第28届全国中学生物理竞赛复赛模拟试卷及答案

第28届全国中学生物理竞赛复赛模拟试卷及答案
第28届全国中学生物理竞赛复赛模拟试卷及答案

第28届全国中学生物理竞赛复赛模拟试卷

本卷共八题,满分160分。计算题的解答应写出必要的文字说明、方程式和重要的演算步骤。只写出最后结果的不能得分。有数字计算的题,答案中必须明确写出数值和单位。填空题把答案填在题中的横线上,只要给出结果,不需写出求解的过程。

一、填空题.(本题共4小题,共25分)

1.图1所示的电阻丝网络,每一小段电阻同为r ,两个端点A 、B 间等效电阻R 1= 。若在图1网络中再引入3段斜电阻丝,每

一段电阻也为r ,如图2 所示,此时A 、B 间等效电阻R 2=

2.右图为开尔文滴水起电机示意图。从三通管左右两管口形成的水滴分别穿过铝筒A 1、A 2后滴进铝杯B 1、B 2,当滴了一段时间后,原均不带电的两铝杯间会有几千伏的电势差。试分析其原理。图中铝筒A 1用导线与铝杯B 2相连;铝筒A 2用导线与B 1相连。

3.受迫振动的稳定状态由下式给出)cos(?ω+=t A x ,

2

222204)(ωβωω+-=

h

A ,2

20arctan

ω

ωβω?--=。其中

m H h =,而)cos(t H ω为胁迫力,m γβ=

2,其中dt

dx

γ-是阻尼力。有一偏车轮的汽车上有两个弹簧测力计,其中一条的固有振动角频率为102727.39-=s ω,另外一条的固有振动角频率为1'

05454.78-=s ω,在汽车运行

的过程中,司机看到两条弹簧的振动幅度之比为7。设β为小量,计算中可以略去,已知汽车轮子的直径为1m ,则汽车的运行速度为 。

4.核潜艇中238U 核的半衰期为9105.4?年,衰变中有0.7%的概率成为234U 核,同时放出一个高能光子,这些光子中的93%被潜艇钢板吸收。1981年,前苏联编号U137的核潜艇透射到艇外的高能光子被距核源(处理为点状)1.5m 处的探测仪测得。仪器正入射面积为22cm 2,效率为0.25%(每400个入射光子可产生一个脉冲讯号),每小时测得125个讯号。据上所述,可知238U 核的平均寿命τ= 年(693.02ln =),该核潜艇中238U 的质量m = kg (保留两位有效数字)。

二、(20分)如图所示,一内半径为R 的圆筒(图中2R 为其内直径)位于水平地面上。筒内放一矩形物。矩形物中的A 、B 是两根长度相等、质量皆为m 的细圆棍,它们平行地固连在一质量可以忽略不计的,长为R l 3=的矩形薄片的两端。初始时矩形物位

得分 阅卷 复核

https://www.360docs.net/doc/8414611844.html,

https://www.360docs.net/doc/8414611844.html,

https://www.360docs.net/doc/8414611844.html,

得分

阅卷 复核

https://www.360docs.net/doc/8414611844.html,

https://www.360docs.net/doc/8414611844.html,

https://www.360docs.net/doc/8414611844.html,

于水平位置且处于静止状态,A 、B 皆与圆筒内表面接触,已知A 、B 与圆筒内表面间的静摩擦系数μ都等于1。

现令圆筒绕其中心轴线非常缓慢地转动,使A 逐渐升高。

1.矩形物转过多大角度后,它开始与圆筒之间不再能保持相对静止?

答: (只要求写出数值,不要求写出推导过程) 2.如果矩形物与圆筒之间刚不能保持相对静止时,立即令圆筒停止转动。令θ表示A 的中点和B 的中点的连线与整直线之间的夹角,求此后θ等于多少度时,B 相对于圆筒开始滑动。(要求写出必要的推导过程。最后用计算器对方程式进行数值求解,最终结果要求保留三位数字)

三、(17分)斯泰瓦—托尔曼(Stewart-Tolman )效应

1917年,斯泰瓦和托尔曼发现,一绕在圆柱上的闭合线圈,当该圆柱以一定角加速度绕轴旋转时,线圈中会有电流流过。

设有许多匝线圈,每匝线圈的半径为r ,每匝线圈均用电阻为R

得分 阅卷 复核

https://www.360docs.net/doc/8414611844.html,

https://www.360docs.net/doc/8414611844.html,

https://www.360docs.net/doc/8414611844.html,

的细金属导线绕成,线圈均匀地绕在一很长的玻璃圆柱上,圆柱的内部为真空。每匝线圈的位置用粘胶固定在圆柱上,单位长度的线圈匝数为n ,包含每匝线圈的平面与圆柱的轴垂直。

从某一时刻开始,圆柱以角加速度α绕其轴旋转。经过足够长时间后,求圆柱中心处的磁场的磁感应强度B 。设电子的电量e 和质量m 为已知。

四、(20分)一男孩通过交替蹲下和站起的方式来荡秋千。如图所示的是在摆动过程中男孩的质心轨迹。当男孩处于站立姿势时,设秋千转轴到男孩质心的距离为u r ;而当男孩处于下蹲姿势时,秋千

转轴到男孩质心的距离为d r 。设比值072.12101

==u

d

r r ,即男孩站立与下蹲两种姿势时质心

相对于秋千转轴到男孩质心的平均距离只变化大约7%。

得分 阅卷 复核

https://www.360docs.net/doc/8414611844.html,

https://www.360docs.net/doc/8414611844.html,

https://www.360docs.net/doc/8414611844.html,

为了使问题简化,假定秋千质量可以忽略,秋千的摆幅很小,男孩的质量总是集中在其质心上;同时还假定男孩每次从下蹲到站立或者站立到下蹲的过程(即A 到B ,E 到F )与秋千摆动本身相比进行得足够快,因此可以认为从下蹲到站立或者站立到下蹲是瞬间完成的。与此类似,另外两个下蹲过程(从C 到D ,从G 到H )也被假定是瞬间过程。

需要求解的问题是:男孩要将秋千摆动幅度增加一倍,或者说最大角速度增加一倍(即摆动幅度为初始幅度的两倍,或最大角速度为原来的两倍),需要进行多少次(可以用分数表示)摆动才行。

五、(20分)关于齐明点的讨论

1.半径为R 的透明球体,折射率为n ,P 为主轴上一点,位于球心左方

n

R

处,如图所示。求证:从P 点向右发出的任一条光线(不限于近轴光线)经球面折射后,将聚焦于一点,并求出该点Q 的位置。P 、Q 称为齐明点。

2.齐明点概念常用于显微镜的物镜中,以增大显微镜入射光的孔径角。设某显微镜的接物镜(接物镜前方有光射入)是折射率为n 1=1.5,半径为R 1=3mm 的半球,其平底面与物同浸在折射率与物镜材料相同的油中,物即位于一个齐明点上。

试设计物镜组第二个月牙形透镜(在接物镜后)的两球面的半径R 2和R 3及其构形(可作图说明),使其物、像也是齐明点。已知该透镜材料的折射率为n 2=1.6,透镜前球面与第一个透镜后球面的间距为d 1=2.0mm ,透镜中央厚度为d 2=1.5mm ,并估算从第二个透镜出射的光的孔径角 和经两个透镜成像后的放大率k 。

六、(18分)木星的卫食

远在科学家能精确测量光速之前,丹麦天文学家欧罗梅尔

(O.Romer )就研究了木星卫星的星食时间。他通过观测木星的卫星绕木星运动的周期来确定光的速率。图1表示地球E 绕太阳S 的运

动轨道和木星的一个卫星M 绕木星J 的运动轨道。他观测木星的卫星M 相继两次从木星的太阳阴影中出现的时间间隔。卫星处在行星的太阳阴影中,称为卫星食,简称卫食。

得分 阅卷 复核

https://www.360docs.net/doc/8414611844.html,

https://www.360docs.net/doc/8414611844.html,

https://www.360docs.net/doc/8414611844.html,

得分

阅卷 复核 https://www.360docs.net/doc/8414611844.html,

https://www.360docs.net/doc/8414611844.html,

https://www.360docs.net/doc/8414611844.html,

从一系列的卫食的观测可以精确地求出卫食周期,而该周期T 的观察值大小依赖与地球在以连线SJ 作为一根坐标轴的参照系中的相对位置。卫星绕木星转动一周的平均周期为T 0=42小时28分16秒,周期的最大观测值为T 0+15秒。

设观测者(在地球上)处在k θ位置时,看到卫星M 从木星的阴影中出现。当他处在1+k θ位置时,看到

卫星下一次从木星阴影中出现,其

中k =1,2,3,…从以上的观测结果中他得到卫星绕木星公转的表观周期T (t k )依赖于观测时刻t k 。他认为这种表现周期因观测时间而发生的变化,是观测过程中地球相对于木星的距离d 发生变化造成的。请你从以上材料推断估算光速,并计算相对误差大小。

