高中数学立体几何专:空间距离的各种计算(含答案)doc

高中数学立体几何专:空间距离的各种计算(含答案)doc
高中数学立体几何专:空间距离的各种计算(含答案)doc

高中数学立体几何

空间距离

1.两条异面直线间的距离

和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.

2.点到平面的距离

从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离

如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离.

4.两平行平面间的距离

和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离.

题型一:两条异面直线间的距离

【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离;

【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线.

(2)在Rt △BEF 中,BF =a 23,BE =a 2

1, 所以EF 2=BF 2-BE 2=a 2

1

2,即EF =a 22. 由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为a 2

2. 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED .

∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB .

∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离. ∵CE =23,∴CF =FD =21,∠EFC =90°,EF =2221232

2=???

??-???

? ??. ∴AB 、CD 的距离是

2

2

. 【解后归纳】 求两条异面直线之间的距离的基本方法:

(1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度.

(2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. (3)如果两条异面直线分别在两个互相平行的平面内,可以转化为求两平行平面的距离.

题型二:两条异面直线间的距离

【例3】 如图(1),正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离; 过A 作AO ⊥平面BCD 于O ,连BO 并延长与CD 相交于E ,连AE . ∵AB =AC =AD ,∴OB =OC =OD .∴O 是△BCD 的外心.又BD =BC =CD ,

∴O 是△BCD 的中心,∴BO =3

2

BE =332332=?.

又AB =1,且∠AOB =90°,∴AO =363312

22=??

?

? ??

-=-BO AB .∴A 到平面BCD 的距离是36.

例1题图

例2题图

例3题图

【例4】 在梯形ABCD 中,AD ∥BC ,∠ABC =

2

π

,AB =a ,AD =3a 且sin ∠ADC =55,又P A ⊥平面ABCD ,P A =a ,

求:(1)二面角P —CD —A 的大小; (2)点A 到平面PBC 的距离.

【规范解答】 (1)作AF ⊥DC 于F ,连结PF , ∵AP ⊥平面ABCD ,AF ⊥DC ,∴PF ⊥DC , ∴∠PF A 就是二面角P —CD —A 的平面角.

在△ADF 中,∠AFD =90°,∠ADF =arcsin 55

,AD =3a ,∴AF =5

3a ,

在Rt △P AF 中tan ∠PF A =

3535==a a AF PA ,∴∠PF A =arc tan 3

5

. (2)∵P A ⊥平面ABCD ,∴P A ⊥BC ,又BC ⊥AB ,

∴BC ⊥平面P AB ,作AH ⊥PB ,则BC ⊥AH ,∴AH ⊥平面PBC ,∵P A ⊥AB ,P A =AB =a ,

∴PB =2a ,∴AH =a 2

2.

【例5】 如图,所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截面而得到的,其中AB=4,

BC=2,CC 1=3,BE=1.(Ⅰ)求BF 的长;(Ⅱ)求点C 到平面AEC 1F 的距离.

解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. ∵AF ∥EC 1,∴∠FAD=∠C 1EH. ∴Rt △ADF ≌Rt △EHC 1.

∴DF=C 1H=2. .622

2

=+=∴DF BD BF (Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG . 过C 作CM ⊥AG ,垂足为M ,连C 1M ,

由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC , 且AG ?面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.

在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到面AEC 1F 的距离.

.11

33

417

12317

123,17121743cos 3cos 3,.

17,1,2

2

1

1

221=+

?

=

?=

∴=?

===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CG

BG

CC EB 知由从而可得由

解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0), A (2,0,0),C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ).

∵AEC 1F 为平行四边形,

.

62,62||).

2,4,2().2,0,0(.2),2,0,2(),0,2(,,

11的长为即于是得由为平行四边形由BF F z z EC F AEC =--=∴∴=∴-=-=∴∴

(II )设1n 为面AEC 1F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然

???=+?+?-=+?+??????=?=?02020140,0,011y x y x n n 得由??

?

??-==∴???=+-=+.41,1,022,014y x x y 即

A

C

D

1

A

1

B

1

C

1

A

1

A

111),3,0,0(n CC CC 与设又=的夹角为a ,则1111cos ||||

CC n CC n α?==?

∴C 到平面AEC 1F 的距离为.11

33

4333343cos ||1=?==αCC d

【例6】

正三棱柱111C B A ABC -的底面边长为8,对角线101=C B ,D 是AC 的中点。

(1)求点1B 到直线AC 的距离.(2)求直线1AB 到平面BD C 1的距离. 解:(1)连结BD ,D B 1,由三垂线定理可得:AC D B ⊥1, 所以D B 1就是1B 点到直线AC 的距离。 在BD B Rt 1?中,68102

22

211=-=-=

BC

C B BB 34=B

D .

2122121=+=

∴B B BD D B .

(2)因为AC 与平面BD 1C 交于AC的中点D, 设E BC C B =?11,则1AB //DE ,所以1AB //平面BD C 1, 所以1AB 到平面BD 1C 的距离等于A点到平面BD 1C 的距离,等于C点到平面BD 1C 的距离,也就等于三棱 锥1BDC C -的高, B D C

C B

D C C V V --=11

, 131311CC S hS BDC BDC ??=∴,131312=∴h ,即直线1AB 到平面BD 1C 的距离是13

13

12. 【解后归纳】 求空间距离注意三点: 1.常规遵循一作二证三计算的步骤; 2.多用转化的思想求线面和面面距离; 3.体积法是一种很好的求空间距离的方法.

【范例4】如图,在长方体AC 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ;

(2)当E 为AB 的中点时,求点E 到面ACD 1的距离;

(3)AE 等于何值时,二面角D 1—EC —D 的大小为4

π

.

解析:法1

(1)∵AE ⊥面AA 1DD 1,A 1D ⊥AD 1,∴A 1D ⊥D 1E

(2)设点E 到面ACD 1的距离为h ,在△ACD 1中,AC=CD 1=5,AD 1=2,

故.2

121,232152211=??==-??=

??BC AE S S ACE C AD 而 11111131,1,.33223

D AEC AEC AD C V S DD S h h h -??∴=

?=?∴?=?∴= (3)过D 作DH ⊥CE 于H ,连D 1H 、DE ,则D 1H ⊥CE

∴∠DHD 1为二面角D 1—EC —D 的平面角.

设AE=x ,则BE=2-x

11,, 1.

4

,,,Rt D DH DHD DH Rt ADE DE Rt DHE EH x π

?∠=

∴=?=∴?= 在中在中在中

.

4

,32.

32543.

54,3122π

的大小为二面角时中在中在D EC D AE x x x x x x CE CBE Rt CH DHC Rt ---=∴-=?+-=

+∴+-=?=?

法2:以D 为坐标原点,直线DA 、DC 、DD 1分别为x 、y 、z 轴,建立空间直角坐标系,设AE=x ,则A 1(1,

0,1),D 1(0,0,1),E(1,x ,0),A(1,0,0), C(0,2,0).

(1).,0)1,,1(),1,0,1

(,1111E D DA x E D DA ⊥=-=所以因为 (2)因为E 为AB 的中点,则E (1,1,0), 从而)0,2,1(),1,1,1(1-=-=AC E D ,)1,0,1

(1-=AD , 设平面ACD 1的法向量为),,(c b a =,

则?????=?=?,

0,

01AD 也即???=+-=+-002c a b a ,得???==c a b a 2, 从而)2,1,2(=,所以点E 到平面AD 1C 的距离为.3

1

3212|

|1=-+=

=n h (3)设平面D 1EC 的法向量),,(c b a =, ∴),1,0,0(),1,2,0(),0,2,1(11=-=-=DD D x

由??

