主板新技术

主板新技术
主板新技术

SLI,全称为&ld quo;可灵活伸缩的连接接口”(Scalable Link Interface),是一种可把两张或以上的显卡连在一起,作单一输出使用的技术,从而达至绘图处理效能加强的效果。

原理

两块显卡均有一个MIO接口,能连接两颗绘图核心。当接口连接后两片显卡就能协同运算。

nVIDIA SLI专用的U型PCB电路板连接卡如果使用最新驱动,可以不连接MIO接口,达成软体SLI,但效能会下降,皆因霸占了PCI-E 16x 带宽。

CrossFire

CrossFire简介CF,中文名交叉火力,简称交火,是ATI的一款多重GPU技术,可让多张显示卡同时在一部电脑上并排使用,增加运算效能,与NVIDIA的SLI技术竞争。CrossFire技术于2005年6月1日,在Computex Taipei 2005正式发布,比SLI迟一年。至首度公开至今,CrossFire经过了一次修订

CrossFire是ATi公司推出的一项双卡互联技术,这项技术可以实现一块Radeon等级绘图处理器搭配另外一片Radeon CrossFire版本绘图卡,为游戏玩家带来前3D方面的性能提升。CrossFire技术需要两块显卡,两块显卡之间用电缆连接(只是在机箱外部而非内部)。由于以往ATi的显示卡没有像nVidia般,预留协同运算。所以在第一代CrossFire,ATi采用Composting Engine和DMS Cable,来仿效nVidia

的MIO接口。

ATi CrossFire平台的优点之一就是拥有极高的游戏兼容性。ATI独特的多重绘图处理器模式让CrossFire能自动执行每款游戏,不论是新旧游戏都不必使用特别的游戏设定文件或升级趋动程序。

要使用此技术,主机板必需支援CrossFire,以及需要两张ATiPCI Express接口的显示卡,要相同等级,并有可能需要购买主卡。例如:如果用户家有一片Radoen X850XT PE显示卡,必须额外购买一片Radeon X850 CrossFire Edition,才能达成CrossFire。但对X1600来说,只需购买两张一模一样的卡,即可达成CrossFire。

CorssFire技术给我们带来哪些好处?

CorssFire技术作为一项双卡互联技术,显然它给我们带来的直接好处就是3D性能的提升。而且采用的是外部连接电缆方式,对于用户安装和拆卸提供了方便。

CorssFire是ATi自家的一项双卡互联技术,从设计方面有很多独到之处,但是目前驱动和连接方面不太成熟,在性能提升方面较为有限,这里还是推荐顶级用户选购,而中端入门级剩下两块显卡的钱购买一块性能强大的单卡。

A MD-ATI显卡交火技术

AMD提出的三路、四路GPU并联技术CrossFireX终于成为现实,同时也开始了类似于当初CrossFire/SLI的艰难之路。为了实现三颗、四颗GPU同时工作,AMD使用了Windows Vista的关联显示适配器(LD A)技术,使得多颗物理GPU在系统内被当作单独一个虚拟设备。这样做增加了显卡配置的弹性,但也有一些缺点。

AMD的CrossFireX技术优势在于其极大的灵活性,它可以使用任何一款RV670或R680显卡进行任意搭配,组合成为3 GPU或4 GPU交火方案。你可以使用两块HD 3850加一块HD 3870或是一块HD 3870 X2加一块HD 3850组成三路交火,也可以使用两块HD 3850加两块HD 3870,或是两块HD 3870 X2组成四路交火。在AMD的演示文稿中,总共有30多种组合方案。

对于整个AMD图形产品线无疑有着极为重要的意义。他首次对两种最新多图形核心协同技术提供了正式支持,包括多路交火CrossFireX和混合交火Hybrid CrossFire。

CrossFireX还支持多款主板平台,除AMD自家芯片组为还能够对多款Intel芯片组提供完美支持。

据AMD表示,多路CrossFireX交火最高可带来相对单卡3.2倍的性能提升。在搭建CrossFireX平台式,需要注意的问题在于显存的限制。多路交火状态下的每个GPU可支配显存都以平台中显存最少的那颗GPU为准。如使用两块HD 3850 512MB加一块HD 3850 256MB时,三块显卡都只能使用256MB。同样,当系统中的显卡频率不同时,也会有类似的限制出现。

蓝牙

蓝牙,是一种支持设备短距离通信(一般10m内)的无线电技术。能在包括移动电话、PDA、无线耳机、笔记本电脑、相关外设等众多设备之间进行无线信息交换。利用“蓝牙”技术,能够有效地简化移动通信终端设备之间的通信,也能够成功地简化设备与因特网Internet之间的通信,从而数据传输变得更加迅速高效,为无线通信拓宽道路。蓝牙采用分散式网络结构以及快跳频和短包技术,支持点对点及点对多点通信,工作在全球通用的2.4GHz ISM(即工业、科学、医学)频段。其数据速率为1Mbps。采用时分双工传输方案实现全双工传输

WiFi

WiFi原先是无线保真的缩写,Wi-Fi的英文全称为wireless fidelity,在无线局域网的范畴是指“无线相容性认证”,实质上是一种商业认证,

同时也是一种无线联网的技术,以前通过网线连接电脑,而现在则是通过无线电波来连网;常见的就是一个无线路由器,那么在这个无线路由器的电波覆盖的有效范围都可以采用Wi-Fi连接方式进行联网,如果无线路由器连接了一条ADSL线路或者别的上网线路,则又被称为“热点

SRT

SRT(Smart Response Technology固态硬盘缓存技术)SRT技术的原理是要将SSD固态硬盘和HDD机械硬盘结合为“混合硬盘”,将固态硬盘作为机械硬盘的缓存使用。由于固态硬盘盘符将从系统中消失,用户不需要再关注哪一个分区是高速固态硬盘,就可以随时享受闪存加速带来的效果。

SRT技术的使用方法非常简单,只要将SATA控制器设置为RAID模式(不支持AHCI或IDE模式),在HDD机械硬盘上照常安装Windows 7操作系统。完成后安装RST 10.5驱动,选择一块空闲的固态硬盘(任意厂商产品均可),即可选择其中最大64GB的空间作为缓存。作为缓存的这部分空间将从系统中“消失”,而如果你的固态硬盘容量大于64GB,剩余空间依然可以划分为独立分区使用。

Intel表示,限制SRT缓存容量最大64GB的原因是,根据他们的内部测试,更大容量的缓存已经没有太大的加速效果。用户如果直接将更多应用程序手动存储在固态硬盘上,提速效果自然更加。

SRT技术有两种工作模式:Enhanced增强模式和Maximize极限模式。在Enhanced模式下,数据必须在缓存和硬盘上都写入完成才会进入下一步。而在Maximize模式下,数据可以直接先写入缓存即可向下进行(当然最终仍会写回硬盘,但不是立即进行)。

Enhanced模式最为安全,但由于每次写入都要等待机械硬盘完成,HDD写入性能仍然将成为系统存储瓶颈。其优势在于,随时断开固态硬盘,或是SSD出现故障,系统仍将照常使用,只是失去了加速效果而已。需要注意的是,由于缓存替代硬盘完成数据读取,帮机械硬盘卸载了读取任务,专心进行写入,因此Enhanced模式下系统的磁盘写入性能仍将获得提升。