七、(20分)如图所示的圆柱形容器,其截面积221070.1m S -?=,器壁绝热,圆筒内有两个以弹簧相连接的绝热活塞,弹簧的劲度系数为141050.1-??=m N k ,筒中部有一带孔的固定隔板,筒壁上有开口,与大气相通。整个装置的结构及尺寸如图。容器左、右端气

室中分别盛有同种的理想气体,左室中有一电加热器。已知:大气压强Pa p 501000.1?=;电加热器未加热强两室气体均处于平衡态,温度均为T 0=300K ,压强均为p 0;活塞的位置如图所示,l 0=0.100m ;如果通过加热器对左室气体不断地徐徐加热,弹簧长度的最大改变量

m l m 21040.7-?=;理想气体的绝热过程遵循的规律为=a pV 恒量;筒内气体的摩尔内能

得分 阅卷 复核

https://www.360docs.net/doc/8414611844.html,

https://www.360docs.net/doc/8414611844.html,

https://www.360docs.net/doc/8414611844.html,

与温度的关系为1

-=

a RT

U m ,式中T 为气体的热力学温度,R 为摩尔气体常量。求当左气室吸热为Q =1000J 时,左、右两室气体的温度和压强。设活塞与筒壁的摩擦可忽略不计,且不漏气。计算过程各量均取三位有效数字。

八、(20分)氢原子模型的拓展

1.在经典的氢原子模型中,电子围绕原子核做圆周运动,电子的向心力来自于核电场的作用。可是,经典的电磁理论表明电子做加速运动会发射电磁波,其发射功率可表示为(拉莫尔公式):

223

6e a P c πε=,其中a 为电子的加速度,c 为真空光速,112010854.841

--??==m F k πε,电子电荷量绝对值e =1.602?10-19C 。若不考虑相对论效应,试估计在经典模型中氢原子的寿命τ 。(实验测得氢原子的结合能是13.6H E eV =,电子的静止质量3109.10910m kg -=?)

得分 阅卷 复核

https://www.360docs.net/doc/8414611844.html,

https://www.360docs.net/doc/8414611844.html,

https://www.360docs.net/doc/8414611844.html,

2.带点粒子加速后发射的电磁波也有重要的应用价值。当代科学研究中应用广泛的同步辐射即是由以接近光速运动的电子在磁场中作曲线运动改变运动方向时所产生的电磁辐射,电子存储环是同步辐射光源装置的核心,存储环中的电子束团通过偏转磁铁等装置产生高性能的同步辐射光。上海光源是近年来建成的第三代同步辐射光源,它的部分工作参数如下:环内电子能量 3.50E GeV =,电子束团流强300I mA =,周长L =432m ,单元数(装有偏转磁铁的弯道数量)N =20,偏转磁铁磁场的磁感应强度B=1.27T 。使计算该设备平均每个光口的辐射总功率P 0。

(在电子接近光速时,若动量不变,牛顿第二定律仍然成立,但拉莫尔公式不再适用,

相应的公式变化为2243

6e a P c γπε=?,其中20E m c γ=,E 为电子总能量,2

0m c 为电子的静止能量。)

第28届全国中学生物理竞赛复赛模拟试卷

参考解答与评分标准

(全国中学生物理竞赛委员会及西安交通大学物理系)

一、参考解答: 1.

r 209153,r 3

2

2.本装置的几何结构尽管十分对称,但由于空气中离子分布及宇宙射线等因素的不确定性,使铝筒A 1、A 2的电势会略有不同。譬如,A 1的电势比A 2高,由于静电感应,使A 1上方的水滴带负电,A 2上方的水滴带正电,带电水滴分别滴入下方的铝杯后,使B 1杯带负电,由于B 1与A 2用导线相连,又使A 2电势进一步降低,同理A 1电势则进一步升高,这又使A 1上方的水滴带更多的负电,A 2上方的水滴带更多的正电,如此下去,使铝杯B 2的电势越来越高,B 1的电势越来越低,最终可使两铝杯间产生几千伏的电势差。当然,由于各种因素的不确定性,下次实验开始时,可能A 2的电势比A 1高,最终使B 1的电势比B 2的电势高几千伏。但A 1、A 2因偶然因素造成的电势差因上述正反馈效应而得到放大却是不变的。

【点评】物理系统的对称性因某种原因受到破坏,这种现象称为对称破缺。对称破缺在物理学的许多分支及其他许多学科里已成为一个重要的概念。本题是这方面的一个例子。 3.50km /h

722'022

21=--=ω

ωωωA A

由题目给出的条件得到汽车的胁迫力的角频率为177.27-=s ω,而车轮转动的频率为

Hz f 42.42==

π

ω

,这样汽车的速度为s km s m rf r v /50/885.132≈===πω 4.91049.6?;30

评分标准:本题25分.

第1小问7分.第一空2分,第二空5分 第2小问7分. 第3小问5分. 第4小问6分.第一空3分,第二空3分

二、参考解答: 1.90°

2.当矩形物处于竖直位置即00=θ时,B 不会滑动,矩形物静止。当圆筒缓慢转动使θ刚超过0°时,A 将离开圆筒内表面而开始倾倒,按题意此时圆筒已停止转动。假定B 仍不动,此后,A 在竖直平面内从静止开始绕B 做圆周运动,圆周运动的径向方程(牛顿第二定律)为

T mg l

v m -=θcos 2

(1) 这里v 表示A 的速度。T 是刚性薄片对A 的作用力,规定其方向从B 到A 为正。根据能量守恒,有

2

2

1)cos 1(mv mgl =

-θ (2)

联立(1)、(2)式,得

)2cos 3(-=θmg T (3)

如果令T =0,可得

2.48)3

2arccos(==θ°

显见,2.48<θ°时,作用力是径向正向,对A 是推力;02.48>θ时,作用力是径向反向,

对A 是拉力。

现在再来看前面被假定不动的B 是否运动。我们可以在B 处画圆桶内表面的切面,它与水平面成30°夹角,因为假定B 不动,其加速度为零,所以B 在垂直于切面方向的受力方程为

0)30cos(30cos 00=--=⊥θT mg f (4)

这里⊥f 是圆筒内壁对B 的支持力。由(4)式和(3)式可以论证,

如果在θ等于60°(A 将与圆筒相碰)之前B 不动,则⊥f 必将始终不等于零,这就是说,在B 开始滑动以前,B 不会离开筒壁。B 对筒壁的正压力是⊥f 的反作用力,大小和⊥f 相同。式中的T 是刚性薄片对B 的作用力,它和(1)式中的T 大小相等(因薄片质量不计)。由于1=μ,所以最大静摩擦力f max 的大小就等于正压力。

)30cos(30cos 00max θμ-+==⊥T mg f f (5)

其方向是沿切面方向。沿切面方向除摩擦力外,B 还受到其他力

)30sin(30sin 00θ-+=T mg f ∥ (6)

只要∥f 不大于最大静摩擦力,B 就不滑动。这个条件写出来就是

max f f ≤∥ (7)

B 滑动与否的临界点就应由max f f =∥求出,即

)30sin(30sin )30cos(30cos 0000θθ-+=-+T mg T mg (8)

将(3)式的T 代入(8)式,化简后得方程

01]sin )32()[cos 2cos 3(=+++-θθθ (9)

这个方程可用数值求解,即取不同的θ值代入逐步逼近,最后可得

09.54=θ (10)

θ超过此值,B 将开始滑动。 评分标准:本题20分. 第1小问5分.

第2小问15分.(3)式4分,(4)、(5)、(6)式均2分,(7)或(8)式2分,(10)式3分.

三、参考解答:

先考虑一个圆环。

考虑环的一小部分,并引进该小部分在其中静止的参照系。环以恒定的角加速度α运动,于是,我们引进的参照系不是惯性系,它具有一定的线加速度。此加速度的径向分量可不必考虑,因为环很细,观察不到任何径向效应。加速度的切向分量为r α。在我们所取的参照系中,形成金属晶格的正离子处于静止状态。在此参照系中有惯性力作用在电子上,此力的大小为αmr ,方向与上述切向加速度方向相反。

晶格与电子间的相互作用下不允许电子无限制地增加速度。根据欧姆定律,此相互作用随电子相对晶格的速度的增大而增大。某一时刻,惯性力与这种相互作用造成的阻力会达到平稳。结果,正离子与负的电子以不同的速度运动。这就是说,在正离子静止的参照系中将有电流流过。

此惯性力大小是常量,方向在环的每一部分均与环相切,它对电子的作用与一个在每一点上与环相切的虚拟电场相同。

现来求此虚拟电场的大小。显然,此电场的作用力应等于惯性力。由此

αmr eE = (1)

因而

e

mr E α

=

(2) 在电阻为R 的环(静止)中,上述电场将产生电流

R

rE

I π2=

(3) 于是,在所考察的环中的电流应为

eR

m r I α

π22=

(4) 诚然,场是虚拟的电场,但它描述了惯性力对电子的一种真实作用。环中的电流是真实的。

以上想法可用来处理题中所述单位长度有n 匝线圈(沿对称轴)的很长螺线管的问题,其中流有电流I 。大家知道,在此螺线管中,磁场B 的大小均匀(在远离两端处),其值为

nI B 0μ= (5)

式中0μ为真空磁导率。由于轴上一点不转动,不论在转动非惯性系中还是在实验室参照系中均静止不动,因而在实验室参照系中,在轴的中心处的磁场为

eR

nmr B α

πμ202=

(6) 【点评】本题颇有启发性。因为,尽管环是电中性的,但出人意料,由于金属的特殊结构,螺线管中却会出现磁场。因此,英语里的电学名词“电动势(electromotive force )”中会含有力学名词“力(force )”也就变得容易理解了。 评分标准:本题17分.

