MDS,MDQ单相,三相整流桥模块

MDS,MDQ单相,三相整流桥模块
MDS,MDQ单相,三相整流桥模块

单相桥式半控整流电路实验报告

单相桥式半控整流电路 实 验 报 告 系别:电气工程系 班级:电器121 姓名: 学号:

实验一单相桥式半控整流电路实验 一、实验目的: 1、加深对单相桥式半控整流电路带电阻性、电阻电感性负载时各工作情况的理解。 2、了解续流二极管在单相桥式半控整流电路中的作用,学会对实验中出现的问题加以分析和解决。 二、实验主要仪器与设备: 三、实验原理 本实验线路如图1所示,两组锯齿波同步移相触发电路均在DJK03-1挂件上,它们由同一个同步变压器保持与输入的电压同步,触发信号加到共阴极的两个晶闸管,图中的R用D42三相可调电阻,将两个 900Ω接成并联形式,二极管VD1、VD2、VD3及开关S1均在DJK06挂件上,电感Ld在DJK02面板上,有100mH、200mH、700mH三档可供选择,本实验用700mH,直流电压表、电流表从DJK02挂件获得。 VD3 图1 单相桥式半控整流电路实验线路图 四、实验内容及步骤 1、实验内容: (1)锯齿波同步触发电路的调试。 (2)单相桥式半控整流电路带电阻性负载。 (3)单相桥式半控整流电路带电阻电感性负载。

2、实验步骤:

五、实验注意事项 1、双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。 2、在本实验中,触发脉冲是从外部接入DJKO2面板上晶闸管的门极和阴极,此时,应将所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关拨向“断”的位置,并将Ulf及Ulr 悬空,避免误触发。 六、实验心得

单相桥式全控整流电路Matlab仿真

单相桥式全控整流电路 M a t l a b仿真 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

目录( ( (3 4 6 8 单相桥式全控整流电路仿真建模分析 一、实验目的 1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。 2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。 二.实验内容

(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理 电路结构 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图) 工作原理 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。 (1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲。四个晶闸管都不通。假设四个晶闸管的漏电阻相等,则==1/2 u2。 (2)在u2正半波的ωt=α时刻: 触发晶闸管VT1、VT4使其导通。电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且=0。此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则=1/2 u2。晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。 (3)在u2负半波的(π~π+α)区间: 晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。此时,==1/2 u2。 (4)在u2负半波的ωt=π+α时刻: 触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电

单相半控桥式晶闸管整流电路电阻负载

电气工程学院 电力电子课程设计 设计题目:单相半控桥式晶闸管整流电路(电阻负载)学号: 姓名: 同组人: 指导教师: 设计时间: 设计地点:

电力电子课程设计成绩评定表 指导教师签字: 年月日

电力电子课程设计任务书 学生姓名:指导教师: 一、课程设计题目: 单相半控桥式晶闸管整流电路(电阻负载) 二、课程设计要求 1. 根据具体设计课题的技术指标和给定条件,独立进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整; 2. 查阅有关参考资料和手册,并能正确选择有关元器件和参数,对设计方案进行仿真; 3. 完成预习报告,报告中要有设计方案,设计电路图,还要有仿真结果; 4. 进实验室进行电路调试,边调试边修正方案; 5. 撰写课程设计报告——最终的电路图、调试过程中遇到的问题和解决问题的方法。 三、进度安排 2.执行要求 课程设计共5个选题,每组不得超过2人,要求学生在教师的指导下,独力完成所设计的详细电路(包括计算和器件选型)。严禁抄袭,严禁两篇设计报告雷同。

摘要 本次课程设计的题目为:单相半控桥式晶闸管整流电路,其中负载为纯电阻负载。电路设计的主要参数及要求:1、电源电压:交流100V/50Hz;2、输出功率:500W;3、移相范围:0o-180o。 对于单相半控桥式晶闸管整流电路(电阻负载),其电路设计的主要功能为:单相桥式半控整流电路的工作特点是晶闸管触发导通,而整流二极管在阳极电压高于阴极电压时自然导通。 单相桥式半控整流电路在纯电阻负载电流连续时,当相控角α<180°时,可实现将交流电功率变为直流电功率的相控整流,同时,调节触发电路,可改变触发角进行调压;在α>180°时,由于二极管的单相导电性,电路无法实现逆变,输出电压为零。 关键词:单相半控桥式晶闸管整流电路、纯电阻负载、相控角调节 Abstract ABSTRACT:Curriculum design topics: single-phase half-controlled bridge thyristor rectifier circuit, where the load is purely resistive load. The main parameters and requirements of the circuit design: 1, the power supply voltage: AC 100V/50Hz, output power: 500W; 2; 3, the phase shift range: 0 o ~180 o. For the single phase half controlled bridge thyristor rectifier circuit (resistive load), the main function of the circuit design: Characteristics of single phase bridge half controlled rectifier circuit is triggered thyristor turn-on, and rectifier diode is higher than that of cathode voltage in the anode voltage natural conduction. Single phase bridge half controlled rectifier circuit load current is continuous in the pure resistance, while the mouldings α <180 °, c an realize the phase control rectifier, AC power into DC power at the same time, adjusting trigger circuit, which can change the trigger angle regulator; when α >180 °, because the phase conductivity diode, the circuit can not be achieved inverter, output voltage to zero. KEYWORDS:S ingle phase half controlled bridge thyristor rectifier circuit, pure resistive load, adjust phase mouldings

