风机叶片基础学习知识原理和结构

风机叶片基础学习知识原理和结构
风机叶片基础学习知识原理和结构

!-风机叶片的原理、结构和运行维护

潘东浩

第一章风机叶片报涉及的原理第一节风力机获得的能量一.气流的动能

E= 2 mv2= 2 p Sv3

式中m——气体的质量

S——风轮的扫风面积,单位为m2

v ----- 气体的速度,单位是m/s

p ------空气密度,单位是kg/m3

E ----- 气体的动能,单位是W

风力机实际获得的轴功率

P=2 p SV3C P

式中P ------ 风力机实际获得的轴功率,单位为W;

p ------空气密度,单位为kg/m3;

S ----- 风轮的扫风面积,单位为m2;

v ----- 上游风速,单位为m/s.

C P---- 风能利用系数

三.风机从风能中获得的能量是有限的,风机的理论最大效率

n~ 0.593

即为贝兹(Betz)理论的极限值。

第二节叶片的受力分析

一.作用在桨叶上的气动力

上图是风轮叶片剖面叶素不考虑诱导速度情况下

的受力分析。在叶片局部剖面上,W 是来流速度V和局

部线速度U的矢量和。速度W在叶片局部剖面上产生升

力dL和阻力dD,通过把dL和dD分解到平行和垂直风

!- 轮旋转平面上,即为风轮的轴向推力 dFn 和旋转切向力dFt 。轴向推力作用在风力发电 机组塔架上,旋转切向力产生有用的旋转力矩,驱动风轮转动 上图中的几何关系式如下:

dFn=dDs in ① +dLcos ① dFt=dLs in ①-dDcos ①

dM=rdFt=r (dLsin ①-dDcos ①)

其中,①为相对速度 W 与局部线速度U (旋转平面)的夹角,称为倾斜角; 0为弦线和局

部线速度U (旋转平面)的夹角,称为安装角或节距角; a 为弦线和相对速度W 的夹

角,称为攻角。

?桨叶角度的调整(安装角)对功率的影响。(定桨距)

改变桨叶节距角的设定会影响额定功率的输出,根据定桨距风力机的特点,应

当尽量提高低风速时的功率系数和考虑高风速时的失速性能。 定桨距风力发电机组 在额定风速以下运行时,在低风速区,不同的节距角所对应的功率曲线几乎是重合 的。但在高风速区,节距角的变化,对其最大输出功率(额定功率点)的影响是十 分明显的。事实上,调整桨叶的节距角,只是改变了桨叶对气流的失速点。根据实 验结果,节距角越小,气流对桨叶的失速点越高,其最大输出功率也越高。这就是 定桨距风力机可以在不同的空气密度下调整桨叶安装角的根据。

不同安装角的功率曲线如下图所示:

TSOKff 国产桨叶各安装角家际功率脚线对比图

第三节

叶片的基本概念

1、叶片长度:叶片径向方向上的最大长度,如图 1所示

1203 Qi

1003 ft

:snn

n

400 O'

叶片KS:

------

图1叶片长度

2、叶片面积

叶片面积通常理解为叶片旋转平面上的投影面积。

3、叶片弦长

叶片径向各剖面翼型的弦长。叶片根部剖面的翼型弦长称根弦,叶片尖部剖面的翼型

弦长称尖弦。

叶片弦长分布可以采用最优设计方法确定,

但要从制造和经济角度考虑,叶片的弦长分布一般

根据叶片结构强度设计

要求对最优化设计结果作一定的修正。

根据对不同弦长分布的计算,梯形分布可以

作为最好的近似。

4、叶片扭角

图2叶片弦长、扭角示意图叶片各剖面弦线和风轮旋转平面的夹角,如上

图所示。

5、风轮锥角

风轮锥角是指叶片相对于和旋转轴垂直的平面的倾斜度,如右图所示。

锥角的作用是在风轮运行状态下减少离心力引起的叶片弯曲应力和防止叶

尖和塔架碰撞的机会。

6风轮仰角

风轮的仰角是指风轮的旋转轴线和水平面的夹角,如上图所示。仰角

的作用是避免叶尖和塔架的碰撞。

第四节

叶片的设计与制造

在叶片的结构强度设计中要充分考虑到所用材料的疲劳特性。首先要了解叶片所承

受的力和力矩,以及在特定的运行条件下风负载的情况。在受力最大的部位最危险,在这些地方

负载很容易达到材料承受极限。

叶片的重量完全取决于其结构形式,目前生产的叶片,多为轻型叶片,承载好而且很可靠。

目前叶片多为玻璃纤维增强复合材料(GRP),基体材料为聚酯树脂或环氧树脂。环氧树脂比

聚酯树脂强度高,材料疲劳特性好,且收缩变形小。聚酯材料较便宜,它在固化时收缩大,在叶片的连接处可能存在潜在的危险,即由于收缩变形在金属材料与玻璃钢之间可能产生裂纹。

水平轴风轮叶片一般近似是梯形的,由于它的曲面外形复杂,仅外表面结构就需要很高的制造费用。使用复合材料可以改变这种状况,只是在模具制造工艺上要求高些。叶片的模具由叶片上、下表面的反切面样板成型,在模具中由手工成形复合材料叶片。

叶片还要考虑腐蚀的影响。叶片基体材料选材时就已经考虑了叶片防腐的问题,同时,叶片表面涂有厚度为0.6~1.0mm左右的胶衣涂层,其作用不仅能够防腐,而且可以抗紫外线老化。提高叶片表面光度可以避免污垢及灰尘滞留在叶片表面。

叶片所用金属材料选用不锈钢及航空结构钢,除不锈钢外,其它金属材料零部件表面均采取热喷锌处理进行防腐。

第五节

叶片的结构

1 ?主体结构

水平轴风力发电机组风轮叶片的结构主要为梁、壳结构,有以下几种结构形式:1)、叶片主体采用硬质泡沫塑料夹芯结构,GRP结构的大梁作为叶片的主要承载部件,大梁常用D型、0型、矩形和C型等型式,蒙皮GRP结构较薄,仅2?3mm,主要保持翼型和承受叶片的扭转负载;这种形式的叶片以丹麦Vestas公司和荷兰CTC公

司(NOI制造的叶片)为代表,如图2, 3所示。其特点是重量轻,对叶片运输要求较高。由于叶片前缘强度和刚度较低,在运输过程中局部易于损坏。同时这种叶片整体刚度较低,运行过程中叶片变形较大,必须选择高性能的结构胶,否则极易造成后缘开裂。

D型、0型和矩形梁在缠绕机上缠绕成型;在模具中成型上、下两个半壳,再用结构胶将梁和两个半壳粘接起来。

图2 Vestas叶片剖面结构

另一种方法是先在模具中成型C (或I)型梁,然后在模具中成型上、下两个半壳, 利用结构胶将C (或I)型梁和两半壳粘接。

2)、叶片壳体以GRP层板为主,厚度在10?20mm之间;为了减轻叶片后缘重量,提高叶片整体刚度,在叶片上下壳体后缘局部采用硬质泡沫夹芯结构,叶片上下壳体是其主要承载结构。大梁设计相对较弱,为硬质泡沫夹芯结构,与壳体粘结后形成盒式结构,共同提供叶片的强度和刚度。这种结构型式叶片以丹麦LM公司为主,如图4所示。其优点是叶片整体强度和刚度较大,在运输、使用中安全性好。但这种叶片比较重,比同型号的轻型叶片重20~30%,制造成本也相对较高。