(1)或(2)式3分,(3)式3分,(4)式4分,(5)式3分,(6)式4分.

四、参考解答:

当0=θ时,即秋千摆至最低点时,由于小孩在秋千上由蹲姿到立姿的转换时间极短,

故在由A 到B 以及由E 到F 的过程中,相对于秋千上方的悬挂点而言,作用于小孩的合力矩为零,故小孩的角动量守恒。设

m =小孩的质量;

r =小孩的质心至秋千悬挂点的距离; ω=秋千相对于悬挂点的角速度;

ω2mr L ==小孩相对于悬挂点的角动量。

当小孩由蹲姿转换到立姿时,即从A 到B 或由E 到F ,其质心至悬挂点的距离由d r 变至u r ,所对应的角速度由d ω变至u ω,由角动量守恒定律得

u

u d d mr mr ωω2

2= (1) d u

d u r r ωω2)(= (2)

亦即当秋千在最低点时,小孩每一次由蹲姿站起来摆荡时,角速率增加2

)(

u

d r r 倍。 当秋千从B 摆至C 的过程中,机械能守恒,故小孩的重力势能的增加量等于动能的减少量,即

2

22

1)cos 1(u u u mr mgr ωθ=

- (3) 当秋千摆至C 时,小孩由站姿转换为蹲姿,因此其质心至悬挂点的距离,由r u 变长为r d ,即质心的位置从C 变至D ,因此质心的重力势能已改变。当秋千从D 摆至E 时,设其

角速率为'

d ω,则同理利用机械能守恒定律,可得

2

'22

1)cos 1(d d d mr mgr ωθ=

- (4) 由(3)、(4)两式可得

2

2

'

u d

u d r r ωω= (5) 将(2)式代入(5)式,可得

2

42

')(d u

d d u d r r r r ωω?= d u

d d

r r ωω23

')(= (6)

即秋千每摆荡半圈时,其角速率增加23

)(u

d r r 倍;因此每摆荡一圈,则角速率增加3)(u d r r 倍。

秋千摆荡的角幅和其在最低点的角速率成正比。若秋千摆荡n 圈后,角幅增为起始时的两倍,

103310132

)2()(2n

n n

u

d r r === 3

10

=

n (7) 评分标准:本题20分.

(1)或(2)式4分,(3)、(4)式均3分,(5)式3分,(6)式4分,(7)式3分.

五、参考解答:

1.考察自P 发出的任一光线PA ,设其与主轴夹角为θ,如图所示。设光线在球面上入射角为i ,折射角为r ,由折射定律

n

r i 1

sin sin = (1) 在△PCA 中应用正弦定理,有

R r

n

R i sin sin = (2) 比较(1)、(2)两式,在θ为锐角的情况下(r 必为锐角),有

r =θ (3) 而r =∠QAC ,Q 为折射光的反向延长线与主轴交点,于是△QAC ∽△APC ,及

n

R R

R

QC =,即 nR QC = (4)

与θ角无关,得证。

2.两透镜的几何位形如图所示。

设C 1为接透镜(L 1)的球心,从S (物)发出的光经L 1折射后成像于S ’。由上小题可知111'R n C S =,则

R n R R n O S )1('11111+=+=。应使

S ’发出的光无折射地进入第二个透镜(L 2)的前球面,故S ’为前球面中心,且前球面半径

mm d R n d O S O S R 5.9)1(''1111122=++=+== (5)

为使S ’位于L 2的齐明点,又使L 2的中央厚度为d 2,应有

2

3

33'n R R O S +

= (6)

2111223)1('d d R n d R O S +++=+= (7)

由(6)、(7)两式可解得后球面半径

mm n d d R n R 77.611)1(2

2

1113=++++=

(8)

图中''S 为S ’经L 2后所成的像])1(''[323R n O S +=,C 3为后球面的球心。

S 发出的光的孔径角α满足

11

11

tan n n R R ==

α (9) S 经L 1所成像S ’的孔径角设为1β,则

1

11111

tan n R n R ==

β (10) 1β又是L 2的物点的孔径角,1β则为最后的像''S 的孔径角。由图不难看出,

'

''cos sin '

''cos 'sin 'tan 121211S S R R S S A S A S +≈

+=

βββββ(忽略透镜边缘厚度) (11)

32

321

'''R n R n S S -

= (12) 032

2121

20.20)1(cos sin arctan

=-

+=∴R n n R R βββ (13)

76.52

2212

222111121=?=?=

?=∴n n n R R n n R R n k k k (14) 【点评】本题是齐明点概念在显微镜物镜中的应用,这种物镜称为油浸物镜,是显微镜

物镜的主要形式之一。

评分标准:本题20分.

第1小问6分.(1)式1分,(2)式2分,(3)式1分,(4)式2分.

第2小问14分.作图3分,(5)式2分,(8)式3分,(11)式2分,(13)式2分,(14)式2分.

六、参考解答:

假定地球和木星的轨道均为圆形,则向心力=太阳的引力,有

E E

E

E S E R v M R M GM 2

2

= (1) J

J

J

J S J R v M R M GM 2

2

= (2) 其中G 为引力常量,M S 为太阳质量,M E 为地球质量,M J 为木星质量,R E 为地球轨道半径,

R J 为木星轨道半径,v E 为地球公转速度,v J 为木星公转速度。因而

2)(J

E E J v v

R R = (3) 已知

E

E

E

E v R T πωπ

22=

=

(4) J

J

J

J v R T πωπ

22=

=

(5) (4)、(5)两式相比,得

2

3

)(J E J

J E E

J E R R v R v R T T == (6) 由此得

km T T

R R E

J E J 632

108.779)(?== (7)

相对角速度

day rad J E /0158.0=-=ωωω (8)

相对速度

s km R v E /3.27==ω (9)

木星与地球距离可表示为

E J R R t d -=)( (10)

t R R R R t d J E E J ωcos 2)(22-+=

21

]cos 21[ +-≈t R R

R J

E J ω

)cos 1( +-

≈t R R R J

E

J ω (11) 上述表达式的相对误差[由略去的

J

E

R R 的平方项引起]的数量级为 %4)(

2

≈J

E R R (12) 当观测者在距离)(t d 时看到卫星M 从阴影中出现,当他在距离)(0T t d +时看到卫星下一次从阴影中出现。光行进距离)()(0t d T t d d -+=?需要时间,因而观测者看到的是表观周期T 而非真实周期T 0。

t T R T t t R d e E ωωωωsin )](cos [cos 00≈+-=? (13)

因为03.00≈T ω,00sin T T ωω≈,1cos 0≈T ω。我们也可从图的几何关系中直接得到上述近似表达式。

我们也可用另一种方法计算d ?。由图得

αφβ+= (14) 2

2

π

θβω=

++T (15)

)2

sin(cos )(0

00φωωωαω++

=≈?T t R T R T t d E E (16)

而03.00≈T ω,及19.0≈<

J

E

R R φ,故t T R d e ωωsin 0≈? c

t T R T c t d T T E ωωsin )

(000+=?+

≈ (17)

当2

π

ω=

t 时观测者观察到最大周期;当2

ω=

t 时观测到最小周期;当0=t ω和π时观测到真实周期。

由 c

T R T T E 0

0max ω+= 得

s c

T R E 150

=ω (18) 代入数据可得

s km c /1078.215

1053.11082.1106.1495576?=?????=- (19)

我们可估算由距离平方比2

)(

J

E R R 产生的相对误差约为4%,由时间测量产生的相对误差约为%4.3%10015

5

.0=?,故总的相对误差约为7.4%。另一误差来自轨道为圆形的假定,实际上轨道是椭圆的,其相对误差约为

%5.1%100max ≈-?

E

E

E R R R (20)

评分标准:本题17分.

(7)式2分,(8)式1分,(9)式2分,(12)式2分,(13)式3分,(17)式3分,(19)式2分,(20)式2分.