单相桥式整流电路

酒泉职业技术学院 课程设计 2012级电力系统继电保护与自动化专业 题目:单相桥式整流电路 学号:121782009 学生姓名:王文勇 班级:12电力班 2013年6月28日

目录 一技术要求 二设计任务 三方案选择 四原理说明 五电路参数计算和元件选取 六性能指标分析 七保护电路工作原理 八参考文献

单相整流电路 一设计任务书 1 设计任务 (1)进行设计方案的比较,并选定设计方案 (2)完成单元电路的设计和主要元器件说明 (3)完成主电路的原理分析,各主要元器件的选择 (4)驱动电路的设计,保护电路的设计 2 设计要求 (1)负载为感性负载,L=700mH,R=500欧姆 (2)电网供电电压为单相220V (3)电网波动电压为5%~10% (4)输出电压为0~100V ` 二方案选择 单相相控整流电路分为单相半波、单相全波和单相桥式相控电路,它们所连接的负载性质就会有不同的特点,下面分析各种单相相控整流电路在阻性负载、感性负载时的工作情况。 单相半控整流电路的优点:线路简单、调整方便。弱点是:输出电压脉冲大,负载电流脉冲大,且整流变压器二次绕组中存在直流分量,使铁芯磁化,变压器不能充分利用,而单相全控式整流电路具有输出电流脉冲小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化的问题,变压器利用率高。 单相全控式整流电路其输出平均电压是半波整流电路的2倍,在相同的负载下流过晶闸管的平均电流减小一半,且功率因数提高一半。

三原理说明 (一)单相半波整流电路工作原理 1 单相半波整流电路阻性负载实验原理路图如下: 2 单相半波整流电路工作原理 变压器的次级绕组与负载相接,中间串联一个整流二极管,就是半波整流。利用二极管的单向导电性,只有半个周期内有电流流过负载,另半个周期被二极管所阻,没有电流。这种电路,变压器中有直流分量流过,降低了变压器的效率;整流电流的脉动成分太大,对滤波电路的要求高。只适用于小电流整流电路。 电路工作过程是:在u2正半周(ωt=0~π),二极管加正向偏压而导通,有电流iL 通过负载电阻RL。因为将二极管看作理想器件,所有RL上的电压uL与U2的正半周电压基本相同。 全波整流可以用:一是变压器与半流整流电路相同,但用四个二极管组成桥式电路,将次级线圈的正、负半周都用起来;二是变压器的次级绕组圈数加倍,中间抽头,实际上由两个次级线圈构成。中间抽头接负载一端,另两个端子各串联一个二极管后接负载的另一端。 它由电源变压器Tr整流二极管D和负载电阻RL组成,变压器的初级接交流电源,次级所感应的交流电压为其中U2m为次级电压的峰值,U2为有效值。

单相桥式半控整流

目录 摘要 (2) 1.设计任务和要求 (3) 设计任务 (3) 设计要求 (3) 2.单相桥式半控整流电路的设计 (2) 设计方案 (2) 主电路的原理与设计 (4) 驱动电路的原理与设计 (5) 错误!未定义书签。 元器件的选取及相关参数计算 (8) 错误!未定义书签。 错误!未定义书签。 错误!未定义书签。 电力电子器件的保护 (11) 错误!未定义书签。 错误!未定义书签。 总电路原理图及工作原理 (12) 建模与仿真 (12) 心得体会 (13) 参考文献 (13) 摘要 就是把交流电能转换成直流电能的电路。大多数整流电路由变压器、驱动电 路、整流主电路、保护电路等组成。它在直流电机调速、发电机的励磁调节、电 解、电镀等领域得到广泛应用。20世纪70年代以后,主电路多用硅整流电路和 晶闸管组成。而变压器的作用是实现交流输入电压与直流输出电压的匹配以及交 流电网与整流电路之间的电隔离(可以减小电网与电路间的电干扰和故障影响)。 整流电路的种类很多,主要有半波整流电路、单相桥式半控整流电路、单相桥式 全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。本课程设计 为单相桥式半控整流电路。 关键字:整流驱动过电压保护变压 单相桥式半控整流电路

