正弦波-方波-三角波信号发生器设计

正弦波-方波-三角波信号发生器设计
正弦波-方波-三角波信号发生器设计

苏州科技学院天平学院

模拟电子技术课程设计指导书

课设名称正弦波-方波-三角波信号发生器设计

组长李为学号1232106101

组员谢渊博学号1232106102

组员张翔学号1232106104

专业电子物联网

指导教师

二〇一二年七月

模拟电子技术课程设计指导书

一设计课题名称

正弦波-方波-三角波信号发生器设计

二课程设计目的、要求与技术指标

2.1课程设计目的

(1)巩固所学的相关理论知识;

(2)实践所掌握的电子制作技能;

(3)会运用EDA工具对所作出的理论设计进行模拟仿真测试,进一步完善理论设计;(4)通过查阅手册和文献资料,熟悉常用电子器件的类型和特性,并掌握合理选用元器件的原则;

(5)掌握模拟电路的安装\测量与调试的基本技能,熟悉电子仪器的正确使用方法,能力分析实验中出现的正常或不正常现象(或数据)独立解决调试中所发生的问题;

(6)学会撰写课程设计报告;

(7)培养实事求是,严谨的工作态度和严肃的工作作风;

(8)完成一个实际的电子产品,提高分析问题、解决问题的能力。

2.2课程设计要求

(1)根据技术指标要求及实验室条件设计出电路图,分析工作原理,计算元件参数;(2)列出所有元器件清单;

(3)安装调试所设计的电路,达到设计要求;

2.3技术指标

(1)输出波形:方波-三角波-正弦波;

(2)频率范围:100HZ~200HZ连续可调;

(3)输出电压:正弦波-方波的输出信号幅值为6V.三角波输出信号幅值为0~2V连续可调;

γ。

(4)正弦波失真度:%

5

三系统知识介绍

3 函数发生器原理

本设计要求产生三种不同的波形分别为正弦波\方波\ 三角波。实现该要求有多种方案。

方案一:首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波。

方案二:首先产生方波——三角波,再将方波变成正弦波或将三角波变成正弦波。

3.1函数发生器的各方案比较

我选的是第一个方案,上述两个方案均可以产生三种波形。方案二的电路过多连接部方便而且这样用了很多元器件,但是方案的在调节的时候比较方便可以很快的调节出波形。方案一电路简洁利于连接可以节省元器件,但是在调节波形的时候会比较费力,由于整个电路时一起的只要调节前面部分就会影响后面的波形。

四电路方案与系统、参数设计

4.1基于集成运算放大器与晶体管差分放大器的函数发生器

4.1.1设计思路

我们组总体设计思路为:先通过比较器产生方波,方波通过积分器产生三角波,三角波通过差分放大器产生正弦波。

函数发生器电路组成框图如下所示

由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。波形变换的原理是利用差分放大器传输特性曲线的非线性。

4.1.2工作原理

4.1.2.1方波产生电路原理

此电路由反相输入的滞回比较器和RC电路组成。RC回路既作为延迟环节,又作为反馈网络,通过RC充、放电实现输出状态的自动转换。设某一时刻输出电压Uo=+Uz,则同相输入端电位Up=+UT。Uo通过R1对电容C1正向充电,如图中实线箭头所示。反相输入端电位n随时间t的增长而逐渐增高,当t趋于无穷时,Un趋于+Uz;但是,一旦Un=+Ut,再稍增大,Uo 从+Uz跃变为-Uz,与此同时Up从+Ut跃变为-Ut。随后,Uo又通过R1对电容C1反向充电,如图中虚线箭头所示。Un随时间逐渐增长而减低,当t趋于无穷大时,Un趋于-Uz;但是,一旦Un=-Ut,再减小,Uo就从-Uz跃变为+Uz,Up从-Ut跃变为+Ut,电容又开始正相充电。上述过程周而复始,电路产生了自激振荡。

4.1.2.2方波——三角波转换电路的工作原理

4.1.2.3正弦波——方波转换电路的工作原理

4.1.3元器件与参数设计

1、从电路的设计过程来看电路分为三部分:①方波部分②三角波部分③三角波部分正弦波部分

2、方波部分与三角波部分参数的确定 由442314()1

P P R R R C T R R f

?+?=

=+,可见f 与c 成反比,若要得到100Hz~200Hz,C 为0.1F μ。

3.正弦波-方波部分

比较器A1与积分器A2的元件计算如下:2

231

O m CC R U V R RP =

+,R 2/(R 3+RP 1)=U 02M /V CC =6/12=1/2;

210R K =Ω,则(R 3+RP 1)=20K Ω,取R 3=10K Ω,RP1为47K Ω的电位器,取平衡电阻R1=R2//(R3+RP1)=7K Ω,由式3124224()R RP f R R RP C +=

+,即3141

22

4R RP R RP R C ++=+。当100HZ

2

31

p R V V R R =

+三角方波,

由输出的三角形幅值与输出方波的幅值分别为2V ,6V ,有 2=

231p R R R +6?2

31

p R R R +=1/3

取R2=20K Ω,1p R ≈47 k Ω,R3=20K Ω

三角波—>正弦波变换电路的参数选择原则是:隔直电容C3、C4、C5要取得较大,因为输出频率很低,取345470C C C F μ===,滤波电容6C 视输出的波形而定,若含高次斜波成分较多,

