大型风电叶片结构设计方法研究

大型风电叶片结构设计方法研究
大型风电叶片结构设计方法研究

大型风电叶片结构设计方法研究

摘要:随着绿色能源的推广与利用,对风电叶片结构设计也提出了更高的要求。作为风电机组的主要部件,叶片的设计方法一直是风电机组研发的关键。本文主要对大型风电叶片结构设计方法进行探析。

关键词:风电叶片;结构设计;方法

前言

近年来,我国的风电设备在技术水平与创新方面已有了突破性的成就,但与国外发达国家相比,仍存在很大差距,尤其在大型风电叶片结构设计方面。因此,如何完善设计方法将是未来提高风电机组核心技术的必然途径。

1.风电叶片设计的基本概述

1.1 风电叶片设计

风电叶片设计的过程实际是对叶片参数的选取与确定的过程,其中的参数对叶片的性能起决定性的作用。一般对风电叶片进行设计主要目标在于:第一,通过较好的空气动力外形获得风能。第二,结构的强度与刚度能够承受各种荷载。第三,其结构动力学特性较好,防止出现共振与颤振。第四,叶片重量的降低使制造成本减少。设计的过程主要分为对气动与结构的设计。其中气动设计过程中,主要对叶片几何外形做出最佳的选择,实现年发电量最大的目标,而结构设计主要对叶片材料的选择、叶片结构形式以及设计参数进行分析,使叶片的强度、刚度及稳定性等目标得以实现。

1.2 叶片外形设计的主要方法

风电叶片设计的主要任务是确定气动外形。叶片外形作为结构设计的基础,对结构设计也有一定的限制。一般对气动外形的设计的方法主要包括基于动量叶素理论的简化设计方法、Glauert方法、以及维尔森方法。基于动量叶素理论的简化设计方法通常用于对风轮轴线截面与叶片产生的气动力,并以此确定叶片参数与翼弦的关系。而Glauert方法主要对风轮后涡流流动进行考虑,初步的设计、分析与修正气动性能,存在一定的局限性,但在设计过程中属于较好的指导方法。维尔森方法则是对Glauert方法的改进,是当前叶片启动外形设计常用方法之一[1]。

1.3 结构设计

结构设计的基本要求在于动力学特性、设计寿命、极限强度设计条件以及刚度设计条件与叶尖变形。在叶片材料方面,通常选择铝合金、玻璃钢、碳纤维增强复合材料等。叶片的内部夹芯结构一般以轻木与PVC为主,而且主体结构中

国内外沥青路面设计方法分析

第5期(总第118期) ■综合论述 国内外沥青路面设计方法分析 姚连军1,李丽2 (1.重庆市交通规划勘察设计院,重庆401121;2.重庆交通大学,重庆400074) 摘要基于国内外沥青路面现有设计体系,介绍了经验法、力学-经验法、基于性能设计法三大类别,并针对其代表性的设计方法的特点进行了评析;结合我国沥青路面结构设计体系,指出我国设计体系中存在的设计指标、路面材料设计参数、交通荷载等方面存在缺陷,并提出相应的建议。 关键词道路工程;沥青路面;设计方法;设计指标 Abstract:Based on current design of asphalt pavement both home and abroad,the paper has made introduction to three means of design,namely empirical method,stress empirical method and property-centered method.Moreover,it has made comments on certain representative features of designs.Taking structure design of asphalt pavement in China into account,the paper presents some demerits in design target,parameter of pavement materials,traffic capacity and the like and finally proposes solutions to such problems. Keywords:highway engineering,asphalt pavement,means of design,design target 沥青路面是在柔性基层、半刚性基层上,铺筑一定厚度的沥青混合料作面层的路面结构。沥青路面设计的任务是根据使用要求及气候、水文、土质等自然条件,密切结合当地实践经验,设计经济合理的路面结构使之能起到承受交通荷载和环境因素的作用,在预定的使用期限内满足各级公路相应的承载能力、耐久性、舒适性和安全性的要求。以沥青路面为主的柔性路面设计理论与方法研究已有近百年的历史,其发展历程经历了经验法和力学-经验法、基于性能的设计方法等类型。 1国外沥青路面设计方法 1.1经验法 经验法主要通过对试验路或使用道路的实验观测,建立路面结构(结构层组合、厚度和材料性质)、荷载(轴载大小和作用次数)和路面性能三者间的经验关系。最为著名的经验设计方法有CBR法和AASHTO法。 CBR法[1~2]以CBR值作为路基土和路面材料(主要是粒料)的性质指标。通过对已损坏或使用良好的路面的调查和CBR测定,建立起路基土CBR轮载~路面结构层厚度(以粒料层总厚度表征)三者间的经验关系。利用此关系曲线,可以按设计轮载和路基土CBR值确定所需的路面层总厚度。路面各结构层次的厚度,按各层材料的CBR值进行当量厚度换算。不同轮载的作用按等弯沉的原则换算为设计轮载的当量作用。此方法设计过程简单,概念明确,适用于重载、低等级的路面设计;但CBR值仅是一种经验性的指标,并不是材料承载力的直接度量指标,它与弹性变形量的关系很小。而路基土应工作在弹性范围内的应力状态下,因而,路面结构设计对路基土的抗剪强度并无直接兴趣,更关心的是路基土的回弹性质(回弹模量)及其在重复荷载作用下的塑性应变。 AASHTO法[3~4]是在AASHO试验路的基础上建立的,整理试验路的试验观测数据,得到的路面结构-轴载-使用性能三者间的经验关系式。AASHTO方法提出了现时服务能力指数(PSI)的概念,以反映路面的服务质量。不同轴载的作用,按等效损坏(PSI)的原则进行转换。路面使用性能指标PSI,主要受平整度的影响,与裂缝、车辙、修补等损坏的关系很小。因此,这是一项反映路面功能性能的指标,而不是表征路面结构性损坏的指标。此外,这个方法源于一条试验路的数据,仅反映一种路基土和一种环境条件,推广应用于其它地区或国家时便存在着很大的局限性。但AASHO试验路的测定数据得到了良好的整理和保存,为许多力学-经验法的设计指标和参数验证提供了丰富的依据[5]。AASHO法提出了轴载换算的概念和公式,考虑了结构的可靠度和排水条件的影响,这些思想对后来世界各国的设计思想产生了很大的影响。1.2力学-经验法 力学-经验法利用在力学反应量与路面性能(各种损坏模式)之间建立的性能模型,按设计要求设计路面结构。从20世纪60年代初开始,各国科技人员致力于研制和实施沥青路面的力学-经验设计法,著名的有AI法和Shel1法。 Shell法[6]是由英、荷壳牌石油公司研究所研究、发展和完善起来的。在该设计方法中,混合料的粘弹性性质以其劲度模量体现,其值取决于沥青含量、沥青劲度和沥青混合料的空隙率。路基模量受应力影响,路基动态模量可以通过现场的动态弯沉试验在道路实际湿度条件和荷载条件下测定,也可在室内通过三轴仪测定。此方法中交通荷载以标准双轮轴载次数为代表,设计年限内的累计轴次即为设计寿命。临界荷位的应力应变由计算机程序BISAR计算。Shell设计法考虑了控制疲劳开裂的沥青层底面的容许水平拉应变ε fat 和控 制永久变形的路基顶面的容许竖向压应变ε z 两项主要设计标准和水泥稳定类材料底面的弯拉应力和路表面的永久变 3 ··