?=-+=-??????=?=?.0)2(0

2,

0,01x b a c b C D n 令b =1, ∴c=2, a =2-x , ∴).2,1,2(x -=依题意.22

5

)2(222|

|||4

cos

211=+-?=

?=

x DD n π

∴321+=x (不合,舍去),322-=x . ∴AE=32-时,二面角D 1—EC —D 的大小为

4

π

. ●对应训练 分阶提升 一、基础夯实

1.把边长为a 的正△ABC 沿高线AD 折成60°的二面角,则点A 到BC 的距离是 ( )

A.a

B.

a 26 C.a 33 D.a 4

15 2.△ABC 中,AB =9,AC =15,∠BAC =120°.△ABC 所在平面外一点P 到三个顶点A 、B 、C 的距离都是14,那么点P 到平面α的距离为 ( )

A.7

B.9

C.11

D.13

3.从平面α外一点P 向α引两条斜线P A ,PB .A ,B 为斜足,它们与α所成角的差是45°,它们在α内的射影长分别是2cm 和12cm ,则P 到α的距离是 ( )

A.4cm

B.3cm 或4cm

C.6cm

D.4cm 或6cm

4.空间四点A 、B 、C 、D 中,每两点所连线段的长都等于a ,动点P 在线段AB 上,动点Q 在线段CD 上,则P 与Q 的最短距离为 ( )

A.a 2

1 B.

a 22

C.a 23

D.a 5.在四面体P —ABC 中,P A 、PB 、PC 两两垂直.M 是面ABC 内一点,且点M 到三个面P AB 、PBC 、PCA 的距离分别为2、3、6,则点M 到顶点P 的距离是 ( )

A.7

B.8

C.9

D.10

6.如图,将锐角为60°,边长为a 的菱形ABCD 沿较短的对角线折成60°的二面角,则AC 与BD 的距离是 ( )

A.a 4

3

B.

a 43

C.a 23

D.a 46

第6题图

第7题图

7.如图,四棱锥P —ABCD 的底面为正方形,PD ⊥底面ABCD ,PD =AD =1,设点C 到平面P AB 的距离为d 1,点B 到平面P AC 的距离为d 2,则有 ( )

A.1

B.d 1

C.d 1<1

D.d 2

8.如图所示,在平面α的同侧有三点A 、B 、C ,△ABC 的重心为G .如果A 、B 、C 、G 到平面α的距离分别为a 、b 、c 、d ,那么a+b+c 等于 ( )

A.2d

B.3d

C.4d

D.以上都不对 9.如图,菱形ABCD 边长为a ,∠A =60°,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的点且

2====DG

CG

FB CF HD AH EB AE ,沿EH 和FG 把菱形的两锐角折起,使A 、C 重合,这时点A 到平面EFGH 的距离是 ( )

A.

2

a B.

a 22 C.a 23 D.a 615 二、思维激活

10.二面角α-MN -β等于60°,平面α内一点A 到平面β的距离AB 的长为4,则点B 到α的距离为 .

11.在60°的二面角α—l —β中,A ∈α,AC ⊥l 于C ,B ∈β,BD ⊥l 于D ,又AC =BD =a ,CD =2a ,则A 、B 两点间距离为 .

12.设平面α外两点A 和B 到平面α的距离分别为4cm 和1cm ,AB 与平面α所成的角是60°,则线段AB 的长是 .

13.在直角坐标系中,已知A (3,2),B (-3,-2)沿y 轴把直角坐标系折成平面角为α的二面角A —Oy —B 后,∠AOB =90°,则cos α的值是 . 三、能力提高

14.在边长为a 的菱形ABCD 中,∠ABC =60°,PC ⊥平面ABCD ,E 是P A 的中点,求点E 到平 面PBC 的距离.

15.在直三棱柱ABC —A 1B 1C 1中,∠ACB 为直角,侧面AB 1与侧面AC 1所成的二面角为60°,M 为AA 1上的点.∠A 1MC 1=30°,∠BMC 1=90°,AB =a .

(1)求BM 与侧面AC 1所成角的正切值. (2)求顶点A 到面BMC 1的距离. 16.已知斜三棱柱ABC —A 1B 1C 1的侧面A 1ACC 1与底面ABC 垂直.∠ABC =90°,BC =2,AC =23,且AA 1⊥A 1C ,AA 1=A 1C .

(1)求侧棱A 1A 与底面ABC 所成角的大小;

(2)求侧面A 1ABB 1与底面ABC 所成二面角的大小; (3)求顶点C 到侧面A 1ABB 1的距离.

第8题图

第9题图

第15题图

17.如图,在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,E 、F 分别为棱AB 与BC 的中点,EF 与BD 交于H . (1)求二面角B 1—EF —B 的大小.

(2)试在棱B 1B 上找一点M ,使D 1M ⊥面EFB 1,并证明你的结论. (3)求点D 1到面EFB 1的距离.

空间的距离习题解答

1.D 折后BC =2a ,∴点A 到BC 的距离为41542

2

a a a =??

? ??-.

2.A BC =21120cos 159215922=???-+. ∴△ABC 外接圆半径R =

37120sin 221

=?

,

∴点P 到α的距离为.7)37(1422=-

3.D 设PO ⊥α垂足为O ,|PO |=x cm ,∠OAP =β,∠OBP =γ,那么β-γ=45°, tan β=

2

x

,tan γ=12x ,tan (β-γ)=tan 45°

展开左边并整理得:x 2-10x +24=0,解得x 1=6,x 2=4.

4.B P 、Q 的最短距离即为异面直线AB 与CD 间的距离,当P 为AB 的中点,Q 为CD 的中点时符合题意.

5.A PM =7632222=++.

6.C 取BD 的中点O 连AO 、OC ,作OE ⊥AC 于E ,则OE 为所求,∴AO =CO =AC =2

3a

. 7.D 点C 到平面P AB 的距离d 1=

2

2, 点B 到平面P AC 的距离d 2=

332

1

122

1=+

?

∵12

233<<,∴d 2

第17题图

8.B |MM ′|=2c b +,又

312

2=+-+-

c b a c

b d .∴a +b +

c =3

d . 9.A 设BD 的中点为O ,

∴EO =6760cos 232232

2

a a a a a =???-??

?

??+??? ??,点A 到平面EFGH 的距离为23679422a a a =-.

10.2 作AC ⊥MN 于C ,连BC ,则BC ⊥MN , ∴∠ACB =60°,又MN ⊥平面ABC ,

∴平面ABC ⊥平面α,作BD ⊥AC 于D ,则BD ⊥α, ∴BD 的长即为所求,得BD =2.

11.a 3 AB =a a a a a a 360cos 2)2(222=????-++. 12.23cm 或

3

3

10cm 当点A 、B 在α同侧时,AB =

3260sin 3

=?;

当点A 、B 在α异侧时,AB =3

3

1060sin 5=?