6C 可取得较小,6C 一般为几十皮法至0.1微法。

ICL8038单片函数发生器有两种工作方式,即输出函数信号的频率调节电压可以由内部供给,也可以由外部供给。图3为几种由内部供给偏置电压调节的接线图。

图3 ICL8038典型应用

在以上应用中,由于第7脚频率调节电压偏置一定,所以函数信号的频率和占空比由R

A

R B 和C决定,其频率为F,周期T,t

1

为振荡电容充电时间,t

2

为放电时间。

T=t

1

+t

2

f=1/T

由于三角函数信号在电容充电时,电容电压上升到比较器规定输入电压的1/3倍,分得

的时间为

t1=CV/I=(C+1/3·Vcc·R A)/(1/5·Vcc)=5/3RA·C

在电容放电时,电压降到比较器输入电压的1/3时,分得的时间为

t 2=CV/I=(C+1/3·V

CC

)/(2/5·V

CC

R

B

-1/5·V

CC

/R

A

=(3/5·R

A *R

B

·C)/(2R

A

-R

B

f=1/(t

1+t

2

)=3/{5R

A

C[1+R

B

/(2R

A

-R)]}

对图3(a)中,如果R

A =R

B

,就可以获得占空比为50%的方波信号。其频率f=3/(10R

A

C)。

4.2.3.1 正弦函数信号的失真度调节

由于ICL8038单片函数发生器所产生的正弦波是由三角波经非线性网络变换而获得。该芯片的第1脚和第12脚就是为调节输出正弦波失真度而设置的。图4为一个调节输出正弦波失真度的典型应用,其中第1脚调节振荡电容充电时间过程中的非线性逼近点,第12脚调节振荡电容在放电时间过程中的非线性逼近点,在实际应用中,两只100K的电位器应选择多圈精度电位器,反复调节,可以达到很好的效果。

图4 正弦波失真度调节电路

4.1.4仿真结果与分析

(1)正弦波---方波转换电路的仿真

(2)方波---三角波发生电路的仿真

(3)总电路的仿真

4.1.5器件清单表

元器件名称个数型号主要参数集成运放 1 LM358

集成芯片 1 ICL8038

可调电阻 2 20k,100k

电阻8 R 22k,1k,62k,10k,0.1k 电容 4 C 470nF,10nF

直流稳压电源 1 ±12V, ±5V

4.2ICL8038元器件的函数发生器

ICL8038是一种具有多种波形输出的精密振荡集成电路, 只需调整个别的外部组件就能产生从0.001HZ~300kHz 的低失真正弦波、三角波、矩形波等脉冲信号。输出波形的频率和占空比还可以由电流或电阻控制。另外由于该芯片具有调频信号输入端, 所以可以用来对低频信号进行频率调制。icl8038中文资料

ICL 8038 的主要特点:

(1) 可同时输出任意的三角波、矩形波和正弦波等。

(2) 频率范围: 0.001HZ~300kHz

(3) 占空比范围: 2%~98%

(4) 低失真正弦波: 1%

(5) 低温度漂移: 50ppm/℃

(6) 三角波输出线性度: 0.1%

(7) 工作电源: ±5V~±12V 或者+ 12V~+ 25V

图1 ICL8038的引脚功能排列图

图2 ICL8038内部电路方框图

由图2可知, 该芯片由三角波振荡电路、比较器1、比较器2、触发器、三角波—正弦波变换电路、恒流源CS1、CS2 等组成。

恒流源CS1、CS2主要用于对外接电容C 进行充电放电, 可利用4、5脚外接电阻调整恒流源的电流, 以改变电容C 的充放电时间常数, 从而改变10脚三角波的频率。两个比较器分别被内部基准电压设定在2 3V s 与1 3V s。使两个比较器必须在大于2 3V s 或小于1 3Vs 的范围内翻转。其输出同时控制触发器, 使其一方面控制恒流源CS2 的通断, 另一方面输出方波经集电极开路缓冲器, 由9 脚输出方脉冲, 而10脚经缓冲器直接由3 脚输出三角波, 另外还经三角波—正弦波变换电路由2 脚输出低失真正弦波。外接电容C 由两个恒流源充电和放电。若S 断开, 仅有电流I1 向C 充电, 当C 上电压上升到比较器1 的门限电压2 3V s 时, 触发器输出Q = 1。开关S 导通, CS2 把电流I2加到C上反充电, 当I2> I1 时, 相当于C 由一个净电流I2- I1放电, 此时C 上电压逐渐下降, 当下降到比较器2的门限电压1 3V s时, R·S触发器被复位,Q = 0, 于是S 断开CS2, 仅有CS1 对C充电, 如此反复形成振荡, C上电压近似为三角波, 而触发器输出则为方波。当两个电流源CS1、CS2 的电流分别设定为I、2I时, 电容C上的充电、放电时间相等, 则10脚三角波以及变换的正弦波就是对称的, 方波的占空比是50%。若恒流源CS1、CS2的电流不满足上述关系, 则3脚输出非对称的锯齿波, 2 脚输出非对称的正弦波, 9脚输出占空比为2%~98% 的脉冲波形。另外改变恒流源I的大小, 即可改变振荡信号的频率。

模拟电子方波—正弦波—三角波转换全解

第1章绪论 1.1简介 在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在各种实验应用和实验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。 波形发生器就是信号源的一种,能够给被测电路提供所需要的波形。传统的波形发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,不能根据实际需要灵活扩展。随着微电子技术的发展,运用单片机技术,通过巧妙的软件设计和简易的硬件电路,产生数字式的正弦波、方波、三角波、锯齿等幅值可调的信号。与现有各类型波形发生器比较而言,产生的数字信号干扰小,输出稳定,可靠性高,特别是操作简单方便。根据用途不同,有产生三种或多种波形的波形发生器,使用的器件可以是分立器件 (如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。 信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。它用于产生被测电路所需特定参数的电测试信号。在测试、研究或调整电子电路及设备时,为测定电路的一些电参量,如测量频率响应、噪声系数,为电压表定度等,都要求提供符合所定技术条件的电信号,以模拟在实际工作中使用的待测设备的激励信号。当要求进行系统的稳态特性测量时,需使用振幅、频率已知的正弦信号源。当测试系统的瞬态特性时,又需使用前沿时间、脉冲宽度和重复周期已知的矩形脉冲源。并且要求信号源输出信号的参数,如频率、波形、输出电压或功率等,能在一定围进行精确调整,有很好的稳定性,有输出指示。信号源可以根据输出波形的不同,划分为正弦波信号发生器、矩形脉冲信号发生器、函数信号发生器和随机信号发生器等四大类。正弦信号是使用最广泛的测试信号。 现在,我们通过对函数信号发生器的原理以及构成设计一个能变换出正弦波、方波、三角波的简易发生器。 众所周知,制作函数发生器的电路有很多种。本次设计先通过RC正弦波振荡电路产生正弦波,这是一种频率可调的移相式正弦波发生器电路,其频率稳定一般为实验所

