试卷

腐蚀电化学试卷 一、填空题20’ 1.电极系统由电子导体相和离子导体相组成。 2.在电极系统中伴随着两个非同类导体之间的电荷转移而在两相界面上发生的化学反应,称为电极反应。 3.化学亲和势A反应一个体系进行化学反应的能力和方向,当A > 0时,反应将向顺向进行,当A < 0时,反应将向逆向进行,当A=0时,反应达到平衡。 4.腐蚀电池中相应的电极反应都是最大程度的不可逆过程的方式进行的。5.在表述相界面区中的电位分布情况时做了两点简单化的假设: 1.假设相界区中的电场是均匀电场。 2.假设溶液相中不存在空间电荷层。 6.右图为电极系统相界区的等效电路图 讨论R F→∞时,电极系统为完全极化电极 R F为有限值时,电极系统为不完全极化电极 R F≈0时,电极系统为不极化电极 7.费克第一定律表达式: 8.当金属处于零电荷电位时,金属的表面既不带有过剩的正电荷,也不带有过剩的负电荷。 9.稳态极化测量按其控制方式,分为恒电位法和恒电流法两大类10.Barnartt三点法的要点是测定极化曲线弱极化区上ΔE、2ΔE和-2ΔE三点 以及对应的极化电流I ΔE 、I2 ΔE 和I-2ΔE,通过数学变换,可同时计算出i corr、b a 和b c的数值 二、判断题10’ 1.阳极反应进行的方向是从还原体的体系向氧化体的体系转化。(√) 2.由E-Ee=Φ-Φe可得Ee=Φe。(×) 3.一个相的内电位Φ的数值无法测得,两个相的内电位之差Φ的绝对值是可以测出的。(×) 4.电极反应的过电位与电极反应的电流密度之间的关系为ηI≥0。(√)5.凡是平衡电位比混合电位高的电极反应,按阴极反应的方向进行;反之,则按阳极反应的方向进行。(√) 6.干电池属于腐蚀电池。(×) 7.腐蚀电位越高,腐蚀速度越快(×) 8.Fe在水中的反应Fe+H2O→Fe(OH)2+2H++2e只受溶液的PH值影响(×)9.增加金属中析氢过电势小的阴极性杂志会减小析氢腐蚀。(×) 10.在敞开系统中铁在水中的腐蚀速度随温度升高而增大。(×) 三、选择题30’ 1.一块表面上覆盖有AgCl膜层的银片浸在NaCl的水溶液中,则有(B)A.Ag是离子导体相B.Ag是第二类电极 C.Ag表面发生还原反应D.Ag表面不会发生电极反应 2.在下列电极中选出与其他三个不同种类的电极(D) A.氢电极B.卤素电极C.氧电极D.甘汞电极 3.使一个单位正电荷穿过相P的表面层而需要做的电功称为P的(C)

晶间腐蚀

晶间腐蚀 1.沿着金属晶粒边界发生的选择性腐蚀,称为晶间腐蚀(lntergranular Corrosion);锈钢、形式,发生在金属晶体的边缘上形式,发生在金属晶体的边缓得很松弛,机械强度大大降低。经过晶腐蚀的金属表面,外表看上去好像还如很完整,但因失去了机械强度,所以稍加轻轻敲击,便会碎成细粒。晶间腐蚀由于肉眼无法看出,常常成设备及重要构件突然破坏,危害性极大。例如,不锈钢、镍基合金、铝合金、镁合金等都存在腐蚀问题。航空零件上采用的高强度铝合金镀硬铬,尤其是含铜量高的铝合金,如果热处理未处理好,就有可能在晶粒边缘连续地析出CuAl2的硬化相颗。粒,这样晶粒近旁的含铜量就比晶粒内部的含铜量少,结果晶粒边界附近就成为阳极,为阴极,在一定的腐蚀条件下,腐蚀微电池产生,界腐蚀就发生了。此外锌、锡、铝等金,也会发生晶间腐蚀。 2.另一种晶间腐蚀现象就是穿晶腐蚀或称为腐蚀破坏。其腐蚀的破坏形式是沿最大张应力线发生的,可穿透晶体,所以被称为穿晶腐蚀。例如,金属在周期交变载荷下的腐蚀及在)。例如,金属在周期交变载荷的属性):成开裂,通常称为腐蚀裂要开。这类腐蚀是经常发生的,尤其是合金材料,由于不同金属元素,它们之间审代取真,濟窿。旨油韵胖解呀队等因素,这种腐蚀便会加速,直至腐蚀裂开。 3.黄铜的脱锌所形成的开裂称为季裂(Season :应力Cracking),也就是指黄铜的缉分之中去,造成铜组分富集在合金盼表面上,这蚀实属晶间腐蚀,当有应力存在时,便造成开裂实际生产中,也经常发现rosion )