1.设计任务和要求 设计任务 单相桥式半控整流电路的技术要求: 设计一单相桥式半控整流电路,对RL负载供电,其中R=10Ω,L=20mH;要求直流输出电压在0~180伏连续可调。 设计要求 1)方案设计 2)完成主电路的原理分析,各主要元器件的选择 3)触发电路的设计 4)绘制系统电路图 5)利用matlab仿真软件建模并仿真,获取电压电流波形,对结果进行分析 6)撰写设计说明书 2.单相桥式半控整流电路的设计 设计方案 在单相桥式全控整流电路中,每一个导电回路中都有两个晶闸管,即利用两个晶闸管同时导通以控制导电的回路。实际上对每个导电回路进行控制,只需要一个晶闸管就够了,另一个可以用二极管代替。从而简化整个电路,调节起来也比较方便,并且也节省了成本,这就是单相桥式半控整流电路。 本设计电路主要由触发电路、主电路、和过电压过电流保护电路组成 主电路的原理与设计

单相半控桥式整流电路设计

单相半控桥式整流电路 设计 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

摘要随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定。整流的基础是整流电路。由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能和变换和控制,而构成的一门完整的学科。整流电路的应用十分广泛。广泛的应用于直流电动机、电镀、电解电源、同步发电机励磁、通信系统电源灯。 本设计研究了单相半控桥式整流电路,对整流电路的原理及特点进行了分析,对整流元件进行了参数计算并选择出了合适的器件。本设计选择KJ004集成触发器做为晶闸管的触发电路,详细的介绍了KJ004的工作原理。本设计还设计了合理的保护电路。最后利用simulink搭建仿真模型。 关键词:半控整流,驱动电路,保护电路,simulink仿真 单相半控桥式整流电路设计 1 主电路的设计 设计目的 (1)、把从电力电子技术课程中所学到的理论和实践知识,在课程设计实践中全 综合的加以运用,使这些知识得到巩固、提高,并使理论知识与实践技能密切结合起来。 (2)、初步树立起正确的设计思想,掌握一般电力电子电路设计的基本方法和技 能,培养观察、分析和解决问题及独立设计的能力,训练设计构思和创新能力。 (3)、培养具有查阅参考文献和技术资料的能力,能熟悉或较熟悉地应用相关手 册、图表、国家标准,为今后成为一名合格的电气工程技术人员进行必须的基本技能和基本素质训练。 整流电路的选择 整流电路是电力电子电路中出现最早的一种,整流电路是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。20

单相桥式全控整流电路Matlab仿真

目录 单相桥式全控整流电路仿真建模分析 0 (一)单相桥式全控整流电路(纯电阻负载) (1) 1.电路的结构与工作原理 (1) 2.建模 (2) 3仿真结果与分析 (4) 4小结 (6) (二)单相桥式全控整流电路(阻-感性负载) (7) 1.电路的结构与工作原理 (7) 2.建模 (8) 3仿真结果与分析 (10) 4.小结 (11) (三)单相桥式全控整流电路(反电动势负载) (13) 1.电路的结构与工作原理 (12) 2.建模 (14) 3仿真结果与分析 (16) 4小结 (18) 单相桥式全控整流电路仿真建模分析 一、实验目的 1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。 2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。 二.实验内容

(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理 1.1电路结构 R 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图) 1.2工作原理 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。 (1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲。四个晶闸管都不通。假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。 (2)在u2正半波的ωt=α时刻: 触发晶闸管VT1、VT4使其导通。电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。 (3)在u2负半波的(π~π+α)区间: 晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。此时,u T2.3=u T1.4=1/2 u2。 (4)在u2负半波的ωt=π+α时刻: 触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(u d=-u2)和电流,且波形相位相同。此时电源电压反向加到晶闸管VT1、VT4上,使其承受反压而处于关断状态。晶闸管VT2、VT3一直要导通到ωt=2π为止,此时电源电压再次过零,晶闸管阳极电流也下降为零而关断。晶闸管VT1、

单相全波可控整流电路单相桥式半控整流电路[1]