13.9

4

如图,AB ″=26)32(22222=+=+OB OA

∵BC ⊥y 轴,B ′C ⊥y 轴,

∴∠B ′CB ″为二面角A —Oy —B 的平面角. ∠B ′CB ″=α,在△B ′CB ″中,B ′C =B ″C =3, B ′B ″=104262=-,由余弦定理易知cos α=

9

4. 14.如图,将点E 到平面PBC 的距离转化成线面距,再转化成点面距. 连AC 、BD ,设AC 、BD 交于O ,则EO ∥平面PBC , ∴OE 上任一点到平面PBC 的距离相等. ∵平面PBC ⊥平面ABCD ,

过O 作OG ⊥平面PBC ,则G ∈BC , 又∠ACB=60°,AC=BC=AB=a , ∴OC =

2

a

,OG =OC sin60°=43a .

点评:若直接过E 作平面PBC 的垂线,垂足难以确定.在解答求距离时,要注意距离之间的相互转化有的

能起到意想不到的效果.

15.(1)∵三棱柱ABC —A 1B 1C 1为直三棱柱,∴∠BAC 为二面角B 1—AA 1—C 1的平面角, ∴∠BAC =60°.

又∵∠ACB 为直角,∴BC ⊥侧面AC 1.

连MC ,则MC 是MB 在侧面AC 1上的射影. ∴∠BMC 为BM 与侧面AC 1所成的角.

且∠CMC 1=90°,∠A 1MC 1=30°,所以∠AMC =60°.

设BC =m ,则AC =m 33,MC =32

m , 所以tan ∠BMC =

2

3. 即BM 与侧面AC 1所成的角的正切值为

2

3. (2)过A 作AN ⊥MC ,垂足为N ,则AN ∥面MBC 1.

∵面MBC ⊥面MBC 1,且过N 作NH ⊥MB ,垂足为H , 则NH 是N 到面MBC 1的距离,也就是A 到面MBC 1的距离. ∵AB =a ,AC =

2

a

,且∠ACN =30°,

第13题图解

第14题图解

∴AN =

4

a

且∠AMN =60°,∴MN =a 123. ∴NH =MN sin ∠BMC =a 123×a 52

39(本题还可用等积法). 16.(1)如图所示,作A 1D ⊥AC ,垂足为D ,由面A 1ACC 1⊥面ABC ,得A 1D ⊥面ABC

∴∠A 1AD 为A 1A 与面ABC 所成的角 ∵AA 1⊥A 1C ,AA 1=A 1C ∴∠A 1AD =45°为所求.

(2)作DE ⊥AB 垂足为E ,连A 1E ,则由A 1D ⊥面ABC ,得A 1E ⊥AB , ∴∠A 1ED 是面A 1ABB 1与面ABC 所成二面角的平面角. 由已知AB ⊥BC 得DE ∥BC ,又D 是AC 的中点,BC =2,AC =23 ∴DE =1,AD =A 1D =3,tan ∠A 1ED =

DE

D

A 1=3,故∠A 1ED =60°为所求. (3)连结A 1

B ,根据定义,点

C 到面A 1ABB 1的距离,即为三棱锥C —A 1AB 的高h . 由V C —A 1AB =V A 1-ABC 得31S △AA 1B h =3

1

S △ABC ·A 1D 即

313223

1

22??=??h ,∴h =3为所求. 17.(1)如图连结B 1D 1,AC ,B 1H , ∵底面为正方形ABCD , ∴对角线AC ⊥BD .

又∵E 、F 分别为AB 、BC 的中点 ∴EF ∥AC .∴EF ⊥BD .

又∵棱B 1B ⊥底面ABCD ,EF 面ABCD ,∴EF ⊥B 1B . 又B 1B ∩BD =B ,BB 1面BB 1D 1D ,BD 面BB 1D 1D . ∴EF ⊥面BB 1D 1D .

而B 1H面BB 1D 1D ,BH 面BB 1D 1D ,∴EF ⊥B 1H ,EF ⊥BH . ∴∠B 1HB 为二面角B 1—EF —B 的平面角. 在Rt △B 1BH 中,B 1B =a ,BH =

a 4

2

, ∴tan ∠B 1HB =

221=BH

B

B . ∴∠B 1HB =arctan22.

∴二面角B 1—EF —B 的大小为arctan22. (2)在棱B 1B 上取中点M ,连D 1M , 则D 1M ⊥面EFB 1.连结C 1M .

∵EF ⊥面BB 1D 1D ,D 1M 面BB 1D 1D . ∴D 1M ⊥EF .

又∵D 1C 1⊥面B 1BCC 1.

∴C 1M 为D 1M 在面B 1BCC 1内的射影.

在正方形B 1BCC 1中,M 、F 分别为B 1B 和BC 的中点, 由平面几何知识B 1F ⊥C 1M .

于是,由三垂线定理可知B 1F⊥D 1M,

而B 1F 面EFB 1,EF 面EFB 1,EF ∩B 1F =F , ∴D 1M ⊥面EFB 1.

(3)设D 1M 与面EFB 1交于N 点,则D 1N 为点D 到面EFB 1的距离, ∵B 1N面EFB 1,D 1M ⊥面EFB 1, ∴B 1N ⊥D 1M .

在Rt △MB 1D 1中,由射影定理D 1B 12=D 1N ·D 1M , 而D 1B 1=2a ,D 1M=a M B D B 2

3

21211=

+, ∴D 1N =.3

4

1211

a M D B D =

第16题图解

第17题图解

即点D 1到面EFB 1的距离为a 3

4.

高中数学立体几何 空间距离的计算(学生版)

1.两条异面直线间的距离

和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.

2.点到平面的距离

从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离

如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离.

4.两平行平面间的距离

和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离.

题型一:两条异面直线间的距离

【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1) 求证:EF 是AB 和CD 的公垂线;(2)求AB 和CD 间的距离;

【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离.

【解后归纳】 求两条异面直线之间的距离的基本方法:

(1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度.

(2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. (3)如果两条异面直线分别在两个互相平行的平面内,可以转化为求两平行平面的距离.

题型二:两条异面直线间的距离

【例7】 如图,正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离;

【例8】 在梯形ABCD 中,AD ∥BC ,∠ABC =2

,AB =a ,AD =3a 且sin ∠ADC =55

,又P A ⊥平面ABCD ,P A =a ,

求:(1)二面角P —CD —A 的大小; (2)点A 到平面PBC 的距离.

例1题图

例3题图

例2题图

B A C

D

1

A

1

B

1

C

1

A

【例9】

如图,所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截面而得到的,其中AB=4,BC=2,CC 1=3,BE=1.(Ⅰ)求BF 的长;(Ⅱ)求点C 到平面AEC 1F 的距离.

【例10】 正三棱柱111C B A ABC -的底面边长为8,对角线101=C B ,D 是AC 的中点。

(1)求点1B 到直线AC 的距离.(2)求直线1AB 到平面BD C 1的距离.

【解后归纳】 求空间距离注意三点:

1.常规遵循一作二证三计算的步骤;2.多用转化的思想求线面和面面距离; 3.体积法是一种很好的求空间距离的方法.