C型梁用玻璃纤维夹芯结构,使其承受拉力和弯曲力矩达到最佳。叶片上、下壳体主要以单向增强材料为主,并适当铺设土45°层来承受扭矩,再用结构胶将叶片壳体和大梁牢固地粘接在一起。

图4 LM叶片剖面结构

在这两种结构中,大梁和壳体的变形是一致的。经过收缩,夹芯结构作为支撑,两半叶片牢固的粘接在一起。在前缘粘接部位常重叠,以便增加粘接面积。在后缘粘接缝, 由于粘结角的产生而变坚固了。在有扭曲变形时,粘接部分不会产生剪切损坏。关键问题是叶根的联接,它将承受所有的力,并由叶片传递到轮毂,常用的有多种联接方式。2?叶根结构

1)、螺纹件预埋式

以丹麦LM公司叶片为代表。在叶片成型过程中,直接将经过特殊表面处理的螺纹件预埋在壳体中,避免了对GRP结构层的加工损伤。经过国外的试验机构试验证明,这种结构型式连接最为可靠,唯一缺点是每个螺纹件的定位必须准确,如图5所示。

!-

图5螺纹件预埋式叶根

2、钻孔组装式

以荷兰CTC公司叶片为代表。叶片成型后,用专用钻床和工装在叶根部位钻孔,将螺纹件装入。这种方式会在叶片根部的GRP结构层上加工出几十个? 80以上的孔(如600kW叶片),破坏了GRP的结构整体性,大大降低了叶片根部的结构强度。而且螺纹件的垂直度不易保证,容易给现场组装带来困难,如图6所示。

图6钻孔组装式叶根

采用预紧螺栓的优点:

1)不需要贵重且重量大的法兰盘。

2)在批量生产中只有一个力传递元件。

3)由于采用预紧螺栓,疲劳可靠性很好。

4)通过螺栓很好的机械联接,而且法兰不需要粘接缺点:

1)需要很高的组装精度。

2)在现场安装要求可靠的螺栓预紧。

第二章风机叶片常见故障

一.雷击

近年来,随着桨叶制造工艺的提高和大量新型复合材料的运用,雷击成为造成叶片损坏的主要原因。根据IEC/TC88工作组的统计,遭受雷击的风力发电机组中, 叶片损坏的占20%左右。对于建立在沿海高山或海岛上的风电场来说,地形复杂,雷暴日较多,应充分重视由雷击引起的叶片损坏现象。

叶片是风力发电机组中最易受直接雷击的部件,也是风力发电机组最昂贵的部件之一。全世界每年大约有1%~2%的运行风力发电机组叶片遭受雷击,大部分雷击事故只损坏叶片的叶尖部分,少量的雷击事故会损坏整个叶片

!-现阶段采取的主要防雷击措施之一是在叶片的前缘从叶尖到叶根贴一长条金属窄

条,将雷击电流经轮毂、机舱和塔架引入大地。另外,丹麦LM公司与丹麦研究机构、

风力发电机组制造商和风电场共同研究设计出了新的防雷装置,如图7示所示,它是用

一装在叶片内部大梁上的电缆,将接闪器与叶片法兰盘连接。这套装置简单、可靠,与叶片具有相同的寿命。它是按IEC I类标准设计的,具体执行标准为“ IEC61400-24风力发电机组防雷击保护”。

维护人员需要定期到现场检查避雷措施是否完好。

雷击是无法完全避免的,现在的避雷措施只能将雷击造成的损失减小到最低。如果造成损伤,请联系桨叶生产厂商予以修复。

二.叶片开裂

机组正常运行时,会产生无规律的,不可预测的叶片瞬间振动现象,即叶片在旋转平面内的振动。这种长期的振动会造成叶片后缘结构失效,产生裂纹,在叶片最大弦长位置产生横向裂纹,严重威胁叶片结构安全。

桨叶不同的损伤程度对应有不同的处理方法。

1.如果只是叶片表面轻微受损,则用砂纸(80~120#)打磨损伤区域至表面完全光洁,然后用丙酮清洗,除去碎屑并保证修补表面完全干燥。

2.如果损伤区域损伤深度超过1mm,必须用树脂和玻璃纤维修复至低于周围表面

0.5~0.8mm;若用450g/m 2玻璃纤维短切毡,则每层将有1mm厚。当玻璃纤维层固化后,打磨平整后涂上胶衣,等胶衣树脂固化后用320#~600#水砂纸磨光,最后抛光至光

亮。

3.如果损伤程度更深,请联系桨叶生产厂商予以处理。

三.叶尖制动体损坏

针对国产失速型桨叶,叶尖会出现以下故障:

1?叶尖制动体未收到位; 2?叶

尖制动体回收过位;

3.叶尖制动体不回收。具体情况详见下表:

风机叶片原理和结构

风机叶片的原理、结构和运行维护 潘东浩 第一章风机叶片报涉及的原理 第一节风力机获得的能量 一.气流的动能 1 2 i 3 E= 2 mv =2 p Sv 式中m——气体的质量 S——风轮的扫风面积,单位为m2 v 气体的速度,单位是m/s p ------空气密度,单位是kg/m3 E 气体的动能,单位是W 风力机实际获得的轴功率 P=2 p sJc p 式中P----- 风力机实际获得的轴功率,单位为W; p ------空气密度,单位为kg/m3; S ----- 风轮的扫风面积,单位为m2; v ----- 上游风速,单位为m/s. C p ---------- 风能利用系数 三.风机从风能中获得的能量是有限的,风机的理论最大效率

n Q 0.593 即为贝兹(Betz)理论的极限值。 第二节叶片的受力分析 一.作用在桨叶上的气动力 上图是风轮叶片剖面叶素不考虑诱导速

度情况下的受力分析。在叶片局部剖面上,W是来流速度V和局部线速度U的矢量和。速度W在叶片局部剖面上产生升力dL和阻力dD,通过把dL和dD分解到平行和垂直风轮旋转平面上,即为风轮的轴向推力dFn和旋转切向力dFt。轴向推力作用在风力发电机组塔架上,旋转切向力产生有用的旋转力矩,驱动风轮转动。 上图中的几何关系式如下: W =V U ①=0 + a dFn=dDs in ① +dLcos ① dFt=dLs in ①-dDcos ① dM=rdFt=r(dLsin ①-dDcos①) 其中,①为相对速度W与局部线速度U (旋转平面)的夹角,称为倾斜角;0为弦线和局部 线速度U (旋转平面)的夹角,称为安装角或节距角; a为弦线和相对速度W的夹 角,称为攻角。 ?桨叶角度的调整(安装角)对功率的影响。(定桨距) 改变桨叶节距角的设定会影响额定功率的输出,根据定桨距风力机的特点,应当尽量提高低 风速时的功率系数和考虑高风速时的失速性能。定桨距风力发电机组 在额定风速以下运行时,在低风速区,不同的节距角所对应的功率曲线几乎是重合的。但在 高风速区,节距角的变化,对其最大输出功率(额定功率点)的影响是十分明显的。事实 上,调整桨叶的节距角,只是改变了桨叶对气流的失速点。根据实验结果,节距角越小,气 流对桨叶的失速点越高,其最大输出功率也越高。这就是定桨距风力机可以在不同的空气密 度下调整桨叶安装角的根据。 不同安装角的功率曲线如下图所示: 750KW国产桨叶各安装角实际功率Illi线对比图 ! --------- ——B ----------------! *pitchy—00 P itch=-3. 00 pitcta-L T5 pi 75 ―*—pitch=-Q. 00 * 1 -------- piteh=l.00——= ---------------- i