现象,就是金属腐蚀后于晶间腐蚀的一种特殊形多与穿晶腐蚀相似,多数发生在高粥例如,机翼的上淳窝结构等多冠妄三劣情况下,使该部位凳纹的侧墜金产生剥蚀腐蚀。 4.另外,还有空穴腐蚀( Cavitation Corrosinn竽生物腐蚀( Microbiological CorroSion)【电镀设备厂】kwtgs.com属的晶格同样存在着影响,紲严,与所受的介质条件有密切关系:很危险,必须引起重视。形成晶间腐蚀的因素很多,首先料的特性和耐蚀性,以及材不锈钢的晶间腐蚀现腐蚀最有害的元舅出,就可以防止晶间腐蚀。莠都钢的碳的质量分数降低到0. 03%以下。 5.同样,对于高强度铝合金中含铜星对高强度钢中含镍量的控蚀的一种措施。在机械加工、焊差中,也会引起晶间腐蚀在不锈钢焊接时,由于热的影响(焊缝附近处于热影响区温度范围内),也会引起对晶间腐蚀的敏感性,一旦在腐蚀介质的作用下,焊缝附近就很容生晶间腐蚀。这种现象通常也叫做焊接劣化。此外,超高强度等,也腐蚀倾向性。因此,必须设法消除应力,高强度合应力腐蚀裂纹是引起结构破坏的一个主要原因。

不锈钢晶间腐蚀

《材料腐蚀与防护》结课作业304奥氏体不锈钢的晶间腐蚀报告 班级:成型1303班 :旭男 学号:20132336

304奥氏体不锈钢是指在常温下具有奥氏体组织的不锈钢,钢中含Cr约18%、含Ni约8%、C约0.1%时,具有稳定的奥氏体组织。它是一种很常见的不锈钢材料,业也叫做18/8不锈钢。奥氏体不锈钢无磁性而且具有高韧性和塑性,但强度较低,不可能通过相变使之强化,仅能通过冷加工进行强化,具有良好的易切削性。 304奥氏体不锈钢的防锈性能比200系列的不锈钢材料要强,密度为7.93 g/。它在耐高温方面也比较好,最高可承受1000℃~1200℃。它具有优良的耐腐蚀性能和较好的抗晶间腐蚀性能,加工性能好且韧性高,被广泛应用。适用于食品的加工储存、家庭用品、汽车配件、医疗器具、化学建材,农业船舶部件等。 304奥氏体不锈钢中最为重要的元素是Ni和Cr,但是又不仅限于这两种元素。对于304奥氏体不锈钢来说,其成分中的Ni元素十分重要,直接决定着它的抗腐蚀能力。它正是因为有足够含量的铬,其保护性氧化膜是自愈性的。当其 薄膜破坏时,重新形成新的保护性氧化薄膜。致使它能进行机械加工也不失去抗氧化性能。然而当金属含铬量不够或某些原因造成不锈钢晶界贫铬,就不能形成保护性氧化膜。这就说明不锈钢之所以不锈,关键在于要有足够的铬和足够的氧。 此外,Ni与Cr配合,在不锈钢中发挥着重要作用。Ni在不锈钢中的主要作用在于其改变了钢的晶体结构,形成奥氏体晶体结构,从而改善和加强Cr 的钝化机理,其抗晶间腐蚀能力得到提高。

304、347、321钢的化学成分表格1(%) 奥氏体不锈钢在许多介质环境中容易发生晶间腐蚀、点腐蚀、缝隙腐蚀、应力腐蚀、腐蚀疲劳等腐蚀类型。在其中加入不同元素可得到不同特性,加Mo改善点蚀和耐缝隙腐蚀,降低C含量或加入Ti和Nb可减少晶间腐蚀倾向,加Ni 和Cr可改善高温抗氧化性和强度,加Ni改善抗应力腐蚀性能。我查阅了晶间腐蚀的相关资料,因为以前在《金属学与热处理》里接触过晶间腐蚀,而且在《材料腐蚀与防护》的课堂上,自己对晶间腐蚀也更感兴趣。 晶间腐蚀是一种常见的局部腐蚀,遭受这种腐蚀的不锈钢,表面看来还很光亮,但只要轻轻敲击便会破碎成细粒。由于晶间腐蚀不易检查,会造成设备突然破坏,所以危害性极大。奥氏体不锈钢是工业中应用最广的不锈钢之一,多半在约427℃~816℃的敏化温度围,在特定的腐蚀环境中易发生晶间腐蚀,晶间腐蚀也会加快整体腐蚀。