七、参考解答:

i )对加热过程作分析

开始时弹簧的弹力为零,弹簧长度为自然长度,左、右室气体的温度、压强、体积均相同,由此可知它们的物质的量也相同,设为n ,则有

mol RT V p n 0682.00

0==

(1) 开始加热后左室气体的温度和压强均缓慢增大,从而推动左活塞右移,压缩弹簧。被压缩的弹簧又推动右活塞右移,压缩右室气体。整个过程是:左室气体吸热膨胀,右室气体绝热压缩,弹簧被压缩,活塞对大气做功,部分大气被排出筒外。此过程进行至左活塞右移距离为l 0后情况发生变化。此时左活塞与隔板相接触,左室气体压强再升高时活塞不再右移,弹簧不再被进一步压缩,弹簧的压缩量达到最大值,右室气体状态此后不再发生变化。题给条件Q =1000J 相当于何种情况,是左活塞右移小于l 0还是等于l 0,需要通过计算得出左活塞刚好右移l 0所需热量Q 0,然后比较Q 与Q 0的大小才能作出判断。

ii )左活塞右移距离刚达到l 0时左室电加热器提供的热量Q 0

设此时右活塞右移距离为x ,则弹簧的压缩量,即弹簧长度的最大改变量为

m x l l m 201040.7-?=-= (2)

左、右室气体的压强为

Pa S

kl p p p m

50211065.1?=+

== (3) 左、右室气体体积分别为

3301104.32m S l V -?== (4) 33021026.1)(m S l S x l V m -?==-= (5)

由气体定律可求得左、右室气体的温度分别为

K T V p V p T 99000

01

11==

(6) K T V p V p T 36700

02

22==

(7) 以左、右两室气体、活塞和弹簧作为一个系统,根据热力学第一定律有

W E U Q +?+?=弹0 (8)

其中U ?为气体内能的增量,弹E ?为弹簧弹性势能的增量,W 为两个活塞对大气所做的功,它们的数值分别为

)2(1

)(1)(10210201T T T a nR

T T a nR T T a nR U -+-=--+--=

? (9) J kl E m 412

12

==?弹 (10)

J Sl p Sx p Sl p W m 1260000==-= (11)

iii )为求出U ?的值,必须先求出a 的值,方法如下: 由于右室气体遵从绝热过程的方程式,即=a pV 恒量,因而有

a a V p V p 2200= (12)

两边取对数可得

67.1lg lg lg lg

00

2

2002===m

l l p p

V V p p a (13)

将有关数据代入(9)式可得

J U 640=? (14)

因此

J J Q 807)12641640(0=++= (15)

iv )Q=1000J 时,左、右两室气体的温度和压强

如前所述,当电加热器提供807J 的热量时左活塞就与隔板相接触,此后右室气体的状态不再改变,故当Q=1000J 时,右室气体的温度仍为

K T 367'2= (16)

右室气体的压强仍为

Pa p 5'21065.1?= (17)

此后提供的热量全部用于增加左室气体的内能,即

)(1

)8071000(1'1T T a nR

J Q --=

-=? (18) 代入数据解得左室气体的温度为

K T 3'11022.1?= (19)

左室气体的压强为

Pa p T T p 511

'

1'1

1003.2?== (20)

评分标准:本题20分.

(1)式2分,(2)式1分,(4)、(5)式均1分,(6)、(7)式均1分,(9)、(10)、(11)式各1分,(15)式3分,(16)式2分,(17)式1分,(18)、(19)式各1分,(20)式2分.

八、参考解答:

1.由方程 F ma = (1)

2

v a r

= (2)

2

2

014e F r

πε= (3) 可推导出电子的总能量为

2

00

8e U r πε-= (4)

由条件13.6H E eV =-推导出氢原子的轨道半径和运动速度分别为: 11

0 5.2910

r m -=? (5)

6

0 2.1910/v m s =? (6) 由拉莫尔公式得初始发射功率

22306e a P c πε=6

33324

00

96e c m r πε= (7)

在微小的时间间隔t ?中,辐射使电子的总能量U 减少

U P t ?=-? (8)

22

2

0011()88e e U r r r r r

πεπε--=-=?-? (9) 其中r ?为电子轨道半径的减少量,由此可导出时间和半径r 的变化方程:

23222

2

004

124,c m r t r A r r e πεπ?=?=?? (10) 其中322

04

3c m

A e πε=。

构造一个半径为r 0 的球体,则2

4r r π?即为距离球心为r 的薄球壳的体积,在0r 到0的求和过程中可以算出球的体积为3

043

r π。对应本题情况解出电子轨道从0r 减少到0所需的时间为

23223

00

4

4c m r t e

πετ=?=∑ (11) 代入数据,得:

11

1.5610

s τ-=? (12)

2.对于高能电子有 v c = (13) 2

E mc = (14)

2

v a r

= (15)

F eBc = (16) F ma = (17) 以上条件可以得出电子的偏转半径: E

R ecB

= (18) 储存环中的电子数量:

Q I t n e e

?=

= (19) 其中t ?为电子旋转一圈所花费的时间。由(15)式及辐射条件可得每个电子每圈损失的总

能量为(电子在直道上不辐射能量): 22424

300263neu

e a R e E c c R

γπγπεε=?=

(20) 由(19)(20)得到存储环中的电子消耗的总功率为:

第21届全国中学生物理竞赛复赛题参考解答

第21届全国中学生物理竞赛复赛题试卷 一、(20分)薄膜材料气密性能的优劣常用其透气系数来加以评判.对于均匀薄膜材料,在一定温度下,某种气体通过薄膜渗透过的气体分子数d P S t k N ?=,其中t 为渗透持续时间,S 为薄膜的面积,d 为薄膜的厚度,P ?为薄膜两侧气体的压强差.k 称为该薄膜材料在该温度下对该气体的透气系数.透气系数愈小,材料的气密性能愈好. 图为测定薄膜材料对空气的透气系数的一种实验装置示意图.EFGI 为渗透室,U 形管左管上端与渗透室相通,右管上端封闭;U 形管内横截面积A =0.150cm 2.实验中,首先测得薄膜的厚度d =0.66mm ,再将薄膜固定于图中C C '处,从而把渗透室分为上下两部分,上面部分的容积30cm 00.25=V ,下面部分连同U 形管左管水面以上部分的总容积为V 1,薄膜能够透气的面积S =1.00cm 2.打开开关K 1、K 2与大气相通,大气的压强P 1=1.00atm ,此时U 形管右管中气柱长度cm 00.20=H ,31cm 00.5=V .关闭K 1、K 2后,打开开关K 3,对渗透室上部分迅速充气至气体压强atm 00.20=P ,关闭K 3并开始计时.两小时后, U 形管左管中的水面高度下降了cm 00.2=?H .实验过程中,始终保持温度为C 0 .求该薄膜材料在C 0 时对空气的透气系数.(本实验中由于薄膜两侧的压强差在实验过程中不能保持恒定,在压强差变化不太大的情况下,可用计时开始时的压强差和计时结束时的压强差的平均值P ?来代替公式中的P ?.普适气体常量R = 8.31Jmol -1K -1,1.00atm = 1.013×105Pa ). 二、(20分) 两颗人造卫星绕地球沿同一椭圆轨道同向运动,它们通过轨道上同一点的时间相差半个周期.已知轨道近地点离地心的距离是地球半径R 的2倍,卫星通过近地点时的速度R GM 43=v ,式中M 为地球质量,G 为引力常量.卫星上装有同样的角度测量仪,可测出卫星与任意两点的两条连线之间的夹角.试设计一种测量方案,利用这两个测量仪测定太空中某星体与地心在某时刻的距离.(最后结果要求用测得量和地球半径R 表示) 三、(15分)μ子在相对自身静止的惯性参考系中的平均寿命s 100.260-?≈τ.宇宙射线与大气在高空某处发生核反应产生一批μ子,以v = 0.99c 的速度(c 为真空中的光速)向下运动并衰变.根据放射性衰变定律,相对给定惯性参考系,若t = 0时刻的粒子数为N (0), t 时刻剩余的粒子数为N (t ),则有()()τt N t N -=e 0,式中τ为相对该惯性系粒子的平均寿命.若能到达地面的μ子数为原来的5%,试估算μ子产生处相对于地面的高度h .不考虑重力和地磁场对μ子运动的影响. 四、(20分)目前,大功率半导体激光器的主要结构形式是由许多发光区等距离地排列在一条直线上的长条状,通常称为激光二极管条.但这样的半导体激光器发出的是很多束发散光束,光能分布很不集中,不利于传输和应用.为了解决这个问题,需要根据具体应用的要求,对光束进行必需的变换(或称整形).如果能把一个半导体激光二极管条发出的光变换成一束很细的平行光束,对半导体激光的传输和应用将是非常有意义的.为此,有人提出了先把多束发散光会聚到一点,再变换为平行光的方案,其基本原理可通过如下所述的简化了的情况来说明. 如图,S 1、S 2、S 3 是等距离(h )地排列在一直线上的三个点光源,各自向垂直于它们的连线的同一方向发出半顶角为α =arctan ()41的圆锥形光束.请使用三个完全相同的、焦距为f = 1.50h 、半径为r =0.75 h 的圆形薄凸透镜,经加工、组装成一个三者在同一平面内的组合透镜,使三束光都能全部投射到这个组合 C E F