在Maximize模式下,系统的读写性能都将获得明显提升。但其中存在的风险是,会存在一段时间你写入的数据仍存储在SSD缓存内,没有写回硬盘。如果此时出现断电,则写回工作将被中断。更坏的情况是,此时SSD缓存故障,则会出现数据丢失的严重问题。而如果你缓存的是操作系统盘,固态硬盘故障情况下系统将无法启动。

如果你需要移动一块工作在Maximized模式下的加速硬盘,要么同时移动SSD缓存和HDD硬盘,要么就需要在RST驱动中首先禁用SSD缓存。

华硕固态硬盘缓存加速技术

华硕固态硬盘缓存加速技术利用SSD作为缓存盘,机械硬盘作为存储盘,使得平台在享受高速运行的同时,节省大量资金。

与Intel SRT技术不同,华硕固态硬盘缓存加速技术板载了专属控制器,无需复杂繁琐的BIOS设置以及多步骤安装,仅仅一键就可以搞定,轻松体验极速享受。

Intel SRT功能并不能够被证明是以低廉的成本提供了SSD性能的使用感受。华硕固态硬盘缓存加速技术便捷易用,特别板载了控制芯片,不占用系统过多资源,没有SSD容量限制,而且有预防数据丢失的备份功能,这些都是Intel SRT功能无法比拟的。

原文地址http://mb.z https://www.360docs.net/doc/8410931646.html,/259/2593519.ht ml

全固态电容

全固态电容全称为固态铝质电解电容。它与普通电容(即液态铝质电解电容)最大差别在于采用了不同的介电材料,液态铝电容介电材料为电解液,而全固态电容的介电材料则为导电性高分子

全固态电容的好处在于哪里呢?对于经常去网吧或者长时间使用电脑的朋友,一定有过或者听过由于主板电容导致电脑不稳定,甚至于主板电容爆裂的事情!那就是因为一方面主板在长时间使用中,过热导致电解液受热膨胀,导致电容失去作用甚至由于超过沸点导致膨胀爆裂!另一方面是,如果主板在长期不通电的情形下,电解液容易与氧化铝形成化学反应,造成开机或通电时形成爆炸的现象。但是如果采用全全固态电容,就完全没有这样的隐患和危险了!

由于全全固态电容采用导电性高分子产品作为介电材料,该材料不会与氧化铝产生作用,通电后不至于发生爆炸的现象;同时它为固态产品,自然也就不存在由于受热膨胀导致爆裂的情况了。

全全固态电容具备环保、低阻抗、高低温稳定、耐高纹波及高信赖度等优越特性,是目前电解电容产品中最高阶的产品。由于全全固态电容特性远优于液态铝电容,全全固态电容耐温达摄氏260度,且导电性、频率特性及寿命均佳,适用于低电压、高电流的应用,主要应用于数字产品如薄型DVD、投影机及工业计算机等。

高级电源节电状态

1、(suspend即挂起)显示屏自动断电;只是主机通电。这时敲任意键即可恢复原来状态。

2、(save to ram 或suspend to ram 即挂起到内存)系统把当前信息储存在内存中,只有内存等几个关键部件通电,这时计算机处在高度节电状态,按任意键后,计算机从内存中读取信息很快恢复到原来状态。

3、(save to disk或suspend to disk即挂起到硬盘)计算机自动关机,关机前将当前数据存储在硬盘上,用户下次按开关键开机时计算机将无须启动系统,直接从硬盘读取数据,恢复原来状态。

g3220配什么主板好

g3220配什么主板好 H81或者B85主板即可,不需要太高端的主板。不知道楼主准备花多少钱买主板,推荐4款从低到高楼主自己选择一个吧;H81不能支持SRT,个人更推荐B85主板一点。H81: 华擎H81M-HDS 369元下同4项处理器供电,显示接口齐全 映泰H81MG金刚版399 3项处理器供电、显示接口较齐全B85: 微星B85M-E33 419 3项处理器供电,有HDMI和VGA 显示接口 微星B85M-G43 499 3+1处理器供电,显示接口完备。如有不懂之处请追问,有帮助请采纳,谢谢. 其他类似问题 2014-02-09 intel 英特尔g3220配什么主板 2014-04-06 g3220配什么主板 2014-02-18 intel pentium g3220配什么主板3 2014-04-13 g3220 cpu 配什么主板 2014-01-21 奔腾g3220配什么主板2

更多关于g3220配什么主板的问题>> 主板的相关知识 2009-05-31 精英主板中文说明书16 2008-05-11 电脑主板电源线的接法? 76 2010-07-28 技嘉主板散热器烫手31 2013-08-19 cpu主板显卡兼容性6 2009-03-28 主板.诊断卡说明书75 更多关于主板的问题>> 其他1条回答 2014-01-23 14:56 热心网友 1150接口的心处理器,B81最经济,考虑升级就B85其他类似问题2010-06-06 这个配置配什么主板最合适3 2013-09-25 4770配什么主板最合适?2 2009-07-15 我主板配什么显卡最合适1 2008-10-07 这款显卡和什么主板配最合适呢?2012-05-01 以我的思路配哪个主板最合适?更多关于g3220配什么主板的问题>> 随便款B85主板即可如下JD报价