【例11】 如图,在长方体AC 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ;(2)当E 为AB 的中点时,求点E 到面ACD 1的距离; (3)AE 等于何值时,二面角D 1—EC —D 的大小为

4

π

. ●对应训练 分阶提升

一、基础夯实

1.把边长为a 的正△ABC 沿高线AD 折成60°的二面角,则点A 到BC 的距离是 ( )

A.a

B.

a 26 C.a 33 D.a 4

15 2.△ABC 中,AB =9,AC =15,∠BAC =120°.△ABC 所在平面外一点P 到三个顶点A 、B 、C 的距离都是

14,那么点P 到平面α的距离为 ( )

A.7

B.9

C.11

D.13

3.从平面α外一点P 向α引两条斜线P A ,PB .A ,B 为斜足,它们与α所成角的差是45°,它们在α内的射影长分别是2cm 和12cm ,则P 到α的距离是 ( )

A.4cm

B.3cm 或4cm

C.6cm

D.4cm 或6cm

4.空间四点A 、B 、C 、D 中,每两点所连线段的长都等于a ,动点P 在线段AB 上,动点Q 在线段CD 上,则P 与Q 的最短距离为 ( )

A.a 2

1

B.

a 22 C.a 23 D.a 5.在四面体P —ABC 中,P A 、PB 、PC 两两垂直.M 是面ABC 内一点,且点M 到三个面P AB 、PBC 、PCA 的距离分别为2、3、6,则点M 到顶点P 的距离是 ( )

A.7

B.8

C.9

D.10

6.如图,将锐角为60°,边长为a 的菱形ABCD 沿较短的对角线折成60°的二面角,则AC 与BD 的距离是 ( )

A.

a 4

3

B.a 43

C.a 23

D.a 46 7.如图,四棱锥P —ABCD 的底面为正方形,PD ⊥底面ABCD ,PD =AD =1,设点C 到平面P AB 的距离为d 1,点B 到平面P AC 的距离为d 2,则有 ( )

A.1

B.d 1

C.d 1<1

D.d 2

8.如图所示,在平面α的同侧有三点A 、B 、C ,△ABC 的重心为G .如果A 、B 、C 、G 到平面α的距离分别为a 、b 、c 、d ,那么a+b+c 等于 ( )

A.2d

B.3d

C.4d

D.以上都不对 9.如图,菱形ABCD 边长为a ,∠A =60°,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的点且

2====DG

CG

FB CF HD AH EB AE ,沿EH 和FG 把菱形的两锐角折起,使A 、C 重合,这时点A 到平面EFGH 的距离是 ( )

A.

2

a

B.

a 22 C.a 23 D.a 615 二、思维激活

10.二面角α-MN -β等于60°,平面α内一点A 到平面β的距离AB 的长为4,则点B 到α的距离为 .

11.在60°的二面角α—l —β中,A ∈α,AC ⊥l 于C ,B ∈β,BD ⊥l 于D ,又AC =BD =a ,CD =2a ,则A 、B 两点间距离为 .

12.设平面α外两点A 和B 到平面α的距离分别为4cm 和1cm ,AB 与平面α所成的角是60°,则线段AB 的长是 .

13.在直角坐标系中,已知A (3,2),B (-3,-2)沿y 轴把直角坐标系折成平面角为α的二面角A —Oy —B 后,∠AOB =90°,则cos α的值是 . 三、能力提高

14.在边长为a 的菱形ABCD 中,∠ABC =60°,PC ⊥平面ABCD ,E 是P A 的中点,求点E 到平

第6题图

第7题图

第8题图

第9题图

面PBC 的距离.

15.在直三棱柱ABC —A 1B 1C 1中,∠ACB 为直角,侧面AB 1与侧面AC 1所成的二面角为60°,M 为AA 1上的点.∠A 1MC 1=30°,∠BMC 1=90°,AB =a .

(1)求BM 与侧面AC 1所成角的正切值. (2)求顶点A 到面BMC 1的距离.

16.已知斜三棱柱ABC —A 1B 1C 1的侧面A 1ACC 1与底面ABC 垂直.∠ABC =90°,BC =2,AC =23,且AA 1⊥A 1C ,AA 1=A 1C .

(1)求侧棱A 1A 与底面ABC 所成角的大小;

(2)求侧面A 1ABB 1与底面ABC 所成二面角的大小; (3)求顶点C 到侧面A 1ABB 1的距离.

17.如图,在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,E 、F 分别为棱AB 与BC 的中点,EF 与BD 交于H . (1)求二面角B 1—EF —B 的大小.

(2)试在棱B 1B 上找一点M ,使D 1M ⊥面EFB 1,并证明你的结论. (3)求点D 1到面EFB 1的距离.

第15题图

第17题图

2013-2019高考文科数学分类汇编-第八章题型89 旋转体的表面积、体积与球面距离

题型89 旋转体的表面积、体积与球面距离 2013年 1.(2013湖北文16)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时, 用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深 一 尺八寸. 若盆中积水深九寸,则平地降雨量是 寸. (注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 2014年 1.(2014陕西文5)将边长为1的正方形以其一边所在的直线为旋转轴旋转一周,所得几何体的侧面积是( ). A.4π B.3π C.2π D.π 2.(2014福建文3)以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于( ) A.2π B.π C.2 D.1 3.(2014湖北文10)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是 我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也. 又 以 高乘之,三十六成一. 该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近 似 公式2 136 V L h ≈. 它实际上是将圆锥体积公式中的圆周率π近似取为3. 那么,近似公式 2 275 V L h ≈ 相当于将圆锥体积公式中的π近似取为( ). A . 227 B . 258 C .15750 D . 355 113 4.(2014江苏8)设甲、乙两个圆柱的底面积分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且1294S S =,则12 V V 的值是 . 2015年

1.(2015 全国1卷文6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图所示,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( ). A. 14斛 B. 22斛 C. 36斛 D. 66斛 1. 解析 由l r α=,得816332 l r α===.2 1116320354339V ?? =????= ??? . 320 1.62229 ÷≈.故选B. 2.(2015山东文9)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ). A. 223 π B. 423 π C. 22π D. 42π 2.解析 由题意,可知等腰直角三角形的斜边长为22,斜边上的高为2,所形成的几何体为以2为底面半径,2为高的两个相同的圆锥组成的组合体,所以所求体积 () 2 1 42π 2=2π22= 3 3 V V =??? ?圆锥.故选B. 3.(2015江苏9)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为 . 3. 解析 原的总体积为()()22154283 V = ?π??+π??1963π =,设新的半径为r , 故变化后体积()()22 1'483 V r r =?π??+π??2 2819633r ππ==,计算得27r =, 从而7r = . 2016年

立体几何--空间的距离.

、选择题 1.正方形ABCD边长为2, E、F分别是AB和CD的中点,将正方形沿 面角(如图),M为矩形AEFD内一点,如果/ MBE= / MBC , MB和平面BCF 1 值为1,那么点M至?线EF的距离为 ( 2 D.- 2 2 .三棱柱ABC—A1B1C1 中,AA i=1 , AB =4, BC= 3 , / ABC=90 °,设平面 ABC的交线为I,则A1C1与I的距离为() 二、填空题 4.如右上图,ABCD与ABEF均是正方形,如果二面角E—AB—C的度数为30°, 那么EF与平面ABCD的距离为 三、解答题 (1)求证:平面A1BC1 //平面ACD1; 立体几何--空间的距离 EF折成直二 所成角的正切 B.1 A i BC i与平面 A J10 B. TH C.2.6 D.2.4 3.如左下图,空间四点A、B、C、D中,每两点所连线段的长都等于a,动点P在线段AB上,动点Q在线段CD上,则P与Q的最短距离为 5.在长方体如图:

(2)求(1)中两个平行平面间的距离; ⑶求点B i到平面A i BC i的距离. 6.已知正四棱柱ABCD —A i B i C i D i,点E在棱D i D上,截面EAC // D i B且面EAC与底面ABCD所成的角为45° ,AB=a,求: (i)截面EAC的面积; ⑵异面直线A i B i与AC之间的距离; ⑶三棱锥B i —EAC的体积. 7?如图,已知三棱柱A i B i C i —ABC的底面是边长为2的正三角形, AC均成45°角,且A i E丄B i B于E, A i F丄CC i于F. (i)求点A到平面B i BCC i的距离; ⑵当AA i多长时,点A i到平面ABC与平面B i BCC i的距离相等. &如图,在梯形ABCD 中,AD // BC,/ ABC = —,AB= 2 2 / ADC=arccos—75 ,PA丄面ABCD 且PA=a. 5 (i)求异面直线AD与PC间的距离; (2)在线段AD上是否存在一点F,使点A到平面PCF的距离为亨 【空间的距离参考答案】 一、i.解析:过点M作MM '丄EF,则MM '丄平面BCF ?// MBE= / MBC ??? BM '为/ EBC为角平分线, £■ 侧棱A i A与AB 、 i -AD=a, 3

球面距离的计算

球面距离的计算经典范例 1.位于同一纬度线上两点的球面距离 例1 已知,B两地都位于北纬,又分别位于东经和,设地球半径为,求,B的球面距离. 分析:要求两点,B的球面距离,过,B作大圆,根据弧长公式,关键要求圆心角的大小(见图1),而要求往往首先要求弦的长,即要求两点的球面距离,往往要先求这两点的直线距离. 解作出直观图(见图2),设为球心,为北纬圈的圆心,连结,,,,.由于地轴平面. ∴与为纬度,为二面角的平面角. ∴(经度差). △中,. △中,由余弦定理, . △中,由余弦定理: , ∴. ∴的球面距离约为. 2.位于同一经线上两点的球面距离 例2 求东经线上,纬度分别为北纬和的两地,B的球面距离.(设地球半径为).(见图3) 解经过两地的大圆就是已知经线. ,.

3.位于不同经线,不同纬线上两点的球面距离 例3 地位于北纬,东经,B地位于北纬,东经,求,B两地之间的球面距离.(见图4) 解设为球心,,分别为北纬和北纬圈的圆心,连结,,. △中,由纬度为知, ∴, . △中,, ∴, ∴. 注意到与是异面直线,它们的公垂线为,所成的角为经度差,利用异面直线上两点间的距离公式. (为经度差) . △中, . ∴. ∴的球面距离约为. 球面距离公式的推导及应用 球面上两点之间的最短距离,就是经过这两点的大圆在这两点间的一段劣弧的长度,我们把这段弧长叫做两点的球面距离,常见问题

是求地球上两点的球面距离。对于地球上过A 、B 两点大圆的劣弧长由球心角AOB 的大小确定,一般地是先求弦长AB ,然后在等腰△AOB 中求∠AOB 。下面我们运用坐标法来推导地球上两点球面距离的一个公式。 地球球面上的点的位置由经度、纬度确定,我们引入有向角度概念与经度、纬度记法:规定东经为正,西经为负;北纬为正,南纬为负(如西经30o为经度α=-30o,南纬40o为纬度β=-40o ),这样简单自然,记球面上一点A 的球面坐标为A (经度α,纬度β),两标定点,清晰直观。 设地球半径为R ,球面上两点A 、B 的球面坐标为A (α1,β1),B (α2,β2),α1、α2∈[-π,π],β1、β2∈[- 2 π , 2 π],如图, 设过地球O 的球面上A 处的经线与赤道交于C 点,过B 的经线与赤道交于D 点。设地球半径为R ;∠AOC=β1,∠BOD=β2,∠DOC=θ=α1-α2。 另外,以O 为原点,以OC 所在直线为X 轴,地轴所在直线ON 为Z 轴建立坐标系O-XYZ (如图)。则A (Rcos β1,0,Rsin β1),B(Rcos β2cos (α1-α2),Rcos β2sin (α1-α2),Rsin β2) cos ∠AOB =cos 〈OA ,OB 〉=cos β1cos β2cos (α1-α2)+sin β1sin β2 ∠AOB=arcos[cos β1cos β2cos (α1-α2)+sin β1sin β2] 其中反余弦的单位为弧度。 于是由弧长公式,得地球上两点球面距离公式: ? AB =R 2arcos[cos β 1 cos β2cos (α1-α2)+sin β1sin β2] (I ) 上述公式推导中只需写出A ,B 两点的球面坐标,运用向量的夹角公式、弧长公式就能得出结论,简单明了,易于理解,公式特征明显.从公式的推导中我们体会到坐标法在解决立几问题的不凡表现。 由公式(I )知,求地球上两点的球面距离,不需求弦AB ,只需两点的经纬度即可。 公式对求地球上任意两点球面距离都适用,特别地,A 、B 两点的经度或纬度相同时,有: 1、β1=β2=β,则球面距离公式为: B A =R 2arcos[cos 2 β cos (α1-α2)+sin 2 β] (II ) 2、α1-α2=α,则球面距离公式为: B A =R 2arcos (cos β 1 cos β2+sin β1sin β2)=R 2arcoscos (β1-β2) (III ) 例1、 设地球半径为R ,地球上A 、B 两点都在北纬45o的纬线上,A 、B 两点的球面距离是3 πR ,A 在东经20o,求B 点的位置。 分析:α1=20o,β1=β2=45o,由公式(II )得: 3 π R= R 2arcos[cos 2 45ocos (20o-α2 )+sin 2 45o] cos 3π=2 1 cos (20o-α2 )+21 ∴cos (20o-α2)=0, 20o-α2=±90o即:α2=110o或α2=-70o 所以B 点在北纬45o,东经110o或西经70o 例2、 (2002年第六届北京高中数学知识应用竞赛试题)北京时间2002年9月27日14点,国航CA981航班从首都国际机场准时起 飞,当地时间9月27日15点30分,该航班正点平稳降落在纽约肯尼迪机场;北京时间10月1日19点14分,CA982航班在经过13个小时的飞行后,准点降落在北京首都国际机场,至此国航北京--纽约直飞首航成功完成。这是中国承运人第一次经极地经营北京--纽约直飞航线。从北京至纽约原来的航线飞经上海(北纬31 ,东经122 )东京(北纬36 ,东经140 )和旧金山(北纬37 ,西经123 )等处,

立体几何空间距离问题

空间距离问题 (专注高三数学辅导:) 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. ●难点磁场 (★★★★)如图,已知ABCD是矩形,AB=a,AD=b,PA⊥平面ABCD,PA=2c,Q 是PA的中点. 求:(1)Q到BD的距离; (2)P到平面BQD的距离. 。 P为RT△ABC所在平面α外一点,∠ACB=90°(如图) (1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角 (2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角 (3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离

●案例探究 [例1]把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求: (1)EF 的长; (2)折起后∠EOF 的大小. 命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目. < 知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必 须保证x 轴、y 轴、z 轴两两互相垂直. 技巧与方法:建系方式有多种,其中以O 点为原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单. 解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (2 2 a ,0,0),C (0, 2 2 a ,0),D (0,0, 22a ),E (0,-4 2a , a ),F ( 42a , 4 2 a ,0) 21| |||,cos ,2||,2||8042)42)(42(420) 0,4 2 ,42(),42,42,0()2(23 ,43)420()4242()042(||)1(2 2222-=>=<== - =?+-+?=?=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF ∴∠EOF =120° [例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离. 命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面