安全培训 安全及风机基础知识

安全及风机基础知识 ?选择题(20分) 1.发生火灾时,应贯彻执行( )的准则。 A:灭火重于救人 B:救物重于牧 C:救人重于救火 1.被电击的人能否获救,关键在于() A :触电的方式 B :人体电阻的大小 C :触电电压的高低 D :能否尽快脱离电源和施行紧急救护 3、下列()灭火器最适合扑灭由钠或镁金属造成的火灾。() A:二氧化碳 B:泡剂 C:特别成份粉剂灭火器 4、国家规定安全电压是 ( )。 A、220V B、36V C、110V 5、当有人触电时,应做的首要工作是() ?迅速撤离现场 B、迅速进行人工呼吸 C、迅速脱离电源 D迅速通知供电部门 6、在风力发电机组登塔工作前(),并把维护开关置于维护状态,将远控制屏蔽。 ?应巡视风电机组; B、应断开电源; C、必须手动停机; D、不可停机。 7、风力发电机的偏航系统,主要作用是,使风机发电机,始终处于()状态。 ?发电机满发状态 B、运行状态 C、迎风状态

8、风力发电机一般初次运行()月后,进行风机定检工作 A、3月 B、1月 C、6月 9、液压站的储能装置是靠() A、电磁阀不经常动作 B、氮气瓶内的高压气体 C、自动加压装置 10、风力发电机机组结构,所能承受的最大风速称为() A、平均风速 B、安全风速 C、瞬时风速 ?填空题(35分) 1、在现场作业期间,必须遵循、的原则。 3、在攀爬风机时必须使用、、、、。 4、在高空作业时,严禁,严禁。 5、风力发电电缆的A,B,C三相,分别用,,三种颜色标记相序。 6、检修人员如 , ,不得登塔作业。 三、判断题(20分) 1、在风力发电机塔上进行作业时必须停机。() 2、风力发电机组的爬梯、安全绳、照明等安全设施应定期检查。() 3、风速超过12m/s仍可打开机舱盖。() 4、有人低压触电时,应该立即将他拉开。() 5、风力发电机组要保持长周期稳定的运行,做好维护工作是至关重要。() 6、移动非固定安装电气设备时,可以不必切断电源。()

(完整版)泵与风机的分类及其工作原理

第一章泵与风机综述 第一节泵与风机的分类和型号编制 一、泵与风机的分类 泵与风机是利用外加能旦输送流体的流体机械。它们大量地应用于燃气及供热与通风专业。根据泵与风机的工作原理,通常可以将它们分类如下: (一)容积式 容积式泵与风机在运转时,机械内部的工作容积不断发生变化,从而吸入或排出流体。按其结构不同,又可再分为; 1.往复式 这种机械借活塞在汽缸内的往复作用使缸内容积反复变化,以吸入和排出流体,如活塞泵(piston pump)等; 2.回转式 机壳内的转子或转动部件旋转时,转子与机壳之间的工作容积发生变化,借以吸入和排出流体,如齿轮泵(gear pump)、螺杆泵(screw pump)等。 (二)叶片式 叶片式泵与风机的主要结构是可旋转的、带叶片的叶轮和固定的机壳。通过叶轮的旋转对流体作功,从而使流体获得能量。 根据流体的流动情况,可将它们再分为下列数种: 1.离心式泵与风机; 2.轴流式泵与风机; 3.混流式泵与风机,这种风机是前两种的混合体。 4.贯流式风机。 (三)其它类型的泵与风机 如喷射泵(jet pump)、旋涡泵(scroll pump)、真空泵(vacuum pump)等。 本篇介绍和研讨制冷专业常用的泵与风机的理论、性能、运行、调节和选用方法等知识。由于制冷专业常用泵是以不可压缩的流体为工作对象的。而风机的增压程度不高(通常只有9807Pa或1000mmH2O以下),所以本篇内容都按不可压缩流体进行论述。 二、泵与风机的型号编制 (一)、泵的型号编制 1、离心泵的基本型号及其代号 泵的型式型式代号泵的型式型式代号 单级单吸离心泵IS.B大型立式单级单吸离心泵沅江

轴流式风机原理及运行

轴流式风机原理及运行 一.轴流式风机的结构特点 轴流送风机为单级风机,转子由叶轮和叶片组成,带有一个整体的滚动轴承箱和一个液压叶片调节装置。主轴承和滚动轴承同置于一球铁箱体内,此箱体同心地安装在风机下半机壳中并用螺栓固定。在主轴的两端各装一只支承轴承,为承受轴向力。主轴承箱的油位由一油位指示器在风机壳体外示出。轴承的润滑和冷却借助于外置的供油装置,周围的空气通过机壳和轴承箱之间的空隙的自然通风,以增加了它的冷却。 叶轮为焊接结构,因为叶轮重量较轻,惯性矩也小。叶片和叶柄等组装件的离心力通过推力轴承传递至较小的承载环上,叶轮组装件在出厂前进行叶轮整套静、动平衡的校验。 风机运行时,通过叶片液压调节装置,可调节叶片的安装角并保持这一角度。叶片装在叶柄的外端,叶片的安装角可以通过装在叶柄内的调节杆和滑块进行调节,并使其保持在一定位置上。调节杆和滑块由调节盘推动,而调节盘由推盘和调节环所组成,并和叶片液压调节装置的液压缸相连接。 风机转子通过风机侧的半联轴器、电动机侧的半联轴器和中间轴与电机连接。 风机液压润滑供油装置由组合式的润滑供油装置和液压供油装置组成。此系统有2台油泵,并联安装在油箱上,当主油泵发生故障时,备用油泵即通过压力开关自动启动,2个油泵的电动机通过压力开关联锁。在不进行叶片调节时,油流经恒压调节阀而至溢流阀,借助该阀建立润滑压力,多余的润滑油经溢流阀回油箱。 风机的机壳是钢板焊接结构,风机机壳具有水平中分面,上半可以拆卸,便于叶轮的装拆和维修。叶轮装在主轴的轴端上,主轴承箱用螺钉同风机机壳下半相连接,并通过法兰的内孔保证对中,此法兰为一加厚的刚性环,它将力(由叶轮产生的径向力和轴向力)通过风机底脚可靠地传递至基础,在机壳出口部分为整流导叶环,固定式的整流导叶焊接在它的通道内。整流导叶环和机壳以垂直法兰用螺钉连接。 进气箱为钢板焊接结构,它装置在风机机壳的进气侧。在进气箱中的中间轴放置于中间轴罩内。电动机一侧的半联轴器用联轴器罩壳防护。带整流体的扩压器为钢板焊接结构,它布置在风机机壳的排气侧。为防止风机机壳的振动和噪声传递至进气箱和扩压器以至管道,因此进气箱和扩压器通过挠性连接(围带)同风机机壳相连接。 为了防止过热,在风机壳体内部围绕主轴承的四周,借助风机壳体下半部的空心支承使其同周围空气相通,形成风机的冷却通风。 主轴承箱的所有滚动轴承均装有轴承温度计,温度计的接线由空心导叶内腔引出。为了避免风机在喘振状态下工作,风机装有喘振报警装置。在运行工况超过喘振极限时,通过一个预先装在机壳上位于动叶片之前的皮托管和差压开关,利用声或光向控制台发出报警信号,要求运行人员及时处理,使风机返回到正常工况运行。 轴流风机如下图所示