方波-三角波波形发生器设计

电子技术课程设计 题目方波、三角波信号发生器 学院名称电气工程学院 指导教师 职称 班级自动化071班 学号 学生姓名 2009年01 月14日

目录 摘要---------------------------------------------------------------------------2 关键词------------------------------------------------------------------------2 一、设计任务与要求------------------------------------------------------2 1.1 设计任务------------------------------------------------------------------------------2 1.2 设计要求-----------------------------------------------------------------------------2 二、方案设计与论证------------------------------------------------------3 2.1 方案一--------------------------------------------------------------------------------3 2.2 方案二--------------------------------------------------------------------------------3 2.3 两种方案比较------------------------------------------------------------------------4 三、单元电路设计与参数计算------------------------------------------4 3.1 方波产生电路-----------------------------------------------------------------------4 3.2 三角波发生电路--------------------------------------------------------------------5 3.3 参数计算------------------------------------------------------------------------------5 四、仿真过程仿真结果----------------------------------------------------5 4.1仿真调试输出波形-------------------------------------------------------------------5 4.2 调试输出波形------------------------------------------------------------------------6 4.3 数据记录------------------------------------------------------------------------------6 五、总原理图及元件清单------------------------------------------------7 5.1 电路设计原理------------------------------------------------------------------------7 5.2 总原理图------------------------------------------------------------------------------7 5.3 PCB图-------------------------------------------------------------------------------7 5.4 元件清单------------------------------------------------------------------------------8 六、电路调试与分析------------------------------------------------------8 6.1 电路的装调--------------------------------------------------8 6.2 调试结论------------------------------------------------------------------------------8 6.3 误差分析------------------------------------------------------------------------------9 七、设计心得---------------------------------------------------------------9 八、参考文献---------------------------------------------------------------9

方波_三角波_正弦波_锯齿波发生器

X X X X X X X大学 课程设计报告 课程名称:电子技术基础 设计题目:方波三角波正弦波锯齿波函数发生器 系别: 专业: 班级: 学生姓名: 学号: 同组同学: 学号: 指导教师: XXXX大学XXXX学院 XXXX年月日

摘要 波形函数信号发生器广泛地应用于各场所。函数信号发生器应用范围:通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波。除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。然后经过积分电路产生三角波,三角波通过低通滤波电路来实现正弦波的输出。其优点是制作成本低,电路简单,使用方便,频率和幅值可调,具有实际的应用价值。 函数(波形)信号发生器。能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途 而因此电子专业的学生,对函数信号发生器的设计,仿真,制作已成为最基本的一种技能,也是一个很好的锻炼机会,是一种综合能力的锻炼,它涉及基本的电路原理知识,仿真软件的使用,以及电路的搭建,既考验基础知识的掌握,又锻练动手能力。 关键词:振荡电路;电压比较器;积分电路;低通滤波电路

目录 · 设计要求 (1) 1.前言 (1) 2方波、三角波、正弦波发生器方案 (2) 2.1原理框图 (2) 3.各组成部分的工作原理 (3) 3.1方波发生电路的工作原理 (3) 3.2方波--三角波转换电路的工作原理 (4) 3.3三角波--正弦波转换电路的工作原理 (5) 3.4方波—锯齿波转换电路的工作原理 (6) 3.5总电路图 (7) 4.用Multisim10电路仿真 (8) 4.1输出方波电路的仿真 (8) 4.2三角波电路的仿真 (9) 4.3正弦波电路的仿真 (10) 4.4锯齿波电路的仿真 (11) 5实验总结 (11) 6.仪器仪表清单 (13) 7.参考文献 (13) 8.致谢 (13)

正弦波-方波-锯齿波函数转换器

课程设计说明书 课程设计名称:模拟电子技术课程设计 课程设计题目:正弦波-方波-锯齿波函数转换器 学院名称:信息工程学院 专业:通信工程班级:090421 学号:09042134 :尚虎 评分:教师: 20 11 年 3 月16 日

任务书 题目3:设计制作一个产生正弦波—方波—锯齿波函数转换器。设计任务和要求 ①输出波形频率围为0.02Hz~20KHz且连续可调; ②正弦波幅值为±2V; ③方波幅值为2 V; ④锯齿波峰-峰值为2V,占空比可调;

摘要 本次课程设计的目的是: 应用电路分析低频等所学的知识设计一个正弦波-方波-锯齿波函数发生器。设计的正弦波-方波-锯齿波函数发生器是由正弦波发生器、过零比较器、积分电路等三大部分组成。正弦波发生器产生正弦波,正弦波经过过零比较器转变为方波,方波经过积分电路产生锯齿波。 关键字:正弦波、方波、锯齿波

目录 第一章设计目的及任务 1.1 课程设计的目的 (5) 1.2 课程设计的任务与要求 (5) 1.3 课程设计的技术指标 (5) 第二章系统设计方案选择…………………………………………… 2.1 方案提出 (6) 2.2 方案论证和选择 (6) 第三章系统组成及工作原理......................................................3.1 系统组成 (7) 3.2 正弦波发生电路的工作原理 (7) 3.3 正弦波转换方波电路的工作原理 (8) 3.4 方波转换成锯齿波电路的工作原理 (9) 3.5 总电路图 (11) 第四章单元电路设计、参数计算、器件选择........................4.1 正弦波发生电路的设计 (12) 4.2 正弦波转换方波电路的设计 (13) 4.3 方波转换成锯齿波电路的设计 (14) 第五章实验、调试及测试结果与分析.................................5.1电路总体仿真图如下所示 (17) 5.2 调试方法与调试过程 (18) 第六章结论 (21) 参考文献 (23) 附录(元器件清单) (23)