单相全波可控整流电路、单相桥式半控整流电路 一.单相全波可控整流电路 单相全波可控整流电路(Single Phase Full Wave Controlled Rectifier),又称单相双半波可控整流电路。 图1 单相全波可控整流电路及波形 单相全波与单相全控桥从直流输出端或从交流输入端看均是基本一致的。变压器不存在直流磁化的问题。单相全波与单相全控桥的区别是:单相全波中变压器结构较复杂,材料的消耗多。单相全波只用2个晶闸管,比单相全控桥少2个,相应的,门极驱动电路也少2个;但是晶闸管承受的最大电压是单相全控桥的2倍。单相全波导电回路只含1个晶闸管,比单相桥少1个,因而管压降也少1个。因此,单相全波电路有利于在低输出电压的场合应用 1.电路结构 图2.单相桥式半控整流电路,有续流二极管,阻感负载时的电路及波形 单相全控桥中,每个导电回路中有2个晶闸管,1个晶闸管可以用二极管代替,从而简化整个电路。如此即成为单相桥式半控整流电路(先不考虑VDR)。单相全控桥式整流电路带电阻性负载的电路图如2所示,四个晶间管组成整流桥,其中vTl、vT4组成一对桥臂,vT 2、vT3组成另一对桥臂,vTl和vT3两只晶闸管接成共阴极,VT2和VT 4两只品间管接成共阳极,变压器二次电压比接在a、b两点,u2=1.414U2sin(wt) 2.电阻负载 半控电路与全控电路在电阻负载时的工作情况相同。其工作过程如下: a)在u2正半周,u2经VT1和VD4向负载供电。 b) u2过零变负时,因电感作用电流不再流经变压器二次绕组,而是由VT1和VD2续流。 c)在u2负半周触发角a时刻触发VT3,VT3导通,u2经VT3和VD2向负载供电。 d)u2过零变正时,VD4导通,VD2关断。VT3和VD4续流,u d又为零。 3.续流二极管的作用 1)避免可能发生的失控现象。2)若无续流二极管,则当a突然增大至180 或触发脉冲 丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使u d成为正弦半波,其平均值保持恒定,称为失控。3)有续流二极管VDR时,续流过程由VDR完成,避免了失控的现象。4)续流期间导电回路中只有一个管压降,有利于降低损耗。 4.单相桥式半控整流电路的另一种接法

单相桥式半控整流电路实验报告

课程名称:电力电子技术指导老师:成绩: 实验名称:单相桥式半控整流电路实验实验类型:同组学生姓名: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.加深单相桥式半控整流电路带电阻性、电阻电感性、反电势负载时工作情况的理解 2.了解续流二极管在单相器哦啊是半控整流电路中的作用;学会对实验中出现的问题加以分析和解决 3.进一步掌握双踪示波器在电力电子线路实验中的使用特点与方法 二、实验内容和原理 1.实验内容 (1)锯齿同步触发电路的调试 (2)单相桥式半控整流电路带电阻性负载 (3)单相桥式半控整流电路带电阻电感性负载 (4)单相桥式半控整流电路带反电势负载 2.实验原理 (1)单相桥式半控整流电路实验原理 实验电路图如下图所示 由2组锯齿波同步移相触发电路给共阴极的2个晶闸管提供触发脉冲,整流电路的负载可根据要求选择电阻性、电阻电感性负载。 在电源电压正半周时,VT1导通,VT2关断电源,通过VT1和VD4供电。电压过零时,因为电感作用,VT1继续导通,VD3续流 在电源电压负半周时,VT2导通,VT1关断,电源通过VT2和VT3供电。电压过零时,因为电感作用,VT2继续导通,VD4续流。 (2)锯齿波同步移相出发电路实验原理 锯齿波同步移相触发电路的电路图如下图所示

它是由同步检测和锯齿波形成环节、移相控制环节、脉冲形成和放大环节、强触发环节、双窄脉冲形成电路环节组成。 同步锯齿波环节如下图所示: 负半周下降段,VD1导通,C1充电,上负下正,O点接地,R负电位,Q也负电位,VT2反偏截止。 负半周上升段,经过R1给C1充电,上升速度比R点同步电压慢,所以VD1截止,Q点电位1.4V,VT2导通,UQ钳制在1.4V。 VT2截止时,IC1对C2充电,UC线性增长,为锯齿波上升段。 VT2饱和导通,R4较小,C2通过R4、VT2很快放电,形成锯齿波下降段 移相控制环节如下图所示: 利用叠加原理,UT锯齿波电压、UK控制电压、UP初始调整电压如上图所示。 UP的作用就是改变VT4开始导通的时刻,UK的作用就是可以改变输出脉冲相位。

单相半控桥式晶闸管整流电路的设计样本

学号: 课程设计 题目单相半控桥式晶闸管整流电路设计 (带续流二极管)(阻感负载) 学院自动化 专业自动化 班级100...班 姓名 指引教师许湘莲 年12 月29 日

一课程设计性质和目 性质:是电气信息专业必修实践性环节。 目: 1、培养学生综合运用知识解决问题能力与实际动手能力; 2、加深理解《电力电子技术》课程基本理论; 3、初步掌握电力电子电路设计办法。 二课程设计内容: 单相半控桥式晶闸管整流电路设计(带续流二极管)(阻感负载) 设计条件: 1、电源电压:交流100V/50Hz 2、输出功率:500W 3、移相范畴0o~180o 三课程设计基本规定 1、两人一种题目,按学号组合; 2、依照课程设计题目,收集有关资料、设计主电路、控制电路; 3、用MATLAB/Simulink对设计电路进行仿真; 4、撰写课程设计报告——画出主电路、控制电路原理图,阐明主电路工作原理、选取元器件参数,阐明控制电路工作原理、绘出主电路典型波形,绘出触发信号(驱动信号)波形,阐明仿真过程中遇到问题和解决问题办法,附参照资料; 5、通过答辩。