安全基础知识

安全基础知识 1.1安全术语 1.1.1安全的概念 指不受威胁,没有危险、危害、损失。人类的整体与生存环境资源的和谐相处,互相不伤害,不存在危险的危害的隐患。是免除了不可接受的损害风险的状态。安全是在人类生产过程中,将系统的运行状态对人类的生命、财产、环境可能产生的损害控制在人类能接受水平以下的状态。 1.1.2安全生产: 为了使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生,保障劳动者的安全健康和生产作业过程的正常进行而采取的各种措施和从事的一切活动。 1.1.3安全管理 以国家法律、法规、规定和技术标准为依据,采取各种手段,对生产经营单位的生产经营活动的安全状况,实施有效制约的一切活动。 1.1.4安全生产责任制 根据安全生产法律法规和企业生产实际,将各级领导、职能部门、工程技术人员、岗位操作人员在安全生产方面应该做的事及应负的责任加以明确规定的一种制度。 1.1.5事故的概念 造成死亡、疾病、伤害、损坏或其他损失的意外情况的总称 事故隐患:引导致事故发生的物的危险状态,人的不安全行为及治理缺陷。 1.1.6职业安全的定义 指人们进行生产过程中没有职员伤亡、职业病、设备损坏或财产损失发生的状态,是一种带有特定含义和范畴的“安全”。 1.1.7危险的定义 指可以导致意外事故发生的现存或潜伏的状态。 危险源:可能导致伤害或疾病、财产损失、工作环境破坏或这些情况组合的根源或状态。 1.1.8国家安全生产工作方针

安全第一,预防为主,综合治理。 1.1.9安全生产“三同时” 建设项目的安全设施必须符合国家标准或行业标准,与主体工程同时设计、同时施工、同时投入生产和使用。 1.1.10安全生产“三级教育” 公司教育、部门教育、班组教育 1.1.11事故调查处理“四不放过” 事故原因未查清楚不放过;责任人未处理不放过;整改措施未落实不放过;有关人员未接受教育不放过。 1.1.12安全生产“三不伤害” 不伤害他人、不伤害自己、不被他人伤害 1.1.13安全生产“三违章” 违章指挥、违章操作、违反劳动纪律 1.1.14新员工安全教育的原因 对员工进行安全教育是国家法律法规的要求 对员工进行安全教育是企业生存发展的需求 对员工进行安全教育是员工自我保护的需要 1.2安全标志 1.2.1安全标志的意义和作用 安全标志是由安全色、几何图形和图形符号所构成,用以表达特定的安全信息。此外,还有补充标志,它是安全标志的文字说明,必须与安全标志同时使用。安全标志的作用,主要在于引起人们对不安全因素的注意,预防事故发生。但不能代替安全操作规程和防护措施。航空、海运、内河航运上的安全标志,不属于这个范畴。 1.2.2安全标志的类别 安全标志分为禁止标志、警告标志、指令标志和提示标志等四类。现将其情况,分述如下; (1)禁止标志的含义是禁止人们不安全行为的图形标志。其基本型式为带斜杠的圆形框。圆环和斜杠为红色,图形符号为黑色,衬底为白色。

风机控制系统结构原理分解

风机控制系统结构

一、风力发电机组控制系统的概述 风力发电机组是实现由风能到机械能和由机械能到电能两个能量转换过程的装置,风轮系统实现了从风能到机械能的能量转换,发电机和控制系统则实现了从机械能到电能的能量转换过程,在考虑风力发电机组控制系统的控制目标时,应结合它们的运行方式重点实现以下控制目标: 1. 控制系统保持风力发电机组安全可靠运行,同时高质量地将不断变化的风能转化为频率、电压恒定的交流电送入电网。 2. 控制系统采用计算机控制技术实现对风力发电机组的运行参数、状态监控显示及故障处理,完成机组的最佳运行状态管理和控制。 3. 利用计算机智能控制实现机组的功率优化控制,定桨距恒速机组主要进行软切入、软切出及功率因数补偿控制,对变桨距风力发电机组主要进行最佳尖速比和额定风速以上的恒功率控制。 4. 大于开机风速并且转速达到并网转速的条件下,风力发电机组能软切入自动并网,保证电流冲击小于额定电流。对于恒速恒频的风机,当风速在4-7 m/s之间,切入小发电机组(小于300KW)并网运行,当风速在7-30 m/s之间,切人大发电机组(大于500KW)并网运行。 主要完成下列自动控制功能: 1)大风情况下,当风速达到停机风速时,风力发电机组应叶尖限速、脱网、抱液压机械闸停机,而且在脱网同时,风力发电机组偏航90°。停机后待风速降低到大风开机风速时,风力发电机组又可自动并入电网运行。 2)为了避免小风时发生频繁开、停机现象,在并网后10min内不能按风速自动停机。同样,在小风自动脱网停机后,5min内不能软切并网。 3)当风速小于停机风速时,为了避免风力发电机组长期逆功率运行,造成电网损耗,应自动脱网,使风力发电机组处于自由转动的待风状态。 4)当风速大于开机风速,要求风力发电机组的偏航机构始终能自动跟风,跟风精度范围 ±15°。 5)风力发电机组的液压机械闸在并网运行、开机和待风状态下,应该松开机械闸,其余状态下(大风停机、断电和故障等)均应抱闸。 6)风力发电机组的叶尖闸除非在脱网瞬间、超速和断电时释放,起平稳刹车作用。其余时间(运行期间、正常和故障停机期间)均处于归位状态。 7)在大风停机和超速停机的情况下,风力发电机组除了应该脱网、抱闸和甩叶尖闸停机外,

风机基础知识

风机基础知识 一. 风机的分类: 1. 按工作原理:透平式----离心式 轴流式 混流式 贯流式 容积式----回转式----罗茨式 叶式 螺杆式 滑片式 往复式----活塞式 柱塞式 隔膜式 2. 按工作压力:通风机:P ≤0.015MPa(15000Pa) 鼓风机:0.015MPa(15000Pa <P ≤0.35MPa(350000Pa) 压缩机:P >0.35MPa(350000Pa) 3. 按用途:很多。 4-2X79 AF 烧结风机 AF 烧结风机 GY4-73 GY6-40引风机 SJ 烧结风机 Y5-48锅炉引风机 地铁风机 电站轴流风机 电站一次风机 对旋轴流风机 多级离心鼓风机 浮选洗煤风机

高炉风机 高温风机 高压离心风机 矿用风机 矿用局扇 煤气鼓风机 射流风机 手提轴流风机 水泥窑尾风机 隧道风机 污水处理风机 屋顶风机 屋顶风机 无蜗壳风机 箱体风机 箱体风机 消防风机 诱导风机 圆形管道风机 矩形管道风机 二. 风机的结构: 风机的主要零部件: 离心风机:叶轮,进风口,机壳,电机,底座,传动组, 轴流风机:叶轮,进口导叶,出口导叶,导流锥,风筒,集流器,电机,支架,传动组,