极化曲线在电化学腐蚀中的应用

极化曲线在电化学腐蚀中的应用 娄浩 (班级:材料化学13-1 学号:120133202059) 关键词:电化学腐蚀;极化;极化曲线;极化腐蚀图 据工业发达国家统计,每年由于腐蚀造成的损失约占国民生产总值的l~4%,世界钢铁年产量约有十分之一因腐蚀而报废,因此研究金属腐蚀对于国民经济发展和能源的合理利用具有重大意义。其中电化学腐蚀是金属腐蚀的一种最普遍的形式。论文分析了电化学腐蚀的机理以及极化曲线的理论基础。利用测量极化曲线的方法,研究金属腐蚀过程,已经得到广泛的应用。 1.金属腐蚀的电化学原理 金属腐蚀学是研究金属材料在其周围环境作用下发生破坏以及如何减缓或防止这种破坏的一门科学[1]。通常把金属腐蚀定义为:金属与周围环境(介质)之间发生化学或电化学而引起的破坏或变质。所以,可将腐蚀分为化学腐蚀和电化学腐蚀[2]。 化学腐蚀是指金属表面与非电解质直接发生纯化学作用而引起的破坏。其反应的特点是金属表面的原子与非电解质中的氧化剂直接发生氧化还原反应,形成腐蚀产物[3]。腐蚀过程中电子的传递是在金属与氧化剂之间直接进行的,因而没有电流产生。 电化学腐蚀是指金属表面与电子导电的介质(电解质)发生电化学反应而引起的破坏。任何以电化学机理进行的腐蚀反应至少包含有一个阳极反应和一个阴极反应,并以流过金属内部的电子流和介质中的离子流形成回路[4]。阳极反应是氧化过程,即金属离子从金属转移到介质中并放出电子;阴极反应为还原过程,即介质中的氧化剂组分吸收来自阳极的电子的过程。例如,碳钢[5]在酸中腐蚀,在阳极区Fe被氧化成Fe2+所放出的电子自阳极Fe流至钢表面的阴极区(如Fe3C)上,与H+作用而还原成氢气,即 阳极反应:Fe-2e→Fe2+ 阴极反应:2H+ + 2e→H2 总反应:Fe + 2H+→Fe2+ + H2 与化学腐蚀不同,电化学腐蚀的特点在于,它的腐蚀历程可分为两个相对独立并可

铝合金腐蚀

铝合金腐蚀 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

摘要金属材料是现代最重要的工程材料,人类社会的文明和发展与金属材料的使用、发展与进步有着极为密切的联系。但是金属材料及其制品会受到各种不同形式的损坏,其中最重要、最常见的损坏形式腐蚀。 铝是一种活泼金属,极容易和空气中的氧气起化应生成氧化铝。氧化铝在铝制器皿表面结一层灰色致密的极薄的(约十万分之一厘米厚)薄膜,这层薄膜十分坚固,它能使里力的金属和外界完全隔开。从而保护内部的铝不再受空气中氧气的侵蚀。 铝和氧化铝薄膜都能和许多酸性或碱性物质起化学反应,一旦氧化铝薄膜被碱性溶液或酸性溶液溶解掉,则内部铝就要和碱性或酸性溶液起反应而渐渐被侵蚀掉。所以铝制器皿不能用碱性溶液或酸性溶液洗刷,也不能用铝制器皿盛放纯碱、洗衣粉或食醋等物质。 关键词:铝合金、腐蚀、表面处理、防腐涂料 1 引言 铝防腐蚀的重要意义 金属腐蚀问题存在于国民经济的各个领域,而且随着经济建设和科学技术的发展,腐蚀的危害越来越严重,对于国民经济的发展的制约作用越来越突出。使得腐蚀科学在国民经济中所处的地位越来越重要。据统计,人们每年冶炼出来的金属约有1/10被腐蚀破坏,相当于每年约有1/10?的冶炼厂因腐蚀的存在而做了无用功;而1/10?被腐蚀破坏的金属所殃及的金属制品的破坏,其损失要远远大于金属本身的价值。据美国国家标准局(NBS)调查,1975年美国因腐蚀造成的损