目前主流Intel主板芯片组介绍

买电脑,要能省则省,根据每个人的使用需求不同,就需要选购不同的电脑。这个时候,选择一款合适的主板就很重要,而主板上,主板芯片组就是一个很核心的部件,它影响着主板的性能,平台的定位和主板的性能一定要符合,才能够选择到极具性价比的电脑。这就是今天要说的问题,向大家介绍目前市面主流的Intel主板芯片组,希望大家能够从规格上了解到各款主板的区别,在选购主板的时候做到心中有底。 G31: 目前在Intel平台低端市场,G31芯片组主板可以说是独占鳌头,与它同为“3”系列整合主板的G33和G35芯片组主板都因各自的一些原因都非常少见,而nVIDIA出品的MCP73整合主板又因为不支持双通道等硬伤而性能短缺,现在市场上Intel低端平台,首选就是G31主板。 G31芯片组可以支持Intel LGA 775封装的系列处理器,并支持双通道DDR2内存,并可以支持800MHz的内存频率。在显示性能方面,G31芯片组整合了Intel GMA 3100显示核心,可以应付大多数的日常使用需求,并且支持Display Port、DVI等视频输出接口。南桥方面,G31芯片组搭配的是ICH7南桥芯片,ICH7南桥提供了4个SATA接口、6个USB接口以及4条PCI-E通道。虽然ICH7南桥提供的接口方面不太丰富,不过考虑到G31芯片组的市场定位,这样的配置对于入门平台来说,还是足够使用的。 G41: Intel G41芯片组是一款新的入门级整合芯片组,于2008年第四季度发布。在市场定位上,G41芯片组和G31相同,最终的目的,是让G41芯片组主板取代G31芯片组主板,成为Intel平台入门级平台的首选主板。G41芯片组主板在性能上较G31芯片组主板更加强大,支持DX 10特效,并且在高清硬解方面,也支持部分格式的高清片源硬解。不过,目前G41芯片组主板的价格还是要比G31芯片组主板贵一些,可以根据使用需要进行选购。 虽然在Intel的G41芯片组系统图表上,G41芯片组使用的是ICH10(R)南桥芯片,不过在实际中,为了节约成本,降低售价,南桥芯片使用的依然是和G31芯片组相同的ICH7南桥芯片,不过,即便如此,ICH7还是能够满足用户的一般使用需求的,对这方面,不用太过在意。 G41芯片组支持Intel LGA 775封装的系列处理器,并可以支持DDR2和DDR3双通道内存,并支持PCI-E 1.1规范,提供了一条PCI-E 1.1 16X插槽,在集成显示核心方面,G41主板集成了Intel GMA X4500显示核心,该显示核心支持DX 10,并且可以支持部分格式的高清硬解。并且,G41芯片组主板可以支持DVI和Display Port视频输出。 G43: G43和G45这两款整合主板芯片组于2008年6月发布,同时发布的还有P45和P43两款非整合主板芯片组,从那时候起,Intel “4”系列的芯片组主板就开始发售,G43和G45两款芯片组是相对定位中高端的两款整合芯片组。 G43芯片组的北桥芯片方面,规格与G41芯片组有一些提升,虽然同是集成Intel GMA X4500显示核心,不过在视频输出方面,G43芯片组提供了G41所没有HDMI接口,并且,还支持PCI-E 2.0规范。南桥方面,ICH10(R)系列南桥芯片也更加的强大,不仅提供了更多的USB、SATA接口,还可以支持eSATA,并且ICH10R芯片还支持硬盘RAID 模式,并且该系列南桥提供了6条PCI-E通道,可以支持千兆网卡等等。 G45: G45芯片组是Intel系列整合芯片组中定位比较高端的,它是Intel系列整合芯片组中唯一可以实现全高清硬解的芯片组,目前在市场上,也有一些499元的G45主板出售,价格方面还是比较亲民的。 G45芯片组集成的是Intel GMA X4500HD显示核心,该显示核心要比G41和G43芯片组集成的显示核心多出“HD”字样,也就是可以实现全高清硬解。除此之外,北桥和南桥芯片其他规格和G43芯片组相同,不过在实际测试中,G45芯片组的3D性能要较G43高一些,G43又要较G41高一些,差别也不是太大。 P31: P31芯片组是作为一款入门级的非整合主板芯片组推出的,不过经过市场的洗牌,现在P31芯片组的主板已经很少能够看到了,市场上仅剩的一些P31主板,甚至在价格上比G31主板还贵,所以,使用这款芯片组的主板并不推荐选购。 P31芯片组同时搭配的是ICH7南桥,在规格放面,和G31主板基本相同,不过要比G31主板少了集成的核心,在这一点上,P31芯片组和G31芯片组各有各的优势,毕竟整合了显示核心的芯片肯定会带来更高的发热,这对于主板的稳定性会有一定的影响。 P35: 在2008年6月前,Intel的“4”系列芯片组主板还未推出的时候,P35主板就是Intel市场上的明星主板,虽然并不是“3”系列芯片组主板中规格最高的,但是,却是性能与价格最均衡的主板。不过,从有了P45芯片组主板后,拥有更强的规格的P45芯片组主板开始吸引更多用户的注意,P35芯片组主板的市场占有率就开始走了下坡路。到了现在,P35芯片组主板已经很少,同时,不少厂商为了清理最后的库存,不少P35主板都以一个很优惠的价格出售,相比同价位的P45芯片组主板,这些P35主板都有更好的用料和做工,而在超频性能方面,又要比P43更好,所以也还是有

主板的技术指标

主板的技术指标 主板的技术指标 主板作为计算机系列中一个关键的组成部分,有许多重要的技术指标。 北桥芯片 北桥芯片主要负责CPU和内存之间的数据交换和传送,因此他直接决定了主板可以支持什么样的CPU和内存。另外,北桥芯片还承担着AGP总线或PCI-E16X的控制、管理和传输工作。总的来说,北桥芯片主要是用来承担高数据传输速率设备的连接。 南桥芯片 南桥芯片负责与低速率传输设备之间的联系。具体来说,负责与USB设备、板载声卡、网卡、PATA设备、SATA设备、PCI总线设备、串行设备、并行设备、RAID构架和外置无线设备的沟通、管理和传输工作。当然,南桥芯片不可能独立实现这么多的功能,他需要与其他功能芯片共同合作,从而让各种低速设备正常运转。 提示:横跨AGP插槽左右两边的两块欣快就是南北桥芯片,南桥多位于PCI插槽的上面;而CPU插槽旁边,被散热片盖住的就是北桥芯片。 分频技术 由于CPU外频不断提高,其他设备无法承受这么高的频率,因此出现了分频技术。分频技术是通过主板的北桥芯片将CPU外频降低,然后再提供给各板卡、硬盘等设备。 在早期的66MHz外频时代,是PCI设备2分频,AGP设备不分频;后来的100MHz外频时代则是PCI设备3分频,AGP设备2/3分频(有些100MHz的北桥芯片也支持PCI设备4分频);目前的北桥芯片一般都支持133MHz外频,即PCI设备4分频、AGP设备2分频,以此类推。总之,在标准外频(66MHz、100MHz133MHz、200MHz)下,北桥芯片通过分频技术使PCI设备工作在33MHz,AGP设备工作在66MHz。 BIOS与CMOS BIOS是Basic Input/Outpt System的简写,即基本输入/输出系统,他的全称应该是ROM8-BIOS,意思是只读存储器基本输入/输出系统。其实,他是一组固化在计算机上一个ROM芯片上的程序,他保存着计算机中最重要的基本输入/输出的程序、系统设置信息、开机上电自检程序和系统启动自检程序等。 CMOS是计算机主板上的一块可读写的RAM芯片。 用他来保护当前系统的硬件配置和用户对某些参数的设定。现在的厂商们把CMOS程序做到了BIOS芯片中,当开机时就可按特定键(如Del键)键入CMOS设置程序对系统进行设置。因此他又被人们叫做BIOS设置。 PCB板 主板的线路板是由几层树脂材料粘合在一起的,内部采用铜箔走线。一般的PCB线路板分有四层,最上和最下的两层是信号层,中间两层是接地和电源层。将接地和电源层放在中间,这样便于对信号线做出修正。而好的主板的线路板可达到六层,这是考虑到让信号线必须相距足够远的距离,以防止电磁干扰。六层板可能有三个或四个信号层、一个接地层、以及一个或两个电源层,以提供足够的电力供应。 板型 由于采用的标准不同,现在的主板尺寸大小也不同,主要5种结构。