正弦波-方波-三角波发生电路

一设计实验目的 (1)掌握电子系统的一般设计方法 (2)掌握模拟IC器件的应用 (3)会运用EDA工具对所作出的理论设计进行模拟仿真测试,进一步完善理论设计 (4)通过查阅手册和文献资料,熟悉常用电子器件的类型和特性,并掌握合理选用元器件的原则 (5)掌握模拟电路的安装\测量与调试的基本技能,熟悉电子仪器的正确使用方法,能力分析实验中出现的正常或不正常现象(或数据)独立解决 调试中所发生的问题 (6)学会撰写课程设计报告 (7)培养实事求是,严谨的工作态度和严肃的工作作风 (8)培养综合应用所学知识来指导实践的能力 (9)完成一个实际的电子产品;进一步提高分析问题、解决问题的能力 设计一个正弦波-方波-三角波发生电路 (1)正弦波-方波-三角波的频率在100HZ~20KHZ范围内连续可调; (2)正弦波-方波的输出信号幅值为6V。三角波输出信号幅值为0~2V连续可调 (3)正弦波失真度≦5%。 二实验中的仪器设备 三实验所用电路 调节方波脉冲宽度 调节正弦波失真程度 调节方波电压大小

调节反馈电路的放大倍数 四实验结果 1.正弦波-方波-三角波的频率在~范围内连续可调;对应的时,对应的电容大小为1uf;对应的时,对应的电容大小为 2.方波的输出幅值为6V;正弦波的一级输出幅值为,二级输出幅值为;三角波峰值在0~4V内连续可调 3.正弦波失真度 一讨论 1.实验中发生的问题 (1) 我们由一级电路得到的方波峰峰值达到24V左右,后通过分压电路得到 所需要的方波电压峰值为6V

(2) 正弦波也可以通过负反馈电路适当放大

2.建议或其它 555电路产生方波,通过RC电路得到三角波,也可以通过积分器得到三角波,三角波到正弦波的转化,可以通过RC电路,或者通过低通滤波器,另外频率的调节可以通过可调电容! 器件清单表: 数量 LM358芯片 1 电阻 R8=R9 22kΩ 2 R1 1kΩ 1 R2 62kΩ 1 R3 100Ω 1 R4=R5=R6=10k 3 可调电阻 A 20k 1 R10 100k 1 电容 C3=470nF 1 C4=C5=10nF 2 可调电容 A=B=20nF 2 直流电源 Vcc=6v 1 555电路板 1

正弦波与方波的相互转换

物理与电子工程学院 课题设计报告 课题名称:正弦函数发生器设计 组别:20组 组长:2011级杨会 组员:2011级胡原彬 组员:2011级廖秋伟 2013年7月10日 目录 一.设计要求 (3) 二.总体设计 (3) 三.设计方案 (4) ㈠用运算放大器产生1000HZ的正弦信号 (4) ㈡将正弦波转换为方波 (4) ㈢将方波转换为正弦波 (4) ㈣还原波形 (4) 四.设计步骤及参数的确定 (4)

㈠用运算放大器产生1000HZ的正弦信号 (4) ㈡正弦波转换为方波 (5) ㈢方波转换为正弦波 (5) ㈣还原波形 (5) ㈤整体电路原理图 (5) 五.实验仿真结果 (5) ㈠正弦波产生且换为方波再换为正弦波的波形 (5) ㈡用放大器放大振幅还原后的波形 (6) 六.电路板的制作 (6) ㈠画图 (6) ㈡元器件清单 (6) ㈢实物焊接 (7) 七.电路的调试 (7) ㈠电路连接 (7) ㈡波形测量 (8) ㈢数据的记录 (8)

八.总结 (9) ㈠设计过程中遇到的问题 (9) ㈡心得体会 (10) 正弦函数发生器 一.设计要求 1.用运算放大器产生一个1000HZ的正弦波信号。 2.将此正弦波转换为方波。 3.再将此方波转换为正弦波。 4.限用一片LM324和电阻、电容。 二.总体设计 总体设计大体上可分为四个模块: 1. 用振荡电路产生1000HZ的正弦波信号; 2. 用一个过零比较器把正弦波变为方波; 3. 用RC滤波电路从方波中滤出正弦波; 4. 检测波形用放大器还原振幅。

三.设计方案 ㈠用运算放大器产生1000HZ 的正弦信号 用RC 和一个运放组成文氏电桥振荡电路,调节RC 选频电路来产生1000HZ 的正弦波。 ㈡ 将正弦波转换为方波 用一个运放接成过零比较器就可以把正弦波转换为方波。但会存在少许误差。 ㈢将方波转换为正弦波 用电阻和电容组成RC 滤波电路,选择合适的数据参数就能实现把方波变为正弦波。 ㈣还原波形 用一个同相放大器把波形的幅度放大还原。 四.设计步骤及参数的确定 ㈠用运算放大器产生1000HZ 的正弦信号 用电阻、电容、二极管和一个运放组成文氏电桥振荡电路,电路图如下。

集成运放构成的三角波方波发生器

集成运放构成的三角波方波发生器 一、实验目的 1.理解三角波方波发生器的设计思路,搭接出最简单的电路,获得固定频率、幅度的三角波、方波输出。 2.理解独立可调的设计思路,搭接出频率、占空比、三角波幅度、三角波直流偏移、方波幅度、方波直流偏移均独立可调的电路,调整范围不限。 3.理解分块调试的方法,进一步增强故障排查能力。 二、实验思路 利用集成运放构成的比较器和电容的充放电,可以实现集成运放的周期性翻转,进而在输出端产生一个方波。这个电路如图2.3.1所示,它的工作原理请参阅相关教科书。注意在这个电路中,给电容的充电是恒压充电,随着电容电压的升高,其充电电流越来越小,电容电压上升也越来越缓慢。理论分析可知,电容上电压的变化,是一个负指数曲线。因此,这个电路只能实现方波发生。但是,我们注意到,这个负指数曲线在工作过程中是不停地正向充电、反向放电,已经和三角波有些类似。如果能够使得电容上充电电流固定,则其电压的上升或者下降将是线性的,就可以在电容端获得一个三角波。 我们可以立即联想到这样一个事实:当积分器的输入是固定电压,则其输出是线性上升或者下降的。因此,将图2.3.1中的RC充电电路去掉,用一个积分器替代,并考虑到极性,再增加一级反相电路,就可以实现三角波的产生,如图2.3.2所示。 图2.3.2电路使用了3个集成运放。电路设计者认为,A3并不是必须的,因为它仅仅完成了1倍的反相放大,这个功能完全可以利用A1的输入端极性进行巧妙设计来实现。为了节省1个运放,设计者给出了新的电路,如图2.3.3所示,它仅使用2个运放。