第届全国中学生物理竞赛复赛试题及答案

第届全国中学生物理竞赛复赛试题及答案 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

第23届全国中学生物理竞赛复赛试卷 一、(23分)有一竖直放置、两端封闭的长玻璃管,管内为真空,管内有一小球自某处自由下落(初速度为零),落到玻璃管底部时与底部发生弹性碰撞.以后小球将在玻璃管内不停地上下跳动。现用支架固定一照相机,用以拍摄小球在空间的位置。每隔一相等的确定的时间间隔T 拍摄一张照片,照相机的曝光时间极短,可忽略不计。从所拍到的照片发现,每张照片上小球都处于同一位置。求小球开始下落处离玻璃管底部距离(用H 表示)的可能值以及与各H 值相应的照片中小球位置离玻璃管底部距离的可能值。 二、(25分)如图所示,一根质量可以忽略的细杆,长为2l ,两端和中心处分别固连着质量为m 的小球B 、D 和C ,开始时静止在光滑的水平桌面上。桌面上另有一质量为M 的小球A ,以一给定速度0v 沿垂直于杆DB 的方间与右端小球B 作弹性碰撞。求刚碰后小球A,B,C,D 的速度,并详细讨论以后可能发生的运动情况。 三、(23分)有一带活塞的气缸,如图1所示。缸内盛有一定质量的气体。缸内还有一可随轴转动的叶片,转轴伸到气缸外,外界可使轴和叶片一起转动,叶片和轴以及气缸壁和活塞都是 绝热的,它们的热容量都不计。轴穿过气缸处不漏气。 如果叶片和轴不转动,而令活塞缓慢移动,则在这 种过程中,由实验测得,气体的压强p 和体积V 遵从以下的过程方程式 图1 其中a ,k 均为常量, a >1(其值已知)。可以由上式导出,在此过程中外界对气体做的功为 式中2V 和1V ,分别表示末态和初态的体积。 如果保持活塞固定不动,而使叶片以角速度ω做匀角速转动,已知在这种过程中,气体的压强的改变量p ?和经过的时间t ?遵从以 图2 下的关系式 式中V 为气体的体积,L 表示气体对叶片阻力的力矩的大小。 上面并没有说气体是理想气体,现要求你不用理想气体的状态方程和理想气体的内能只与温度有关的知识,求出图2中气体原来所处的状态A 与另一已知状态B 之间的内能之差(结果要用状态A 、B 的压强A p 、B p 和体积A V 、B V 及常量a 表示) 四、(25分)图1所示的电路具有把输人的交变电压变成直流电压并加以升压、输出的功能,称为整流倍压电路。图中1D 和2D 是理想的、点接触型二极管(不考虑二极管的电容),1C 和2C 是理想电容器,它们的电容都为C ,初始时都不带电,G 点接地。现在A 、G 间接上一交变电源,其电压A u ,随时间t 变化的图线如图2所示.试

2020年第27届全国中学生物理竞赛复赛试卷及答案 精品

第 27 届全国中学生物理竞赛复赛试卷 本卷共九题,满分 160 分.计算题的解答应写出必要的文字说明、方程式和重要的演算步骤.只写出最后结果的不能得分.有数字计算的题.答案中必须明确写出数值和单位.填空题把答案填在题中的横线上,只要给出结果,不需写出求解的过程. 一、( 15 分)蛇形摆是一个用于演示单摆周期与摆长关系的实验仪器(见图).若干个摆球位于同一高度并等间距地排成一条直线,它们 的悬挂点在不同的高度上,摆长依次减小.设重 力加速度 g = 9 . 80 m/ s2 , 1 .试设计一个包含十个单摆的蛇形摆(即求 出每个摆的摆长),要求满足: ( a )每个摆的 摆长不小于 0 . 450m ,不大于1.00m ; ( b ) 初始时将所有摆球由平衡点沿 x 轴正方向移动 相同的一个小位移 xo ( xo <<0.45m ) ,然后同 时释放,经过 40s 后,所有的摆能够同时回到初 始状态. 2 .在上述情形中,从所有的摆球开始摆动起,到它们的速率首次全部为零所经过的时间为________________________________________. 二、( 20 分)距离我们为 L 处有一恒星,其质量为 M ,观测发现其位置呈周期性摆动,周期为 T ,摆动范围的最大张角为△θ.假设该星体的周期性摆动是由于有一颗围绕它作圆周运动的行星引起的,试给出这颗行星的质量m所满足的方程. 若 L=10 光年, T =10 年,△θ = 3 毫角秒, M = Ms (Ms为太阳质量),则此行星的质量和它运动的轨道半径r各为多少?分别用太阳质量 Ms 和国际单位 AU (平均日地距离) 作为单位,只保留一位有效数字.已知 1 毫角秒=1 1000角秒,1角秒= 1 3600 度,1AU=1.5×108km, 光速 c = 3.0 ×105km/s.

第13届全国中学生物理竞赛复赛试题及解答

第十三届全国中学生物理竞赛复赛试题 1.如图所示,有一由匀质细导线弯成的半径为α的圆线和一内接等边三角形的电阻丝组成的电路(电路中各段的电阻值见图)。在圆线圈平面内有垂直纸面向里的均匀磁场,磁感应强度B随时间t均匀减小,其变化率的大小 为一已知常量k。已知2r 1=3r 2 。求:图中AB两点的电势差U A -U B 。 2.长度为4毫米的物体AB由图所示的光学系统成像,光学系统又一个直角棱镜、一个汇聚透镜和一个发散透镜组成,各有关参数和几何尺寸均标示于图上,求:像的位置;像的大小,并作图说明是实像还是虚像,是正立还是倒立的。 3.如图所示,四个质量均为m的质点,用同样长度且不可伸长的轻绳连接成菱形ABCD,静止放在水平光滑的桌面上。若突然给质点A一个历时极短CA 方向的冲击,当冲击结束的时刻,质点A的速度为V,其他质点也获得一定 的速度,∠BAD=2α(α<π/4)。求此质点系统受冲击后所具有的总动量和总能量。

4.在一个半径为R的导体球外,有一个半径为r的细圆环,圆环的圆心与导体球心的连线长为a(a>R),且与环面垂直,如图所示。已知环上均匀带电,总电量为q,试问: 1.当导体球接地时,球上感应电荷总电量是多少? 2.当导体球不接地而所带总电量为零时,它的电势如何? 3.当导体球的电势为V O 时,球球上总电荷又是多少? 4.情况3与情况1相比,圆环受导体球的作用力改变量的大小和方向如何? 5.情况2与情况1相比,圆环受导体球的作用力改变量的大小和方向如何? 〔注〕已知:装置不变时,不同的静电平衡 带电状态可以叠加,叠加后仍为静电平衡状 态。 5、有一个用伸缩性极小且不漏气的布料制作的气球(布的质量可忽略不计), 直径为d=2.0米,球内充有压强P 1.005×105帕的气体,该布料所能承受 的最大不被撕破力为f m =8.5×103牛/米(即对于一块展平的一米宽的布料,沿布面而垂直于布料宽度方向所施加的力超过8.5×103牛时,布料将被撕 破)。开始时,气球被置于地面上,该处的大气压强为P ao =1.000×103帕, 温度T =293开,假设空气的压强和温度均随高度而线性地变化,压强的变 化为α p =-9.0帕/米,温度的变化为α T =-3.0×10-3开/米,问该气球上升到 多高时将撕破?假设气球上升很缓慢,可以为球内温度随时与周围空气的温度保持一致,在考虑气球破裂时,可忽略气球周围各处和底部之间空气压强的差别。 6.有七个外形完全一样的电阻,已知其中6个的阻值相同,另一个的阻值不同,请按照下面提供的器材和操作限制,将那个限值不同的电阻找出,并指出它的阻值是偏大还是偏小,同时要求画出所用电路图,并对每步判断的根据予以论证。 提供的器材有:1电池;2一个仅能用来判断电流方向的电流表(量程足够),它的零刻度在刻度盘的中央,而且已知当指针向右偏时电流是由哪个接线柱流入电流表的;3导线若干 操作限值:全部过程中电流表的使用不得超过三次。

第24届全国中学生物理竞赛复赛试题及详解(WORD版)

第24届全国中学生物理竞赛复赛试卷 (本题共七大题,满分160分) 一、(20分)如图所示,一块长为m L 00.1=的光滑平板PQ 固定在轻质弹簧上端,弹簧的下端与地面固定连接。平板被限制在两条竖直光滑的平行导轨之间(图中未画出竖直导轨),从而只能地竖直方向运动。平板与弹簧构成的振动系统的振动周期s T 00.2=。一小球B 放在光滑的水平台面上,台面的右侧边缘正好在平板P 端的正上方,到P 端的距离为m h 80.9=。平板静止在其平衡位置。水球B 与平板PQ 的质量相等。现给小球一水平向右的速度0μ,使它从水平台面抛出。已知小球B 与平板发生弹性碰撞,碰撞时间极短,且碰撞过程中重力可以忽略不计。要使小球与平板PQ 发生一次碰撞而且只发生一次碰撞,0μ的值应在什么范围内?取2 /8.9s m g = 二、(25分)图中所示为用三角形刚性细杆AB 、BC 、CD 连成的平面连杆结构图。AB 和CD 杆可分别绕过A 、D 的垂直于纸面的固定轴转动,A 、D 两点位于同一水平线上。BC 杆的两端分别与AB 杆和CD 杆相连,可绕连接处转动(类似铰链)。当AB 杆绕A 轴以恒定的角速度ω转到图中所示的位置时,AB 杆处于竖直位置。BC 杆与CD 杆都与水平方向成45°角,已知AB 杆的长度为l ,BC 杆和CD 杆的长度由图给定。求此时C 点加速度c a 的大小和方向(用与CD 杆之间的夹角表示) 三、(20分)如图所示,一容器左侧装有活门1K ,右侧装有活塞B ,一厚度可以忽略的隔板M 将容器隔成a 、b 两室,M 上装有活门2K 。容器、隔板、活塞及活门都是绝热的。隔板和活塞可用销钉固定,拔掉销钉即可在容器内左右平移,移动时不受摩擦作用且不漏气。整个容器置于压强为P 0、温度为T 0的大气中。