复合材料风电叶片先进制造技术研究现状

复合材料风电叶片先进制造技术研究现状 摘要:在风电行业中,材料的选择对叶片的性能有重要的影响。随着科技水平 的进步,复合材料自出现就得到了认可,并在发展中快速推广,作为风电叶片复 合材料有自身优势。复合材料风电叶片也比常规材料风电叶片有更好的性能,因 此获得了广泛的应用。本文将围绕复合材料风电叶片的制造和发展进行分析,以 供参考。 关键词:复合材料;风电叶片;制造;发展 1.前言 当前,自动化技术在逐渐向制造业慢慢渗透,推进了制造业进入了自动化的 行业。为了抓住这个千载难逢的机会,我国的各个行业都在积极探索先进的自动 化技术,促进制造行业的快速转型,促进发展。 2.自动化智能化制造技术 2.1智能温控模具技术 模具是形成叶片的关键。现有的叶片模具加热方法通常是电加热或水加热。 电加热重量轻,温度迅速升高,并且可以轻松实现灵活的控制。它具有低成本的 水加热和稳定的温度控制能力。然而,这两种常规加热方法的缺点是不能实时反 映模具工作表面的温度。在叶片成型过程中,特别是在固化阶段,模具表面温度 的准确性直接影响叶片材料的最终性能。如果叶片的固化温度过低且固化程度不足,则产品性能将无法满足设计要求。如果温度太高,树脂的反应可能会恶化, 热量可能会集中,并且模具和产品可能会报废。因此,能够智能地控制和调节温 度的模具对于确保风力涡轮机叶片制造的可靠性至关重要。 2.2自动铺放技术 如今,复合风叶片的组件生产以劳动力手工作业为主,包括蒙皮,玻纤布、 腹板和大梁,沉重、复杂并且难以准确放置。有效地保证铺层的平坦度并不容易,并且最终叶片的质量和性能不稳定。由于叶片的尺寸较大且布局复杂,因此很难 将自动布局应用于叶片生产,因此,近年来,这项技术是划时代的并且已得到广 泛应用。 (1)主梁自动铺放及成型技术 主梁是叶片的主要承重组件,通常在铺设过程中不能有褶皱,并且需要很高 的放置精度,因此需要很长时间。通常,大叶片主梁层需要大约2个小时的铺设 时间。 (2)壳体自动铺放技术 当前,铺设玻纤布的主要方法是使用手工来铺设,但是耗时长,并且在铺设 过程中需要手动调节和铺设。由于用手拉动玻璃纤维布,因此会发生玻璃纤维布 的变形及其对产品质量的影响等问题。用于风力发电叶片的自动铺设装置主要包 括机械臂,放置头,光纤交叉输出,光纤交叉切割,压缩,光学位置检测,3D激光扫描仪。在此过程中,压辊在每个输出设备顶部和底部的反向移动以及织物上 的相对压力允许织物的运输。在机械臂的驱动下,铺层沿着导轨移动,从而完成 了在模具中铺布。 2.3自动打磨技术 目前,复合风轮机叶片的打磨主要是人工打磨,劳动强度大,污染环境,粉 尘对人体有害。当前,正在开发各种自动研磨技术和设备,其基本上使用机器人臂,自动引导车辆或导轨,智能控制系统,传感器等来根据预设程序来定位和定

风力发电基础知识

风力发电基础知识 风力发电是将风能转换成电能,风能推动叶轮旋转,叶轮带动转动轴和增速机,增速机带动发电机,发电机通过输电电缆将电能输送地面控制系统和负荷。风力发电技术是一项多学科的,可持续发展的,绿色环保的综合技术。 风力发电的原理,是利用风力带动风车叶片旋转,再透过 增速机将旋转的速度提升,来促使发电机发电。依据目前的风 车技术,大约是每秒三公尺的微风速度(微风的程度),便可 以开始发电。风力发电正在世界上形成一股热潮,为风力发电 没有燃料问题,也不会产生辐射或空气污染。 转子空气动力学 为了解风在风电机的转子叶片上的移动方式,我们将红色带子 绑缚在模型电机的转子叶片末端。黄色带子距离轴的长度是叶 片长度的四分之一。我们任由带子在空气中自由浮动。本页的 两个图片,其中一个是风电机的侧视图,另一个使风电机的正视图。 大部分风电机具有恒定转速,转子叶片末的转速为64米/秒,在轴心部分转速为零。距轴心四分之一叶片长度处的转速为16米/秒。图中的黄色带子比红色带子,被吹得更加指向风电机的背部。这是显而易见的,因为叶片末端的转速是撞击风电机前部的风速的八倍。 为什么转子叶片呈螺旋状? 大型风电机的转子叶片通常呈螺旋状。从转子叶片看过去,并向叶片的根部移动,直至到转子中心,你会发现风从很陡的角度进入(比地面的通常风向陡得多)。如果叶片从特别陡的角度受到撞击,转子叶片将停止运转。因此,转子叶片需要被设计成螺旋状,以保证叶片后面的刀口,沿地面上的风向被推离。 风电机结构