电力电子技术课程设计是在教学及实验基本上,对课程所学理论知识深化和提高。本次课程设计要完毕单相桥式半控整流电路设计,对电阻负载供电,并使输出电压在0到180伏之间持续可调,由于是半控电路,因而会用到晶闸管与电力二极管。此外,还要用MATLAB 对设计电路进行建模并仿真,得到电压与电流波形,对成果进行分析。 核心词:半控整流晶闸管

1 设计基本规定 (1) 1.1设计重要参数及规定:........................................................................................ 错误!未定义书签。 1.2 设计重要功能 (1) 2总体系统 (2) 2.1主电路构造及其工作原理 (2) 2.2 参数计算 (2) 3硬件电路 (4) 3.1 系统总体原理框图 (4) 3.2 驱动电路 (5) 3.2.1 驱动电路方案 (5) 3.2.2 驱动电路设计 (5) 3.3 保护电路 (8) 3.3.1 变压器二次侧熔断器 (8) 3.3.2 晶闸管保护电流 (9) 3.4 触发电路 (10) 4 元器件选取 (11) 4.1 晶闸管 (11) 4.1.1 晶闸管构造与工作原理 (11) 4.1.2 晶闸管选取 (13) 4.2 电力二极管 (13) 5 MATLAB建模与仿真 (14) 6 心得体会 (18) 参照文献 (19)

单相半控桥式整流电路的设计说明

工业应用技术学院 课程设计任务书 题目单相半控桥式晶闸管整流电路的设计 专业、班级学号 主要容、基本要求、主要参考资料等: 一、主要容 (1)电源电压:交流220V/50Hz (2)输出电压围:20V-50V (3)最大输出电流:10A (4)电源效率不低于70% 二、基本要求 1、主要技术指标 (1)具有过流保护功能,动作电流为12A; (2)具有稳压功能。 2、设计要求 (1)合理选择晶闸管型号; (2)完成电路理论设计、绘制电路图、电路图典型波形并进行模拟仿真。 二、主要参考资料 [1] 王兆安,黄俊,电力电子技术(第4版)[M],北京:机械工业,2000. [2] 王兆安,明勋,电力电子设备设计和应用手册(第2版)[M],北京:机械工业,2005. [4] 康华光,大钦,电子技术基础-模拟部分(第5版)[M],北京:高等教育,2005. [4] 治明,电力电子器件基础[M],北京:机械工业,2005. [5] 吴丙申,模拟电路基础[M],北京:北京理工大学,2007.

[6] 马建国,孟宪元,电力设计自动化技术基础[M],北京:清华大学,2004. 完成期限: 指导教师签名: 课程负责人签名: 年月日

1.设计的基本要求 1.1 设计的主要参数及要求: 设计要求:1、电源电压:交流220V/50Hz 2、输出电压围:20V-50V 3、最大输出电流:10A 4、具有过流保护功能,动作电流:12A 5、具有稳压功能 6、电源效率不低于70% 1.2 设计的主要功能 单相桥式半控整流电路的工作特点是晶闸管触发导通,而整流二极管在阳极电压高于阴极电压时自然导通。单相桥式整流电路在感性负载电流连续时,当相控角α<90°时,可实现将交流电功率变为直流电功率的相控整流;在α>90°时,可实现将直流电返送至交流电网的有源逆变。在有源逆变状态工作时,相控角不应过大,以确保不发生换相(换流)失败事故。 2.总体系统的设计 2.1 主电路方案论证 方案1:单相半控桥式整流电路(含续流二极管) 单相桥式半控整流电路虽然具有电路简单、调整方便、使用元件少等优点,而且不会导致失控显现,续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。 方案2:单相半控桥式整流二极管(不含续流二极管) 不含续流二极管的电路具有自续流能力,但一旦出现异常,会导致:一只晶闸管与两只二极管之间轮流导电,其输出电压失去控制,这种情况称之为“失控”。失控时的的输出电压相当于单相半波不可控整流时的电压波形。在失控情况下工作的晶闸管由于连续导通很容易因过载而损坏。因为半导体本身具有续流作用,半控电路只能将交流电能转变为直流电能,而直流电能不能返回到交流电能中去,即能量只能单方向传递。 经过比较本设计选择方案一含续流二极管的单相半控桥式整流电路能更好的达到设计要求。 2.2 主电路结构及其工作原理