电子工程师PCB设计基础知识

电子工程师PCB设计基础知识 PCB于1936年诞生,美国于1943年将该技术大量使用于军用收音机内;自20世纪50年代中期起,PCB技术开始被广泛采用。目前,PCB已然成为“电子产品之母”,其应用几乎渗透于电子产业的各个终端领域中,包括计算机、通信、消费电子、工业控制、医疗仪器、国防军工、航天航空等诸多领域。 说了这么多,那么你知道PCB是如何设计出来的呢?立创电子小编告诉你: 1、前期准备 包括准备元件库和原理图。在进行PCB设计之前,首先要准备好原理图SCH元件库和PCB元件封装库。 PCB元件封装库最好是工程师根据所选器件的标准尺寸资料建立。原则上先建立PC的元件封装库,再建立原理图SCH元件库。 PCB元件封装库要求较高,它直接影响PCB的安装;原理图SCH元件库要求相对宽松,但要注意定义好管脚属性和与PCB元件封装库的对应关系。 2、PCB结构设计 根据已经确定的电路板尺寸和各项机械定位,在PCB设计环境下绘制PCB板框,并按定位要求放置所需的接插件、按键/开关、螺丝孔、装配孔等等。 充分考虑和确定布线区域和非布线区域(如螺丝孔周围多大范围属于非布线区域)。 3、PCB布局设计 布局设计即是在PCB板框内按照设计要求摆放器件。在原理图工具中生成网络表(Design→Create Netlist),之后在PCB软件中导入网络表(Design→Import Netlist)。网络表导入成功后会存在于软件后台,通过Placement操作可以将所有器件调出、各管脚之间有飞线提示连接,这时就可以对器件进行布局设计了。 PCB布局设计是PCB整个设计流程中的首个重要工序,越复杂的PCB 板,布局的好坏越能直接影响到后期布线的实现难易程度。 布局设计依靠电路板设计师的电路基础功底与设计经验丰富程度,对电路板设计师属于较高级别的要求。初级电路板设计师经验尚浅、适合小模块布局设计或整板难度较低的PCB布局设计任务。 4、PCB布线设计 PCB布线设计是整个PCB设计中工作量最大的工序,直接影响着PCB

H81和B85哪个好有什么区别

H81和B85哪个好有什么区别 Intel第四代Haswell处理器需要搭载8系列主板,而8些列主板主要有H81、B85、H87以及Z87主板,其中H81与B75主板定位中低端,兼顾性价比与主流实用,不过很多朋友在选择四代装机配置的时候,不知道H81和B85哪个好,接下来小编通过B85和H81主板区别对比,来方便大家拿主意,感兴趣的朋友不要错过。 具体分析 想要了解H81与B85哪个好,首先我们还是需要了解下这两款主板的区别,以下是H81与B85主板规格参数对比: 从上图可以看出,H81与B85主板在性能上并无区别,只是在扩展接口数量上有细微区别,表现在: 1、H81主板最多只有2条内存条,而B75主板则拥有最多4条;

2、SATA3.0新一代硬盘接口上,H81只有两个,而B75主板则有4个; 3、显卡接口方面,H81主板支持的是PCI-E 2.0,而B85主板支持最新的PCI-E 3.0; 4、多屏支持方面,H81主板支持2屏,而B85主板支持3屏。 对于中低端大众装机用户来书,2条内存条插槽可以组建内存双通道,基本可以满足需求;而2个SATA3.0接口也是刚好够用的,可以实现电脑添加2块硬盘,比如一固态、一机械硬盘就足够大家使用了;显卡接口方面,PCI-E 2.0与PCI-E 3.0相差不大,而最后的多屏方面,大家用的比较少,因此基本可以忽略,通过以上对比,我们可以看出,H81主板相当于B85主板扩展接口的缩减版,更加注重的是实用、够用。 在功能上,H81与B85主板上基本相同,唯一不同的H81主板不支持AHCI,但可以硬件支持,通过Win7、Win8系统自带的驱动可以支持,因此跟B85主板上其实功能上基本相同。 介绍大这里,相信大家对于H81与B85主板哪个好心中都

主板芯片组详解

[转帖]主板芯片组详解 Intel 845E Intel 845E是为了533MHz外频Pentium 4推出的DDR芯片组,它正式支持533MHz的系统前端总线,支持DDR266的内存规范,由于i845PE的推出,其价格势必降低,也是其成为一款高性价比的主流芯片组,很适合对性能要求较高和资金又不很充裕的用户购买,其支持533MHz的系统前端总线,在升级上也有较大的空间。 i845E芯片组由北桥芯片82845E GMCH和南桥芯片ICH4组成,继续使用i845的架构,南桥采用了ICH4芯片,支持增强型的六声道 AC97音效控制器和USB 2.0的通用串行总线传输规范。 技术规范 支持 Intel Pentium4 处理器 提供 400/533MHz 系统前端总线 支持 AGP 2X/4X 支持最多 2.0GB DDR200/266 SDRAM 南北桥芯片之间采用Intel Hub Architecture总线连接,提供高达266MB/s 数据传输宽带 支持网络唤醒功能 内建 AC-97控制芯片 内建 10/100M以太网络适配器 支持 ATA 33/66/100/磁盘传输界面 支持 6个USB 2.0接口 支持高级电源管理功

Intel 845D i845D是第一代的基于Pentium 4处理器的DDR整合型芯片组,由于i845使用SDRAM的效能实在无法满足Pentium 4处理器的需求,使得Pentium 4处理器在家用主流系统的性能表现平平,但i850芯片组的价格有过高,在这样的情形下,intel只好回到DDR SDRAM的的怀抱,i845D就是Intel在i845芯片组的基础上改进其内存管理器,使其支持DDR200/266的SDRAM,在DDR内存的帮助下,Pentium 4的性能得到了长足的提高,其合理的价格也使得Pentium 4处理器迅速的流行起来。但Intel官方并没有用i845D为其命名,而是用其代替了原来的i845,由于其推出的时间较长,其价格已经大幅降低,其性能表现仍然不差,搭配400外频的Pentium 4十分理想,是一个高性价比的组合,配合一款600元左右的Gefcrce 3 Ti显卡,满全可以满足大部分个人用户和游戏爱好者的需求。 i845D芯片组由北桥芯片82845 MCH和南桥芯片ICH2组成,作为第一款P4平台的DDR芯片组,其同时兼容DDRAM和SDRAM内存,而且南桥芯片ICH2整合了10/100M自适应以太网络控制器、6声道AC97音效控制器以及USB 1.1的支持,其外设的扩展能力还是十分强大的。 技术规范 支持 Intel Pentium4 处理器 提供 400系统前端总线 支持最多 2.0GB DDR200/266/PC133 SDRAM 南北桥芯片之间采用Intel Hub Architecture总线连接,提供高达266MB/s 数据传输宽带 支持网络唤醒功能 内建 AC-97控制芯片