机舱:机舱包容着风电机的关键设备,包括齿轮箱、发电机。维护人员可以通过风电机塔进入机舱。机舱左端是风电机转子,即转子叶片及轴。 转子叶片:捉获风,并将风力传送到转子轴心。现代600千瓦风电机上,每个转子叶片的测量长度大约为20米,而且被设计得很象飞机的机翼。 轴心:转子轴心附着在风电机的低速轴上。 低速轴:风电机的低速轴将转子轴心与齿轮箱连接在一起。在现代600千瓦风电机上,转子转速相当慢,大约为19至30转每分钟。轴中有用于液压系统的导管,来激发空气动力闸的运行。 齿轮箱:齿轮箱左边是低速轴,它可以将高速轴的转速提高至低速轴的50倍。 高速轴及其机械闸:高速轴以1500转每分钟运转,并驱动发电机。它装备有紧急机械闸,用于空气动力闸失效时,或风电机被维修时。 发电机:通常被称为感应电机或异步发电机。在现代风电机上,最大电力输出通常为500至1500千瓦。 偏航装置:借助电动机转动机舱,以使转子正对着风。偏航装 置由电子控制器操作,电子控制器可以通过风向标来感觉风向。 图中显示了风电机偏航。通常,在风改变其方向时,风电机一 次只会偏转几度。 电子控制器:包含一台不断监控风电机状态的计算机,并控制 偏航装置。为防止任何故障(即齿轮箱或发电机的过热),该 控制器可以自动停止风电机的转动,并通过电话调制解调器来 呼叫风电机操作员。 液压系统:用于重置风电机的空气动力闸。 冷却元件:包含一个风扇,用于冷却发电机。此外,它包含一个油冷却元件,用于冷却齿轮箱内的油。一些风电机具有水冷发电机。 塔:风电机塔载有机舱及转子。通常高的塔具有优势,因为离地面越高,风速越大。现代600千瓦风汽轮机的塔高为40至60米。它可以为管状的塔,也可以是格子状的塔。管状的塔对于维修人员更为安全,因为他们可以通过内部的梯子到达塔顶。格状的塔的优点在于它比较便宜。 风速计及风向标:用于测量风速及风向。 风电机发电机 风电机发电机将机械能转化为电能。风电机上的发电机与你通常看到的,电网上

复合材料风电叶片的检查保护及维修

复合材料风电叶片的检查保护及维修 发表时间:2019-09-19T17:26:28.827Z 来源:《当代电力文化》2019年第8期作者:雷山山杨成玲[导读] 风电场的负责人需要意识到,复合材料的风电叶片需要由专业的人员定期的进行检查与维护。新疆伊犁库克苏河水电开发有限公司新疆伊宁835000摘要:复合材料风电叶片在使用的过程中直接面对风载荷的威胁,还需要长期的面对恶劣环境的干扰,风叶片的工作的发电功率与使用寿 命的长短有着很大的影响,风电场的负责人需要意识到,复合材料的风电叶片需要由专业的人员定期的进行检查与维护。这是保障复合材料风电叶片能够顺利工作的重要前提关键词:复合材料;风电;保护;叶片;维修风力发电目前是我国目前大力发展的一种发电方式,其独特的优点无污染、可持续科学的发电.各大国家不断地研究使用,风电叶片能够利用其叶片的转动将风能通过机械转化为电能,其中风电叶片是风力发电机在将风能转化为电能过程中,直接暴露在外部环境的重要机械,叶片的状态直接会影响到机械发电的转换效率。我国目前采用的复合材料所构成的风电叶片是由特殊的树脂型材料制作,复合材料本身具有中空性、纤维材料其独特的严密性也使得它制成叶片十分优质,但是也因为其特殊性,一般的技术人员难以对其进行维修与检查。 一、复合材料风电叶片存在检查维修的隐患 1.1、复合材料风电叶片的运输隐患 风电叶片从生产的场地出发将其制作成风力发电机的其中一部分机械,一般需要将其需要运输到相应的场地,一般有两种运输的方式,将叶片组装到发电机上再将其运输与将叶片装到运输车上再将其运输两种,在安装复合材料叶片至发电机组上时,操作稍有不当,就会导致材料造成损坏,另外在运输的过程中还会发生意外的损害,例如交通事故的发生。也会对叶片造成损害1.2、复合材料风电叶片所处环境隐患 通常来讲。复合材料风电叶片与发电机械所处的位置一般不同,发电机组通常在安装完成之后会将其安装在离叶片一定距离的位置,且具有金属材料外壳进行保护,叶片因为其工作的特殊性,需要常年的裸露在外部的恶劣环境,而且通常风电机组的安装位置大多在地理位置较为偏远的地方,长年的处于风力较大,甚至伴随雷雨的状态下,复合材料的风电叶片虽然具有较强的防腐蚀性,但是由于长年的裸露在恶劣环境下,会造成风电叶片出现破损,转动缓慢等问题的出现,炎热环境与冬天的寒冷环境都会影响叶片正常运行,导致发电效率的下降。 1.3、风电机组缺乏相应的维修保护制度 在风电机组的运行下,需要相应的技术人员定期的检查复合材料风电叶片的运行状况,然而我国目前的风电机组方面,在组建之后,一般专业的技术人员通常需要到下一个风电机组去进行组建,检查,通常会出现漏查,重复检查的状况的发生,在叶片发生故障之后,缺乏相应的应对措施,例如叶片在雷雨环境下因为雷电而导致叶片的损害,破损,则需要安排相应的工作人员在保证其他风电机组在正常运行的前提下将损坏的叶片其所在的机组关闭,如果存在雷电存留的状况,还需要对其进行引电,避免工作人员在维修时发生危险1.4、缺乏先进的维修技术 我国目前的维修叶片技术还存在着很大的缺陷,例如我们常用的引电技术保护复合材料风电叶片,即通过将雷电的路线改变,引导雷电将其引入大地。常用的做法是,在复合材料叶片的尖部区域设置若干个相关的接闪器,接闪器的作用是能够将雷电通过接闪器所连接的导线将雷电引致叶片的底部接地区域,将雷电传导到大地。但是这种方法会导致复合材料风电叶片的表面出现类型雷电击中的现象出现,使得叶片的表面出现凹痕,不规则的黑点、外表皮的脱落,还会出现不同程度的叶片开裂,在雨水的浸泡下,导致其运转的故障。 二、复合材料风电叶片的检查维修方法 2.1、运输环节的保护 我国目前的复合材料风电叶片的维修检查的方法主要采用观察、使用工具敲试、将涂层打开进行深入内部的观察和维修等,无论其中哪一种检查维修方法,都需要极为专业的检查维护团体与专业的技术人员。在运输与安装环节,为了避免出现损伤的叶片的行为,则使用专业的技术人员在运输途中通过对叶片的外表进行严谨观察,一旦出现明显的叶片外观损伤与叶片涂层的表面材料出现了刮蹭、损伤,都需要通知相关的叶片制造商与专业的的复合材料风电叶片的维修人员对其进行专业的检查与维修、并对相关的叶片进行拍照,保存资料,对怎样发生事故的原因进行研究,保存,便于以后类似的事故发生之后,进行处理。 2.2、采用先进的检查维修技术 我国传统的检查维修技术,一般在复合材料风电风叶进行检查之时,对其进行拆卸,检查内部,之后对其进行组装,工程量繁琐,极为麻烦,而因为复合材料的外表涂层层数较多、每次的拆卸检查都会对叶片造成损害,在考虑到成本和时间的基础上,采用先进的无损检测设备技术,超声波探测检查技术。超声波技术它适用于对复合材料其表面下几厘米厚度的区域进行探查,对其能够准确的找到所出现的问题,代替了我国传统的敲击检测方法,能够减少叶片表面的在因为检查维修之时出现的损伤。还有一种方法称之为错位散斑干涉技术,这种技术主要应用在航空检查与海洋机械之中,它能够在恶劣的环境下对复合材料风电叶片的错位,破损,漏电等情况进行准确定位,代替了传统的人工检查,保障了专业技术人员的人身安全2.3、制定严谨的检查维修制度 在复合材料风电叶片的日常检查维修之中,设立专门的检查制度,对叶片的外边涂层,接口,螺旋仪器,地面引电装置,叶片接电器等等位置进行相关的检查制度设定,;例如对接点器的检查,需要分为三部分:第一部是对其接口处的涂层进行检查,检查复合材料风电叶片与接电器的接口处其表面涂层是否出现脱落。第二部分则是对其接口处的导电性能进行检查,使用仪器对其导电性能进行检测,一旦发生导电的故障,尽快进行处理。第三部分则是对整体外部金属的检查,观察是否出现破损,出现后立即更换,保障叶片的正常运行三、结束语 伴随着我国对电力需求的增加,风力发电在因为其高效环保的特点在发电方面所占比重越来越大,本文就目前复合材料风电叶片的维修出现的隐患进行分析,提出了具体的建议参考文献:

风电叶片设计流程

叶片设计流程 一.空气动力设计 1.确定风轮的几何和空气动力设计参数 2.选择翼型 3.确定叶片的最佳形状 4.计算风轮叶片的功率特性 5.如果需要可以对设计进行修改并重复步骤4,以找到制造 工艺约束下的最佳风轮设计。 6.计算在所有可遇尖速比下的风轮特性 对于每个尖速比可采用上面步骤4所述的方法,确定每个叶素的空气动力状态,由此确定整个风轮的性能。 7.风力机叶片三维效应分析 8.非定常空气动力现象 9.风力机叶片的动态失速 10.叶片动态入流 二.风机载荷计算 作为风力机设计和认证的重要依据,用于风力机的静强度和疲劳强度分析。国际电工协会制定的IEC61400-1标准、德国船级社制定的GL 规范和丹麦制定的DS 472标准等对风力机的载荷进行了详细的规定。

2.1IEC61400-1 标准规定的载荷情况 2.2风机载荷计算 1计算模型 1)风模型 (1)正常风模型 (2)极端风模型 (3)三维湍流模型 2)风机模型 风机模型包括几何模型、空气动力学模型、传动系统动力学模型、控制系统闭环模型和运行状态监控模型等。 2风力机载荷特性 1)叶片上的载荷 (1)空气动力载荷 包括摆振方向的剪力Q yb和弯矩M xb、挥舞方向的剪力Q xb和弯矩M yb以及与变浆距力矩平衡的叶片俯仰力矩M zb。可根据叶片空气动力设计步骤4中求得的叶素上法向力系数Cn和切向力系数Ct, 通过积分求出作用在叶片上的空气动力载荷。 (2)重力载荷 作用在叶片上的重力载荷对叶片产生的摆振方向弯矩,随叶片方位角的变化呈周期变化,是叶片的主要疲劳载荷。 (3)惯性载荷

(4)操纵载荷 2)轮毂上的载荷 3)主轴上的载荷 4)机舱上的载荷 5)偏航系统上的载荷 6)塔架上的载荷 三.风力机气动弹性 当风力机在自然风条件下运行时,作用在风力机上的空气动力、惯性力和弹性力等交变载荷会使结构产生变形和振动,影响风力机的正常运行甚至导致风力机损坏。因此,在风力机的设计中必须考虑系统的稳定性和在外载作用下的动力响应,主要有①风力机气动弹性稳定性和动力响应②风力机机械传动系统的振动③风力机控制系统(包括偏航系统和变浆距系统等)的稳定性和动力响应④风力机系统的振动。 3.1风力机气动弹性现象 1.风力机叶片气动弹性稳定性问题 2.风力机系统振动和稳定性问题 3.2风力机气动弹性分析 目的是保证风力机在运行过程中不出现气动弹性不稳定。主要的方法是特征值法和能量法。特征值法是在求解弹性力学的基本方 程中,考虑作用在风力机叶片上的非定常空气动力,建立离散的描述风力机叶片气动弹性运动的微分方程。采用Floquet理论求解,最后 稳定性判别归结为状态转移矩阵的特征值计算。