混流风机:离心式混流,轴流式混流 前向叶轮后向叶轮径向叶轮前向多翼叶轮 轴流风机叶轮混流风机叶轮 三.风机常用术语: 风机标准进口状态:一个大气压,20℃,湿度50%,空气的密度为1.2kg/m3 风机进口状态:大气压力,温度,湿度, 介质的种类,性质。风机常用的介质是空气。注意介质的附着性,磨损性,腐蚀性。 流量Q(风量):指风机进口工况的流量,m3/s或m3/h. 全压P(总压):指风机进口至出口的总压升。Pa。 静压Ps:指风机进口至出口的静压升。Pa.。 动压Pd:风机出口处的平均速度相对应的压力。Pa.。 风机转速n:指叶轮的转速。rpm或r/min。 风机消耗的功率:指风机克服一定的压力输送一定量的气体所需要的功率。kw。对应的是电机的输出功率×传动效率。 风机轴功率N轴(kw)=P(Pa)×Q(m3/h)/3600/(η风机×η传动)/1000×100%;η传动=0.95-0.98。 风机所需功率N(kw)=k×N轴(kw) k------ 四. 型式检验: 1.出厂检验:同下 2.通风机的空气动力性能试验:

送引风机及一次风机讲义

第九章送引风机及一次风机

第一节概述 ?轴流风机具有结构紧凑、体积小、重量轻、低负荷时效率高、风机容量大等优点。大容量锅炉采用轴流风机是目前发展的主要趋势。 ?轴流风机和离心风机一样都是在叶轮的作用下,使气流获得能量,所不同的是轴流风机的工作原理是利用旋转叶片的挤压推进力使气流获得能量,升高其压能和动能,而离心风机的工作原理是利用旋转时产生的离心力使气流获得能量。 ?轴流风机一般由整流罩、前导叶、叶轮、扩散筒和机壳等组成。转子由轮毂和轮毂上径向布置的叶片组成。使流过的气流提高压头,并尽可能降低损失,轴流风机的叶片,一般采用机翼型。

?轴流风机的气体是从轴向流入叶轮并沿轴向流出,气体在轴流式叶轮中,因不受离心力的作用,即离心力作用而升高的静压头为零。因此,它所产生的压头远低于离心式风机。轴流风机一般只适用于大流量、低压头的系统,属于高比转速范围。离心式风机比转速一般在15~90之间,轴流式风机比转速一般大于100。轴流风机应用最广范的是动叶可调式。 ?离心风机具有结构简单,运行可靠,效率较高,制造成本较低,噪音较小,抗腐蚀性较好等特点。随着锅炉单机容量的增长,离心风机的容量已经受到叶轮材料强度的限制。轴流风机使用日益广范。因为锅炉容量增大,烟、风流量增大,但所需要的压力没有增大,很明显从风机的效率角度看采用轴流风机要比离心风机有利。随着轴流风机制造技术的发展,目前新建大机组的六大风机均以采用轴流式风机为多。

?一、轴流风机与离心风机相比较主要特点?(1)轴流风机采用动叶或静叶可调的结构,其调节效率高,运行费用较离心风机低。 ?两种类型风机在设计负荷时的效率相差不大,轴流风机效率最高达90%,机翼形叶片离心风机效率92.8%。但是,当机组带低负荷时,动叶可调轴流风机的效率要比具有入口导向装置的离心风机高许多。

双馈风机基础知识学习

Introduction “变浆距风力机+双馈发电机”作为新型风力发电机组,是目前研究的热点,国内对双馈发电机的研究主要集中在单机建模、空载并网、柔性并网、并网后有功功率和无功功率的解耦控制、低电压穿越运行。风电场协调控制等方面。 双馈异步发电机其结构与绕线式异步电机类似,定子绕组接电网(或通过变压器接电网),交流励磁电源给转子绕组提供频率、相位、幅值都可调节的励磁电流,从而实现恒频输出。交流励磁电源只需供给转差功率,大大减少了容量的需求。由于发电机的定、转子均接交流电(双向馈电),双馈发电机由此得名,其本质上是具有同步发电机特性的交流励磁异步发电机,双馈风力发电系统中转子侧交直交变流单元功率仅需要25%一40%的风力机额定功率,大大降低了功率变流单元的造价;双馈异步风力发电机体积小,运输安装方便,发电机成本较低。但双馈发电机由于使用定转子两套绕组,增加了发电机的维护工作量,还降低了发电机的运行可靠性。转子绕组承受较高的dv /dt ,转子绝缘要求较高。对于有刷电机,当电网电压突然降低时,电流迅速升高,扭矩迅速增大,需经常更换发电机碳刷、滑环等易损耗部件。 1 变速恒频风力发电机组系统结构 1.1 风轮 风轮是吸收风能并将其转化成机械能的部件。风以一定速度和攻角作用在桨叶上,使桨叶产生旋转力矩而转动,将风能转变成机械能。自然界的风速不是恒定的,风力机获得的机械能是随风速的变化而不断变化。 由风力机的空气动力学特性可知,风力机输出机械功率的为P wt ,产生的气动转矩为T wt [1]。 231(,)2 wt p p C R v λβρπ= 230.5()wt wt T l p T v R C πρλ==Ω 其中,ρ为空气密度(kg/m 3),一般为1.25 kg/m 3;R 为风力机叶片的半径(m );v 为风速(m/s );l Ω为叶片旋转速度;C p 为风力机的功率系数,也称风能利用系数,是评价风力机效率的重要参数,C T 为风力机的转矩系数,由贝兹理论可知,一般C p =1/3 2/5,其理论极限值为0.593。它与风速、叶片转速、叶片直径、浆叶节距角均有关系,是叶尖速比λ和浆距角β的函数。 p T C C λ=

机械安全基础知识(正式版)

文件编号:TP-AR-L7840 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 机械安全基础知识(正式 版)

机械安全基础知识(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一、教育目的 检验应考人员对机械制造和使用过程中主要设 备、场所危险因素的类型和机械本质安全要求的熟悉 程度 二、重点、难点: (一)了解机械产品主要类别; (二)了解机械设计本质安全要求、机器的安全 装置类型; (三)熟悉锅炉房、空压站、煤气站、制氧站、 乙炔站危险点及通用安全技术管理要求。 三、内容讲解:

机械是由若干相互联系的零部件按一定规律装配起来,能够完成一定功能的装置。机械设备在运行中,至少有一部分按一定的规律做相对运动。成套机械装置由原动机、控制操纵系统、传动机构、支承装置和执行机构组成。 机械是现代生产和生活中必不可少的装备。机械在给人们带来高效、快捷和方便的同时,在其制造及运行、使用过程中,也会带来撞击、挤压、切割等机械伤害和触电、噪声、高温等非机械危害。 机械安全的任务是采取系统措施,在生产和使用机械的全过程中保障工作人员安全和健康,免受各种不安全因素的危害。机械安全包括机械产品制造安全和机械设备使用安全两大方面的内容。 1.1、机械产品制造安全 (一)机械产品主要类别

锅炉结构 及工作原理

锅炉结构及工作原理 锅炉结构及工作原理锅:是指锅炉的水汽系统,由汽包、下降管、联箱、水冷壁、过热器和省煤器等设备组成。(1)锅的任务是使水吸热,最后变化成一定参数的过热蒸汽。其过程是:给水由给水泵打入省煤器以后逐渐吸热,温度升高到汽包工作压力的沸点,成为饱和水;饱和水在蒸发设备(炉)中继续吸热,在温度不变的情况下蒸发成饱和蒸汽;饱和蒸汽从汽包引入过热器以后逐渐过热到规定温度,成为合格的过热蒸汽,然后到汽轮机做功。