(完整版)单相桥式半控整流电路

单相桥式半控整流电路 1.带电阻负载的工作情况 在单向桥式半控整流电路中,VT1和VD4组成一对桥臂,VD2和VT3组成另一对桥臂。在u 正半周(即a 点电位高于b 点电位),若4个管子均不导通,负载电流id 为零,ud 也为零,VT1、VD4串联承受电压u ,设VT1和VD4的漏电阻相等,则各承受u 的一半。若在触发角处给VT1加触发脉冲,VT1和VD4即导通,电流从电源a 端经VT1、R 、VD4流回电源b 端。当u 过零时,流经晶闸管的电流也降到零,VT1和VD4关断。 在u 负半周,仍在触发延迟角处触发VD2和VT3,VD2和VT3导通,电流从电源b 端流出,经VT3、R 、VD2流回电源a 端。到u 过零时,电流又降为零,VD2和VT3关断。此后又是VT1和VD4导通,如此循环地工作下去。晶闸管承受的最大正向电压和反向电压分别为22U2和2U2。 整流电压平均值为 α=0时, Ud =Ud0=0.9 U2。 α =180°时, Ud = 0。可见,α角的移相范围为0--180°。θ 的范围为0--180. 向负载输出的直流电流平均值为: 晶体管VT1和VD4,VD2和VT3轮流导电,流过晶闸管的电流平均值只有输出直流平均值的一半,即: 流过晶闸管的电流有效值为:

变压器二次侧电流有效值I2与输出直流电流有效值I相等,为 2.带RL负载的工作情况 先不考虑(续流二极管VDR ) 1.每一个导电回路由 1个晶闸管和1个二极管 构成。 2.在u2正半周,处 触发VT1,u2经VT1和 VD4向负载供电。 3.u2过零变负时,因 电感作用使电流连续, VT1继续导通,但因a点 电位低于b点电位,电流 是由VT1和VD2续流, ud=0。 4.在u2负半周,处 触发触发VT3,向VT1加 反压使之关断,u2经VT3 和VD2向负载供电。 5.u2过零变正时, VD4导通,VD2关断。VT3 和VD4续流,ud又为零。 续流二极管VDR 1若无续流二极管,则 当α突然增大至180或 触发脉冲丢失时,会发生 一个晶闸管持续导通而两 个二极管轮流导通的情况,这使ud成为正弦半波,即半周期ud为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形,称为失控。 2有续流二极管VDR时,续流过程由VDR完成,避免了失控的现象。 3续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。 整流电压平均值为

单相半控桥式整流电路设计

摘要 随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大 小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定。整流的基础是整流电路。由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能和变换和控制,而构成的一门完整的学科。整流电路的应用十分广泛。广泛的应用于直流电动机、电镀、电解电源、同步发电机励磁、通信系统电源灯。 本设计研究了单相半控桥式整流电路,对整流电路的原理及特点进行了分析,对整流元件进行了参数计算并选择出了合适的器件。本设计选择KJ004集成触发器做为晶闸管的触发电路,详细的介绍了KJ004的工作原理。本设计还设计了合理的保护电路。最后利用simulink搭建仿真模型。 关键词:半控整流,驱动电路,保护电路,simulink仿真

单相半控桥式整流电路设计 1 主电路的设计 1.1设计目的 (1)、把从电力电子技术课程中所学到的理论和实践知识,在课程设计实践中全综合的加 以运用,使这些知识得到巩固、提高,并使理论知识与实践技能密切结合起来。(2)、初步树立起正确的设计思想,掌握一般电力电子电路设计的基本方法和技能,培养 观察、分析和解决问题及独立设计的能力,训练设计构思和创新能力。 (3)、培养具有查阅参考文献和技术资料的能力,能熟悉或较熟悉地应用相关手册、图表、 国家标准,为今后成为一名合格的电气工程技术人员进行必须的基本技能和基本素质训练。 1.2整流电路的选择 整流电路是电力电子电路中出现最早的一种,整流电路是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。可以从各种角度对整流电路进行分类。按组成的器件可分为不可控、半控、全控三种。按电路结构可分为桥式电路和零式电路。按交流输入相数分为单相电路和多相电路。按变压器二次侧电流的方向是单向或双向,分为单拍电路和双拍电路。单相桥式整流电路可分为单相桥式全控整流电路和单相桥式半控整流电路,它们有不同的工作特点。下面分析两种单相桥式整流电路的优缺点。 1.2.1 单相全控桥式整流电路 单相桥式全控整流电路带阻感负载电路图如图1所示:

单相桥式半控整流电路实验

实验二单相桥式半控整流电路实验 一.实验目的 1.研究单相桥式半控整流电路在电阻负载,电阻—电感性负载及反电势负载时的工作。2.熟悉MCL—05组件锯齿波触发电路的工作。 3.进一步掌握双踪示波器在电力电子线路实验中的使用特点与方法。 二.实验线路及原理 见图4-6。 三.实验内容 1.单相桥式半控整流电路供电给电阻性负载。 2.单相桥式半控整流电路供电给电阻—电感性负载(带续流二极管)。 3.单相桥式半控整流电路供电给反电势负载(带续流二极管)。 4.单相桥式半控整流电路供电给电阻—电感性负载(断开续流二极管)。 四.实验设备及仪器 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ) 4.MCL—05组件或MCL—05A组件 5.MEL—03三相可调电阻器或自配滑线变阻器。 6.MEL—02三相芯式变压器。 7.二踪示波器 8.万用电表 五.注意事项 1.实验前必须先了解晶闸管的电流额定值(本装置为5A),并根据额定值与整流电路

形式计算出负载电阻的最小允许值。 2.为保护整流元件不受损坏,晶闸管整流电路的正确操作步骤 (1)在主电路不接通电源时,调试触发电路,使之正常工作。 (2)在控制电压U ct =0时,接通主电源。然后逐渐增大U ct ,使整流电路投入工作。 (3)断开整流电路时,应先把U ct 降到零,使整流电路无输出,然后切断总电源。 3.注意示波器的使用。 4.MCL —33(或MCL —53组件)的内部脉冲需断开。 5.接反电势负载时,需要注意直流电动机必须先加励磁 六.实验方法 1.将MCL —05(或MCL —05A ,以下均同)面板左上角的同步电压输入接MCL —18的U 、V 输出端(如您选购的产品为MCL —Ⅲ、Ⅴ,则同步电压输入直接与主控制屏的U 、V 输出端相连), “触发电路选择”拨向“锯齿波”。 三相调压器逆时针调到底,合上主电路电源开关,调节主控制屏输出电压U uv =220v ,并打开MCL —05面板右下角的电源开关。观察MCL —05锯齿波触发电路中各点波形是否正确,确定其输出脉冲可调的移相范围。并调节偏移电阻RP2,使U ct =0时,α=150°。注意观察波形时,须断开MEL-02和MCL-33(或MCL —53组件)的连接线。 注:如您选购的产品为MCL —Ⅲ、Ⅴ,无三相调压器,直接合上主电源。以下均同 2.单相桥式晶闸管半控整流电路供电给电阻性负载: 连接MEL-02和MCL-33(或MCL —53组件)。 (a )把开关S2合向左侧连上负载电阻Rd (可选择900Ω电阻并联,最大电流为0.8A ),并调节电阻负载至最大。 MCL-18(或MCL —Ⅲ型主控制屏,以下均同)的给定电位器RP1逆时针调到底,使U ct =0。 三相调压器逆时针调到底,合上主电路电源,调节主控制屏输出U uv =220V 。 调节MCL-18的给定电位器RP1,使α=90°,测取此时整流电路的输出电压U d =f (t ),输出电流i d =f (t )以及晶闸管端电压U VT =f (t )波形,并测定交流输入电压U 2、整流输出电压U d ,验证 2cos 19.02α+=U U d 。 若输出电压的波形不对称,可分别调整锯齿波触发电路中RP1,RP3电位器。 (b )采用类似方法,分别测取α=60°,α=30°时的U d 、i d 、U vt 波形。 3.单相桥式半控整流电路供电给电阻—电感性负载 (a )把开关S1合向左侧接上续流二极管,把开关S2合向右侧接上平波电抗器,短接直流电动机电枢绕组A1A2。 MCL-18的给定电位器RP1逆时针调到底,使U ct =0。 三相调压器逆时针调到底,合上主电源,调节主控制屏输出使U uv =220V 。

单相桥式半控整流电路(可编辑修改word版)

2 单相桥式半控整流电路 1.带电阻负载的工作情况 在单向桥式半控整流电路中,VT1 和VD4 组成一对桥臂,VD2 和VT3 组成另一对桥臂。在u 正半周(即a 点电位高于b 点电位),若4 个管子均不导通,负载电流id 为零,ud 也为零,VT1、VD4 串联承受电压u,设VT1 和VD4 的漏电阻相等,则各承受u 的一半。若在触发角处给VT1 加触发脉冲,VT1 和VD4 即导通,电流从电源a 端经VT1、R、VD4 流回电源b 端。当u 过零时,流经晶闸管的电流也降到零,VT1 和VD4 关断。在u 负半周,仍在触发延迟角处触发VD2 和VT3,VD2 和VT3 导通,电流从电源b 端流出,经VT3、R、VD2 流回电源a 端。到u 过零时,电流又降为零,VD2 和VT3 关断。此后又是VT1 和VD4 导通,如此循环地工作下去。晶闸管承受的最大正向电压和反向电压分别为U2 和 2 U2。 整流电压平均值为 α=0 时,Ud =Ud0=0.9 U2。α=180°时,Ud = 0。可见,α角的移相范围为0--180°。θ 的范围为 0--180. 向负载输出的直流电流平均值为: 晶体管VT1 和VD4,VD2 和VT3 轮流导电,流过晶闸管的电流平均值只有输出直流平均值的一半,即: 流过晶闸管的电流有效值为: 2