(完整word版)沥青路面结构设计

第四章 路面结构设计 1.1设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为24.5米,全长5km ,结合近几年济南经济增长及人口增长的情况,根据近期的交通量预测该路段的年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构,设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温13.8℃,无霜期178天,最高月均温27.2℃(7月),最低月均温-3.2℃(1月),年平均降水量685毫米。道路沿线土质路基稠度 c ω=1.3;因此该路基 处于干燥状态,根据公路自然区划可知济南绕城高速处于5 Ⅱ区,根据【JTG D50-2006】《公路沥青路面设计规范》中表5.1.4-1可确定工程所在地土基回弹模量设计值为46MPa 。 (3)交通资料

1.2交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN 为标准轴载,以BZZ-100表示。标准轴载的计算参数按表1-2确定。 ○ 1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN 的各级轴载Pi 的作用次数Ni 按下式换算成标准轴载P 的当量作用次数N 的计算公式为: 35 .4121∑=? ?? ??=k i i i P P N C C N 式中:N ——标准轴载当量轴次数(次/d ); Ni ——被换算的车型各级轴载作用次数(次/d ); P ——标准轴载(kN ); Pi ——被换算车型的各级轴载(kN ); C1——被换算车型的各级轴载系数,当其间距大于3m 时,按单独的一个 轴计算,轴数系数即为轴数m ,当其间距小于3m 时,按双轴或多轴计算,轴数系数为C1=1+1.2(m-1); C2——被换算车型的各级轴载轮组系数,单轮组为6.4,双轮组为1.0, 四轮组为0.38。 沥青路面营运第一年双向日平均当量轴次为: 35 .41 21∑=? ?? ??=k i i i P P N C C N = 4709.00(次/d ) ○ 2当以半刚性层底拉应力为设计指标时,标准轴载当量轴次数N ': 8 121 k i i i P N C C N P =?? '''= ? ??∑ 式中: 1C ' ——轴数系数 2C '——轮组系数,单轮组为18.5,双轮组为1.0,四轮组为0.09。 注:轴载小于50KN 的特轻轴重对结构的影响可以忽略不计,所以不纳入当 量换算。 沥青路面营运第一年双向日平均当量轴次:

风电标准大全、整机厂及中国风力发电叶片厂商名录、风力发电机组特点

风力发电整机制造机构名称 维斯塔斯风力技术公司 新疆金风科技发展公司 四川风瑞能源 GAMESA GE能源集团 华锐风电科技股份有限公司 浙江华仪风能开发有限公司 苏司兰能源有限公司 江西麦德风能设备股份有限公司 常州轨道车辆牵引传动工程技术研究中心上海电气风电设备有限公司 中国南车株洲电力机车研究所风电事业部湖南湘电风能有限公司 中船重工(重庆)海装风电设备有限公司Repower 浙江运达风力发电工程有限公司 上海万德风力发电有限公司 佛山市东兴风盈风电设备制造有限公司潍坊中云机器有限公司 东方汽轮机有限责任公司 保定惠德风电工程有限公司 哈尔滨哈电风电设备公司 北京北重汽轮电机有限责任公司 沈阳华创风能有限公司 西安维德风电设备有限公司 广东明阳风电有限责任公司 三一电气有限责任公司 中小型风力发电机组(含并网/离网型)机构名称 广州红鹰能源科技公司 扬州神州风力发电有限公司 嘉兴市安华风电设备有限公司 上海思源致远绿色能源有限公司 宁波风神风电科技有限公司 深圳风发科技发展有限公司 广州中科恒源能源科技有限公司 宁夏风霸机电有限公司 上海林慧新能源科技有限公司 西安大益风电科技有限公司 瑞安海立特风力发电有限公司

风能蓄电池机构名称 北京辉泽世纪科技有限公司 叶片及其材料机构名称 重庆国际复合材料有限公司 艾尔姆玻璃纤维制品(天津)有限公司 上海玻璃钢研究院 江苏九鼎新材料股份有限公司 南京先进复合材料制品有限公司 上海越科复合材料有限公司 中国兵器工业集团第五三科技研究院 威海市碳素渔竿厂 金陵帝斯曼树脂有限公司 中航(保定)惠腾风电设备有限公司 浙江联洋复合材料有限公司 常熟市卡柏(Core Board)复合材料有限公司北京恒吉星工贸有限责任公司 风力发电机机构名称 湘潭电机股份有限公司 南车电机股份有限公司 西安捷力电力电子有限公司 兰州电机有限责任公司 东方电机股份有限公司 上海电气集团 盾安电气 齿轮箱/回转支承机构名称 南京高速齿轮制造有限公司 德国GA T传动技术有限公司 洛阳精联机械基础件有限公司 徐州罗特艾德回转支承股份有限公司 舍弗勒中国有限公司 马鞍山方圆回转支承股份有限公司 浙江通力减速机有限公司 变桨系统机构名称 桂林星辰电力电子有限公司 德国GA T传动技术有限公司 路斯特绿能电气系统(上海)有限公司