全国中学生物理竞赛——复赛模拟卷

物理竞赛模拟试题 1.试证明:物体的相对论能量E 与相对论动量P 的量值之间有如下关系: 20222E c p E += 2. 在用质子)(11P 轰击固定锂)(7 3Li 靶的核反应中,(1)计 算放出α粒子的反应能。(2)如果质子能量为1兆电子伏特, 问在垂直质子束的方向观测到α粒子的能量有多大?有关原 子核的质量如下:H 1 1 ,1.007825;He 42,4.002603;Li 7 3, 7.015999. 3. 一个处于基态的氢原子与另一个静止的基态氢原子碰撞。问可能发生非弹性碰撞的最小速度为多少?如果速度较大而产生光反射,且在原速度方向和反方向可以观察到光。问这 种光的频率与简正频率相差多少?氢原子的质量为1.67×10-27 kg ,电离能 J eV E 181018.26.13-?==。 4. 如图11-136所示,光滑无底圆筒重W ,放两个重量均为G 的光滑球,圆筒半径为R ,球半径为r ,且r

历届全国初中物理竞赛热与能

最近十年初中应用物理知识竞赛题分类解析专题13--热和能 一、选择题 典例3(2011上海第25界初中物理竞赛)当物体中存在温度 差时,热量会从温度高的地方向温度低的地方传递。对于一 长度为L 、横截面积为S 的均匀金属棒,当两端的温度差稳 定为△T 时,△t 时间内从高温端向低温端传递的热量△Q 满足关系式: t L T kS Q ??=?.;其中k 为棒的导热系数。如图所示,长度分别为L 1、L 2,导热系数分别为k 1、k 2,的两个横截面积相等的细棒在D 处紧密对接,两金属棒各自另一端分别与温度为400开、300开的恒定热源良好接触。若L 1∶L 2=1∶2,k 1∶k 2=3∶2,则在稳定状态下,D 处的温度为 ( ) A .375开 B .360开 C .350开 D .325开 解析:设在稳定状态下,D 处的温度为T ,则对于长度为L 1的细棒,()11 400-k S T Q t L ?=?,对于长度为L 2的细棒,()22 300k S T Q t L -?=?,联立解得T=375K ,选项A 正确。 .答案:A

【点评】此题考查热传递及其相关知识。 典例4.(2011上海第25界初中物理竞赛复赛)将一功率为P=500瓦的加热器置于装有水的碗中,经过分钟后,碗中水温从T 1=85℃上升到T 2=90℃,之后将加热器关掉分钟,发现水温下降℃。试估算碗中所装水的质量。 解答:加热器在2分钟内所供应的总热量,等于水温升高所吸收的热量,加上散失到周围环境的热量,即Pt=cm (T 2-T 1)+Q 若水温变化不大,则散失到周围环境的热量与时间成正比。因此加热器关掉1分钟,从热水散失的热量等于Q/2,此热量等于热水温度下降℃所放出的热量,即Q/2=cm△T 从以上两式可以解得Pt=cm (T 2-T 1+2△T) m= ()212Pt c T T T -+?=()35001204.210 5.0+2 1.0????kg=。 【点评】此题考查热量、能量守恒定律及其相关知识。 【竞赛实战训练】 1.(2009全国初中应用物理知识竞赛题)炎热无风的夏天,小宇走在被晒得发烫的柏油路上,看见前面的路面已被一辆洒水车洒水淋湿了。他认为走在淋湿了的路面上一定比走在干燥的路面上感到凉爽,于是赶快走过去,结果在洒过水的路面上,他却感到更加闷热了。你认为产生这种感觉的主要原因是( ) A .洒水车中的水经过曝晒后,内能增大,温度很高

第31届全国中学生物理竞赛复赛试题及答案(精美word版)

第31届全国中学生物理竞赛复赛理论考试试题解答 2014年9月20日 一、(12分) (1)球形 (2)液滴的半径r 、密度ρ和表面张力系数σ(或液滴的质量m 和表面张力系数σ) (3)解法一 假设液滴振动频率与上述物理量的关系式为αβγρσ=f k r ① 式中,比例系数k 是一个待定常数. 任一物理量a 可写成在某一单位制中的单位[]a 和相应的数值{}a 的乘积{}[]=a a a . 按照这一约定,①式在同一单位制中可写成 {}[]{}{}{}{}[][][]αβγαβγρσρσ=f f k r r 由于取同一单位制,上述等式可分解为相互独立的数值等式和单位等式,因而 [][][][]αβγρσ=f r ② 力学的基本物理量有三个:质量m 、长度l 和时间t ,按照前述约定,在该单位制中有 {}[]=m m m ,{}[]=l l l ,{}[]=t t t 于是 [][]-=f t 1 ③ [][]=r l ④ [][][]ρ-=m l 3 ⑤ [][][]σ-=m t 2 ⑥ 将③④⑤⑥式代入②式得[][]([][])([][])αβγ---=t l m l m t 132 即[][][][]αββγγ--+-=t l m t 132 ⑦ 由于在力学中[]m 、[]l 和[]t 三者之间的相互独立性,有 30αβ-=, ⑧ 0βγ+=, ⑨ 21γ= ⑩ 解为311 ,,222αβγ=-=-= ?将?式代入①式得 σρ=f k r 3 解法二 假设液滴振动频率与上述物理量的关系式为αβγρσ=f k r ① 式中,比例系数k 是一个待定常数. 任一物理量a 可写成在某一单位制中的单位[]a 和相应的数值{}a 的乘积{}[]=a a a . 在同一单位制中,①式两边的物理量的单位的乘积必须相等[][][][]αβγρσ=f r ② 力学的基本物理量有三个:质量M 、长度L 和时间T ,对应的国际单位分别为千克(kg )、米(m )、秒(s ). 在国际单位制中,振动频率 f 的单位[]f 为s -1 ,半径r 的单位[]r 为m ,密度ρ的单位[]ρ为 3kg m -?,表面张力系数σ的单位[]σ为1 2 1 2N m =kg (m s )m kg s ----????=?,即有 []s -=f 1 ③ []m =r ④ []kg m ρ-=?3 ⑤ []kg s σ-=?2 ⑥ 若要使①式成立,必须满足 () ()s m kg m kg s (kg)m s β γ αβγαβγ ---+--=??=??13232 ⑦ 由于在力学中质量M 、长度L 和时间T 的单位三者之间的相互独立性,有 30αβ-=, ⑧ 0βγ+=, ⑨

第30届全国中学生物理竞赛复赛试题及参考答案

第30届全国中学生物理竞赛复赛考试试题 一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g . 二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处. 1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量; 2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.

三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令m L λ= 表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为 k E k L αβγλω= 式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值. 2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值. 3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g . 提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为 d (())d d d d d Y X t Y X t X t = 例如,函数cos ()t θ对自变量t 的导数为 dcos ()dcos d d d d t t t θθθθ= 四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为 q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总 是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V .

第28届全国中学生物理竞赛复赛试题及答案(word版)

第28届全国中学生物理竞赛复赛试题 一、(20分)如图所示,哈雷彗星绕太阳S沿椭圆轨道逆时针方向运动,其周期T为76.1年。1986年它过近日点P0时,与太阳S的距离r0=0.590AU,AU是天文单位,它等于地球与太阳的平均距离。经过一段时间,彗星到达轨道上的P点,SP与SP0的夹角θP=72.0°.已知:1AU=1.50×1011m,引力常量G=6.67×10-11m3?kg-1?s-2,太阳质量m S=1.99×1030kg.试求P到太阳S的距离r P及彗星过P点时速度的大小及方向(用速度方向与SP0的夹角表示)。 二、(20分)质量均匀分布的刚性杆AB、CD如图放置,A点与水平地面接触,与地面间的静摩擦因数为μA, B、D两点与光滑竖直墙面接触,杆A B和CD接触处的静摩擦因数为μC,两杆的质量均为m,长度均为l. (1)已知系统平衡时AB杆与墙面夹角θ,求CD杆与墙面的夹角α应满足的条件(用α及已知量满足的方程式表示)。 (2)若μA=1.00,μC=0.866,θ=60.0°,求系统平衡时α的取值范围(用数值计算求出)。