失高达700亿美元,即当年国民经济总产值(GNP)的%;《光明日报》1999年1月20日报道,1997年因腐蚀给我国国民经济带来的损失高达2800亿人民币。 2 铝的主要腐蚀形式和腐蚀机理 铝的腐蚀形式 铝的主要腐蚀形式有点腐蚀、均匀腐蚀、缝隙腐蚀、晶间腐蚀、应力腐蚀开裂。 点腐蚀 点腐蚀:点腐蚀又称为孔腐蚀,是在金属上产生针尖状、点状、孔状 的一种为局部的腐蚀形态。点腐蚀是阳极反应的一种独特形式,是一种自催化过程,即点腐蚀孔内的腐蚀过程造成的条件,如有腐蚀介质(CL-、F-等)、促进反应的物质(CU2+、ZN2+等),既促进又足以维持腐蚀的继续进行。 均匀腐蚀 均匀腐蚀:铝在磷酸与氢氧化钠等溶液中,其上的氧化膜溶解,发生均匀腐蚀,溶解速度也是均匀的。溶液温度升高,溶液浓度增大,促进铝的腐蚀。 缝隙腐蚀 缝隙腐蚀:缝隙腐蚀是一种局部腐蚀。金属部件在电解溶液中,由于 金属与金属或金属与非金属之间形成缝隙,其宽度足以使介质浸入而又使介质处于一种停滞状态,使得缝隙内部腐蚀加剧的现象称为缝隙腐蚀。 晶间腐蚀 晶间腐蚀:是在金属界处发生局部腐蚀的现象。就电化学的观点来看, 由于材料的晶粒为阴极,而晶界一般为阳极,因此在均匀腐蚀的情况下,晶界处的腐蚀性仍稍大于晶粒处,如果在特殊情况下,材料的晶界抗蚀元素又相对减

晶间腐蚀标准

Standard practices for Detecting susceptibility to intergranular attack in austenitic stainless steels 奧氏體不銹鋼晶間腐蝕敏感性標準實驗 1.scope 1.應用範圍 these practices cover the following five tests: 1.2 這些實驗包括下列五類: 1.1.1 parctics A- oxalic acid etch test for classification of etch structures of austenitic stainless steels(section 3 to 7, inclusive) 1.1.1實驗A——奧氏體不銹鋼草酸浸蝕試驗後的浸蝕組織分類(包括3-7部分 1.2 the following factors govern the application of these practices: 1.2以下因素主導著這類實驗: 1.2.1 susceptibility to intergranular attack associated with the precipitation of chromium carbides is readily detected in all six tests. 1.2.1晶間腐蝕敏感性同碳鉻化合物的快速析出 1.2.2 sigma phase in wrought chromium-nickel-molybdenum steels. Which may or may not be visible in the microstructure, can

铝和铝合金的大气腐蚀机理

铝和铝合金的大气腐蚀 机理 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

1铝和铝合金的大气腐蚀机理 铝和铝合金的表面氧化膜是铝合金具有耐大气腐蚀性的主要原因.铝的氧化膜(γ- Al 2O 3 )在室温的大气中就可以生成,而且非常迅速和致密,厚度为25~30?.也就是说,氧化膜 在大气环境中具有自修复功能.若有水存在或者暴露在大气中几个月以后,最初形成的γ- Al 2O 3 的外层转变为一薄层γ-AlOOH.然后,在γ-AlOOH上又会覆盖上一层Al(OH) 3 (也可写 成Al 2O 3 ·3H 2 O).从铝-水体系的电位-pH图可知,Al(OH) 3 在较大的pH范围内都会保持稳 定.Al(OH) 3从pH=4开始溶解;当pH=2.4时,认为Al(OH) 3 会完全溶解(事实上,即使pH=2.0 时,铝表面的腐蚀类型仍然是孔蚀.).大部分的降雨、差不多所有的雾、表面蒸发浓缩的液 层和铝表面小孔内的电解质都会使铝处于腐蚀状态.环境因素对铝的大气腐蚀的影响和其 它金属相似,与环境大气的相对湿度、温度、大气中SO 2 的浓度、Cl-的含量以及降水的数 量、酸度相关性较大,同时也受到O 3,NO x 及CO 2 等污染组分的轻微影响.大气污染物通过干 湿沉降,使得金属表面存在着和大气中同样丰富的化学组分.暴露在大气中的铝合金表面可分为三层:铝合金及其氧化膜、腐蚀产物层和大气污染物形成的污染层或薄液膜.根据大气化学组分对铝和铝合金化学、电化学反应的不同及形成的腐蚀产物的性质不同,存在着不同的腐蚀机制. 1.氯离子的存在是引起铝和铝合金大气腐蚀的重要原因.由于铝的氯化物具有可溶性,在户外暴露的铝表面上并没有大量的氯化物层存在,只有少量的氯离子进入到腐蚀产物 层.Cl-通过竟争吸附,逐渐取代Al(OH) 3表面上的OH-生成AlCl 3 ,如方程式(1)~(3)所示: Al(OH) 3+Cl-→Al(OH) 2 Cl+OH- (1) Al(OH) 2Cl+Cl-→Al(OH)Cl 2 +OH- (2) Al(OH)Cl 2+Cl-→AlCl 3 +OH- (3)

相关文档
最新文档