主板PCB篇——防变形背板

第3页:主板PCB篇——防变形背板 主板背板并非一开始就有,在Socket 478之前的年代里,几乎从未有此设计(或许在当时的一些中高端产品上才能看到,更多的可能是散热器上会带有固定装置)。然而自从进入LGA775后,主板的背板设计开始流行起来,终其原因,很大一部分在于随着CPU的发热量增加,CPU超频的需要,为增强散热性能,散热器做的越来越大,越来越重。过重的散热器,让主板难堪重负,PCB变形难以避免,而PCB变形直接增加了电路虚焊等问题发生的几率。因此设计设计者为保证主板的稳定,为主板提供了防变形背板。 超重的CPU风扇给主板带来了不小的压力(PS:夭折的升技主板) 除了CPU风扇外,高性能显卡的需求越来越大,而此类显卡的重量也在不断增加。而由于主板在机箱中是竖立固定,而CPU风扇和显卡都是平行摆放,因此很容易对主板造成向下的引力,让主板在长时间使用下发生变形,甚至断裂。

显卡越来越重也让主板有了变形的隐患。 防变形背板带来的好处是显而易见的。由于防变形背板存在材料等差异,因此虽然目前主板均提供了防变形背板,但用户在选购主板时仍需要挑选。 金属背板拥有更高的硬度,同时兼顾主板散热

防变形背板的材质、大小、薄厚都有严格的限定。以目前AMD平台主板为例,防变形背板的材质主要有金属和塑料两类。金属材质防变形背板,凭借着更优秀的硬度以及辅助散热性能,明显优越于塑料背板。不过由于塑料价格相对更低,有一定硬度时能对主板PCB 起到固定作用,防止变形,因此采用也比较普遍。消费者在选购主板时,需要仔细查看。(PS:曾有主板厂商,由于塑料背板过厚,导致主板拱起,最终造成北桥芯片脱焊,因此建议网友尽量选择采用金属背板的主板。) 小结: 防变形背板承担着防止主板变形的重任,因此在选购主板时绝对不可忽略。金属背板拥有更优秀的硬度和韧性,同时兼顾散热性能,明显优于塑料材质的背板。建议用户优先选购采用金属背板设计的主板。

PCB设计知识(doc 33页)

PCB设计知识(doc 33页)

PCB设计知识 1.原理图常见错误: (1)ERC报告管脚没有接入信号: a. 创建封装时给管脚定义了I/O属性; b.创建元件或放置元件时修改了不一致的grid属性,管脚与线没有连上; c. 创建元件时pin方向反向,必须非pin name端连线。 (2)元件跑到图纸界外:没有在元件库图表纸中心创建元件。 (3)创建的工程文件网络表只能部分调入pcb:生成netlist时没有选择为global。 (4)当使用自己创建的多部分组成的元件时,千万不要使用annotate. 2.PCB中常见错误: (1)网络载入时报告NODE没有找到: a. 原理图中的元件使用了pcb库中没有的封装; b. 原理图中的元件使用了pcb库中名称不一致的封装; c. 原理图中的元件使用了pcb库中pin number不一致的封装。如三极管:sch中pin nu mber 为e,b,c, 而pcb中为1,2,3。 (2)打印时总是不能打印到一页纸上: a. 创建pcb库时没有在原点; b. 多次移动和旋转了元件,pcb板界外有隐藏的字符。选择显示所有隐藏的字符,缩 小pcb, 然后移动字符到边界内。

省出许多布线通 道使布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过程是一个复杂而又 简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中 的真谛。 1 电源、地线的处理 既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰 ,会使产品的性能下降,有时甚至影响到产品的成功率。所以对电、地线的布线要认真对 待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。 对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现 只对降低式抑制噪音作以表述: 众所周知的是在电源、地线之间加上去耦电容。 尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号 线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm 对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不 能这样使用) 用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成 多层板,电源,地线各占用一层。

台式机CPU供电电路功能板-H81使用说明书

台式机CPU供电电路功能板-H81使用说明书 中盈创信(北京)科技有限公司

目录 一、简介 (1) 二、台式机CPU供电电路功能板-H81介绍 (1) 2.1 功能介绍 (1) 2.2 功能板外观及接口说明 (1) 2.3 功能板指示灯状态说明 (2) 三、电路原理图 (2) 四、标准故障点设置位置及方法 (2) 4.1 故障点设置方法 (2) 4.2 故障点设置方案 (3) 4.3 故障点设置方法建议 (3) 五、料包清单 (3) 六、注意事项 (4) 七、装箱清单 (4)

一、简介 中盈创信芯片级检测与维修实训室方案专为芯片级检测与维修实训室设计,实训室设备组件包括芯片级检测与维修功能板、智能检测平台、智能检测平台中心管理系统和智能检测软件。其中功能板属于实训类消耗品,每一种功能板均为某种设备中某一部分电路的还原及改进,可对功能板进行故障循环的设定及维修。 功能板可以与智能检测平台配合,实现功能板的维修前故障检测,维修后结果确认,进而与中盈创信芯片级检测与维修实训室管理软件联动,实现课程组织、实验管理、教师及学生管理、成绩管理等功能。 中盈创信芯片级检测与维修实训室方案是各院校组建芯片级检测与维修实训室培养芯片级检测与维修人才的理想选择。 二、台式机CPU供电电路功能板-H81介绍 2.1 功能介绍 台式机CPU供电电路功能板-H81为电脑主板CPU电路的功能板,能够实现台式机主板CPU电路工作过程。 2.2 功能板外观及接口说明

1、外接连线接口A(黑色):40PIN的黑色排线接口(与检测平台40PIN黑色排线接口相连,用于维修前及维修后检测,维修过程中无需连接。) 2、外接连线接口B(白色):40PIN的白色排线接口(与检测平台40PIN白色排线接口相连,用于维修前及维修后检测,维修过程中无需连接。) 3、J1:输入9V的直流电源 4、LED1:红色指示灯 2.3 功能板指示灯状态说明 1、未连接直流电源,这相当电脑关机状态。 2、插上直流电源,红色指示灯亮,这时候相当于CPU电路工作状态。 三、电路原理图 四、标准故障点设置位置及方法 4.1 故障点设置方法

Intel 系列主板 用户手册

版本: 0.1 2012年10月 用户手册 Intel 系列主板 PCM-H161

免责声明 本手册内容系本公司知识产权,版权归本公司所有。本产品的所有部分,包括配件与软件等其所有权都归本公司所有。未经本公司书面许可,不得以任何形式对此手册和其中所包含的任何内容进行仿制、拷贝、摘抄或转译为其它语言文字。 我们本着对用户负责的态度精心地编写该手册,但不保证本手册的内容完全准确无误。本手册为纯技术文档,无任何暗示及影射第三方之内容,且不承担排版错误导致的用户理解歧义。若有任何因本手册或其所提到之产品的所有资讯,所引起直接或间接的信息流失或事业终止,本公司及其所属员工恕不为其担负任何责任。 由于我们的产品一直在持续的改良及更新,故本公司保留对本手册内容进行修正而不另行通知之权利。 版权声明 本手册中所提及之商标,均属其合法注册公司所有。 本手册所涉及到的产品名称仅做识别之用,其所有权归其制造商或品牌所有人。

