矩阵乘法计算实验报告

矩阵乘法计算实验报告
矩阵乘法计算实验报告

C++课程设计实验报告

姓名:陈钱学号:913116120316 班级:材科三班

题目:矩阵乘法计算难易级别:A级

实验报告成绩

指导教师

时间:年月日

1程序功能介绍

编写实现矩阵乘法计算的程序。

2程序设计要求

(1)设计一个矩阵类,将相应的函数和数据封装在类中,简化程序。

(2)修改程序结构,使程序可以反复执行,直至按键选择退出为止。

(3)本程序用数组表示5*5矩阵,将其改为根据输入矩阵的大小动态分配空间[M][N]来放置数据,其中M,N为用户可输入的任意整数。

(4)增加类的构造函数和成员函数,使得矩阵数据既可以用在对象初始化是赋值,也可以通过键盘赋值,还可以通过读数据文件输入。

(5)用模板的形式改写矩阵数据类型,使得矩阵中的数据既可以是整型数据,也可以是浮点型数据,执行程序是,分别定义一个整型矩阵和一个浮点型矩阵进行乘法验证。

(6)完成矩阵的乘法运算,在运算之前判断着两个矩阵是否满足运算条件,如果不满足,给出提示信息。

3 程序设计思想

1)类的结构

该矩阵类的定义是将相关的数据和操作封装起来,用于实现乘法运算的矩阵要有两个矩阵类参与,结果放在另一个矩阵类的对象中,建议重载运算符*,并把这个重载函数定义为类的友元函数。参考的类的机构如下:

#include

#include

#include

#include

template

class CMatrix

{

T * * Mat; //矩阵的头指针

int nRow; //矩阵的行数

int nCol; //矩阵的列数

public:

CMatrix(); //缺省的构造函数

CMatrix(T * * mat,int row,int col); //构造函数

CMatrix(int row,int col); //构造函数

CMatrix(int row,int col,int k); //构造函数,从键盘输入矩阵

void Show(); //输出

void InputFromFile(); //从文件输入矩阵

friend CMatrixoperator *(CMatrix &mat1,CMatrix &mat2); //重载乘法};

4 实际运行程序如下:

#include

#include

#include

#include

template

class CMatrix

{

T * * Mat; //矩阵的头指针

int nRow; //矩阵的行数

int nCol; //矩阵的列数

public:

CMatrix(); //缺省的构造函数

CMatrix(T * * mat,int row,int col); //构造函数

CMatrix(int row,int col); //构造函数

CMatrix(int row,int col,int k); //构造函数,从键盘输入矩阵

void Show(); //输出

void InputFromFile(); //从文件输入矩阵

friend CMatrixoperator *(CMatrix &mat1,CMatrix &mat2); //重载乘法};

template

CMatrix::CMatrix() //缺省的构造函数

{

nRow=100,nCol=100;

Mat=new T*[100];

for(int i=0;i<100;i++)

{

Mat[i]=new T[100];

}

}

template

CMatrix::CMatrix(int row,int col) //两个参数的构造函数{

int i,j;

nRow=row,nCol=col;

Mat=new T*[nRow];

for(i=0;i

{

Mat[i]=new T[nCol];

}

cout<<"请输入数据: \n";

for(i=0;i

for(j=0;j

{

cout<<"第["<

cin>>Mat[i][j];

}

}

template

CMatrix::CMatrix(int row,int col,int k) //三个参数的构造函数{

nRow=row,nCol=col;

Mat=new T*[nRow];

for(int i=0;i

{

Mat[i]=new T[nCol];

}

}

template

void CMatrix::Show() //矩阵输出函数

{

int i,j;

for(i=0;i

{

cout<

for(j=0;j

cout<

}

cout<

}

template

void CMatrix::InputFromFile() //矩阵文件输入函数{

ifstream infile;

infile.open("daijp.txt",ios::nocreate);

if(!infile)

{

cout<<"输入文件不存在,请先建立输入文件\n";

exit(0);

}

for(int i=0;i

for(int j=0;j

{

infile>>Mat[i][j];

}

infile.close();

}

template

CMatrixoperator* (CMatrix &mat1,CMatrix &mat2) //矩阵乘法运算符重载{

CMatrixmat3(mat1.nRow,mat2.nCol,0);

for(int i=0;i

for(int j=0;j

{

mat3.Mat[i][j]=0;

for(int k=0;k

mat3.Mat[i][j]+=mat1.Mat[i][k]*mat2.Mat[k][j];

}

return mat3;

}

template

void choose1(T) //数据输入类型选择函数模板,其中T为伪参数,用于函数模板实列化{

cout<<"<1>初始化赋值"<键盘输入"<文件输入"<

int srfs;

cout<<"请选择输入方式: \n";

cin>>srfs;

switch(srfs) //用于选择不同的输入方式

{

case 1:

{

CMatrixmata,matb,matc;

}break;

case 2:

{

int a,b,c,d;

cout<<"输入第一个矩阵的行数和列数: "<

cin>>a>>b;

CMatrixmata(a,b);

cout<<"输入第二个矩阵的行数和列数: "<

cin>>c>>d;

if(b!=c)

{

cout<<"错误,两个矩阵不能相乘!\n";

break;

}

CMatrixmatb(c,d);

CMatrixmatc(a,d,0);

mata.Show();

matb.Show();

matc=mata*matb;

cout<<"两矩阵相乘结果为: \n";

matc.Show();

}break;

case 3:

{

int a,b,c,d;

cout<<"输入第一个矩阵的行数和列数: "<

cin>>a>>b;