路面设计原理与方法

路面设计原理与方法 1.柔性路面,刚性路面定义,结构特性,二者在设计理论与方法上有何主要区别 在柔性基层上铺筑沥青面层或用有一定塑性的细粒土稳定各种集料的中、低级路面结构,因具有较大的塑性变形能力而称这类结构为柔性路面。它的总体结构刚度较小,刚性路面采用波特兰水泥混凝土建造,用水泥混凝土作面层或基层的路面结构。它的分析采用板体理论,不用层状理论。板体理论是层状理论的简化模型。它假设混凝土板是中等厚度的平板,其截面在弯曲前和弯曲后均保持平面形状。如果车轮荷载作用在板中,无论是板体理论,还是层状理论均可采用,两者将得到几乎相同的弯拉应力和应变。如果车轮荷载作用在板边,假定离板边距离小于0.61m(2ft),只能用板体理论分析刚性路面。层状理论之所以适用于柔性路面而不适合于刚性路面,是因为水泥混凝土的刚性比HMA大得多,荷载分布的范围很大。而且刚性路面有接缝存在,这也使得层状理论不能适用。 刚性路面和柔性路面不同,刚性路面可以直接铺设在压实的土基上,或者铺设在加铺的粒料或稳定材料层上。 柔性路面设计以层状理论为基础,假设各层在水平方向是无限的,且是连续的。刚性路面由于板的刚度大和存在接缝,设计基础采用板体理论。如果荷载作用在板中,层状理论同样也能用于刚性路面设计中。 2.机场道面、道路路面各有什么特点。二者在功能和构造方面有什么主要区别?各自的设计原理与方法有什么相同点和不同点 机场道面的功能性能包括平整度、抗滑性能(对于跑道和快滑道)、纵横坡和排水性能等。 道面使用要求:具有足够的结构强度 ?表面具有足够的抗滑能力 ?表面具有良好的平整度 ?面层或表层无碎屑 机场道面是指在民用航空运输机场飞行区范围内供飞机运行使用的铺筑在跑道、滑行道、站坪、停机坪上的结构物。由于飞机运行方式对安全使用的要求高、飞机荷载重量和轮胎接地压力大于车辆荷载等原因,机场道面一般采用热拌热铺沥青混凝土。最多采用的热拌沥青混凝土结构是连续式密级配沥青混凝土,也有少数OGFC,SMA的应用也较为广泛。由于机场沥青混凝土道面所要求具备的强度条件、耐久性、抗滑性能等,在道路路面工程中所采用的沥青表处、沥青贯入碎石等面层结构不适用于机场道面。机场沥青混凝土道面中面层和底面层一般采用密级配沥青混凝土。沥青碎石结构可用于机场沥青混凝土道面底面层。 由于飞机的荷载和轮胎压力比公路车辆的荷载和轮胎压力大很多,因此机场道面通常比公路路面厚一些,而且需要较好的面层材料。无论是公路路面,还是机场道面,任何力学设计方法对荷载和轮胎压力的作用均可自动予以考虑。然而,采用力学法应注意以下不同的地方: (1)、机场道面的荷载重复作用次数通常小于公路路面的荷载重复作用次数。对于机场道面,由于飞机的左右偏离,一组机轮通过若干次只认为是重复作用一次;而对于公路路面,一个车轴通过一次即认为是重复作用一次。实际上公路荷载并不是作用在同一位置,这个情况在破坏极限中用增加荷载容许重复次数加以考虑。对柔性路面的疲劳引入一个修正系数,而对刚性路面的疲劳引入一个当量损伤率。 (2)、公路路面设计采用移动荷载,以荷载作用时间作为输入量描述其粘弹性特性,以荷载重复作用下的回弹模量作为输入量描述其弹性特性。机场道面设计在跑道中部采用移动荷载,在跑道端部采用静荷载,因此,跑道端部的道面厚度大于中部的厚度。

大型风电叶片结构设计方法研究

大型风电叶片结构设计方法研究 摘要:随着绿色能源的推广与利用,对风电叶片结构设计也提出了更高的要求。作为风电机组的主要部件,叶片的设计方法一直是风电机组研发的关键。本文主要对大型风电叶片结构设计方法进行探析。 关键词:风电叶片;结构设计;方法 前言 近年来,我国的风电设备在技术水平与创新方面已有了突破性的成就,但与国外发达国家相比,仍存在很大差距,尤其在大型风电叶片结构设计方面。因此,如何完善设计方法将是未来提高风电机组核心技术的必然途径。 1.风电叶片设计的基本概述 1.1 风电叶片设计 风电叶片设计的过程实际是对叶片参数的选取与确定的过程,其中的参数对叶片的性能起决定性的作用。一般对风电叶片进行设计主要目标在于:第一,通过较好的空气动力外形获得风能。第二,结构的强度与刚度能够承受各种荷载。第三,其结构动力学特性较好,防止出现共振与颤振。第四,叶片重量的降低使制造成本减少。设计的过程主要分为对气动与结构的设计。其中气动设计过程中,主要对叶片几何外形做出最佳的选择,实现年发电量最大的目标,而结构设计主要对叶片材料的选择、叶片结构形式以及设计参数进行分析,使叶片的强度、刚度及稳定性等目标得以实现。 1.2 叶片外形设计的主要方法 风电叶片设计的主要任务是确定气动外形。叶片外形作为结构设计的基础,对结构设计也有一定的限制。一般对气动外形的设计的方法主要包括基于动量叶素理论的简化设计方法、Glauert方法、以及维尔森方法。基于动量叶素理论的简化设计方法通常用于对风轮轴线截面与叶片产生的气动力,并以此确定叶片参数与翼弦的关系。而Glauert方法主要对风轮后涡流流动进行考虑,初步的设计、分析与修正气动性能,存在一定的局限性,但在设计过程中属于较好的指导方法。维尔森方法则是对Glauert方法的改进,是当前叶片启动外形设计常用方法之一[1]。 1.3 结构设计 结构设计的基本要求在于动力学特性、设计寿命、极限强度设计条件以及刚度设计条件与叶尖变形。在叶片材料方面,通常选择铝合金、玻璃钢、碳纤维增强复合材料等。叶片的内部夹芯结构一般以轻木与PVC为主,而且主体结构中

风力发电基础桩基施工方案

天津大港沙井子风电四期工程 桩基施工方案 1.适用范围 本方案适用于天津大港沙井子四期风电工程风机桩基工程的沉桩施工。2.编制依据 《建筑工程施工质量验收统一标准》(GB50300-2013) 《建筑地基基础工程施工质量验收规范》(GB50202-2016) 《建筑地基基础设计规范》(GB50007-2011) 《建筑桩基技术规范》(JGJ94-2008) 《预制钢筋混凝土方桩》(04G361) 《建设工程施工安全强制性条文》 《施工现场临时用电技术规范》(JGJ46——2012) 《建筑施工安全检查标准》(JGJ 59—2011) 《电力建设施工质量验收及评定规程(第1部分:土建工程)》(DLT 5210.1-2012) 《工程建设标准强制性条文:房屋建筑部分》(2013年版) 3.工程概况 国电天津大港沙井子风电场位于大港区南部,大港区位于天津东南部,系天津市东南部滨海行政区,现辖原北大港区及南郊部分地区,大港区南面与河北省的黄骅市接壤,周边分别与塘沽、津南、西青和静海毗临。大港地区是退海之地,以后逐渐形成现在的滨海平原。天津大港沙井子风电四期工程机位位于北排河排、沧浪渠河滩(堤)上,共安装21台风机,其中1#-19#风机布置在翟庄子周围,20#、21#风机机位布置在窦庄子村东侧。 本期工程共安装21台联合动力UP115/2000MW级风力发电机组。风机叶轮直径115米,轮毂高度100米。 本场区内无活动断裂分布,第四系松散堆积物厚度大,场区抗震设防烈度为7度,根据《建筑抗震设计规范》(GB50011-2001),可忽略发震断裂错动对地面建筑的影响。通过上述报告分析,场区内不存在地震时可能发生崩塌、滑坡、泥石流、地陷、地裂等灾害的地段。场区内地层从上而下呈层状分布,除个别地层