目 录 第1章 综述 (4) 1.1包装清单 (4) 1.2主板规格 (5) 1.3主板布局图 (6) 1.4后置面板接口 (8) 第2章 硬件安装 (9) 2.1安装I/O后置面板 (9) 2.2安装主板到机箱 (9) 2.3 CPU安装 (9) 2.4 内存安装 (10) 2.5连接外部设备 (11) 2.5.1 Serial ATA连接器 (11) 2.5.2 MPCIE插槽 (11) 第3章 跳线&接头安装与设置 (12) 3.1跳线设置说明 (12) 3.2清除CMOS设置跳线 (12) 3.3 JDIMM跳线设置 (13) 3.4JME跳线设置 (13) 3.5 JBAT跳线设置 (13) 3.6 前置面板插针接口 (13) 3.7 JGPIO插针接口 (14) 3.8 FUSB1/2插针接口 (14) 3.9 前置音频输出接口 (15) 3.10 COM连接口 (15) 3.11 散热风扇接口 (16) 3.12 电源接口 (16) 第4章BIOS设置 (17) 4.1 BIOS解释说明 (17) 4.2 BIOS设定 (17) 4.2.1进入BIOS设定程序 (17) 4.2.2控制键位 (17) 4.2.3 Main(BIOS主界面) (18) 4.2.4 Advanced(高级BIOS功能设置) (18) 4.2.5 Chipset(芯片组设置) (25) 4.2.6 Boot (启动设置) (26) 4.2.7 Secunity(安全设置) (27) 4.2.8 Exit (离开BIOS设置程序) (28) 第5章 安装驱动 (29) 附录1 产品有毒有害物质或元素标示表 (30)

电大主板维修与技术答案1

[第1题](单选题)静态检测主板总线的数据地址线,应测量数据地址线的( ). 电压 电阻 电容 电流 [第2题](单选题)指针式万用表有( )个表棒插孔。 2 3 4 5 [第3题](单选题)PCI插槽所需的12V电压是( )得来。 开关稳压 线性稳压 直接由ATX 电池 [第4题](单选题)若怀疑某芯片出现问题,但不能确定时,应采用( )来检测,以加快维修速度。 原理分析法 测量法 比较法 替换法

[第5题](单选题)USB接口有四条信号线,分别是( ). 电源、地线、两条数据线 数据线、电源、地线和控制信号线 数据线、电源、地线和地址线 地址信号线、电源、地线和控制信号线 [第6题](单选题)半导体场效应管测量时当栅极G确定以后,对于源极S漏极D不一定要判断,因为( ). 根据测量G的结果可以知道 这两个极可以互换使用 按照方向判断可以判断 实际应用不需要判断 [第7题](单选题)使用万用表测量发光二极管时,加上正向电压的发光二极管会( ). 常亮 闪亮 不亮 击穿 [第8题](单选题)若怀疑某芯片出现问题,但不能确定时,应采用( )来检测,以加快维修速度。 原理分析法 测量法 比较法 替换法

[第9题](单选题)复位电路的核心是( ). CPU 南桥 北桥 接口 [第10题](单选题)当设备请求使用总线时,由( )来决定总线的使用权。 中断控制器 主板控制器 DMA控制器 总线控制器 [第11题](单选题)目前主板上的RTC时钟晶振主要连接到( )上。 北桥芯片 南桥芯片 I/O芯片 BIOS芯片 [第12题](单选题)PNP型半导体三极管是通过( )来控制c、e极之间导通与截止状态的。 电流 负电压 正电压 正脉冲

PCB设计基础知识印刷电路板(Printedcircui

PCB 设计基础知识 印刷电路板(Printed circuit board, PCB)几乎会出现在每一种电子设备当中。如果在某样设备中有电子零 件,那么它们也都是镶在大小各异的PCB 上。除了固定各种小零件外,PCB 的主要功能是提供上头各项零 件的相互电气连接。随着电子设备越来越复杂,需要的零件越来越多,PCB 上头的线路与零件也越来越密 集了。标准的PCB 长得就像这样。裸板(上头没有零件)也常被称为「印刷线路板Printed Wiring Board (PWB)」。 板子本身的基板是由绝缘隔热、并不易弯曲的材质所制作成。在表面可以看到的细小线路材料是铜箔,原本铜箔是覆盖在整个板子上的,而在制造过程中部份被蚀刻处理掉,留下来的部份就变成网状的细小线路了。这些线路被称作导线(conductor pattern)或称布线,并用来提供PCB上零件的电路连接。 为了将零件固定在PCB上面,我们将它们的接脚直接焊在布线上。在最基本的PCB (单面板)上,零件都 集中在其中一面,导线则都集中在另一面。这么一来我们就需要在板子上打洞,这样接脚才能穿过板子到另一面,所以零件的接脚是焊在另一面上的。因为如此,PCB 的正反面分别被称为零件面( Component Si de)与焊接面(Solder Side)。 如果PCB 上头有某些零件,需要在制作完成后也可以拿掉或装回去,那么该零件安装时会用到插座( Soc ket)。由于插座是直接焊在板子上的,零件可以任意的拆装。下面看到的是ZIF (Zero Insertion Force, 零拨插力式)插座,它可以让零件(这里指的是CPU)可以轻松插进插座,也可以拆下来。插座旁的固定 杆,可以在您插进零件后将其固定。 如果要将两块PCB相互连结,一般我们都会用到俗称「金手指」的边接头( edge connector)。金手指上 包含了许多裸露的铜垫,这些铜垫事实上也是PCB 布线的一部份。通常连接时,我们将其中一片PCB 上的金手指插进另一片PCB上合适的插槽上(一般叫做扩充槽Slot)。在计算机中,像是显示卡,声卡或是 其它类似的界面卡,都是借着金手指来与主机板连接的。 PCB上的绿色或是棕色,是阻焊漆(solder mask)的颜色。这层是绝缘的防护层,可以保护铜线,也可以防止零件被焊到不正确的地方。在阻焊层上另外会印刷上一层丝网印刷面( silk screen)。通常在这上面会 印上文字与符号(大多是白色的),以标示出各零件在板子上的位置。丝网印刷面也被称作图标面( legen d)。 单面板( Single-Sided Boards) 我们刚刚提到过,在最基本的PCB 上,零件集中在其中一面,导线则集中在另一面上。因为导线只出现在其中一面,所以我们就称这种PCB 叫作单面板( Single-sided) 。因为单面板在设计线路上有许多严格的限制(因为只有一面,布线间不能交叉而必须绕独自的路径),所以只有早期的电路才使用这类的板子。 双面板( Double-Sided Boards) 这种电路板的两面都有布线。不过要用上两面的导线,必须要在两面间有适当的电路连接才行。这种电路间的「桥梁」叫做导孔(via)。导孔是在PCB上,充满或涂上金属的小洞,它可以与两面的导线相连接。因为双面板的面积比单面板大了一倍,而且因为布线可以互相交错(可以绕到另一面),它更适合用在比单面板更复杂的电路上。 多层板( Multi-Layer Boards) 为了增加可以布线的面积,多层板用上了更多单或双面的布线板。多层板使用数片双面板,并在每层板间放进一层绝缘层后黏牢(压合)。板子的层数就代表了有几层独立的布线层,通常层数都是偶数,并且包含最外侧的两层。大部分的主机板都是4到8层的结构,不过技术上可以做到近100层的PCB板。大型的 超级计算机大多使用相当多层的主机板,不过因为这类计算机已经可以用许多普通计算机的集群代替,超多层板已经渐渐不被使用了。因为PCB 中的各层都紧密的结合,一般不太容易看出实际数目,不过如果您仔细观察主机板,也许可以看出来。 我们刚刚提到的导孔( via) ,如果应用在双面板上,那么一定都是打穿整个板子。不过在多层板当中,如 果您只想连接其中一些线路,那么导孔可能会浪费一些其它层的线路空间。埋孔( lind vias)技术可以避免这个问题,因为它们只穿透其中几层。盲孔是将几层内部不须穿透整个板子。埋孔则只连接内部的PCB,所以光是从表面是看不出来的。 Buried vias)和盲孔(B PCB 与表面PCB 连接,