三、(25分)人造卫星绕星球运行的过程中,为了保持其对称轴稳定在规定指向,一种最简单的办法就是让卫星在其运行过程中同时绕自身的对称轴旋转。但有时为了改变卫星的指向,又要求减慢或者消除卫星的旋转。减慢或者消除卫星旋转的一种方法是所谓的“YO—YO”消旋法,其原理如图。 设卫星是一半径为R、质量为M的薄壁圆筒,其横截面如图所示。图中O是圆筒的对称轴。两条足够长的不可伸长的结实的长度相等的轻绳的一端分别固定在圆筒表面上的Q、Q'(位于圆筒直径两端)处,另一端各拴有一质量为m/2的小球。正常情况下,绳绕在圆筒外表面上,两小球用插销分别锁定在圆筒表面上的P0、P0'处,与卫星形成一体,绕卫星的对称轴旋转。卫星自转的角速度为ω0.若要使卫星减慢或停止旋转(消旋),可瞬间撤去插销释放小球,让小球从圆筒表面甩开,在甩开的整个过程中,从绳与圆筒表面相切点到小球的那段绳都是拉直的。当卫星转速逐渐减小到零时,立即使绳与卫星脱离,接触小球与卫星的联系,于是卫星停止转动。已知此时绳与圆筒的相切点刚好在Q、Q'处。试求: (1)当卫星角速度减至ω时绳拉直部分的长度l; (2)绳的总长度L; (3)卫星从ω0到停转所经历的时间t. m /2

物理竞赛复赛模拟卷

物理竞赛复赛模拟卷 1.μ子的电量q=-e(e=1.6×10-19C),静止质量m 0=100MeV/c 2,静止时的寿命τ0=10-6s 。设在地球赤道上空离地面高度为h=104m 处有一μ子以接近于真空中光速的速度垂直向下运动。 1)、试问此μ子至少应有多大总能量才能到达地面?2)、若把赤道上空104m 高度范围内的地球磁场看作匀强磁场,磁感应强度B=10-4T ,磁场方向与地面平行。试求具有第1问所得能量的μ子在到达地面时的偏离方向和总的偏转角。 2. 热中子能有效地使铀235裂变,但裂变时放出的中子能量代谢较高,因此在核反应堆中石墨作减速剂。若裂变放出的中子动能为2.2MeV ,欲使该中子慢化为热中子(动能约为0.025eV ),问需经过多少次对撞? 3. 半径为R 、质量为M 1的均匀圆球与一质量为M 2的重 物分别用细绳,AD 和ACE 悬挂于同一点A ,并处于平衡,如图11-205所示,已知悬点A 到球心O 的距离为L ,不考虑绳的质量和绳与球的摩擦,试求悬挂圆球的绳AD 与竖直方向 AB 北 g

的夹角θ。 4. 火车以速度v 1向前行驶。司机忽然发现,在前方同一轨道上距车为s 处 有另一辆火车,它沿相同的方向以较小的速度v 2作匀速运动,于是他立即使车作匀减速运动,加速度大小为a ,要使两车不致相撞,则a 应满足的关系式为_____________________。 5.如图所示,有一个一端开口、一端封闭的长圆柱形导热容器,将其开口向上竖直放置。在气温为27℃、气压为760mmHg 、相对湿度为75%时,用一质量可不计的光滑薄活塞将开口端封闭。已知水蒸气的饱合蒸气压为26.7mmHg ,在0℃时为4.5mmHg 。(1)若保持温度不变,想通过在活塞上方注入水银加压强的方法使管内开始有水珠出现,那么容器至少为多长?(2)若在水蒸气刚开始凝结时固定活塞,降低容器温度,当温度降至0℃时,容器内气体压强为多大? 6.一个静止的竖直放置的玻璃管,长为H=23cm ,粗细均匀,开口向下,其内有一段长为h=10cm 的水银柱,把长为L 0=10cm 的空气柱封闭在管的上端。设外界大气压强p 0=1.0×105Pa ,求当管以20m/s 2 的加速度上升时,管中封闭的

2016全国初中物理竞赛复赛试题(含答案)

2016全国初中物理竞赛复赛试题(含答案) 初中物理是义务教育的基础学科,一般从初二开始开设这门课程,教学时间为两年。一般也是中考的必考科目。随着新高考/新中考改革,学生的综合能力越来越重要,录取方式也越来越多,三位一体录取方式十分看重学生的课外奖项获取。万朋教育小编为初中生们整理了2016年全国初中物理竞赛试卷和答案,希望对您有所帮助。 第29届全国中学生物理竞赛复赛试卷 本卷共8题,满分160分。 一、(17分)设有一湖水足够深的咸水湖,湖面宽阔而平静,初始时将一体积很小的匀质正立方体物块在湖面上由静止开始释放,释放时物块的下底面和湖水表面恰好相接触。已知湖水密度为ρ;物块边长为b ,密度为'ρ,且ρρ<'。在只考虑物块受重力和液体浮力作用的情况下,求物块从初始位置出发往返一次所需的时间。 解: 由于湖面足够宽阔而物块体积很小,所以湖面的绝对高度在物块运动过程中始终保持不变,因此,可选湖面为坐标原点并以竖直向下方向为正方向 建立坐标系,以下简称x 系. 设物块下底面的坐标为x ,在物块未完全浸没入湖水时,其所受到的浮力为 2b f b x g ρ= ( x b ≤) (1) 式中 g 为重力加速度.物块的重力为 3 g f b g ρ'= (2) 设物块的加速度为a ,根据牛顿第二定律有

3 g b b a f f ρ'=- (3) 将(1)和(2)式代入(3)式得 g a x b b ρρρρ'?? =- - ?'? ? (4) 将x 系坐标原点向下移动/b ρρ' 而建立新坐标系,简称X 系. 新旧坐标的关 系为 X x b ρρ ' =- (5) 把(5)式代入(4)式得 g a X b ρρ=-' (6) (6)式表示物块的运动是简谐振动. 若0X =,则0a =,对应于物块的平衡位置. 由(5)式可知,当物块处于平衡位置时,物块下底面在x 系中的坐标为 0x b ρρ ' = (7) 物块运动方程在 X 系中可写为 ()()cos X t A t ω?=+ (8) 利用参考圆可将其振动速度表示为 ()()sin V t A t ωω?=-+ (9) 式中ω为振动的圆频率 'g b ρωρ= (10) 在(8)和(9)式中 A 和?分别是振幅和初相位,由初始条件决定. 在物块刚被释 放时,即0t =时刻有x =0,由(5)式得

第十九届全国中学生物理竞赛复赛试题(含答案)

第十九届全国中学生物理竞赛复赛试题 一、(20分)某甲设计了1个如图复19-1所示的“自动喷泉”装置,其中A 、B 、C 为3个容器,D 、E 、F 为3根细管,管栓K 是关闭的.A 、B 、C 及细管D 、E 中均 盛有水,容器水面的高度差分别为1h 和1h 如图所示.A 、B 、C 的截 面半 径为12cm ,D 的半径为0.2cm .甲向同伴乙说:“我若拧开管栓K ,会有水从细管口喷出.”乙认为不可能.理由是:“低处的水自动走向高外,能量从哪儿来?”甲当即拧开K ,果然见到有水喷出,乙哑口无言,但不明白自己的错误所在.甲又进一步演示.在拧开管栓K 前,先将喷管D 的上端加长到足够长,然后拧开K ,管中水面即上升,最后水面静止于某个高度处. (1).论证拧开K 后水柱上升的原因. (2).当D 管上端足够长时,求拧开K 后D 中静止水面与A 中水面的高度差. (3).论证水柱上升所需能量的来源. 二、 (18 分) 在图复19-2中,半径为R 的圆柱形区域内有匀强磁场,磁场方向垂直纸面指向纸外, 磁感应强度B 随时间均匀变化,变化率/B t K ??=(K 为一正值常量),圆柱形区外空间没有磁场,沿图中AC 弦的方向画一直线,并向外延长,弦AC 与半径OA 的夹角/4απ=.直线上有一任意点,设该点与A 点的距离为x ,求从A 沿直线到该点的电动势的大小. 三、(18分)如图复19-3所示,在水平光滑绝缘的桌面上,有三个带正电的质点1、2、3,位于边长为l 的等边三角形的三个顶点处。C 为三角形的中心,三个质点的质量皆为m ,带电量皆为q 。质点 1、3之 间和2、3之间用绝缘的轻而细的刚性杆相连,在3的连接处为无摩擦的铰链。已知开始时三个质点的速度为零,在此后运动过程中,当质点3运动到C 处时,其速度大小为多少? 四、(18分)有人设计了下述装置用以测量线圈的自感系数.在图复19-4-1中,E 为电压可调的直流电源。K 为开关,L 为待测线圈的自感系数,L r 为线圈的直流电阻,D 为理想二极管,r 为用电阻丝做成的电阻器的电阻,A 为电流表。将图复19-4-1中a 、b 之间的电阻线装进图复19-4-2所示的试管1内,图复19-4-2中其它装置见图下说明.其中注射器筒5和试管1组成的密闭容器内装有

物理竞赛复赛模拟卷及答案 (1)

物理竞赛复赛模拟卷 1.试证明:物体的相对论能量E 与相对论动量P 的量值之间有如下关系: 2. 在用质子)(11P 轰击固定锂)(73Li 靶的核反应中,(1)计算放出α粒子的反应能。(2) 如果质子能量为1兆电子伏特,问在垂直质子束的方向观测到α粒子的能量有多大?有关原 子核的质量如下:H 1 1 ,;He 42,;Li 7 3,. 3. 一个处于基态的氢原子与另一个静止的基态 氢原子碰撞。问可能发生非弹性碰撞的最小速度为多少?如果速度较大 而产生光反射,且在原速度方向和反方向可以观察到光。问这 种光的频率与简正频率相差多少?氢原子的质量为×10-27kg , 电离能 J eV E 181018.26.13-?==。 4. 如图11-136所示,光滑无底圆筒重W ,内放两个重量均为G 的光滑球,圆筒半径为R ,球半径为r ,且r