变压器二次侧电流有效值I2 与输出直流电流有效值I 相等,为 2.带RL 负载的工作情况 先不考虑(续流二极管VDR ) 1.每一个导电回路由 1 个晶闸管和1 个二极管 构成。 2.在u2 正半周, 处触发VT1,u2 经VT1 和VD4 向负载供电。 3.u2 过零变负时,因 电感作用使电流连续,VT1 继续导通,但因a 点电位低 于b 点电位,电流是由VT1 和VD2 续流,ud=0。 4.在u2 负半周, 处触发触发VT3,向 VT1 加反压使之关断, u2 经VT3 和VD2 向负载 供电。 5.u2 过零变正时, VD4 导通,VD2 关断。 VT3 和VD4 续流,ud 又为零。 续流二极管VDR 1若无续流二极管,则 当α突然增大至180 或 触发脉冲丢失时,会发生一 个晶闸管持续导通而两个 二极管轮流导通的情况,这使ud 成为正弦半波,即半周期ud 为正弦,另外半周期ud 为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形,称为失控。 2有续流二极管VDR 时,续流过程由VDR 完成,避免了失控的现象。 3续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。 整流电压平均值为

课程设计--------单相半控桥式晶闸管整流电路设计(阻感负载)

《电力电子技术》课程设计说明书 单相半控桥式晶闸管整流电路设计 院、部:电气及信息工程学院 学生姓名:刘波 指导教师:王翠职称副教授 专业:自动化 班级:自本1001 班 完成时间:2013 年5 月23日

前言 随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。在电能的生产和传输上,目前是以交流电为主。电力网供给用户的是交流电,而在许多场合,例如电解、蓄电池的充电、直流电动机等,需要用直流电。要得到直流电,除了直流发电机外,最普遍应用的是利用各种半导体元件产生直流电。这个方法中,整流是最基础的一步。整流,即利用具有单向导电特性的器件,把方向和大小交变的电流变换为直流电。整流的基础是整流电路。 由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导 体电力开关器件组成各种电力变换电路实现电能和变换和控制,而构成的一门完整的学科。故其学习方法与电子技术和控制技术有很多相似之处,因此要学好这门课就必须做好课程设计,因而我们进行了此次课程设计。又因为整流电路应用非常广泛,而单相半控桥式晶闸管整流电路又有利于夯实基础,故我们将单结晶体管触发的单相晶闸管半控整流电路这一课题作为这一课程的课程设计的课题。

摘要 单向桥式半控整流电路实际上是由单相桥式全控电路简化而来的。在单相桥式全控整流电路中,每一个导电回路中有两个晶闸管,即用两个晶闸管同时导通以控制导电的回路。但实际上为了对每个导电回路进行控制,只需要一个晶闸管就行了,另一个晶闸管可以用二级管代替,从而得到单向半控桥式整流电路。 除了用二极管代替晶闸管以外,该电路在实际应用中需加设续流二极管RVD,以避免可能发生的失控现象。实际运行中,若无续流二极管,则当突然增大至180或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使du成为正弦半波,即半周期du为正弦,另外半周期du为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形,称为失控。有续流二极管RVD时,续流过程由RVD完成,在续流阶段晶闸管关断,这就避免了某一个晶闸管持续导通从而导致失控的现象。总的来说,单相桥式半控整流电路具有电路简单、调整方便、使用元件少等优点,而且不会导致失控显现,续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。 关键字:单相,半控,续流二极管

单相桥式全控整流电路

电力电子技术实验报告 实验名称:单相桥式全控整流电路_______ 班级:自动化_________________ 组别:第组___________________ 分工: 金华职业技术学院信息工程学院 年月日 目录

一.单项全控整流电路电阻负载工作分析..................................................- 1 - 1.电路的结构与工作原理...........................................................................- 1 - 2.建模…………….............................................................................................- 3 - 3.仿真结果与分析.......................................................................................- 5 - 4.小结…………….............................................................................................- 5 - 二.单项全控整流电路组感负载工作分析..................................................- 6 - 1.电路的结构与工作原理...........................................................................- 6 - 2.建模……………..............................................................................................- 8 - 3.仿真结果与分析......................................................................................- 10- 4.小结…………….............................................................................................- 10 - 三.单项全控整流电路带反电动势阻感负载工作分析...............................- 11 - 1.电路的结构与工作原理...........................................................................- 11 - 2.建模……………..............................................................................................- 13 - 3.仿真结果与分析........................................................................................- 15 - 4.小结……………..............................................................................................- 15 - 四.总结…………….............................................................................................- 16 - 图索引

相关文档
最新文档