CMatrixmata(a,b,0);

cout<<"输入第二个矩阵的行数和列数: "<

cin>>c>>d;

if(b!=c)

{

cout<<"错误,两个矩阵不能相乘!\n";

break;

}

CMatrixmatb(c,d,0);

CMatrixmatc(a,d,0);

mata.InputFromFile();

matb.InputFromFile();

mata.Show();

matb.Show();

matc=mata*matb;

cout<<"两矩阵相乘结果为: \n";

matc.Show();

}break;

default:cout<<"输入选择错误!"<

}

}

void choose() //数据类型选择函数

{

cout<<"时间:2014年3月22号"<

cout< 整型!"< 浮点型!"< 双精度型!"<

cout<<"选择数据类型: \n";

int sjlx;

cin>>sjlx;

switch(sjlx)

{

case 1:

{

choose1(1);

}break;

case 2:

{

choose1(0.0);

}break;

case 3:

{

choose1(1e-10);

}break;

default:cout<<"输入选择错误!"<

}

cout<

}

void main() //主函数部分

{

loop:

cout<<"*******************************\n";

cout<<"*******************************\n";

cout<<"\n\n\n********************** 欢迎使用!********************\n";

cout<<" ***********\n";

cout<<"*******************************\n\n";

choose();

loop1:

cout<<"是否继续执行?"<

int a;

cin>>a;

switch(a)

{

case 1:goto loop;

break;

case 2:

{

cout<<"谢谢使用!"<

cout<<"按任意键退出!"<

cin.get();

cin.get(); //去除缓冲区的回车符

exit(1);

}

default:cout<<"输入选择错误!"<

goto loop1;

}

}

5 运行结果如下:

************

****************

******************** 欢迎使用!********************

时间:2014年3月22号

姓名:陈钱学号:913116120316 班级:材科三班

<1> 整型!

<2> 浮点型!

<3> 双精度型!

选择数据类型:

1

<1>初始化赋值

<2>键盘输入

<3>文件输入

请选择输入方式:

2

输入第一个矩阵的行数和列数:

3 3

请输入数据:

第[1][1]个数据:1

第[1][2]个数据:2

第[1][3]个数据:3

第[2][1]个数据:4

第[2][2]个数据:5

第[2][3]个数据:6

第[3][1]个数据:7

第[3][2]个数据:8

第[3][3]个数据:9

输入第二个矩阵的行数和列数:

3 3

请输入数据:

第[1][1]个数据:9

第[1][2]个数据:8

第[1][3]个数据:7

第[2][1]个数据:6

第[2][2]个数据:5

第[2][3]个数据:4

第[3][1]个数据:3

第[3][2]个数据:2

1 2 3

4 5 6

7 8 9

9 8 7

6 5 4

3 2 1

两矩阵相乘结果为:

30 24 18

84 69 54

138 114 90

是否继续执行?

1.继续!

2.退出!

1

*******************************

*******************************

********************** 欢迎使用!********************

***********

*******************************

时间:2014年3月22号

姓名:陈钱学号:913116120316 班级:材科三班

<1> 整型!

<2> 浮点型!

<3> 双精度型!

选择数据类型:

3

<1>初始化赋值

<2>键盘输入

<3>文件输入

请选择输入方式:

2

输入第一个矩阵的行数和列数:

3

3

请输入数据:

第[1][1]个数据:11

第[1][3]个数据:13

第[2][1]个数据:14

第[2][2]个数据:15

第[2][3]个数据:16

第[3][1]个数据:14

第[3][2]个数据:1

第[3][3]个数据:7

输入第二个矩阵的行数和列数:

3 3

请输入数据:

第[1][1]个数据:1

第[1][2]个数据:51

第[1][3]个数据:6

第[2][1]个数据:14

第[2][2]个数据:12

第[2][3]个数据:13

第[3][1]个数据:14

第[3][2]个数据:185

第[3][3]个数据:18

11 12 13

14 15 16

14 1 7

1 51 6

14 12 13

14 185 18

两矩阵相乘结果为:

361 3110 456

448 3854 567

126 2021 223

是否继续执行?

1.继续!

2.退出!

2

谢谢使用!

按任意键退出!

6 思考与总结

1)本程序只能进行简单的矩阵乘法,不能做更加复杂的混合运算。

2)当矩阵的行列数超出一定的范围后,不知该如何处理。

3)没有异常处理机制。

7心得与体会

1)由于上学期的C++课程学的不是很好,在设计程序的时候参考已有程序比较多,所以,

2)设计本程序耗时巨大,需要很大的毅力才能完成,贵在坚持。

3)通过编写这次程序,对C++有了一点理解,对矩阵知识也有所了解。4)版权很重要!

实现稀疏矩阵(采用三元组表示)的基本运算实验报告

实现稀疏矩阵(采用三元组表示)的基本运算实验报告 一实验题目: 实现稀疏矩阵(采用三元组表示)的基本运算二实验要求: (1)生成如下两个稀疏矩阵的三元组a 和b;(上机实验指导P92 )(2)输出a 转置矩阵的三元组; (3)输出a + b 的三元组; (4)输出a * b 的三元组; 三实验内容: 3.1 稀疏矩阵的抽象数据类型: ADT SparseMatrix { 数据对象:D={aij| i = 1,2,3,….,m; j =1,2,3,……,n; ai,j∈ElemSet,m和n分别称为矩阵的行数和列数 } 数据关系 : R={ Row , Col } Row ={ | 1≤ i≤m , 1≤ j≤ n-1} Col ={| 1≤i≤m-1,1≤j≤n} 基本操作: CreateSMatrix(&M)