风电叶片维护研究进展

风电叶片维护研究进展 一.风电叶片维护的必要性 我国风电快速发展始于2006年,当时国内风机以600kw,700kw机型为主,2007年3月,我国首台1.5MW直驱永磁发电机组在新疆投运,拉开了兆瓦级风力发电发展的序幕。随着风电市场的逐渐成熟,大型风力发电机组相继出现,叶片长度也由原来的30-40m增加至60-70m。叶片长度的不断增长,同时带来叶片重量的增加,但是叶片设计使用寿命为20年,如何在叶片20年的生命周期内保持其高效运行至关重要。 风力发电叶片一般安装于偏远的地区,运行环境恶劣,如较大的风沙侵袭,-30℃至50℃的循环温差,以及强紫外光的老化等。目前2.5MW-50.3m的叶片,叶尖运行速度高达300公里/小时,在这样高转速下,风沙和雨滴对风电叶片的侵蚀相当于等离子切割,叶片表面容易形成空洞。研究表明,叶片表面粗糙度的增加以及缺陷的累积将导致发电效率降低5%-30%,还可能导致叶片运行失稳造成齿轮箱的故障。叶片小的缺陷如果没有及时发现并进行专业修复,将导致裂纹延伸至叶尖,造成叶片大面积的开裂,不得不进行大型修补或者返厂处理,给风场业主带来重大经济损失。 二.风电叶片常见的损伤 风电叶片虽然在设计时,赋予它足够的强度和刚度,但是在其20年的使用寿命中,也会像其他复合材料部件一样,出现各种各样的问题。风电叶片从生产厂家生产,通过长距离的运输到达风场,使用大吨位吊车进行安装。风电叶片在上述每一个步骤都可能发生损伤破坏。一旦风电叶片开始运行,将受到雨水,风沙以及大气的腐蚀,同时还要经受强紫外的老化。在风压和旋转持续疲劳载荷的作用下,隐藏在叶片内部的缺陷,如分层,气泡,叶片组件之间的粘合缺陷将会逐渐显现出来。 风机正常运行情况下,叶片会在不同年限出现相应的受损状况: 2年:表面胶衣出现磨损,脱落现象,甚至出现小的砂眼。 3年:叶片出现大量砂眼,叶片前缘尤为严重,风机运行产生阻力,事故隐患开始显示。

沥青路面结构设计方法的简介

沥青路面结构设计方法的简介 摘要:针对沥青路面结构设计方法进行调研,重点对AASHTO沥青路面设计法、壳牌( SHELL)设计法和我国沥青路面结构设计法进行深入分析.对沥青路面结构设计方法的形成及发展、各沥青路面设计方法 的特点进行评述、 关键词:沥青路面:结构设计:AASHTO:路面力学模型 1 引言 沥青路而设计方法随着路而技术、交通状况及人们对路而破坏状态认识的变化而不断发展,经历了古典理论法、经验设计法和理论分析法三个阶段。 2沥青路面设计方法的形成及发展 从1901年美国麻省道路委员会第八次年会上提出的第一个路而设计方法的公式,至1940年的Goldbeck公式,沥青路而设计法均属于古典理论法,其特点是以土基顶而的应力大小为依据设计路而厚度。随着路而结构形式、施工技术水平、以及路而力学理论和计算手段的发展,古典理论法逐渐被淘汰。经验法和理论分析法是目前常用的路而设计方法。 经验法是建立在大量实际道路和试验路调查基础上的设计方法,典型的有AASHTO沥青路而设计法、CBR设计法等。经验法通过路而调查提出路而破坏标准、设计指标以及交通作用与设计指标的关系,以此为基础进行厚度计算。经验法建立在实践的基础上,因此在路而设计因素变化不大的情况下,经验法的设计结果比较容易接近实际要求。但是,由于经验法设计曲线或设计公式是由一定时期的路而调查得到的,随着路而结构、材料、施工养护以及交通情况的变化,其对以后路而设计的适用性往往受到限制,需要根据各种影响因素的变化不断修订,但由于其参数、指标有很大的主观性,理论基础模糊,修订工作比较困难。 随着路而力学和计算技术的发展逐渐产生了理论分析法。理论分析法典型的有壳牌(SHELL)法、美国地沥青协会(TAI)法等,我国沥青路而设计法也属于理论法的范畴。当然,沥青路而设计中任何理论分析法都不是纯理论的,都必须与路而调查、室内试验结论相结合,包含有经验法的部分成果。理论分析法的特征是通过路而力学模型计算结构层厚度,其优点是理论基础清晰,便于修订更新,缺点是路而模型对实际路而的大量简化会引起一些误差,而误差的修正系数与经验法的指标一样,是比较模糊的,带有一定的经验性。同经验法一样,理论分析法也要随着路而实践的发展而修订。 近年来,随着人们对路而破坏特性认识的深入,逐渐产生了长寿命路而的设计思想。长寿命路而的设计思路是:保证路而足够的整体强度,把病害限制在路而表层,通过定期(10 -20年)的表而修复,防比表而病害影响路而结构安全,保证路而在相当长的设计年限内不发生结构性损坏(40年以上)。以下针对国内外主流的沥青路而设计方法做介绍。 3美国AASHT093沥青路面设 计方法