2019年全国初中应用物理竞赛复赛试题(word原版)

2019年全国初中应用物理竞赛复赛试题 注意事项: 1.请在密封钱内填写所在地区、学校、姓名和考号. 2.用蓝色或黑色钢笔、圆珠笔书写 3.本试卷共有六个大题,满分为100分. 电机来发电。该发种电机铭牌部分数据如下表所示,根据表中的数据求: (1)在允许的连续运行时间内,发电机以额定 功率输出,能够提供的电能是多少度? (2)己知汽油的热值是q=4.6xl07J/kg ,密度是 0.71 x 103kg/m 3,设该汽油机的效 率为35%,则该 汽油发电机油箱的容积至少需要多大? (3)汽油发电机将内能转化为电能的效率是多 少? 二、(16分)长期以来,我国北方地区域镇居民的冬季来暖计量一般都按住宅面积收费,导致用户节能意识差,造成严重的资源浪费。作为建筑节能的一项基本措施,近几年部分地区试点以热量表作为计量收费的依据和于段, 经测算可节能约20%---30%。 如图2所示,一个完整的热量表由以下三 个部分组成:一只被体流量计,用以测量经热 交换的热水流量;一对用铅电阻制作的温度传 感器,分别测量供暖进水和回水温度;一低功 耗的单芯片计算机,根据与其相连的流量计和 温度传感器提供的流量和温度数据,利用热力 学公式可计算出用户从热交换系统获得的热 量,通过液晶显示器将测量数据和计算结果显 示出来。 以下是某用户家中的热量表的部分参数,已知水的比热容取4.2xl03J/(kg·C),天然气的燃烧值约为 8X 10 7J/m 3。 (1)试通过以上数据计算该型号热量表能测量的最大供热功率是多少? (2)在一次要查看热量表记录情况时,通过逐次点按热量表上的信息显示按钮,液晶显示器逐项循环显示出了下列数据: 根据这些数据推算,求此次查看时该用户家平均每小时从暖气中得到的热量约为多少J?到此次查看时为止,该用户从这套供暖系统得到的总能量相当于完全燃烧了多少m 3的天然气?

第21届全国中学生物理竞赛复赛题参考解答

第21届全国中学生物理竞赛复赛题参考解答 一、开始时U 形管右管中空气的体积和压强分别为 V 2 = HA (1) p 2= p 1 经过2小时,U 形管右管中空气的体积和压强分别为 A H H V )(2?-=' (2) 2 2 22 V V p p '=' (3) 渗透室下部连同U 形管左管水面以上部分气体的总体积和压强分别为 HA V V ?+='11 (4) H g p p Δ22 1ρ+'= (5) 式中ρ 为水的密度,g 为重力加速度.由理想气体状态方程nRT pV =可知,经过2小时,薄膜下部增加的空气的摩尔数 RT V p RT V p n 1111 - ''= ? (6) 在2个小时内,通过薄膜渗透过去的分子数 A nN N ?= (7) 式中N A 为阿伏伽德罗常量. 渗透室上部空气的摩尔数减少,压强下降.下降了?p V ΔnRT p = ? (8) 经过2小时渗透室上部分中空气的压强为 p p p ?-='00 (9) 测试过程的平均压强差 [])(2 1 10 10p p ()p p p '-'+-=? (10) 根据定义,由以上各式和有关数据,可求得该薄膜材料在0℃时对空气的透气系数 11111s m Pa 104.2---?=?= tS p Nd k (11) 评分标准: 本题20分.(1)、(2)、(3)、(4)、(5)式各1分,(6)式3分,(7)、(8)、(9)、(10) 式各2分,(11) 式4分. 二、如图,卫星绕地球运动的轨道为一椭圆,地心位于轨道椭圆的一个焦点O 处,设待测量星体位于C 处.根据题意,当一个卫星运动到轨道的近地点A 时,另一个卫星恰好到达远地点B 处,只要位于A 点的卫星用角度测量仪测出AO 和AC 的夹角α1,位于B 点的卫星用角度测量仪测出BO 和BC 的夹角α2,就可以计算出此时星体C 与地心的距离OC . 因卫星椭圆轨道长轴的长度

第28届中学生物理竞赛复赛模拟试卷及答案

第28届中学生物理竞赛复赛模拟试卷及答案

第28 届全国中学生物理竞赛复赛模拟试卷 一、填空题.(本题共4小题,共25 分) 所示的电阻丝网络,每一小段电阻同为r ,两个端点A 、B 间等效电阻R 1=r 209153若在图1网络中再引入3段斜电阻丝,每一段电阻也为r ,如图2 所示,此时A 、B 间等效电阻R 2=r 3 2 2.右图为开尔文滴水起电机示意图。从三通管左右两管口形成的水滴分别穿过铝筒A 1、A 2后滴进铝杯B 1、B 2,当滴了一段时间后,原均不带电的两铝杯间会有几千伏的电势差。试分析其原理。图中铝筒A 1用导线与铝杯B 2相连;铝筒A 2用导线与B 1相连。 解答:本装置的几何结构尽管十分对称,但由于空气中离子分布及宇宙射线等因素的不确定性,使铝筒A 1、A 2的电势会略有不同。譬如,A 1的电势比 A 2高,由于静电感应,使A 1上方的水滴带负电,A 2上方的水滴带正电,带电 水滴分别滴入下方的铝杯后,使B 1杯带负电,由于B 1与A 2用导线相连,又使 A 2电势进一步降低,同理A 1电势则进一步升高,这又使A 1上方的水滴带更多 的负电,A 2上方的水滴带更多的正电,如此下去,使铝杯B 2的电势越来越高,B 1的电势越来越低,最终可使两铝杯间产生几千伏的电势差。当然,由于各种因素的不确定性,下次实验开始时,可能A 2的电势比 A 1高,最终使 B 1的电势比B 2的电势高几千伏。但A 1、A 2因偶然因素造成的电势差因上述正反馈效应而得到 放大却是不变的。 【点评】物理系统的对称性因某种原因受到破坏,这种现象称为对称破缺。对称破缺在物理学的许多分支及其他许多学科里已成为一个重要的概念。本题是这方面的一个例子。 3.受迫振动的稳定状态由下式给出)cos(?ω+=t A x , 2 222204)(ωβωω+-= h A ,2 20arctan ω ωβω?--=。其中m H h =,而)cos(t H ω为胁迫力,m γ β= 2,其中dt dx γ-是阻尼力。有一偏车轮的汽车上有两个弹簧测力计,其中 一条的固有振动角频率为102727.39-=s ω,另外一条的固有振动角频率为 1' 05454.78-=s ω,在汽车运行的过程中,司机看到两条弹簧的振动幅度之比为7。 设β为小量,计算中可以略去,已知汽车轮子的直径为1m ,则汽车的运行速度 得分 阅卷 复 核

第21届全国中学生物理竞赛复赛试题及答案

本卷共七题,满分140分. 一、(20分)薄膜材料气密性能的优劣常用其透气系数来加以评判.对于均匀薄膜材料,在一定温度下,某种气体通过薄膜渗透 过的气体分子数d PSt k N ?=,其中t 为渗透持续时间,S 为薄膜 的面积,d 为薄膜的厚度,P ?为薄膜两侧气体的压强差.k 称为该薄膜材料在该温度下对该气体的透气系数.透气系数愈小,材料的气密性能愈好. 图为测定薄膜材料对空气的透气系数的一种实验装置示意 图.EFGI 为渗透室,U 形管左管上端与渗透室相通,右管上端封闭;U 形管内横截面积A =0.150cm 2.实验中,首先测得薄膜的厚度d =0.66mm ,再将薄膜固定于图中C C '处,从而把渗透室分为上下两部分,上面部分的容积30cm 00.25=V ,下面部分连同U 形管左管水面以上部分的总容积为V 1,薄膜能够透气的面积 S =1.00cm 2 .打开开关K 1、K 2与大气相通,大气的压强P 1=1.00atm ,此时U 形管右管中气柱长度cm 00.20=H ,31cm 00.5=V .关闭K 1、K 2后,打开开关K 3,对渗透室上部分迅速充气至气体压强atm 00.20=P ,关闭K 3并开始计时.两小时后, U 形管左管中的水面高度下降了cm 00.2=?H .实验过程中,始终保持温度为C 0 .求该薄膜材料在C 0 时对空气的透气系数.(本实验中由于薄膜两侧的压强差在实验过程中不能保持恒定,在压强差变化不太大的情况下,可用计时开始时的压强差和计时结束时的压强差的平均值P ?来代替公式中的P ?.普适气体常量R = 8.31Jmol -1K -1,1.00atm = 1.013×105Pa ). 第21届全国中学生物理竞赛复赛题试卷 C F

相关文档
最新文档