图2.3.3所示电路的工作原理,请参阅相关教科书。图中稳压管DZ和电阻R3组成稳压电路,目的是克服运放输出的不对称。 本实验在实现上述基本电路的基础上,还提出了新的要求。有下列6个量:三角波和方波共有的频率、共有的占空比、三角波的幅度、方波的幅度、三角波的直流偏移、方波的直流偏移,其中每个量都由一个独立的电位器控制,当调节某个量时,其它5个量不能发生变化。这就是独立可调的要求。 本实验将给出一个独立可调的三角波方波发生器电路,要求学生在认真分析的基础上,用运放、电阻、电容、稳压管等元器件,自己实现搭接。然后在搭接好的电路上,观察、调节、记录,体会其中的设计思想。 三、实验原理 图2.3.4是可以满足设计要求的最终电路。其中A1、A2、A3及其附属电路,完成三角波、方波的发生,并且实现频率和占空比的可调。A4、A5及其附属电路,实现三角波和方波的幅度、直流偏移可调。 图2.3.4电路与图2.3.3电路有3点主要的区别。第一、用R13、RW2、DZ1、DZ2组成一个双向电阻值不同的电路,取代图2.3.3中的积分器电阻R,使得积分器工作过程中,正向充电和反向放电的时间常数不一致,三角波上升斜率和下降斜率大小不同,造成方波的占空比不同。需要注意的是,由于用一个电位器调节,无论在什么位置,积分器的正向时间常数和反向时间常数的和,是一个常数,就造成单纯调节RW2,只改变占空比而不会改变频率。第二、在稳压管输出和积分器之间,加入A3构成的反相放大器,可以通过RW1调节积分器输入电压大小,进而改变积分器输出电压变化斜率,造成波形发生的频率变化。这样,uo1产生方波,uo2产生三角波。这两个波形的频

方波三角波正弦波

电子线路CAD课程设计报告 函数发生器的设计 专业:电子信息科学与技术 班级:电科二班 姓名:郭晓超 学号:2 指导老师:宋戈

电子通信与物理学院 日期:2015 年12 月31 日

指导教师评语

目录 1 绪论错误!未定义书签。 2 设计内容 2.1 设计总方案2 2.2 设计目的2 2.3 设计要求任务3 2.4设计要求 (3) 3 原理图设计 3.1 总体电路原理框图4 3.2 各功能模块的设计5 3.3 总体电路原理图11 4 PCB板图设计 4.1布局与布线132 4.2本设计PCB板图14 5 总结14 6 参考文献15

1.绪论 在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的信号波形发生器。用三角波,方波发生电路实现的信号波形发生器与其它信号波形发生器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高。因此,本设计意在用LM324放大器设计一个产生方波—正弦波的函数转换器。为了使这三种波形实现转换,需要设计一个电路将直流电转换成方波和三角波,继而将三角波转换成正弦波。首先直流电源通过一个同相滞回比电路转换为方波,方波通过一个积分电路转换为三角波,最后经滤波电路(Rc振荡电路产生)转换为正弦波。从而实现转换器的设计。(关键字:放大、波形转换、积分)

2.设计内容 2.1 设计总方案 函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法。 产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。本课题采用先产生方波—三角波,再将三角波变换成正弦波的电路设计方法, 本课题中函数发生器电路组成框图如下所示: 由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。波形变换的原理是利用差分放大器传输特性曲线的非线性。 2.2 设计目的 1.掌握电子系统的一般设计方法 2.掌握模拟IC器件的应用

设计制作一个产生正弦波—方波—三角波函数转换器

模拟电路课程设计报告设计课题:设计制作一个产生正弦波—方波—三角波函数 转换器 专业班级:电信本 学生姓名: 学号:46 指导教师: 设计时间: 01/05 设计制作一个产生正弦波-方波-锯齿波函数转换器 一、设计任务与要求 1、?输出波形频率范围为~20kHz且连续可调; 2、?正弦波幅值为±2V; 3、?方波幅值为2V; 4、?三角波峰-峰值为2V,占空比可调; 5、?分别用三个发光二极管显示三种波形输出;?? 6、用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 二、方案设计与论证

设计要求产生三种不同的波形分别为正弦波、方波、三角波。正弦波可以通过RC 桥式正弦波振荡电路产生。正弦波通过滞回比较器可以转换成方波,方波通过一个积分电路可以转换成三角波,只要调节三角波的占空比就可以得到锯齿波。各个芯片的电源可用直流电源提供。 方案一 1、直流电源部分 电路图如图1所示 图1 直流电源 2、波形产生部分 方案一: LC 正弦波振荡电路与RC 桥式正弦波振荡电路的组成原则在本质上是相似的,只是选 频网络采用LC 电路。在LC 振荡电路中,当f=f 0时,放大电路的放大倍数数值最大,而其 余频率的信号均被衰减到零;引入正反馈后,使反馈电压作为放大电路的输入电压,以维持输出电压,从而形成正弦波振荡。 方案二 1、 直流电源部分同上 2、电路图如图2所示 正、反积分时间 常数可调的积分 电路 滞回比较器 LC 正弦波振荡 电路