风力发电叶片制作工艺介绍

风力发电叶片制作工艺介绍 风力发电机叶片是接受风能的最主要部件,其良好的设计、可靠的质量和优越的性能是保证发电机组正常稳定运行的决定因素,其成本约为整个机组成本的15%-20%。根据“风机功价比法则”,风力发电机的功率与叶片长度的平方成正比,增加长度可以提高单机容量,但同时会造成发电机的体积和质量的增加,使其造价大幅度增加。 1碳纤维在风力发电机叶片中的应用 叶片材料的发展经历了木制、铝合金的应用,进入了纤维复合材料时代。纤维材料比重轻,疲劳强度和机械性能好,能够承载恶劣环境条件和随机负荷,目前最普遍采用的是玻璃纤维增强聚酯(环氧)树脂。但随着大功率发电机组的发展,叶片长度不断增加,为了防止叶尖在极端风载下碰到塔架,就要求叶片具有更高的刚度。国外专家认为,玻璃纤维复合材料的性能已经趋于极限,不能满足大型叶片的要求,因此有效的办法是采用性能更佳的碳纤维复合材料。 1)提高叶片刚度,减轻叶片质量 碳纤维的密度比玻璃纤维小约30%,强度大40%,尤其是模量高3~8倍。大型叶片采用碳纤维增强可充分发挥其高弹轻质的优点。荷兰戴尔弗理工大学研究表明,一个旋转直径为120m的风机的叶片,由于梁的质量超过叶片总质量的一半,梁结构采用碳纤维,和采用全玻璃纤维的相比,质量可减轻40%左右;碳纤维复合材料叶片刚度是玻璃纤维复合材料叶片的2倍。据分析,采用碳纤维/玻璃纤维混杂增强方案,叶片可减轻20%~30%。VestaWindSystem公司的V90型

3.0MW发电机的叶片长44m,采用碳纤维代替玻璃纤维的构件,叶片质量与该公司V80型2.0MW发电机且为39m长的叶片质量相同。同样是34m长的叶片,采用玻璃纤维增强聚脂树脂时质量为5800kg,采用玻璃纤维增强环氧树脂时质量为5200kg,而采用碳纤维增强环氧树脂时质量只有3800kg。其他的研究也表明,添加碳纤维所制得的风机叶片质量比采用玻璃纤维的轻约32%,而且成本下降约16%。 2)提高叶片抗疲劳性能 风机总是处在条件恶劣的环境中,并且24h处于工作状态。这就使材料易于受到损害。相关研究表明,碳纤维合成材料具有良好的抗疲劳特性,当与树脂材料混合时,则成为了风力机适应恶劣气候条件的最佳材料之一。 3)使风机的输出功率更平滑更均衡,提高风能利用效率 使用碳纤维后,叶片质量的降低和刚度的增加改善了叶片的空气动力学性能,减少对塔和轮轴的负载,从而使风机的输出功率更平滑更均衡,提高能量效率。同时,碳纤维叶片更薄,外形设计更有效,叶片更细长,也提高了能量的输出效率。 4)可制造低风速叶片 碳纤维的应用可以减少负载和增加叶片长度,从而制造适合于低风速地区的大直径风叶,使风能成本下降。 5)可制造自适应叶片 叶片装在发电机的轮轴上,叶片的角度可调。目前主动型调节风机的设计风速为13~15m/s(29~33英里/h),当风速超过时,则调节

大型海上风电叶片关键技术及创新研究分析

大型海上风电叶片关键技术及创新研究

海上叶片技术挑战 Longer Blade Demanding for Innovative Technologies 材料科学 Material Science ?高模量 High stiffness ?轻质 Low weight ?性能稳定 Robust ?耐腐蚀及紫外线 Anti-erosion/UV 气动设计 Aerodynamics ?高叶尖速 High tip speed ratio ?高雷诺数 High Reynolds # ?粗糙度敏感性低 Dirt Airfoil ?气弹稳定性 Aeroelastic flutter ?失速余量 Stall margin ?载荷控制 Load control ?气动效率 Performance 结构设计 Structural Design ?高可靠性 High reliability ?后缘梁设计TE UD ?三明治结构稳定性 ?大厚度主梁帽 Thick Spar Cap ?叶根设计 Root connection 工艺设计 Mfg Process ?部件预制 Prefabrication ?大厚度梁帽制作 Thicker Spar cap ?防雷金属网灌注 Copper mesh application 防护设计 LPS & Anti-erosion ?碳材料防雷 LPS for carbon ?前缘防护 LE protection

价格因子/重量因子 Cost & Weight factors 0.0% 20.0% 40.0% 60.0% 80.0% 100.0% 120.0% 0.0% 50.0% 100.0% 150.0% 200.0% 250.0% 300.0% 350.0% 400.0% 常规玻纤布 大克重玻纤布 拉挤玻纤片材 碳纤灌注 碳纤预浸料 碳纤拉挤片材 单位模量价格因子 重量因子 价格因子 重量因子

风电机组地基基础设计规定

1 范围 1.0.1 本标准规定了风电场风电机组塔架地基基础设计的基本原则和方法,涉及地基基础的工程地质条件、环境条件、荷载、结构设计、地基处理、检验与监测等内容。 1.0.2 本标准适用于新建的陆上风电场风电机组塔架的地基基础设计。工程竣工验收和已建工程的改(扩建)、安全定检,应参照本标准执行。 1.0.3 风电场风电机组塔架的地基基础设计除应符合本标准外,对于湿陷性土、多年冻土、膨胀土和处于侵蚀环境、受温度影响的地基等,尚应符合国家现行有关标准的要求。

2 规范性引用文件 下列标准中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用标准,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些标准的最新版本。凡是不注日期的引用标准,其最新版本适用于本标准。 GB 18306 中国地震动参数区划图 GB 18451.1 风力发电机组安全要求 GB 50007 建筑地基基础设计规范 GB 50009 建筑结构荷载设计规范 GB 50010 混凝土结构设计规范 GB 50011 建筑抗震设计规范 GB 50021 岩土工程勘察规范 GB 50046 工业建筑防腐蚀设计规范 GB 50153 工程结构可靠度设计统一标准 GB 60223 建筑工程抗震设防分类标准 GB 50287 水力发电工程地质勘察规范 GBJ 146 粉煤灰混凝土应用技术规范 FD 002—2007 风电场工程等级划分及设计安全标准 DL/T 5082 水工建筑物抗冰冻设计规范 JB/T10300 风力发电机组设计要求 JGJ 24 民用建筑热工设计规程 JGJ 94 建筑桩基技术规范 JGJ 106 建筑基桩检测技术规范 JTJ 275 海港工程混凝土防腐蚀技术规范

相关文档
最新文档