操作结果:创建稀疏矩阵M PrintSMatrix(M) 初始条件:稀疏矩阵M已经存在 操作结果:打印矩阵M DestroySMatrix(&M) 初始条件:稀疏矩阵M已经存在 操作结果:销毁矩阵M CopySMatrix(M, &T) 初始条件:稀疏矩阵M已经存在 操作结果:复制矩阵M到T AddSMatrix(M, N, &Q) 初始条件:稀疏矩阵M、N已经存在 操作结果:求矩阵的和Q=M+N SubSMatrix(M, N, &Q) 初始条件:稀疏矩阵M、N已经存在 操作结果:求矩阵的差Q=M-N TransposeSMatrix(M, & T) 初始条件:稀疏矩阵M已经存在

操作结果:求矩阵M的转置T MultSMatrix(M, N, &Q) 初始条件:稀疏矩阵M已经存在 操作结果:求矩阵的积Q=M*N }ADT SparseMatrix 3.2存储结构的定义 #define N 4 typedef int ElemType; #define MaxSize 100 //矩阵中非零元素最多个数typedef struct { int r; //行号 int c; //列号 ElemType d; //元素值 } TupNode; //三元组定义 typedef struct { int rows; //行数值 int cols; //列数值 int nums; //非零元素个数

矩阵分析实验报告

矩 阵 分 析 实 验 报 告 学院:电气学院 专业:控制工程 姓名:XXXXXXXX 学号:211208010001

矩阵分析实验报告 实验题目 利用幂法求矩阵的谱半径 实验目的与要求 1、 熟悉matlab 矩阵实验室的功能和作用; 2、 利用幂法求矩阵的谱半径; 3、 会用matlab 对矩阵分析运算。 实验原理 理念 谱半径定义:设n n A C ?∈,1λ,2λ,3λ, ,j λ, n λ是A 的n 个特征值,称 ()max ||j j A ρλ= 为关于A 的谱半径。 关于矩阵的谱半径有如下结论: 设n n A C ?∈,则 (1)[]()()k k A A ρρ=; (2)2 2()()()H H A A AA A ρρ==。 由于谱半径就是矩阵的主特征值,所以实验换为求矩阵的主特征值。 算法介绍 定义:如果1λ是矩阵A 的特征值,并且其绝对值比A 的任何其他特征值的绝对值大,则称它为主特征值。相应于主特征值的特征向量1V 称为主特征向量。 定义:如果特征向量中最大值的绝对值等于单位值(例如最大绝对值为1),则称其为是归一化的。

通过形成新的向量' 12=c n V (1/)[v v v ],其中c=v 且1max {},j i n i ≤≤=v v 可将特 征向量 '12n [v v v ]进行归一化。 设矩阵A 有一主特征值λ,而且对应于λ有唯一的归一化特征向量V 。通过下面这个称为幂法(power method )的迭代过程可求出特征对λ,V ,从下列向量开始: []' 0=111X (1) 用下面递归公式递归地生成序列{}k X : k k Y AX = k+11 1 k k X Y c += (2) 其中1k c +是k Y 绝对值最大的分量。序列{}k X 和{}k c 将分别收敛到V 和λ: 1lim k X V =和lim k c λ= (3) 注:如果0X 是一个特征向量且0X V ≠,则必须选择其他的初始向量。 幂法定理:设n ×n 矩阵A 有n 个不同的特征值λ1,λ2,···,,λn ,而且它们按绝对 值大小排列,即: 123n λλλλ≥≥≥???≥ (4) 如果选择适当的X 0,则通过下列递推公式可生成序列{[() ()( ) ]}12k k k k n X x x x '=???和 {}k c : k k Y AX = (5) 和: 11 1k k k X Y c ++= (6) 其中: () 1k k j c x +=且{} ()()1max k k j i i n x x ≤≤= (7) 这两个序列分别收敛到特征向量V 1和特征值λ1。即: 1lim k k X V →∞ =和1lim k k c λ→∞ = (8) 算法收敛性证明 证明:由于A 有n 个特征值,所以有对应的特征向量V j ,j=1,2,···n 。而且它们是

矩阵特征值实验报告

一、课题名称 Malab矩阵特征值 二、目的和意义 1、求矩阵的部分特征值问题具有重要实际意义,如求矩阵谱半径()Aρ=maxλ,稳定性问题往往归于求矩阵按模最小特征值; 2、进一步掌握冪法、反冪法及原点平移加速法的程序设计技巧; 3、问题中的题(5),反应了利用原点平移的反冪法可求矩阵的任何特征值及其特征向量。 三、实验要求 1、掌握冪法或反冪法求矩阵部分特征值的算法与程序设计; 2、会用原点平移法改进算法,加速收敛;对矩阵B=A-PI取不同的P值,试求其效果; 3、试取不同的初始向量,观察对结果的影响;()0υ 4、对矩阵特征值的其它分布,如如何计算。 四、问题描述 五、实验程序设计 幂法 function [lamdba,v]=power_menthod(a,x,epsilon,maxl)

k=0; y=a*x; while(k> a=[-1 2 1;2 -4 1;1 1 -6]; >> x=[1 1 1]'; >> epsilon=0.00005; >> maxl=20; >> power_menthod(a,x,epsilon,maxl) lambda = 6.4183 v = -0.0484 -0.3706 1.0000 方程组2结果 >> a=[4 -2 7 3 -1 8;-2 5 1 1 4 7;7 1 7 2 3 5;3 1 2 6 5 1;-1 4 3 5 3 2;8 7 5 1 2 4]; >> x=[1 0 1 0 0 1]'; >> epsilon=0.00005; >> maxl=20; >> power_menthod(a,x,epsilon,maxl) lambda = 21.3053 v = 0.8724 0.5401 0.9974 0.5644 0.4972 1.0000 反幂法 function [lambda,v]=INV_shift(a,x,epsilon,max1)