图2 正弦波—方波—三角波函数转换电路 方案论证 LC正弦波振荡电路特别是方案一所采取的电感反馈式振荡电路中N1与N2之间耦合紧密,振幅大;当C采用可变电容时,可以获得调节范围较宽的振荡频率,最高频率可达几十兆赫兹。由于反馈电压取自电感,对高频信号具有较大的电抗,输出电压波形中常含有高次谐波。因此,电感反馈式振荡电路常用在对波形要求不高的设备之中,如高频加热器、接受机的本机振荡电路等。另外由于LC正弦波振荡电路的振荡频率较高,所以放大电路多采用分立元件电路,必要时还应采用共基电路。因此对于器材的选择及焊接的要求提高了。 相反,RC正弦波振荡电路的振荡频率较低,一般在1MHz以下,它是以RC串并联网络为选频网络和正反馈网络,以电压串联负反馈放大电路为放大环节,具有振荡频率稳定,带负载能力强,输出电压失真小等优点,因此获得相当广泛的应用。另外对于器材的要求也不高,都是写常见的的集成块、电容、电位器等。在布局方面,简单,清晰! 综合对比两种方案,我选择第二种方案。 三、单元电路设计与参数计算 1、直流电源 (1)、整流电路 设变压器副边电压U2=wt U sin 2 2, U 2 为其有效值。 则:输出电压的平均值

方波和三角波发生器电路

方波和三角波发生器电路 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC积分器两大部分。如图6.5所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生器。 方波和三角波发生器的工作原理 A1构成迟滞比较器,同相端电位Vp由VO1和VO2决定。利用叠加定理可得: 当 Vp>0时 A1输出为正,即VO1 = +Vz;当 Vp<0时, A1输出为负即 VO1 = -Vz A2构成反相积分器 VO1为负时, VO2 向正向变化, VO1 为正时, VO2 向负向变化。假设电源接通时VO1 = -Vz,线性增加。 当VO2上升到使Vp略高于0v时,A1的输出翻转到VO1 = +Vz 。

四、报告要求 1、课题的任务和要求。 2、课题的不同方案设计和比较,说明所选方案的理由。 3、电路各部分原理分析和参数计算。 4、测试结果及分析: (1)实测输出频率围,分析设计值和实测值误差的来源。 (2)对应输出频率的高、中、低三点,分别实测输出电压的峰-峰值围,分析输出电压幅值随频率变化的原因。 (3)频率特性测试,在低频端选定一个输出幅值,而后逐步调高输出频率,选12~15个测试点,用示波器观测输出对应频率下的输出幅值,填入自己预做的表格,画出电路的幅频特性。 注意:输出幅值一旦选定,在调节输出测试频率点过程中,不能再动! (4)画出示波器观测到的各级输出波形,并进行分析;若波行有失真,讨论失真产生的原因和消除的方法。 5、课题总结 6、参考文献 2、方波、三角波发生器 (1)按图11-2所示电路及参数接成方波、三角波发生器。

图11-2 (2)将电位器Rp调至中心位置,用双综示波器观察并描绘方波V01及三角波V02 (注意标注图形尺寸),并测量Rp及频率值。 表11-3 方波V01及三角波V02 波形 Rp= (中间) , f= (3)改变Rp的位置,观察对V01和V02 幅值和频率的影响,将测量结果填入表11-3中 (记录不失真波形参数)。 表11-4 F ( KHz ) Rp ( Ω )V01P-P(V)V02P-P(V)备 注 频率最高 频率最低 (4)将电位器Rp调至中间位置,改变R1为10K可调电位计,观察对V01和V02 幅值和频率的影响。将 测量结果填入表11-4中。 表11-5 F (KHz ) R1 ( Ω )V01P-P(V)V02P-P(V)备 注 频率最高 频率最低 (5)电位器Rp保持中间位置,R1接10K电阻,改变R2为100K可调电位计,观察对V01和V02 幅值和频率的影响。将测量结果填入表11-5中。(记录有波形的测试参数) 表11-6 F ( KHz ) R2 ( Ω )V01P-P(V)V02P-P(V)备 注 频率最高

基于Multisim的方波、三角波和正弦波发生器

课程:Multisim课程设计班级:10电信本2班 姓名: 6 2 2 学号:100917024 教师:吕老师

课程设计---- 基于Multisim的方波、三角波和正弦波发生器 一.设计目的 1.掌握电子系统的一般设计方法 2.掌握模拟IC器件的应用 3.培养综合应用所学知识来指导实践的能力 4.掌握常用元器件的识别和测试 5.熟悉常用仪表,了解电路调试的基本方法 二.设计要求 能够同时显示出方波、三角波和正弦波。 三.设计原理 函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。根据用途不同,有产生三种或多种波形的函数发生器,使用 的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采 用集成电路(如单片函数发生器模块8038)。为进一步掌握电路的基本理论及实验调 试技术,本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角 波—正弦波函数发生器的设计方法。 产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角 波—方波,再将三角波变成正弦波或将方波变成正弦波等等。本课题采用先产生方 波—三角波,再将三角波变换成正弦波的电路设计方法, 本课程设计中函数发生器电路组成框图如下所示: 由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。差分放大器具有 工作点稳定,输入阻抗高,抗干扰能力较强等优点。特别是作为直流放大器时,可 以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。波形变换的原 理是利用差分放大器传输特性曲线的非线性。

方波-三角波-正弦波函数信号发生器讲解

课程设计说明书 课程设计名称:电子课程设计 课程设计题目:设计制作一个产生方波-三角波-正弦波函数转换器学院名称:信息工程学院 专业:电子信息科学与技术班级:xxxxxxxx 学号:xxxxxxx 姓名:xxxxx 评分:教师:xxxxxx 20 13 年10 月15 日

电子课程设计 课程设计任务书 20 13 -20 14 学年 第 1 学期 第 1 周- 3 周 注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。 2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。