【2018-2019】联想h61主板配什么cpu-范文word版 (4页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == 联想h61主板配什么cpu 篇一:英特尔CPU与主板是怎么搭配的 英特尔CPU与主板是怎么搭配的 一代的赛扬G1101,奔腾G6960,酷睿i3 530,i5 760,i7 870,接口为 LGA1156的,主板同接口的可以用P55或H55芯片组的主板。 二代的赛扬G530,奔腾G620、G840,酷睿i3 2100,i5 2300,i7 2600,接口 为LGA1155,32纳米的,主板可用H61,H67,P67,Z68这些型号。 三代的赛扬G1610,奔腾G2020,酷睿i3 3220,i5 3470,i7 3770,接口也是LGA1155与二代一样,不过工艺为22纳米,需要支持,所以主板用 B75,H77,Z77,当然支持22纳米CPU的上面H61这类主板也可以用,同样的新 的B75,h77,z77主板也是支持二代的CPU的。 四代的赛扬G1820,奔腾G3220,酷睿i3 4170,i5 4590,i7 4770,接口更换 为LGA1150,22nm所以主板用H81,B85,H87,H97,Z87,Z97。 五代国内没有上市不提 六代的奔腾G4400,酷睿i3 6100,i5 6400,i7 6700,接口为LGA1151,14nm,所以对应主板为H110,B150,H170,Z170. 搭配方面一般赛扬奔腾对应最低端主板,酷睿i3与不超频i5搭配中端主板, 超频i5和i7搭配高端主板。 篇二:intel的处理器与主板的搭配原则 P43主板 P43芯片组是一款非整合主板芯片组,也是“4”系列中最低端的一款非整合主 板芯片组,其规格虽然略差,但是与P45之间的规格差距对于普通用户来说, 是可以忽略不计的,因为并非人人都会用到P45相比P43多出来的功能,而且 P43主板还稍微便宜一些。对于Intel中低端独显平台用户,大可以选择P43 主板,搭配一颗500多元的处理器以及500多元的显卡,各方面的性能都可以 表现得不错。 P45主板

打印机主板维修技术资料

打印机主板维修技术资料 1600kⅲ打印机(主板)常见故障的维修故障现象:lq-1600kⅲ打印机较常见的故障为并口损坏,且比例很大。并口损坏可造成下述很多不正常现象,如能自检,不能联接电脑。有不能自检的。有不能复位的。有开机复位,不能自检、联机的。有控制面板指示灯闪烁一下,然后全灭的。还有较多其它故障现象的…… 维修方法一:用万用表检查+5v电压对地是否短路,如已短路则说明接口芯片ic-9、74ls06已损坏,先摘下74ls06,再检查+5v电压对地是否还短路,如还短路,那么ic-2也已损坏,摘下ic-2、e05b24ya,再测+5v电压时已不短路,并更换ic-6及ic-2,再检查并口插座至接口芯片至cpu的有关电阻,如有损坏也更换之。再开机,打印机即恢复正常工作。 维修方法二:用万用表检查+5v电压对地没有短路,那应检查ic-2、e05b24ya,看芯片的第一脚与37-54脚之间的任何一脚短路,则说明ic-2已损坏,在此情况下,ic-9一般也损坏了,需同时更换ic-2、ic-9。再检查周围有关电阻,如有损坏也更换之。再开机,打印机即恢复正常工作。维修主板(特别是lq-1600k ⅲ)时应该注意的问题:拆芯片的时候,千万要注意不要拆坏线路板的铜铂,只要不拆坏线路板,假如你修不好的话,别人还能帮你修复该主板,否则会造成新的故障点,并导致报废该主板。装芯片的时候,千万要注意芯片引脚与焊盘不要错位、虚焊,芯片的脚与脚之间不要短路。 故障现象:打印缺笔划维修方法:先用测针程序检测缺几号针,在排除打印头及头缆的故障之后,再找几号针驱动管。在主板上都标有针驱动管的号码并同测针程序的针号是对应的,故非常方便查找。 激光器驱动电路分析与检查方法激光器驱动电路分析与检查方法激光器驱动电路包括激光束发生器和调制电路、光学调制装置、扫描电机控制与驱动电路,这几部分电路和装置被装在一个黑色塑料盒内,一般称为激光器。其作用是通过视频接口传送来的视频信号,产生激光二极管驱动信号,再经过扫描电机带动的扫描镜(两面、四面或六面棱镜)调制后发射到感光鼓上生成二维的静电潜像。 激光器驱动电路出现故障时主要表现在以下三个方面: ①激光束发生器(激光头)故障。激光束发生器(激光头)故障是指激光二极管故障,主要是激光二极管损坏、聚焦透镜(为了拓宽激光束的调制频带,必须对激光束进行聚焦)上的镀膜老化等,从而导致打印机出现打印页面全白或分辨率下降的故障现象。这种故障的检查方法是打开机器,取出激光器,再将激光器的盖板打开,用万用表直接测量激光二极管的直流电阻值(有三个引脚)。检查聚焦透镜表面的镀膜是否老化、有无灰尘或斑点。 ②扫描电机控制与驱动电路故障。为了使激光发生器发出的激光束在感光鼓上进行全程扫描,必须对激光束进行偏转,因而使用了由电机带动的扫描镜。这是一种用正多角柱的侧面作镜面,并由电机驱动作高速旋转的多面镜,也是一个由多个镜面(根据不同型号的打印机有2~6个镜面)和电机组装为一体的组合体。这个电机称之为扫描电机。当扫描电机的转速异常出现时,就不能对激光束进行正常调制,致使打印页面出现扭曲,若该电机不转,则打印机不打印,面板上出现故障信息(如HP 6LPR()打印机上会出现三个指示灯全亮现象)。这种故障的检查方法是打开机器,取出激光器,再将激光器的盖板打开,用手转动扫描镜(注意手勿碰到镜面),观察一下扫描镜是否旋转自如、其轴有无发涩或卡住的感觉。 ③激光束传输通道故障。激光束传输通道是指激光器发出的激光束在经过聚焦透镜聚焦后,通过一系列的扫描转镜、扫描透镜、激光光束检测镜的调制,再由反射镜发射到感光鼓上形成二维的潜像,当激光束传输通道发生故障时,会影响到打印质量,如打印页面上出现纵向白条。这种故障的检查方法是打开机器,取出激光器,再将激光器的盖板打开,检查里面的光学器件上有无墨粉、灰尘等。另外有的激光