矩阵乘法的并行化 实验报告

北京科技大学计算机与通信工程学院 实验报告 实验名称: 学生姓名: 专业: 班级: 学号: 指导教师: 实验成绩:________________________________ 实验地点: 实验时间:2015年05月

一、实验目的与实验要求 1、实验目的 1对比矩阵乘法的串行和并行算法,查看运行时间,得出相应的结论;2观察并行算法不同进程数运行结果,分析得出结论; 2、实验要求 1编写矩阵乘法的串行程序,多次运行得到结果汇总; 2编写基于MPI,分别实现矩阵乘法的并行化。对实现的并行程序进行正确性测试和性能测试,并对测试结果进行分析。 二、实验设备(环境)及要求 《VS2013》C++语言 MPICH2 三、实验内容与步骤 实验1,矩阵乘法的串行实验 (1)实验内容 编写串行程序,运行汇总结果。 (2)主要步骤 按照正常的矩阵乘法计算方法,在《VS2013》上编写矩阵乘法的串行程序,编译后多次运行,得到结果汇总。

实验2矩阵乘法的并行化实验 3个总进程

5个总进程 7个总进程

9个进程 16个进程 四:实验结果与分析(一)矩阵乘法并行化

矩阵并行化算法分析: 并行策略:1间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程1:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此O(n)=(n); 2间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程3:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此T(n)=O(n);

矩阵转置及相加实验报告

一、实验内容和要求 1、稀疏矩阵A,B均采用三元组表示,验证实现矩阵A快速转置算法,设计并验证A,B相 加得到矩阵C的算法。 (1)从键盘输入矩阵的行数和列数,随机生成稀疏矩阵。 (2)设计算法将随机生成的稀疏矩阵转换成三元组顺序表示形式存储。 (3)设计算法将快速转置得到的与相加得到的三元组顺序表分别转换成矩阵形式。 (4)输出随机生成的稀疏矩阵A,B及其三元组顺序表、快速转置得到的与相加得到的三元组顺序表及其矩阵形式。 二、实验过程及结果 一、需求分析 1、将随机生成的数定义为int型(为方便起见设定范围为-20至20(不含0),可 修改),三元组存储的元素分别为非零元的行下标、列下标及该位置的元素值,零元不进行存储。实际上在生成稀疏矩阵时是随机选取一些位置生成非零元然后存入三元组中。 2、从键盘输入矩阵的行数和列数后应能输出三元组顺序表及相应矩阵(按行和列 排列形式输出)。 3、程序能实现的功能包括: ①随机产生稀疏矩阵;②输出阵列形式的矩阵;③输出三元组顺序 表;④将矩阵快速转置;⑤将两个稀疏矩阵相加生成新的矩阵。 二、概要设计 1、稀疏矩阵的抽象数据类型定义: ADT TSMatrix{ 数据对象:D={ aij|i=1,2,…,m,j=1,2,…,n; Ai,j∈ElemSet,m和n分别称为矩阵的行数和列数}数据关系:R={Row,Col} Row={|1≤i≤m, 1≤j≤n-1} Col ={|1≤i≤m-1, 1≤j≤n} 基本操作: CreateTSMatrix(&M) 操作结果:创建矩阵M PrintTSMatrix(M) 初始条件:矩阵M已存在 操作结果:输出矩阵M中三元组形式的非零元素 PrintTSMatrix1(M) 初始条件:矩阵M已存在 操作结果:以阵列形式输出矩阵 UnZore(M, row, col) 初始条件:矩阵M已存在 操作结果:若位置(row,col)处存在非零元素,则返回该元素存储在矩阵中的序号

矩阵键盘设计实验报告

南京林业大学 实验报告 基于AT89C51 单片机4x4矩阵键盘接口电路设计 课程机电一体化设计基础 院系机械电子工程学院 班级 学号 姓名

指导老师杨雨图 2013年9月26日

一、实验目的 1、掌握键盘接口的基本特点,了解独立键盘和矩 阵键盘的应用方法。 2、掌握键盘接口的硬件设计方法,软件程序设计 和贴士排错能力。 3、掌握利用Keil51软件对程序进行编译。 4、用Proteus软件绘制“矩阵键盘扫描”电路,并用测试程序进行仿真。 5、会根据实际功能,正确选择单片机功能接线,编制正确程序。对实验结果 能做出分析和解释,能写出符合规格的实验报告。 二、实验要求 通过实训,学生应达到以下几方面的要求: 素质要求 1.以积极认真的态度对待本次实训,遵章守纪、团结协作。 2.善于发现数字电路中存在的问题、分析问题、解决问题,努力培养独立 工作能力。 能力要求 1.模拟电路的理论知识 2.脉冲与数字电路的理念知识 3.通过模拟、数字电路实验有一定的动手能力 4.能熟练的编写8951单片机汇编程序 5.能够熟练的运用仿真软件进行仿真 三、实验工具 1、软件:Proteus软件、keil51。 2、硬件:PC机,串口线,并口线,单片机开发板 四、实验内容