摘要 当今世界在以电子信息技术为前提下推动了社会跨越式的进步,科学技术的飞速发展日新月异带动了各国生产力的大规模提高。由此可见科技已成为各国竞争的核心,尤其是电子通信方面更显得尤为重要,在国民生产各部门都得到了广泛的应用,而各种仪器在科技的作用性也非常重要,如信号发生器、单片机、集成电路等。 信号发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和 教学实验等领域。常用超低频信号发生器的输出只有几种固定的波形,有方波、 三角波、正弦波、锯齿波等,不能更改信号发生器作为一种常见的应用电子仪器 设备,传统的可以完全由硬件电路搭接而成,如采用LM324振荡电路发生正弦波、 三角波和方波的电路便是可取的路径之一,不用依靠单片机。 本系统本课题将介绍由LM324集成电路组成的方波——三角波——正弦波 函数信号发生器的设计方法,了解多功能函数信号发生器的功能及特点,进一步 掌握波形参数的测试方法,制作这种低频的函数信号发生器成本较低,适合学生 学习电子技术测量使用。制作时只需要个别的外部元件就能产生正弦波、三角波、 方波等脉冲信号。输出波形的频率和占空比还可以由电流或电阻控制。 关键字:信号发生器、波形转换、LM324

设计题目:如何实现正弦波、方波与三角波信号之间的变换

内蒙古工业大学信息工程学院 课程学习报告 设计题目:如何实现正弦波、方波与三角波信号之间的变换 课程名称:模拟电子技术 班级:通信10-1 班 姓名: 学号: 成绩: 指导教师:

设计题目:如何实现正弦波、方波与三角波信号之间的变换 一、课题设计任务与要求 1、输出电压:0-1V之间 2、频率范围:20Hz-20kHz之间 3、信号频率:1KHz的正弦波、2KHz的方波和三角波 任务如下: 1KHz的正弦波 2KHz的正弦波 2KHz的方波 2KHz的三角波 二、总体电路设方案 (1)函数信号发生器设计思路 ①产生正弦波可以通过RC文氏电桥正弦波振荡电路,通过控制RC的值达到选频即控制频率大小的目的。 ②产生的方波经RC积分电路后输出,得到三角波,为调节幅值,则用电压跟随器隔离三角波输出端,再用电位器接在运放输出端调节电压输出幅值。 ③要先产生方波,就必须先用电压比较器和稳压管组成方波产生电路,为调节幅值,则用专用的电压跟随器隔离方波产生端,再用电位器接在运放输出端调节电压输出幅值。 (2)函数信号发生器原理 函数信号发生器是一种用来产生特定需要波形信号的装置,比较常见的有方波、三角波、正弦波和锯齿波发生器。本实验用来产生正弦波--方波--三角波信号。 正弦波发生器:采用RC桥式振荡电路实现输出为正弦波。

②正弦波转换成方波发生器:采用电压比较器与稳压管相结合,实现输出为方波。 ③方波转三角波发生电路:将RC积分电路与运放结合,实现方波转三角波。 (图一)正弦波发生电路图 (图二)正弦波转换成方波发生电路图

(图三)方波转换成三角波发生电路图错误!未指定书签。 三、电路设计与原理说明 1、正弦波发生电路的工作原理 正弦波产生电路的目的就是使电路产生一定频率和幅度的正弦波,我们一般在放大电路中引入正反馈,并创造条件,使其产生稳定可靠的振荡。正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。因此,正弦波产生电路一般包括:放大电路、反馈网络、选频网络、稳幅电路等各部分。 RC文氏电桥的正弦波振荡电路中,RC为串、并联选频网络,接于运算放大器的输出与同相输入端之间,构成正反馈,以产生正弦自激振荡。其余部分是带 有负反馈的同相放大电路,R 1、R 2 、R p 构成负反馈网络,调节R p 课改变负反馈的 反馈系数,从而调节放大电路的电压增益,使其满足振荡的幅值条件。图中二极 管D 1、D 2 的作用是有利于正弦波的起振和稳定输出幅值,改善输出波形。当输出 电压V 0的幅值很小时,D 1 、D 2 开路,等效电阻R f 较大,A vf =V o /V p =(R 1 +R f )/R1较 大,有利于起振;而当输出电压V 0的幅值较大时,二极管D 1 、D 2 导通,R f 减小, A vf 随之下降,v 幅值趋于稳定。 2、正弦波转方波发生电路的工作原理 在单限比较器中,输入电压在阀值电压附近的任何微小变化,都将引起输出电压的跃变,不管这种微小变化是来源于输入信号还是外部干扰。因此,虽然单限比较器很灵敏,但是抗干扰能力差。而滞回比较器具有滞回特性,即具有惯性,

实验 方波、三角波发生器的设计

实验5.4 波形发生器的设计 1.实验目的 (1)学会用集成运算放大器组成方波与三角波发生器。 (2)掌握方波与三角波发生器电路的调试与测量方法。 2.预备知识 (1)LM324 介绍 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。 每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中 “+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo ”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo 的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo 的信号与该输入端的相位相同。LM324的引脚排列见图5.4.1。 (2) 方波发生器 基本方波发生器如图5.4.2电路(R 1 = 90k Ω,R 2 = 22k Ω,R 3 = 10k Ω,R 0 = 2.2k Ω,C = 0.01μF 。D 1和D 2采用稳压管,其稳压值为5V ,正向压降为0.7V 。)所示。其中电阻R 2 与R 3 组成正反馈支路;电阻R 1 与电容C 组成的充放电回路是运算放大器的负反馈支路。为了防止放大器输出电流太大而过载,在放大器的输出端串联一个限流电阻R 0。另外为 预习与思考 ① 在方波发生器中,要改变方波的频率,可改变那些元件的值? 方波的频率改变时,方波的幅度会不会改变? ②在方波、三角波发生器中,若要保持三角波的幅度不变,又要改变三角波的频率,应改变电路中那一个元件的值? 图 5.4.1 LM324的引脚排列 图 5.4.1 LM324的引脚排列 图 5.4.2基本方波发生器

正弦波-方波-三角波信号发生器设计

苏州科技学院天平学院 模拟电子技术课程设计指导书 课设名称正弦波-方波-三角波信号发生器设计 组长李为学号1232106101 组员谢渊博学号1232106102 组员张翔学号1232106104 专业电子物联网 指导教师 二〇一二年七月 模拟电子技术课程设计指导书