立体几何及解题技巧以及空间距离专题复习

立体几何及解题技巧以及空间距离专题复习

知识点整理 (一)平行与垂直的判断 ⑴平行:设,的法向量分别为U,V ,贝U 直线l,m 的方向向量分 别为a,b ,平面 线线平行i // m a 〃 b a 诂;线面平行i // a u a u 0 ; 面面平行// u // v u J. ⑵ 垂直:设直线l ,m 的方向向量分别为a,b ,平面,的法向量 分别为u,v ,则 线线垂直I 丄m a 丄b ab 0 ;线面垂直I 丄 a // u a ku 「; 面面垂直丄 u 丄v u v 0. (二)夹角与距离的计算 注意:以下公式可以可以在非正交 基底下用,也可以在正交基底下用坐标运算 (1)夹角:设直线l ,m 的方向向量分别为,平面,的法向量 分别为u ,v ,则 ①两直线I ,m 所成的角为 (2)空间距离 ②直线I 与平面 ③二面角一I 的大小为(0< < ),cos cos (0< =2),sin 所成的角为

点、直线、平面间的距离有种.点到平面的距离是重点,两异面直线间的距离是难 ①点到平面的距离h:(定理)如图,设n是是平 面的法向量,AP是平面的一条斜线,其中A 则点P到平面的距离 uuu uu ②h 1 Auur n |(实质是AP在法向量n 方向上的投影的绝对值) |n| uuu ur ③异面直线l i,l2间的距离d: d AB JC』1( 11,12的公垂向量为 |n| ' n, C、D分别是h,l2上任一点). 题型一:非正交基底下的夹角、的计算 例1.如图,已知二面角-I - 点 A , B , A C I于点C, 且 AC=CD=DB=1. 求:(1) A、B两点间的距离; (2)求异面直线AB和CD勺所成的角(3) AB与CD勺距 离. 解:设AC a,CD b,DB c,则 |a| |b| |c| 1, a,b b,c 900, a,c 60°, 2 ? ? 2 ?? 2 ■■ 2 |AB | a b c . a b c 2a b 2b c 2c a 2 A、B两点间的距离为2. (2)异面直线AB和CD的所成的角为60°

上海(沪教版)数学高二下学期同步辅导讲义教师版:第十讲球的体积及球面距离

沪教版数学高二下春季班第十讲 课题 球的体积及球面距离 单元 第十五章 学科 数学 年级 十一 学习 目标 1.理解球的有关概念,掌握球的性质及有关公式; 2.理解球面距离的概念,会计算常见的球面距离; 3.解决常见的与球有关的计算问题. 重点 1.球面距离的计算方法; 2.球的表面积与体积的计算问题; 3.掌握常见的球内接与外切问题的解决方法 难点 掌握常见的球内接与外切问题的解决方法 1、球的定义: 半圆绕着它的直径所在直线旋转一周,所形成的空间几何体叫做球,记作球O 。半圆绕着它的直径旋转所得到的图形不叫球,叫球面,球面所围成的几何体叫做球.大家要注意球面和球是不同的两个概念.点O 到球面上任意点的距离都相等,把点O 称为球心,原半圆的半径和直径分别成为球的半径和球的直径。球面被过球心的平面所截得的圆,叫做球的大圆;被不经过球心的平面所截得的圆,叫做球的小圆. 教学安排 版块 时长 1 知识梳理 30 2 例题解析 60 3 巩固训练 20 4 师生总结 10 5 课后练习 30 球的体积及球面距离 知识梳理

2、球的性质: 球心和截面圆心的连线垂直于截面;设球心到截面的距离为d ,截面圆的半径为r ,球的半径为R ,则:r=2 2 d R - 3、球的表面积、体积公式:表面积:24R S π=;球的体积公式:33 4 R V π=. 4、球的体积公式 高中数学教材对球的体积公式3 43 V r π= 球(r 为球的半径)作了要求,但只是简单地说“利用祖暅原理和圆柱、圆锥的体积公式”可得出此公式,未作具体推导. 鉴于部分学有余力的学生想了解其推导过程,现提供几种用高中数学知识就可推导的方法.

高考数学复习 第十一讲 立体几何之空间距离

第十一讲 立体几何之空间距离 一、空间距离包括: 点与点、点与线、点与面、线与线(异面直线)、线与面(线面平行)、面与面(面面平行)的距离。要理解各个距离的概念。 二、空间距离的求法 重点掌握:线线距离、点面距离、尤其点面距离 (1) 线线距离:找公垂线段 (2) 点面距离 ① 直接法(过点向面作作垂线段,即求公垂线段长度) ② 等体积法(三棱锥) ③ 向量法:设平面α的法向量为n ,P 为平面α外一点,Q 是平面α内任一点,则 点P 到平面α的距离为d 等于PQ 在法向量n 上的投影绝对值。d =三、例题讲解 1、下列命题中: ①ABCD PA 矩形⊥所在的平面,则P 、B 间的距离等于P 到BC 的距离; ②若,,,//αα??b a b a 则a 与b的距离等于a 与α的距离; ③直线a 、b是异面直线,,//,ααb a ?则a 、b 之间的距离等于b 与α的距离 ④直线a 、b是异面直线,,//,,βαβα且??b a 则a 、b 之间的距离等于βα、间的距离 其中正确的命题个数有( C ) A . 1个 B. 2个 C. 3个 D. 4个 2、如图所示,正方形的棱长为1,C、D 为两条棱的中点,A 、B 、M 是顶点,那么点M 到截面ABCD 的距离是____________。

解析:取AB 、C D中点P、Q ,易证MPQ ?中,PQ 边长的高MH 为所求,423,22== PQ PM 3 2=∴MH 3、在底面是正方形的四棱锥A-B CD E中,BCDE AE 底面⊥且AE=CD =a , G、H是BE 、ED 的中点,则GH 到面ABD 的距离是____________。 解析:连结EC ,交BD 于O,且交GH 于O ',则有平面ABD AEO 面⊥。 过E作AO EK ⊥于K ,则所求距离等于a AO EO AE EK 6 32121=?= 4、如图,在棱长为a 的正方体1111D C B A ABCD -中,E 、F 分别为棱AB 和B C的中点,G为上底面1111D C B A 的中心,则点D 到平面EF B 1的距离___________。 解:方法1:建立如图直角坐标系,

地球上两点之间的球面距离

地球上两点之间的球面距离的教学设计与思考 卫福山(上海市松江二中) 一、教学内容分析 球面距离是上海教育出版社数学(高三)第15章简单几何体第6节内容,《上海市中小学课程标准》对球的要求是:类比关于圆的研究,对球及有关截面的性质深入探讨;知道球的表面积和体积的计算公式,并会用于进行有关的度量计算;知道球面距离和经度、纬度等概念,进一步认识数学和实际的联系.在本节中,引导学生理解球面距离的概念(这不同于一般的直线距离),原因在于球面不能展开成平面.然后具体探究了如何求同纬度不同经度、同经度不同纬度、不同经度不同纬度的地球上两点之间的距离的求法,特别强调将其中的线面关系转化为多面体(主要是特殊的棱锥)来分析,并综合使用扇形、弧长、解三角形等数学知识.在探究球面距离的计算中培养了学生空间想象能力和探究性学习的能力. 二、教学目标设计 1、知道球面距离的定义,知道地球的经度与纬度的概念,会求地球上同经度或同纬度的两点间的球 面距离. 2、在解决问题的过程中,领会计算地球上两点间的球面距离的方法. 3、在实际问题中,探索新知识,成功解决问题,完成愉悦体验. 三、教学重难点 教学重点:掌握计算地球上两点间的球面距离的方法. 教学难点:如何求地球上同纬度的两点间的球面距离. 四、教学内容安排 (一)、知识准备 1、联系右图及中学地理中的有关知识认识地球——半径 为6371千米的球.(理想模型) 2、经度、纬度等相关知识 地轴:连结北南极的球的直径,称为地轴. 经线:经过北南极的半大圆,称为经线. 本初子午线:它是地球上的零度经线,分别向东和向西计 量经度,称为东经和西经,从0度到180度. 经度:经线所在半平面与零度经线所在半平面所成的二面 角的度数.参见右图. 赤道:过球心且垂直于地轴的大圆,称为赤道.赤道的圆心 就是球心. 纬线:平行于赤道的小圆,称为纬线.位于赤道以北的称为 北纬,位于赤道之南的称为南纬. 纬度:球面上某点所在球半径与赤道平面所成的角.从0度 到90度.参见上图. 3、球面距离 在球面上两点之间的最短距离就是经过这两点的大圆在这两点间的劣弧的长度——这个弧长叫两点的球面距离. 问题:为何最短距离是经过两点的大圆的劣弧? 解释如下:如图所示,A、B是球面上两点,圆O'是经过A、B的任一小圆(纬αθ