1、掌握并理解“矩阵键盘扫描”的原理及制作,了解各元器件的参数及格 元器件的作用。 2、用keil51测试软件编写AT89C51单片机汇编程序 3、用Proteus软件绘制“矩阵键盘扫描”电路原理图。 4、运用仿真软件对电路进行仿真。 五.实验基本步骤 1、用Proteus绘制“矩阵键盘扫描”电路原理图。 2、编写程序使数码管显示当前闭合按键的键值。 3、利用Proteus软件的仿真功能对其进行仿真测试,观察数码管的显示状 态和按键开关的对应关系。 4、用keil51软件编写程序,并生成HEX文件。 5、根据绘制“矩阵键盘扫描”电路原理图,搭建相关硬件电路。 6、用通用编程器或ISP下载HEX程序到MCU。 7、检查验证结果。 六、实验具体内容 使用单片机的P1口与矩阵式键盘连接时,可以将P1口低4位的4条端口线定义为行线,P1口高4位的4条端口线定义为列线,形成4*4键盘,可以配置16个按键,将单片机P2口与七段数码管连接,当按下矩阵键盘任意键时,数码管显示该键所在的键号。 1、电路图

矩阵连乘实验报告

华北电力大学科技学院 实验报告 实验名称矩阵连乘问题 课程名称计算机算法设计与分析 专业班级:软件12K1 学生姓名:吴旭 学号:121909020124 成绩: 指导老师:刘老师实验日期:2014.11.14

一、实验内容 矩阵连乘问题,给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,3…,n-1。考察这n个矩阵的连乘A1,A2,…,A n。 二、主要思想 由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已经完全加括号,则可依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可递归的定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号 的矩阵连乘积B和C的乘积并加括号,即A=(BC)。 运用动态规划法解矩阵连乘积的最优计算次序问题。按以下几个步骤进行 1、分析最优解的结构 设计求解具体问题的动态规划算法的第1步是刻画该问题的最优解的结构特征。为方便起见,将矩阵连乘积简记为A[i:j]。考察计算A[1:n]的最优计算次序。设这个计算次序矩阵在A k和A k+1之间将矩阵链断开,1n,则其相应的完全加括号方式为((A1…A k)(A k+1…A n))。依此次序,先计算A[1:k]和A[k+1:n],然后将计

算结果相乘得到A[1:n]。 2、建立递归关系 设计动态规划算法的第二步是递归定义最优值。对于矩阵连乘积的最优计算次序问题,设计算A[i:j],1i n,所需的最少数乘次数为m[i][j],原问题的最优值为m[1][n]。 当i=j时,A[i:j]=A i为单一矩阵,无需计算,因此m[i][i]=0,i=1,2,…n。 当i

数据结构实验报告稀疏矩阵运算

教学单位计算机科学与技术 学生学号 5 数据结构 课程设计报告书 题目稀疏矩阵运算器 学生豹 专业名称软件工程 指导教师志敏

实验目的:深入研究数组的存储表示和实现技术,熟悉广义表存储结构的特性。 需要分析:稀疏矩阵是指那些多数元素为零的矩阵。利用“稀疏”特点进行存储和计算可以大大节省存储空间,提高计算效率。实现一个能进行稀疏矩阵基本运算的运算器。要求以带“行逻辑信息”的三元组顺序表存储稀疏矩阵,实现两矩阵的相加、相减、相乘等运算。输入以三元组表示,输出以通常的阵列形式列出。 软件平台:Windows 2000,Visual C++ 6.0或WINTC 概要设计:ADT Array { 数据对象: D = {aij | 0≤i≤b1-1, 0 ≤j≤b2-1} 数据关系: R = { ROW, COL } ROW = {| 0≤i≤b1-2, 0≤j≤b2-1} COL = {| 0≤i≤b1-1, 0≤ j≤b2-2} 基本操作: CreateSMatrix(&M); //操作结果:创建稀疏矩阵M. Print SMatrix(M); //初始化条件: 稀疏矩阵M存在. //操作结果:输出稀疏矩阵M. AddSMatrix(M,N,&Q); //初始化条件: 稀疏矩阵M与N的行数和列数对应相等. //操作结果:求稀疏矩阵的和Q=M+N. SubSMatrix(M,N,&Q); //初始化条件: 稀疏矩阵M与N的行数和列数对应相等. //操作结果:求稀疏矩阵的差Q=M-N. MultSMatrix(M,N,&Q); //初始化条件: 稀疏矩阵M的列数等于N的行数. //操作结果:求稀疏矩阵的乘积Q=M*N. } ADT Array

数学实验矩阵的运算

数学实验报告 学院: 班级: 学号: 姓名: 完成日期:

实验四矩阵的运算 (一)投入产出分析 一.实验目的 1.理解投入产出分析中的基本概念和模型; 2.从数学和投入产出理论的角度,理解矩阵乘法、逆矩 阵等的含义。 二.问题描述 设国民经济由农业、制造业和服务业三个部门构成,已知某年它们之间的投入产出关系、部需求、初始投入等如表1-1所示 表1-1国民经济三产部门之间的投入产出表 根据表回答下列问题: (1)如果农业、制造业、服务业外部需求为50,150,100,问三个部门总产出分别为多少? (2)如果三个部门的外部需求分别增加一个单位,问

他们的总产出分别为多少? 三.实验过程 1.问题(1)的求解 (1)求直接消耗矩阵A 根据直接消耗的计算公式 a ij=x ij/x j 和各部门中间需求; x n a n 运行如下代码可得直接消耗系数表。 X=[15 20 30;30 10 45;20 60 0]; X_colsum=[100 200 150]; X_rep=repmat(X_colsum,3,1) A=X./ X_rep 运行结果为: A = 0.1500 0.1000 0.2000 0.3000 0.0500 0.3000 0.2000 0.3000 0 (2)求解 根据公式 X=(I-A)-1y 在运行如下代码

y=[50;150;100]; n=size(y,1); W=eye(n)-A; X=W\y 运行结果为 X = 139.2801 267.6056 208.1377 即三个部门的总产出分别为139.2801,267.6056, 208.1377亿元。 2.问题2求解 设外部需求由y增加至y+Δy,则产出x的增量为 Δx=(I-A)-1(y+Δy)- (I-A)-1y=(I-A)-1Δy 利用问题(1)求得的I-A矩阵,再运行如下的MATLAB 代码可得问题的结果: dx=inv(W) 运行结果: dx = 1.3459 0.2504 0.3443 0.5634 1.2676 0.4930 0.4382 0.4304 1.2167