一设计课题名称 正弦波-方波-三角波信号发生器设计 二课程设计目的、要求与技术指标 2.1课程设计目的 (1)巩固所学的相关理论知识; (2)实践所掌握的电子制作技能; (3)会运用EDA工具对所作出的理论设计进行模拟仿真测试,进一步完善理论设计;(4)通过查阅手册和文献资料,熟悉常用电子器件的类型和特性,并掌握合理选用元器件的原则; (5)掌握模拟电路的安装\测量与调试的基本技能,熟悉电子仪器的正确使用方法,能力分析实验中出现的正常或不正常现象(或数据)独立解决调试中所发生的问题; (6)学会撰写课程设计报告; (7)培养实事求是,严谨的工作态度和严肃的工作作风; (8)完成一个实际的电子产品,提高分析问题、解决问题的能力。 2.2课程设计要求 (1)根据技术指标要求及实验室条件设计出电路图,分析工作原理,计算元件参数;(2)列出所有元器件清单; (3)安装调试所设计的电路,达到设计要求; 2.3技术指标 (1)输出波形:方波-三角波-正弦波; (2)频率范围:100HZ~200HZ连续可调;

(3)输出电压:正弦波-方波的输出信号幅值为6V.三角波输出信号幅值为0~2V连续可调; γ。 (4)正弦波失真度:% ≤ 5 三系统知识介绍 3 函数发生器原理 本设计要求产生三种不同的波形分别为正弦波\方波\ 三角波。实现该要求有多种方案。 方案一:首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波。 方案二:首先产生方波——三角波,再将方波变成正弦波或将三角波变成正弦波。 3.1函数发生器的各方案比较 我选的是第一个方案,上述两个方案均可以产生三种波形。方案二的电路过多连接部方便而且这样用了很多元器件,但是方案的在调节的时候比较方便可以很快的调节出波形。方案一电路简洁利于连接可以节省元器件,但是在调节波形的时候会比较费力,由于整个电路时一起的只要调节前面部分就会影响后面的波形。 四电路方案与系统、参数设计 4.1基于集成运算放大器与晶体管差分放大器的函数发生器 4.1.1设计思路 我们组总体设计思路为:先通过比较器产生方波,方波通过积分器产生三角波,三角波通过差分放大器产生正弦波。 函数发生器电路组成框图如下所示

方波、三角波、正弦波信号产生

课程设计报告 题 目 方波、三角波、正弦波信号 发生器设计 课 程 名 称 模拟电子技术课程设计 院 部 名 称 机电工程学院 专 业 电气工程及其自动化 班 级 电气及其自动化(2)班 学 生 姓 名 李丽 学 号 1104102067 课程设计地点 C206 课程设计学时 1周 指 导 教 师 赵国树 金陵科技学院教务处制

目录 1、绪论 (4) 1.1相关背景知识 (4) 1.2课程设计条件................................................... . (4) 1.3课程设计目的.......... (4) 1.4课程设计的任务 (4) 1.5课程设计的技术指标 (5) 2、信号发生器的基本原理 (5) 2.1原理框图 (4) 2.2总体设计思路 (5) 3、各组成部分的工作原理 (5) 3.1 正弦波产生电路 (5) 3.1.1正弦波产生电路 (5) 3.1.2正弦波产生电路的工作原理 (6) 3.2 正弦波到方波转换电路 (8) 3.2.1正弦波到方波转换电路图 (6) 3.2.2正弦波到方波转换电路的工作原理 (8) 3.3 方波到三角波转换电路 (11) 3.3.1方波到三角波转换电路图 (11) 3.3.2方波到三角波转换电路的工作原理 (13) 4、电路仿真结果 (13) 4.1正弦波产生电路的仿真结果 (14) 4.2 正弦波到方波转换电路的仿真结果 (14) 4.3方波到三角波转换电路的仿真结果 (15) 5、设计结果分析与总结 (16)

1、绪论 1.1相关背景知识 信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。函数信号发生器在电路实验和设备检测中具有十分广泛的用途,可以用于生产测试、仪器维修和实验室,还广泛使用在其它科技领域,如医学、教育、化学、通讯、地球物理学、工业控制、军事和宇航等。它是一种不可缺少的通用信号源。 1.2课程设计条件 以本学期学习的电子技术基础(模拟部分)为知识背景,我们知道通过放大器、比较器等元器件可构成集成电路、反馈放大电路、运算放大电路等一系列组合放大电路。信号在我们的生活中是无处不在的,模拟信号是时间和幅度连续变化的信号。通过传感器我们可以将各种物理信号转换为电信号,再进过一系列信号的处理。如滤波、幅度放大等,我们可以获得自己需要的信号。 正弦波振荡电路。在通信、广播、医疗、电视系统中,都有广泛的应用。非正弦波产生电路。在一些电子系统中,如数学领域,方波、三角波的应用都是极其广泛的。 1.3课程设计目的 通过本次课程设计所要达到的目的是:提高学生在模拟集成电路应用方面的技能,树立严谨的科学作风,培养学生综合运用理论知识解决实际问题的能力。学生通过电路设计初步掌握工程设计方法,逐步熟悉开展科学实践的程序和方法,为后续课程的学习和今后从事的实际工作打下必要的基础。 1.4课程设计的任务 ①设计一个方波、三角波、正弦波函数发生器; ②能同时输出一定频率一定幅度的三种波形:正弦波、方波、三角波; ③用±5V电源供电。 产生正弦波、方波、三角波的方案有多种,如: ①首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;②也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波;③也可以通过单片集成函数发生器8038来实现… 先是对电路的分析,参数的确定选择出一种最适合本课题的方案。在达到课题要求的前提下保证最经济。最方便。最优化的死亡合剂策略。然后运用仿真软件Multisim对电路进行仿真。观察效果并与要求的性能指标作对比。

相关文档
最新文档