汽包:汽包俗称锅筒。蒸汽锅炉的汽包内装的是热水和蒸汽。汽包具有一定的水容积,与下降管,水冷壁相连接,组成自然水循环系统,同时,汽包又接受省煤器的给水,向过热器输送饱和蒸汽;汽包是加热,蒸发、过热三个过程的分解点。 下降管:作用是把汽包中的水连续不断地送入下联箱,供给水冷壁,使受热面有足够的循环水量,以保证可靠的运行。为了保证水循环的可靠性,下降管自汽包引出后都布置在炉外。 联箱:又称集箱。一般是直径较大,两端封闭的圆管,用来连接管子。起汇集、混合和分配汽水保证各受热面可靠地供水或汇集各受热面的水或汽水混合物的作用。(位于炉排两侧的下联箱,又称防焦联箱)水冷壁下联箱通常都装有定期排污装置。 水冷壁:水冷壁布置在燃烧室内四周或部分布置在燃烧室中间。它由许多上升管组成,以接受辐射传热为主受热面。作用:依靠炉膛的高温火焰和烟气对水冷壁的辐射传热,使水(未饱和水或饱和水)加热蒸发成饱和蒸汽,由于炉墙内表面被水冷壁管遮盖,所以炉墙温度大为降低,使炉墙不致被烧坏。而且又能防止结渣和熔渣对炉墙的侵蚀;筒化了炉墙的结构,减轻炉墙重量。水冷壁的形式:1.光管式2.膜式 过热器:是蒸汽锅炉的辅助受热面,它的作用是在压力不变的情况下,

风机基础知识

离心风机基础知识 一、鼓风机是一种用于压缩和输送气体的机械,从能量观点来看,他是把原动机的机械能量转变为气体能量的一种机械。 二、鼓风机分类及用途: 1按作用原理分类: a.透平式风机—通过旋转叶片压缩输送气体的风机。 b.容积式风机—用改变气体容积的方法压缩及输送气体机械。 2按气流运动方向分类: a离心式风机—气流轴向世入风机叶轮后,在离心力作用下被压缩,主要沿径向流动。 b轴流式风机—气流轴向世入旋转叶片信道,由于叶片与气体相互作用,气体被压缩后近似在圆柱型表面上沿轴线方向流动。 c混流式风机—气体与主轴成某一角度的方向进入旋转叶道,近似沿锥面流流动。 d横流式风机—气体横贯旋转叶道,而受到叶片作用升高压力。 三、按生产压力的高低分类(以绝对压力计算) 1通风机—排气压力低于 31270Pa

2鼓风机—排气压力在 35270Pa~343000Pa 之间 3压缩机—排气压力 343000Pa 以上 4通风机高低压相应分类如下(在标准状态下) a 低压离心通风机:全压 P ≤ 1000Pa b.中压离心通风机:全压 P=1000~5000Pa c.高压离心通风机:全压 P=5000~30000Pa d.低压热交换器专用轴流风机:全压 P ≤ 500Pa e.高压热交换器专用轴流风机:全压 P=500~5000Pa 四、风机全称及型号表示方法: 1.一般通风机全称表示方法: 2.型号和品种组成表示方法: 五、风机主要技术参数的概念 1 压力:通风机的压力指升压(相对于大气的压力),即气体在风机内压力的升高值或风机进口处气体压力之差。它有静压 . 动压 . 全压之分。全压等于风机出口与进口总压之差。 常以 P 来表示 . 其单位常用 Pa. Kpa 表示。

风机的工作原理

风机的工作原理 轴流式风机,就是与风叶的轴同方向的气流(即风的流向和轴平行),如电风扇,空调外机风扇就是轴流方式运行风机。 轴流式风机又叫局部通风机,是工矿企业常用的一种风机,安不同于一般的风机它的电机和风叶都在一个圆筒里,外形就是一个筒形,用于局部通风,安装方便,通风换气效果明显,安全,可以接风筒把风送到指定的区域. 风机是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。风机是我国对气体压缩和气体输送机械的习惯简称,通常所说的风机包括通风机,鼓风机,压缩机以及罗茨鼓风机,离心式风机,回转式风机,水环式风机[2]?,但是不包括活塞压缩机等容积式鼓风机和压缩机。气体压缩和气体输送机械是把旋转的机械转换为气体压力能和动能,并将气体输送出去的机械。 风机应用范围: 风机的工作原理与透平压缩机基本相同,只是由于气体流速较低,压力变化不大,一般不需要考虑气体比容的变化,即把气体作为不可压缩流体处理。 风机是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。风机是我国对气体压缩和气体输送机械的习惯简称,通常所说的风机包括通风机,鼓风机,压缩机以及罗茨鼓风机,离心式风机,回转式风机,水环式风机,但是不包括活塞压缩机等容积式鼓风机和压缩机。气体压缩和气体输送机械是把旋转的机械转换为气体压力能和动能,并将气体输送出去的机械。 风机广泛用于工厂、矿井、隧道、冷却塔、车辆、船舶和建筑物的通风、排尘和冷却;锅炉和工业炉窑的通风和引风;空气调节设备和家用电器设备中的冷却和通风;谷物的烘干和选送;风洞风源和气垫船的充气和推进等。 风机的工作原理与透平压缩机基本相同,只是由于气体流速较低,压力变化不大,一般不需要考虑气体比容的变化,即把气体作为不可压缩流体处理。 风机历史 风机已有悠久的历史。中国在公元前许多年就已制造出简单的木制砻谷风车,它的作用原理与现代离心风机基本相同。1862年,英国的圭贝尔发明离心风机,其叶轮、机壳为同心圆型,机壳用砖制,木制叶轮采用后向直叶片,效率仅为40%左右,主要用于矿山通风。1880年,人们设计出用于矿井排送风的蜗形机壳,和后向弯曲叶片的离心风机,结构已比较完善了。 1892年法国研制成横流风机;1898年,爱尔兰人设计出前向叶片的西罗柯式离心风机,并为各国所广泛采用;19世纪,轴流风机已应用于矿井通风和冶金工业的鼓风,但其压力仅为100~300帕,效率仅为15~25%,直到二十世纪40年代以后才得到较快的发展。1935年,德国首先采用轴流等压风机为锅炉通风和引风;1948年,丹麦制成运行中动叶可调的轴流风机;旋轴流风机、子午加速轴流风机、斜流风机和横流风机也都获得了发展。 风机分类 1.风机按使用材质分类可以分好几种,如铁壳风机(普通风机)、玻璃钢风机、塑料风机、铝风机、不锈钢风机等等 2.风机分类可以按气体流动的方向,分为离心式、轴流式、斜流式(混流式)和横流式等类型。 3.风机根据气流进入叶轮后的流动方向分为:轴流式风机、离心式风机和斜流(混流)式风机。 4.风机按用途分为压入式局部风机(以下简称压入式风机)和隔爆电动机置于流道外或在流道内,隔爆电动机置于防爆密封腔的抽出式局部风机(以下简称抽出式风机)。 5.风机按照加压的形式也可以分单级、双级或者多级加压风机。