数据结构稀疏矩阵基本运算实验报告

课程设计 课程:数据结构 题目:稀疏矩阵4 三元组单链表结构体(行数、列数、头) 矩阵运算重载运算符优 班级: 姓名: 学号: 设计时间:2010年1月17日——2010年5月XX日 成绩: 指导教师:楼建华

一、题目 二、概要设计 1.存储结构 typedef struct{ int row,col;//行,列 datatype v;//非0数值 }Node; typedef struct{ Node data[max];//稀疏矩阵 int m,n,t;//m 行,n 列,t 非0数个数 … … 2.基本操作 ⑴istream& operator >>(istream& input,Matrix *A)//输入 ⑵ostream& operator <<(ostream& output,Matrix *A){//输出 ⑶Matrix operator ~(Matrix a,Matrix b)//转置 ⑷Matrix operator +(Matrix a,Matrix b)//加法 ⑸Matrix operator -(Matrix a,Matrix b)//减法 ⑹Matrix operator *(Matrix a,Matrix b)//乘法 ⑺Matrix operator !(Matrix a,Matrix b)//求逆 三、详细设计 (1)存储要点 position[col]=position[col-1]+num[col-1]; 三元组表(row ,col ,v) 稀疏矩阵((行数m ,列数n ,非零元素个数t ),三元组,...,三元组) 1 2 3 4 max-1

MATLAB矩阵实验报告

MATLAB 程序设计实验 班级:电信1104班 姓名:龙刚 学号:1404110427 实验内容:了解MA TLAB 基本使用方法和矩阵的操作 一.实验目的 1.了解MA TLAB 的基本使用方法。 2.掌握MA TLAB 数据对象的特点和运算规则。 3.掌握MA TLAB 中建立矩阵的方法和矩阵的处理方法。 二.实验内容 1. 浏览MATLAB 的start 菜单,了解所安装的模块和功能。 2. 建立自己的工作目录,使用MA TLAB 将其设置为当前工作目录。使用path 命令和工作区浏览两种方法。 3. 使用Help 帮助功能,查询inv 、plot 、max 、round 等函数的用法和功能。使用help 命令和help 菜单。 4. 建立一组变量,如x=0:pi/10:2*pi ,y=sin(x),在命令窗口显示这些变量;在变量窗口打开这些变量,观察其值并使用绘图菜单绘制y 。 5. 分多行输入一个MA TLAB 命令。 6. 求表达式的值 ()6210.3424510w -=+? ()22tan b c a e abc x b c a ππ++ -+=++,a=3.5,b=5,c=-9.8 ()220.5ln 1t z e t t =++,21350.65i t -??=??-?? 7.已知 1540783617A --????=??????,831253320B -????=????-?? 求 A+6B ,A 2-B+I A*B ,A.*B ,B*A A/B ,B/A [A,B],[A([1,3], :); B^2]

8.已知 23100.7780414565532503269.5454 3.14A -????-??=????-?? 输出A 在[10,25]范围内的全部元素 取出A 的前三行构成矩阵B ,前两列构成矩阵C ,右下角3x2子矩阵构成矩阵D ,B 与C 的乘积构成矩阵E 分别求表达式E

数据结构三元组表存储结构实现稀疏矩阵应用课程方案实验报告

高二《数系的扩充与复数的概念》说课稿 高二《数系的扩充与复数的概念》说稿 《数系的扩充与复数的概念》是北师大版普通高中程标准数学实验教材选修1-2第四第一节的内容,大纲时安排一时。主要包括数系概念的发展简介,数系的扩充,复数相关概念、分类、相等条,代数表示和几何意义。 复数的引入是中学阶段数系的又一次扩充,引入复数以后,这不仅可以使学生对于数的概念有一个初步的、完整的认识,也为进一步学习数学打下了基础。通过本节学习,要使学生在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用。 在学习了这节以后,学生首先能知道数系是怎么扩充的,并且这种扩充是必要的,虚数单位公开《数系的扩充与复数的概念》说稿在数系扩充过程中的作用,而复数就是一个实数加上一个实数乘以公开《数系的扩充与复数的概念》说稿。学生能清楚的知道一个复数什么时候是虚数,什么时候是纯虚数,两个复数相等的充要条是什么。让学生在经历一系列的活动后,完成对知识的探索,变被动地“接受问题”为主动地“发现问题”,加强学生对知识应用的灵活性,深化学生对复数的认识,从而提高分析问题和解决问题的能力。 教学目标为:1.在问题情境中了解数系的扩充过程。体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的