立体几何中角度与距离求法

立体几何中角度距离的求法 一 空间向量及其运算 1 .空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =___________. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ?______________ a ⊥b ?__________?________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________, cos 〈a ,b 〉=a·b |a||b|=__________. 设A (a 1,b 1,c 1),B (a 2,b 2,c 2), 则d AB =|AB → |=___________. 2.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角,已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB → =b ,则∠AOB 叫做向量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2,则 称a 与b __________,记作a ⊥b . ②两向量的数量积,已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________. (2)空间向量数量积的运算律①结合律:(λa )·b =____________; ②交换律:a·b =__________; ③分配律:a·(b +c )=__________. 2.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是 ________________________. 推论,如图所示,点P 在l 上的充要条件是:OP →=OA → +t a ① 其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB → =a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB → . (2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a ,b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O ,有OP →=____________或OP →=xOM → +yOA →+zOB → ,其中x +y +z =______. (3)空间向量基本定理,如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底.

高中数学立体几何空间距离问题

立体几何空间距离问题 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. ●难点磁场 (★★★★)如图,已知ABCD是矩形,AB=a,AD=b,P A⊥平面ABCD,P A=2c,Q 是P A的中点. 求:(1)Q到BD的距离; (2)P到平面BQD的距离. P为RT△ABC所在平面α外一点,∠ACB=90°(如图) (1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角 (2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角(3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离

●案例探究 [例1]把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求: (1)EF 的长; (2)折起后∠EOF 的大小. 命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目. 知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两两互相垂直. 技巧与方法:建系方式有多种,其中以O 点为 原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单. 解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-4 2 a , a ),F ( 42a , 4 2 a ,0) 21| |||,cos ,2||,2||8042)42)(42(420) 0,4 2 ,42(),42,42,0()2(23 ,43)420()4242()042(||)1(2 2222-=?>=<== - =?+-+?=?=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF ∴∠EOF =120° [例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离. 命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得.

球面上两点间距离的求法

球面上两点间距离的求法 球面距离的定义:球上两点和球的球心三点可构成一个平面,称之为大圆,正视这个大圆(从正面看),这两个点之间的弧线长即为球面两点间距离。球面距离不是指险段的长度而是指的是弧长。 地球表面某点的位置是用纬度和经度来确定的,我们只要知道球面两点的经纬度,就能求出该两点的球面距离。下面简单的谈谈求法: 一. 同经度两点间的球面距离 例1. 在地球本初子午线上有两点A 、B 。它们的纬度差为90°,若地球半径为R ,求A 、B 两点间的球面距离。 解:如图1所示,设O 为地球球心,由题意可得, 故。 所以:A 、B 两点间的球面距离为 2 R 。 图1 二. 同纬度两点间的球面距离

例2. 在地球北纬度圈上有两点A、B,它们的经度差为度,若地球半径为R,求A、B两点间的球面距离。 解:设度的纬线圈的圆心为,半径为r,则。依题意。取AB的中点C,则。 在 图2 图3 三. 不同纬度、不同经度两点间的球面距离

例3. 设地球上两点A、B,其中A位于北纬30°,B位于南纬60°,且A、B两点的经度差为90°,求A、B两点的球面距离。 解:如图4所示,设,分别为地球球心、北纬30°纬线圈的圆心和南纬60°纬线圈的圆心。 图4 连结。 则。 由异面直线上两点间的距离公式得

下面给出球面距离的计算公式(仅供参考): 设一个球面的半径为,球面上有两点、. 其中,为点的经度数,、为点的纬度数,过、两点的大圆劣弧所对的圆心角为,则有 (弧度) A、B间的球面距离为:

证明:如图3,⊙与⊙分别为过A、B的纬度圈,过A、C的大圆,过、D的大圆分别为A、B的经度圈,而经度圈与纬度圈所在的平面互相垂直,作面,垂足 位于上,连结、. 则 在中,由余弦定理,得: 故 又 比较上述两式,化简整理得: 过两点的大圆劣弧所对的圆心角为 从而可证得关于与的两个式子.

高中数学专题讲义-空间几何体. 截面与距离问题

棱锥、棱台的中截面与轴截面 【例1】 正四棱锥的侧棱长是底面边长的k 倍,求k 的取值范围. 【例2】 正四棱锥的斜高为2,侧棱长为5,求棱锥的高与中截面(即过高线的中点且平 行于底面的截面)的面积? 【例3】 正四棱台的高为17,两底面的边长分别是4和16,求这个棱台的侧棱长和斜高. 【例4】 已知正六棱台的上,下底面的边长和侧棱长分别为a ,b ,c ,则它的高和斜高分 别为 【例5】 已知正三棱锥S ABC -的高SO h =,斜高SM l =,求经过SO 的中点且平行于底面 的截面111A B C ?的面积. M O C 1 B 1 A 1 C A 【例6】 如图所示的正四棱锥V ABCD -,它的高3VO =,侧棱长为7, ⑴ 求侧面上的斜高与底面面积. ⑵ 'O 是高VO 的中点,求过'O 点且与底面平行的截面(即中截面)的面积. 典例分析 板块二.截面与距离问题

H O'O D C B A V 【例7】 如图,已知棱锥V ABC -的底面积是264cm ,平行于底面的截面面积是24cm ,棱锥 顶点V 在截面和底面上的射影分别是1O 、O ,过1O O 的三等分点作平行于底面的截面,求各截面的面积. C A 圆锥、圆台的中截面与轴截面 【例8】 把一个圆锥截成圆台,已知圆台的上、下底面半径的比是14∶,母线长10,求 圆锥的母线长. 【例9】 一圆锥轴截面顶角为120?,母线长为1,求轴截面的面积. 【例10】 圆台的母线长为2a ,母线和轴的夹角为30?,一个底面半径是另一个底面半径的2 倍,求圆台的高与上下两底面面积之和. 【例11】 圆台两底半径分别是2和5,母线长是,求它的轴截面的面积; 【例12】 圆台侧面的母线长为2a ,母线与轴的夹角为30?,一个底面半径是另一个底面 半径的2倍,则两底面半径为 .