h81主板用i5cpu介绍

h81主板用i5cpu介绍 h81主板用i5cpu介绍一华硕h81-plus采用intel h81芯片组 cpu类型core i7/core i5/core i3/celeron/pentium cpu插槽lga 1150 所以支持英特尔i系列1150插针的处理器,推荐intel 酷睿i5 4570兼容性好,升级成本低,能够满足多数用户的需求h81主板用i5cpu介绍二h81没有购买价值,不如选b85 由于现在cpu的新技术功耗较低,已经不用迷信于原有豪华的供电相了,华硕在低端板上的用料少的可怜,高端土豪有需求的选华硕pro,一般家用还是选二线品牌经济实惠 cpu不挑主板,选主板的原则在于有什么用途,如磁盘列阵,快速启动,各种接口,交火,sli等,如果只是打打游戏上上网随便买 选cpu在于自己的需求,i3就能满足大部分人的需求了 h81主板用i5cpu介绍三h81主板支持1150pin的cpu,为市场主流产品。 1、cpu 可选 intel第四代酷睿i5处理器,较为合适。若条件允许,i7更好; 2、显卡,中高档产品都可入选。n卡,gtx960以上均可;a 卡,r7 270、r9 370及以上;

3、电源,考虑游戏时满载功耗,及其他部位耗用,系统余量,500w或以上额定输出功率。 4、如果是游戏机,内存可选 8g x 2。最少也要 4g x 2 的。硬盘自然少不掉ssd120g了。 相关阅读: cpu制造工艺 cpu制造工艺的微米是指ic内电路与电路之间的距离。制造工艺的趋势是向密集度愈高的方向发展。密度愈高的ic电路设计,意味着在同样大小面积的ic中,可以拥有密度更高、功能更复杂的电路设计。 主要的180nm、130nm、90nm、65nm、45纳米、22nm,intel 已经于2010年发布32纳米的制造工艺的酷睿i3/酷睿i5/酷睿i7系列并于2012年4月发布了22纳米酷睿i3/i5/i7系列。 并且已有14nm产品的计划(据新闻报道14nm将于2013年下半年在笔记本处理器首发。)。 而amd则表示、自己的产品将会直接跳过32nm工艺(2010年第三季度生产少许32nm产品、如orochi、llano)于2011年中期初发布28nm的产品(apu)。 trinityapu已在2012年10月2日正式发布,工艺仍然32nm,28nm工艺代号kaveri反复推迟。 2013年上市的28nm的apu仅有平板与笔记本低端处理器,代号kabini。而且鲜为人知,市场反应平常。据可靠消息,2014年上半年可能有28nm的台式apu发布,其gpu将采用gcn架构,与高端a卡同架构。

PCB设计基础知识

PCB设计基础知识 印刷电路板(Printed circuit board,PCB)几乎会出现在每一种电子设备当中。如果在某样设备中有电子零件,那么它们也都是镶在大小各异的PCB上。除了固定各种小零件外,PCB的主要功能是提供上头各项零件的相互电气连接。随着电子设备越来越复杂,需要的零件越来越多,PCB上头的线路与零件也越来越密集了。标准的PCB长得就像这样。裸板(上头没有零件)也常被称为「印刷线路板Printed Wiring Board (PWB)」. 板子本身的基板是由绝缘隔热、并不易弯曲的材质所制作成。在表面可以看到的细小线路材料是铜箔,原本铜箔是覆盖在整个板子上的,而在制造过程中部份被蚀刻处理掉,留下来的部份就变成网状的细小线路了。这些线路被称作导线(conductor pattern)或称布线,并用来提供PCB上零件的电路连接。 为了将零件固定在PCB上面,我们将它们的接脚直接焊在布线上。在最基本的PCB(单面板)上,零件都集中在其中一面,导线则都集中在另一面。这么一来我们就需要在板子上打洞,这样接脚才能穿过板子到另一面,所以零件的接脚是焊在另一面上的。因为如此,PCB的正反面分别被称为零件面(Component Side)与焊接面(Solder Side)。如果PCB上头有某些零件,需要在制作完成后也可以拿掉或装回去,那么该零件安装时会用到插座(Socket)。由于插座是直接焊在板子上的,零件可以任意的拆装。下面看到的是ZIF(Zero Insertion Force,零拨插力式)插座,它可以让零件(这里指的是CPU)可以轻松插进插座,也可以拆下来。插座旁的固定杆,可以在您插进零件后将其固定。如果要将两块PCB相互连结,一般我们都会用到俗称「金手指」的边接头(edge connector)。金手指上包含了许多裸露的铜垫,这些铜垫事实上也是PCB布线的一部份。通常连接时,我们将其中一片PCB上的金手指插进另一片PCB上合适的插槽上(一般叫做扩充槽Slot)。在计算机中,像是显示卡,声卡或是其它类似的界面卡,都是借着金手指来与主机板连接的。 PCB上的绿色或是棕色,是阻焊漆(solder mask)的颜色。这层是绝缘的防护层,可以保护铜线,也可以防止零件被焊到不正确的地方。在阻焊层上另外会印刷上一层丝网印刷面(silk screen)。通常在这上面会印上文字与符号(大多是白色的),以标示出各零件在板子上的位置。丝网印刷面也被称作图标面(legend)。 ●单面板(Single-Sided Boards) 我们刚刚提到过,在最基本的PCB上,零件集中在其中一面,导线则集中在另一面上。因为导 线只出现在其中一面,所以我们就称这种PCB叫作单面板(Single-sided)。因为单面板在设计线 路上有许多严格的限制(因为只有一面,布线间不能交叉而必须绕独自的路径),所以只有早期 的电路才使用这类的板子。 ●双面板(Double-Sided Boards) 这种电路板的两面都有布线。不过要用上两面的导线,必须要在两面间有适当的电路连接才行。 这种电路间的「桥梁」叫做导孔(via)。导孔是在PCB上,充满或涂上金属的小洞,它可以与两 面的导线相连接。因为双面板的面积比单面板大了一倍,而且因为布线可以互相交错(可以绕到 另一面),它更适合用在比单面板更复杂的电路上。 ●多层板(Multi-Layer Boards) 为了增加可以布线的面积,多层板用上了更多单或双面的布线板。多层板使用数片双面板,并在 每层板间放进一层绝缘层后黏牢(压合)。板子的层数就代表了有几层独立的布线层,通常层数 都是偶数,并且包含最外侧的两层。大部分的主机板都是4到8层的结构,不过技术上可以做到 近100层的PCB板。大型的超级计算机大多使用相当多层的主机板,不过因为这类计算机已经 可以用许多普通计算机的集群代替,超多层板已经渐渐不被使用了。因为PCB中的各层都紧密 的结合,一般不太容易看出实际数目,不过如果您仔细观察主机板,也许可以看出来。

相关文档
最新文档