作用,感受人类理性思维的作用以及数与现实世界的联系。. 2.理解复数的有关概念、数系间的关系、和几何表示。 3.掌握复数的分类和复数相等的条。 4体会类比、转化、数形结合思想在数学发现和解决数学问题中的作用。 教学重点为认识i的意义、复数的有关概念以及复数相等的条. 教学难点为复数相关概念的理解和复数的几何意义的理解 复数的概念是整个复数内容的基础,复数的有关概念都是围绕复数的代数表示形式展开的。虚数单位、实部、虚部的命名,复数想等的充要条,以及虚数、纯虚数等概念的理解,都应促进对复数实质的理解,即复数实际上是一有序实数对。类比实数可以用数轴表示,把复数在直角坐标系中表示出,就得到了复数的几何表示,这就把数和形有机的结合了起。 在学习本节的过程中,复数的概念如果单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,采用讲解已学过的数集的扩充的历史,让学生体会到数系的扩充是生产实践的需要,也是数学学科自身发展的需要;介绍数的概念的发展过程,使学生对数的形成、发展的历史和规律,各种数集中之间的关系有着比较清晰、完整的认识从而让学生积极主动地建构虚数的概念、复数的概念、复数的分类。由于学生对数系扩充的知识不熟悉,对了解实数系扩充到复数系的过程有困难,也就是对虚数单位公开《数系的扩充与复数的概念》说稿的引入难以理解。另外虚数单位公开《数系的扩充与复数的概念》说

矩阵运算实验报告

实验报告 --矩阵运算 一.实验目的。 1.通过实践加强对程序设计语言课程知识点的理解和掌握,培养对课程知识综合运用能力、实际分析问题能力及编程能力,养成良好的编程习惯。 2.通过实践进一步领会程序设计的特点和应用,提高运用C++ 语言以及面向对象知识解决实际问题的能力。 3.通过实践掌握用C++ 语言编写面向对象的实用程序的设计方法,对面向对象方法和思想增加感性的认识; 4.学会利用C++程序设计语言编写出一些短小、可靠的Windows实用程序,切实提高面向对象的程序设计能力。为后续的相关课程的学习打下基础。 二.实验要求。 1.学会建立模板类; 2.实现矩阵的“加”、“减”、“乘”、“数乘”、“转置”; 3.动态存分配并用随机数填充; 4.注意“加”、“减”、“乘”要进行条件的判断; 三.设计思路。

3.1算法基本流程 1)获取用户输入的矩阵1的行数和列数,动态生成一个一维数组 2)利用随机数生成数组成员,并利用两个循环输出数组,使其符合矩阵的格式 3)矩阵2同矩阵1的处理方法 4)通过两个矩阵的行数和列数比较来判断能否进行加减乘等运算,如不能,输出相关信息 5)如能够进行计算,则利用数组进行相应运算,并按照正确格式输出 6)通过改变一维数组中元素的顺序来实现转置并输出 3.2算法流程图

四.基本界面。

五.关键代码。 5.1关键类的声明 class CMatrixclass { public: CMatrixclass() { int m_Row = 0; //行 int m_Col = 0; //列 m_pElements = NULL; //一维数组

实现稀疏矩阵(采用三元组表示)的基本运算实验分析报告

实现稀疏矩阵(采用三元组表示)的基本运算实验报告

————————————————————————————————作者:————————————————————————————————日期: 2

实现稀疏矩阵(采用三元组表示)的基本运算实验报告 一实验题目: 实现稀疏矩阵(采用三元组表示)的基本运算二实验要求: (1)生成如下两个稀疏矩阵的三元组 a 和 b;(上机实验指导 P92 )(2)输出 a 转置矩阵的三元组; (3)输出a + b 的三元组; (4)输出 a * b 的三元组; 三实验内容: 3.1 稀疏矩阵的抽象数据类型: ADT SparseMatrix { 数据对象:D={aij| i = 1,2,3,….,m; j =1,2,3,……,n; ai,j∈ElemSet,m和n分别称为矩阵的行数和列数 } 数据关系 : R={ Row , Col } Row ={ | 1≤ i≤m , 1≤ j≤ n-1} Col ={| 1≤i≤m-1,1≤j≤n} 基本操作: CreateSMatrix(&M) 操作结果:创建稀疏矩阵M PrintSMatrix(M) 初始条件:稀疏矩阵M已经存在 操作结果:打印矩阵M DestroySMatrix(&M) 初始条件:稀疏矩阵M已经存在 操作结果:销毁矩阵M CopySMatrix(M, &T) 初始条件:稀疏矩阵M已经存在 操作结果:复制矩阵M到T AddSMatrix(M, N, &Q) 初始条件:稀疏矩阵M、N已经存在 操作结果:求矩阵的和Q=M+N SubSMatrix(M, N, &Q) 3

矩阵乘法的并行化实验报告

科技大学计算机与通信工程学院 实验报告 实验名称: 学生: 专业: 班级: 学号: 指导教师: 实验成绩:________________________________ 实验地点: 实验时间:2015年05月

一、实验目的与实验要求 1、实验目的 1对比矩阵乘法的串行和并行算法,查看运行时间,得出相应的结论;2观察并行算法不同进程数运行结果,分析得出结论; 2、实验要求 1编写矩阵乘法的串行程序,多次运行得到结果汇总; 2编写基于MPI,分别实现矩阵乘法的并行化。对实现的并行程序进行正确性测试和性能测试,并对测试结果进行分析。 二、实验设备(环境)及要求 《VS2013》C++语言 MPICH2 三、实验容与步骤 实验1,矩阵乘法的串行实验 (1)实验容 编写串行程序,运行汇总结果。 (2)主要步骤 按照正常的矩阵乘法计算方法,在《VS2013》上编写矩阵乘法的串行程序,编译后多次运行,得到结果汇总。

实验2矩阵乘法的并行化实验 3个总进程

5个总进程 7个总进程

9个进程 16个进程 四:实验结果与分析(一)矩阵乘法并行化

矩阵并行化算法分析: 并行策略:1间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程1:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此O(n)=(n); 2间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程3:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此T(n)=O(n);

稀疏矩阵(实验报告)