高中数学立体几何.球专题附练习题不看后悔

立体几何-球-专题学案 练习 1.下列四个命题中错误.. 的个数是 ( ) ①经过球面上任意两点,可以作且只可以作一个球的大圆 ②球面积是它大圆面积的四倍 ③球面上两点的 球面距离,是这两点所在截面圆上以这两点为端点的劣弧的长 2.一平面截一球得到直径为6 cm 的圆面,球心到这个平面的距离是4 cm ,则该球的体积是 A.3π100 cm 3 B.3π208 cm 3 C.3π500 cm 3 D.3 π3416 cm 3 3.某地球仪上北纬30°纬线的长度为12π cm ,该地球仪的半径是_____________cm ,表面积是_____________cm 2. 预备 1. 球心到截面的距离与球半径及截面的半径有以下关系: . 2. 球面被经过球心的平面截得的圆叫 .被不经过球心的平面截得的圆叫 . 3. 在球面上两点之间的最短连线的长度,就是经过这两点的大圆在这两点间的一段劣弧长,这个弧长 叫 . 4. 球的表面积表面积S = ;球的体积V = . 5. 球面距离计算公式:__________ 典例剖析 (1)球面距离,截面圆问题 例1.球面上有3个点,其中任意两点的球面距离都等于大圆周长的 6 1,经过这3个点的小圆的周长为4π,那么这个球的半径为 3 3 D. 3 练习: 球面上有三点A 、B 、C ,A 和B 及A 和C 之间的球面距离是大圆周长的,B 和C 之间的球面距离是大圆周长的,且球心到截面ABC 的距离是,求球的体积. 例2. 如图,四棱锥A -BCDE 中,,且AC ⊥BC ,AE ⊥BE . (1) 求证:A 、B 、C 、D 、E 五点都在以AB 为直径的同一球面上; (2) 若求B 、D 两点间的球面距离. (2)注意体会立体空间想象能力,不要把图形想象错误 例3. 在底面边长为2的正方体容器中,放入大球,再放入一个小球,正好可以盖住盖子(小球与大球都与盖子相切), 求小球的半径。 (3)经度,维度问题

最新高考数学专题复习立体几何重点题型空间距离空间角(师)

立体几何题型 【考点透视】 (A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. (B)版. ①理解空间向量的概念,掌握空间向量的加法、减法和数乘. ②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算. ③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式. ④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念. ⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念. ⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式. ⑦会画直棱柱、正棱锥的直观图. 空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题. 不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色. 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。 【例题解析】 考点1 点到平面的距离 求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足, 当然别忘了转化法与等体积法的应用. 典型例题 例1如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证: 1AB ⊥ 平面 1A BD ; (Ⅱ)求二面角 1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 考查目的:本小题主要考查直线与平面的位置关系,二面角的 A B C D 1 A 1 C 1 B

高中数学立体几何专:空间距离的各种计算(含答案)

高中数学立体几何 空间距离 1.两条异面直线间的距离 和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离. 2.点到平面的距离 从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离 如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离 和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离. 题型一:两条异面直线间的距离 【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离; 【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线. (2)在Rt △BEF 中,BF = a 23 ,BE =a 21, 所以EF 2=BF 2-BE 2=a 2 12,即EF =a 22 . 由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为 a 2 2 . 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED . ∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB . ∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离. ∵CE =23,∴CF =FD =21,∠EFC =90°,EF =2221232 2 =??? ??-??? ? ??. ∴AB 、CD 的距离是 2 2 . 【解后归纳】 求两条异面直线之间的距离的基本方法: (1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度. (2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. (3)如果两条异面直线分别在两个互相平行的平面内,可以转化为求两平行平面的距离. 题型二:两条异面直线间的距离 【例3】 如图(1),正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离; 过A 作AO ⊥平面BCD 于O ,连BO 并延长与CD 相交于E ,连AE . ∵AB =AC =AD ,∴OB =OC =OD .∴O 是△BCD 的外心.又BD =BC =CD , ∴O 是△BCD 的中心,∴BO =3 2BE =33 2332= ?. 又AB =1,且∠AOB =90°,∴AO =363312 22=??? ? ??- =-BO AB .∴A 到平面BCD 的距离是36. 例1题图 例2题图 例3题图

最新高考数学专题总结立体几何重点题型空间距离空间角(生)

立体几何重点题型 【考点透视】 (A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. (B)版. ①理解空间向量的概念,掌握空间向量的加法、减法和数乘. ②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算. ③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式. ④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念. ⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念. ⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式. ⑦会画直棱柱、正棱锥的直观图. 空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题. 不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色. 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。 【例题解析】 考点1 点到平面的距离 求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足, 当然别忘了转化法与等体积法的应用. 典型例题 例1如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证: 1AB ⊥ 平面 1A BD ; (Ⅱ)求二面角 1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 例2.如图,已知两个正四棱锥P-ABCD 与Q-ABCD 的高分别为1和2,AB=4. A B C D 1 A 1 C 1 B

高中数学立体几何中的最值问题、内接外切、球面距离

立体几何中的最值问题、内接外切、球面距离 1. 一条长为2,a b 的三条线段,则ab 的最大值为 A B C . 52 D .3 【答案】C 【解析】构造一个长方体,让长为2的线段为体对角线,由题意知2222221,1,3a y b x x y =+=++=,即22222325a b x y +=++=+= ,又2252a b ab =+≥,所以5 2 ab ≤ ,当且仅当a b =时取等号,所以选C. 2. 四棱锥P ABCD -的三视图如右图所示,四棱锥P ABCD -的五个顶点都在一 个球面上,E 、F 分别是棱AB 、CD 的中点,直线EF 被球面所截得的线段长为该球表面积为 A.12p B.24p C.36p D.48p 【答案】A 3. 若三棱锥S ABC -的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA =1AB =,2AC =, 60BAC ∠=?,则球O 的表面积为 ( ) A .64π B .16π C .12π D .4π 【答案】B 【解析】因为1AB =,2AC =,60BAC ∠=?,所以2212212cos603BC =+-??= ,所以BC =。所 以90ABC ∠= ,即ABC ?为直角三角形。因为三棱锥S ABC -的所有顶点都在球O 的球面上,所以斜边AC 的中点是截面小圆的圆心'O ,即小圆的半径为122 r AC = =.,因为,OA OS 是半径,所以三角形AOS 为等 腰三角形,过O 作OM SA ⊥,则M 为中点,所以1'22 OO AM SA == ==所以半径

2OA ====,所以球的表面积为2416R ππ=,选B. 4. 已知正四棱柱ABCD-A 1B 1C 1D 1的高为323 p ,则A 、B 两点的球面距离为____________. 【答案】 23 π 【解析】因为正四棱柱外接球的体积为 323p ,所以343233 R p p =,即外接球的半径为2R =,所以正四棱柱的体对角线为24R =,设底面边长为x ,则 22 2 )2) 4+=,解得底面边长2x =。所以三角形AOB 为正三角形,所以 3 AOB π ∠= ,所以A 、B 两点的球面距离为 23 3 R π π = . 5. 设A 、B 、C 、D 为球O 上四点,若AB 、AC 、AD 两两互相垂直,且AB AC =2AD =,则A 、D 两点间的球面距离 。 【答案】 23 π 【解析】因为AB 、AC 、AD 两两互相垂直,所以分别以AB 、AC 、AD 为棱构造一个长方体,在长方体的体对角线为 球的直径,所以球的直径24R = ==,所以球半径为2R =,在正三角形AOD 中, 3 AOD π ∠= ,所以A 、D 两点间的球面距离为 23 3 R π π= . 6. 如图,某三棱锥的三视图都是直角边为2的等腰直角三角形,则该三棱锥的外接球的体积是

相关文档
最新文档