风机基础安全保证体系及措施

目录 安全保证体系及措施 (1) 1.1、施工期安全生产目标 (1) 1.2、施工期安全保证体系 (2) 1.3、安全管理组织机构及主要职责 (2) 1.4、安全管理制度及办法 (3) 1.5、施工期安全生产保证措施 (6) 1.5.1、施工现场安全措施 (6) 1.5.2、防洪渡汛安全措施 (6) 1.5.3、供电及照明安全措施 (7) 1.5.4、生活区的安全措施 (8) 1.5.5、防火安全管理措施 (8) 1.5.6、事故发生的急救措施 (9) 1.5.7、建立健全的施工安全保证制度 (9)

安全保证体系及措施 1.1、施工期安全生产目标 依据2004年7月建设部令第128号《建筑施工企业安全生产许可证管理规定》国家对建筑施工企业实行安全生产许可制度。建筑施工企业未取得安全生产许可证的,不得从事建筑施工活动。我单位已取得了安全生产许可证。 在施工过程中严格贯彻执行国家及地方的有关安全生产法规及规范,坚持“安全第一”的方针政策,接受业主及监理工程师的指导、监督,切实把施工期中建设项目的安全生产,与主体工程紧密结合,把安全施工措施落到实处。 我公司针对本标段制定的安全总目标为:严格按照国家建设部安全评分标准、安全操作规定和规范施工。杜绝发生死亡及重伤事故,轻伤事故年频率控制在5‰以内,争创广东省安全生产文明施工优良样板工地。 具体目标包括: (1)杜绝重大伤亡事故; (2)无中毒事故; (3)无火灾事故; (4)杜绝重大交通事故,减少一般责任事故; (5)无倒塌事故;

1.2、施工期安全保证体系 安全保证体系框图 1.3、安全管理组织机构及主要职责 组建安全生产领导小组,由项目经理任组长,是本工程现场安全生产第一责任人,并由现场经理担任安全领导小组常务副组长,负责日常的安全生产,安全生产小组成员由各职能部门的领导和施工队队长组成。建立以安全生产领导小组的各职能部门组成的安全保证体系。安全组织机构及主要职责,见下安全管理组织机构及主要职责图。

风机叶片原理和结构

风机叶片得原理、结构与运行维护 潘东浩 第一章风机叶片报涉及得原理 第一节风力机获得得能量 一.气流得动能 E=mv2=ρSv3 式中m—--———气体得质量 S-—-—--—风轮得扫风面积,单位为m2 v--—---—气体得速度,单位就是m/s ρ------空气密度,单位就是kg/m3 E—-———-—-—-气体得动能,单位就是W 二、风力机实际获得得轴功率 P=ρSv3C p 式中P--—----—风力机实际获得得轴功率,单位为W; ρ-———-—空气密度,单位为kg/m3; S————-—--风轮得扫风面积,单位为m2; v------——上游风速,单位为m/s、 Cp -—----—-—风能利用系数 三。风机从风能中获得得能量就是有限得,风机得理论最大效率 η≈0。593 即为贝兹(Betz)理论得极限值。 第二节叶片得受力分析 一。作用在桨叶上得气动力 上图就是风轮叶片剖面叶素不考虑诱导 速度情况下得受力分析。在叶片局部剖面 上,W就是来流速度V与局部线速度U得矢量 与。速度W在叶片局部剖面上产生升力dL 与阻力dD,通过把dL与dD分解到平行与垂直风轮旋转平面上,即为风轮得轴向推力dFn与旋转切向力dFt。轴向推力作用在风力发电机组塔架上,旋转切向力产生有用得旋转力矩,驱动风轮转动。 上图中得几何关系式如下: Φ=θ+α

dFn=dDsinΦ+dLcosΦ dFt=dLsinΦ-dDcosΦ dM=rdFt=r(dLsinΦ-dDcosΦ) 其中,Φ为相对速度W与局部线速度U(旋转平面)得夹角,称为倾斜角; θ为弦线与局部线速度U(旋转平面)得夹角,称为安装角或节距角; α为弦线与相对速度W得夹角,称为攻角。 二。桨叶角度得调整(安装角)对功率得影响。(定桨距) 改变桨叶节距角得设定会影响额定功率得输出,根据定桨距风力机得特点,应当尽量提高低风速时得功率系数与考虑高风速时得失速性能、定桨距风力发电机组在额定风速以下运行时,在低风速区,不同得节距角所对应得功率曲线几乎就是重合得。但在高风速区,节距角得变化,对其最大输出功率(额定功率点)得影响就是十分明显得。事实上,调整桨叶得节距角,只就是改变了桨叶对气流得失速点。根据实验结果,节距角越小,气流对桨叶得失速点越高,其最大输出功率也越高。这就就是定桨距风力机可以在不同得空气密度下调整桨叶安装角得根据、 不同安装角得功率曲线如下图所示: 第三节 叶片得基本概念 1、叶片长度:叶片径向方向上得最大长度,如图1所示。 图1 叶片长度 2、叶片面积

2021安全及风机基础知识

Carry out the relevant standards and regulations of production safety, and do a good job in publicity and education of production safety. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 2021安全及风机基础知识

2021安全及风机基础知识 导语:贯彻执行安全生产的有关法规、标准和规定,做好安全生产的宣传教育工作。 认真调查研究,及时总结经验,协助领导贯彻和落实各项规章制度和安全措施,改 进安全生产管理工作。 选择题(20分) 发生火灾时,应贯彻执行()的准则。 A:灭火重于救人B:救物重于牧C:救人重于救火 被电击的人能否获救,关键在于() A:触电的方式B:人体电阻的大小 C:触电电压的高低D:能否尽快脱离电源和施行紧急救护 3、下列()灭火器最适合扑灭由钠或镁金属造成的火灾。() A:二氧化碳B:泡剂C:特别成份粉剂灭火器 4、国家规定安全电压是()。 A、220V B、36V C、110V 5、当有人触电时,应做的首要工作是() 迅速撤离现场B、迅速进行人工呼吸 C、迅速脱离电源D迅速通知供电部门 6、在风力发电机组登塔工作前(),并把维护开关置于维护状态,

将远控制屏蔽。 应巡视风电机组;B、应断开电源; C、必须手动停机; D、不可停机。 7、风力发电机的偏航系统,主要作用是,使风机发电机,始终处于()状态。 发电机满发状态B、运行状态C、迎风状态 8、风力发电机一般初次运行()月后,进行风机定检工作 A、3月 B、1月 C、6月 9、液压站的储能装置是靠() A、电磁阀不经常动作 B、氮气瓶内的高压气体 C、自动加压装置 10、风力发电机机组结构,所能承受的最大风速称为() A、平均风速 B、安全风速 C、瞬时风速 填空题(35分) 1、在现场作业期间,必须遵循、的原则。 3、在攀爬风机时必须使用、、、、。 4、在高空作业时,严禁,严禁。 5、风力发电电缆的A,B,C三相,分别用,,三种颜色标记相序。 6、检修人员如,,不得登塔作业。