《数据结构课程设计》实验报告 一、实验目的: 理解稀疏矩阵的加法运算,掌握稀疏矩阵的存储方法,即顺序存储的方式,利用顺序存储的特点——每一个元素都有一个直接前驱和一个直接后继,完成相关的操作。 二、内容与设计思想: 1、设计思想 1)主界面的设计 定义两个矩阵a= 0 0 3 0 0 0 0 0 b= 0 2 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 7 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 定义两个数组A和B,用于存储矩阵a和矩阵b的值;定义一个数组C,用于存放数组A 和数组B相加后的结果。 2)实现方式 稀疏矩阵的存储比较浪费空间,所以我们可以定义两个数组A、B,采用压缩存储的方式来对上面的两个矩阵进行存储。具体的方法是,将非零元素的值和它所在的行号、列号作为一个结点存放在一起,这就唯一确定一个非零元素的三元组(i、j、v)。将表示稀疏矩阵的非零元素的三元组按行优先的顺序排列,则得到一个其结点均为三元组的线性表。即:以一维数组顺序存放非零元素的行号、列号和数值,行号-1作为结束标志。例如,上面的矩阵a,利用数组A存储后内容为: A[0]=0,A[1]=2, A[2]=3, A[3]=1, A[4]=6, A[5]=5, A[6]=3, A[7]=4, A[8]=7, A[9]=5, A[10]=1, A[11]=9, A[12]=-1 同理,用数组B存储矩阵b的值。 2、主要数据结构 稀疏矩阵的转存算法: void CreateMatrix(int A[m][n],int B[50]) { int i,j,k=0; for(i=0;i

数据结构实验报告(实验五 稀疏矩阵运算器)

韶关学院 学生实验报告册 实验课程名称:数据结构与算法 实验项目名称:实验五数组及其应用 稀疏矩阵运算器 实验类型(打√):(基础、综合、设计√) 院系:信息工程学院计算机系专业:***** 姓名:*** 学号:***** 指导老师:陈正铭 韶关学院教务处编制

一、实验预习报告内容

二、实验原始(数据)记录 实验时间:2007 年 5 月30日(星期三第7,8 节)实验同组人:

三、实验报告内容 2007年 5 月30 日

注:1、如有个别实验的实验报告内容多,实验报告册页面不够写,或有识图,画图要求的,学生应根据实验指导老师要求另附相同规格的纸张并粘贴在相应的“实验报告册”中。 2、实验报告册属教学运行材料,院系(中心)应按有关规定归档保管。

【源程序】 #include #include #include #define maxsize 100 #define maxrow 100 #define OK 1 #define ERROR -1 typedef struct{ int row; //行数 int col; //列数 int v; //非零元素值 }triplenode; typedef struct{ triplenode data[maxsize+1]; //非零元三元组 int rowtab[maxrow+1]; //各行第一个非零元的位置表 int mu,nu,tu; //矩阵的行数、列数和非零元个数}rtripletable; void creat(rtripletable &A) //创建稀疏矩阵 { int k=1,sum=1,loop,p,t; int num[maxrow+1]; cout<<"请输入矩阵的行数和列数:"<>A.mu; cout<<"列数:";cin>>A.nu; cout<<"非零元素个数:";cin>>A.tu; cout<<"请按行,列和值的形式输入该矩阵的非零元.并以全零为结束标记!"<>A.data[loop].row>>A.data[loop].col>>A.d ata[loop].v; //输入三元组的行数,列数和非零元素值 } for(p=1;p<=A.mu;p++) num[p]=0; //A三元组每一列的非零元素个数 for(t=1;t<=A.tu;t++) ++num[A.data[t].row]; //求A中每一列含非零元个数 A.rowtab[1]=1; //求第p列中第一个非零元在A.data中的序号for(t=2;t<=A.mu;t++) A.rowtab[t]=A.rowtab[t-1]+num[t-1]; return; } void print(rtripletable A) //输出稀疏矩阵 { int result[maxrow+1][maxrow+1]; //定义一个二维数组 int loop1,loop2; for(loop1=1;loop1<=A.mu;loop1++) for(loop2=1;loop2<=A.nu;loop2++) result[loop1][loop2]=0; //初始化为0 for(loop1=1;loop1<=A.tu;loop1++) result[A.data[loop1].row][A.data[loop1].col]=A.dat a[loop1].v; for(loop1=1;loop1<=A.mu;loop1++) { cout<<"|"; for(loop2=1;loop2<=A.nu;loop2++) cout<

矩阵连乘实验报告

矩阵连乘实验报告

————————————————————————————————作者: ————————————————————————————————日期: ?

华北电力大学科技学院 实验报告 实验名称矩阵连乘问题 课程名称计算机算法设计与分析 专业班级:?软件12K1??学生姓名:吴旭 学号:121909020124 成绩: 指导老师: 刘老师?实验日期:2014.11.14

一、实验内容 矩阵连乘问题,给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,3…,n-1。考察这n个矩阵的连乘A1,A2,…,A n。 二、主要思想 由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已经完全加括号,则可依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可递归的定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的 矩阵连乘积B和C的乘积并加括号,即A=(BC)。 运用动态规划法解矩阵连乘积的最优计算次序问题。按以下几个步骤进行 1、分析最优解的结构 设计求解具体问题的动态规划算法的第1步是刻画该问题的最优解的结构特征。为方便起见,将矩阵连乘积简记为A[i:j]。考察计算A[1:n]的最优计算次序。设这个计算次序矩阵在Ak和A k+1之间将矩阵链断开,1≤k≤n,则其相应的完全加括号方式为((A …A k)(Ak+1…A n))。依此次序,先计算A[1:k]和A[k+1:n],然后1

相关文档
最新文档