鼓风机和引风机的主要区别

鼓风机和引风机的主要区别 在老机组上,引风量的调整是靠引风机的入口挡板的开度来调整的。这种调整方法电耗比较大,所以近年出现了调速风机,即风机的入口挡板全开,用调整风机转速的方法来调整风量。调速的方法很多,一般在大型风机上有液力偶合器调速、液粘调速、液体电阻调速、变频调速等。前两种方法属于机械调速,即电机的转速不变,经过中间环节让风机的转速改变。后两种调速则是改变电机的转速来改变风机的转速。 鼓风机 鼓风机的作用就是:把某种气体输送到你需要的地方。 至于是什么气体,就看你的需要了。比如: 1)输送空气,主要用于助燃 2)输送还原性气体,主要用于还原某物质(通常是金属) 3)输送保护性气体(通常是惰性气体) 4)其他用途(如:用于输送粉体物料,吹扫,等等) 举例: 向沸腾炉鼓风,就不仅仅是为了助燃,还兼着把物料扬起(类似于沸腾)的作用 引风机 引风机输送的介质是烟气,最高温度不得超过250度。锅炉结构复杂,还有烟气的除尘、脱硫设备,烟气阻力较大,利用引风机排烟才能排除烟气,同时引风机也造成锅炉本体的燃烧室的需要的负压。

跟据设备要求,只要匹配合理,两者没有太大的区别。单从锅炉豉、引风机来说,它的主要区别在于叶轮的材料上,做为引风机使用时,由于锅炉的粉尘对叶轮有一定的冲刷,使得叶轮很容易磨损,还有就是高温烟气对叶轮强度的要求,所以在叶轮的材料上一般要求锰钢板。而做为鼓风机使用时,它的介质通常都是不含尘的空气,所以在材料的使用上多采用Q235。 鼓风一般没有杂质和温度,引风有可能会有杂质抽出,温度肯定会有。引风一般都耐280度以下的高温鼓风最高不能超过80度。结构可以是一样,名字是他们的功能不同,但细一点可以说到鼓风机要求压力一般大过引风机。 压缩机、鼓风机、引风机的主要区别 它们的工作原理都是通过转子的离心运动来压缩气体做功(如果你的压缩机指的是离心机的话),只是压缩机的工作压力高一些,鼓风机次之,引风机最后。有的地方鼓风机、引风机已经是代表的一个意思了,没有很明显的区分,他们还有一个名词就是通风机。鼓风机、引风机的压力比离心压缩机低一些,但是它的流量好,高很多。总结一下:离心压缩机:压力高、流量小;鼓风机、引风机压力低、流量大。 鼓风机目前国内普遍采用G4 型高效机翼型后弯叶片离心式风机。该风机叶轮是由叶片焊接于弧锥形前盘与平板形后盘中间而构成

风机叶片基础学习知识原理和结构

!-风机叶片的原理、结构和运行维护 潘东浩 第一章风机叶片报涉及的原理第一节风力机获得的能量一.气流的动能 E= 2 mv2= 2 p Sv3 式中m——气体的质量 S——风轮的扫风面积,单位为m2 v ----- 气体的速度,单位是m/s p ------空气密度,单位是kg/m3 E ----- 气体的动能,单位是W 风力机实际获得的轴功率 P=2 p SV3C P 式中P ------ 风力机实际获得的轴功率,单位为W; p ------空气密度,单位为kg/m3; S ----- 风轮的扫风面积,单位为m2; v ----- 上游风速,单位为m/s. C P---- 风能利用系数 三.风机从风能中获得的能量是有限的,风机的理论最大效率 n~ 0.593 即为贝兹(Betz)理论的极限值。 第二节叶片的受力分析 一.作用在桨叶上的气动力 上图是风轮叶片剖面叶素不考虑诱导速度情况下 的受力分析。在叶片局部剖面上,W 是来流速度V和局 部线速度U的矢量和。速度W在叶片局部剖面上产生升 力dL和阻力dD,通过把dL和dD分解到平行和垂直风

!- 轮旋转平面上,即为风轮的轴向推力 dFn 和旋转切向力dFt 。轴向推力作用在风力发电 机组塔架上,旋转切向力产生有用的旋转力矩,驱动风轮转动 上图中的几何关系式如下: dFn=dDs in ① +dLcos ① dFt=dLs in ①-dDcos ① dM=rdFt=r (dLsin ①-dDcos ①) 其中,①为相对速度 W 与局部线速度U (旋转平面)的夹角,称为倾斜角; 0为弦线和局 部线速度U (旋转平面)的夹角,称为安装角或节距角; a 为弦线和相对速度W 的夹 角,称为攻角。 ?桨叶角度的调整(安装角)对功率的影响。(定桨距) 改变桨叶节距角的设定会影响额定功率的输出,根据定桨距风力机的特点,应 当尽量提高低风速时的功率系数和考虑高风速时的失速性能。 定桨距风力发电机组 在额定风速以下运行时,在低风速区,不同的节距角所对应的功率曲线几乎是重合 的。但在高风速区,节距角的变化,对其最大输出功率(额定功率点)的影响是十 分明显的。事实上,调整桨叶的节距角,只是改变了桨叶对气流的失速点。根据实 验结果,节距角越小,气流对桨叶的失速点越高,其最大输出功率也越高。这就是 定桨距风力机可以在不同的空气密度下调整桨叶安装角的根据。 不同安装角的功率曲线如下图所示: TSOKff 国产桨叶各安装角家际功率脚线对比图 第三节 叶片的基本概念 1、叶片长度:叶片径向方向上的最大长度,如图 1所示 1203 Qi 1003 ft :snn n 400 O'

风机基础知识

风电专业试试题 一、填空题 1、风力发电机开始发电时,轮毂高度处的最低风速叫。 (切入风速) 2、严格按照制造厂家提供的维护日期表对风力发电机组进行的预防性维护是。(定期维护) 3、禁止一人爬梯或在塔内工作,为安全起见应至少有人工作。(两) 4、是设在水平轴风力发电机组顶部内装有传动和其他装置的机壳。(机舱) 5、风能的大小与风速的成正比。(立方) 6、风力发电机达到额定功率输出时规定的风速叫。(额定风速) 7、叶轮旋转时叶尖运动所生成圆的投影面积称为。 (扫掠面积) 8、风力发电机的接地电阻应每年测试次。(一) 9、风力发电机年度维护计划应维护一次。(每年) 10、UP77-1500齿轮箱油滤芯的更换周期为个月。(6) 11、UP77-1500机组的额定功率 KW。(1500) 12、凡采用保护接零的供电系统,其中性点接地电阻不得超过。(4欧) 13、在风力发电机电源线上,并联电容器的目的是为了。 (提高功率因素)

14、风轮的叶尖速比是风轮的和设计风速之比。(叶尖线速度) 15、风力发电机组的偏航系统的主要作用是与其控制系统配合,使风电机的风轮在正常情况下处于。(迎风状态) 16、风电场生产必须坚持的原则。 (安全第一,预防为主) 17、是风电场选址必须考虑的重要因素之一。(风况) 18、风力发电机的是表示风力发电机的净电输出功率和轮毂高度处风速的函数关系。(功率曲线) 20、瞬时风速的最大值称为。(极大风速) 25、风力发电机组在调试时首先应检查回路。(相序) 26、在风力发电机组中通常在高速轴端选用连轴器。(弹性) 28、风力发电机组系统接地电阻应小于欧。(4) 29、齿轮箱的润滑有飞溅和润滑。(强制) 35、进行风电机螺栓工作时我们应怎样进行紧固。(对角) 38、粘度指数反映了油的粘度随变化的特性。(温度) 39、吊装时螺栓喷涂二硫化钼的作用是。(润滑) 40、速度编码器安装在滑环盖的末端,用于监控发电机的。(转速) 41、风电场运行管理工作的主要任务就是提高和供电可靠性。(设备可利用率) 42、风力发电机组最重要的参数是和。 (风轮直径额定功率)

相关文档
最新文档