动物蛋白和植物蛋白的区别

动物蛋白和植物蛋白的区别
动物蛋白和植物蛋白的区别

动物蛋白和植物蛋白的区别

蛋白质的营养价值取决于什么

蛋白质是一类重要的营养素,它的存在与生命的各种活动紧密联系,例如参与机体的构成及机体的代谢,参与遗传信息构成和代谢,同时也为机体提供热量。

蛋白质的种类极其繁多,不同食物来源的蛋白质,能被人体消化、吸收和利用的程度也不同,也就是说,不同种类的蛋白质其营养价值有所区别,而决定蛋白质营养价值的主要因素是蛋白质中必需氨基酸的种类和含量。氨基酸评分(AAS)是测评蛋白质中必需氨基酸种类和含量的一个常用指标。

动、植物蛋白质营养有何不同

蛋白质含有的氨基酸之所以会有不同,与蛋白质的来源有很大的关系。蛋白质主要来源于动物性食物与植物性食物,动物性蛋白质和植物性蛋白质所含的氨基酸是不同的,这即意味着它们的营养价值也有差异。

动物性蛋白质主要来源于禽、畜及鱼类等的肉、蛋、奶。其蛋白质构成以酪蛋白为主(78~85%),能被成人较好地吸收与利用。更重要的是,动物性蛋白质的必需氨基酸种类齐全,比例合理,因此比一般的植物性蛋白质更容易消化、吸收和利用,营养价值也相对高些。一般来说,肉类(如鱼肉、牛肉)蛋白质和奶类中的蛋白质,其氨基酸评分均在0.9~1.0的水平。

植物性蛋白质主要来源于米面类、豆类,但是米面类和豆类的蛋白质营养价值不同。米面类来源的蛋白质中缺少赖氨酸(一种必需氨基酸),因此其氨基酸评分较低,仅为0.3~0.5,这类蛋白质被人体吸收和利用的程度也会差些。当然,这种不足可以通过科学的方法加以改善,例如在米面中适当加入富含赖氨酸的豆类食品,则可明显提高蛋白质的氨基酸评分。

为什么说大豆蛋白是蛋白质明星

在众多的植物性蛋白质中,营养价值最高的是豆类蛋白质(又称大豆蛋白),而且豆类食物不含胆固醇,这是动物性食物所不具备的特点。没有经过任何加工的大豆蛋白质有它的缺陷:蛋氨酸(一种必需氨基酸)含量相对较少。因此,整粒大豆的氨基酸评分大约为0.6~0.7。但是,由于大豆的蛋白质含量高,而且不含胆固醇,大豆蛋白被人们广泛利用。

经过现代方法加工的大豆蛋白质的质量有很大的改变,同时也减少了大豆蛋白中脂肪的含量(整粒大豆中的脂肪含量大约为20%)。脱脂大豆粉的蛋白质含量一般可达50%,大豆浓缩蛋白的蛋白质含量可提高到约70%,并且可以用于牛奶不耐受的婴幼儿,而经过脱脂、水提取、冲洗、干燥等现代工艺过程的大豆分离蛋白的蛋白质含量更可高达90%,而且经过加工的大豆分离蛋白的消化率也有了改善。当然,这些加工过程只是提高了蛋白质的含量,而没有改善蛋白质的氨基酸模式。但是,如果在大豆蛋白中适当添加大豆本身相对缺乏的蛋氨酸(又称氨基酸强化)或富含蛋氨酸的动物性蛋白质,将显著提高大豆蛋白的营养价值,提高蛋白质的氨基酸评分,例如,在添加适量的乳清蛋白后,大豆分离蛋白的氨基酸评分可达1.0,其营养价值与蛋、奶类蛋白质一致,非常接近标准的氨基酸模式,很容易被人体吸收、利用。

酸性蛋白酶的作用机理

酸性蛋白酶与碱性蛋白酶生产工艺的不同之处? 酸性蛋白酶是一种在酸性环境下(pH 2.5-4.0)催化蛋白酶水解的酶制剂,适用于酸性介质中水解动植物蛋白质。可用于毛皮软化,酒精发酵,啤酒、果酒澄清,动植物蛋白质水解营养液,羊毛染色,废胶片回收,饲料添加剂等等。本品在酸性条件下有利于皮纤维松散,且软化液可连续使用,是当前理想的毛皮软化酶制剂;在酒精发酵中,添加酸性蛋白酶,能有效水解原料中的蛋白质,破坏原料颗粒粒间细胞壁的结构,有利于糖化酶的作用,使原料中可利用碳源增加,从而可提高原料出酒率;另一方面,蛋白质的水解提高了醪液中α-氨基态氮的含量,促进酵母菌的生长与繁殖,提高发酵速度,从而缩短发酵周期和提高发酵设备的生产能力。 碱性蛋白酶碱性蛋白酶是在碱性条件下水解蛋白质肽键的酶类,是一类非常重要的工业用酶,最早发现于猪胰脏。碱性蛋白酶广泛存在于动、植物及微生物中。微生物蛋白酶均为胞外酶,不仅具有动植物蛋白酶所具有的全部特性,还有下游技术处理相对简单、价格低廉、来源广、菌体易于培养、产量高、高产菌株选育简单、快速、易于实现工业化生产等诸多优点。1945年瑞士M等在地衣芽孢杆菌中发现了微生物碱性蛋白酶。 碱性蛋白酶是由细菌原生质体诱变选育出的地衣芽孢杆菌 2709,经深层发酵、提取及精制而成的一种蛋白水解酶,其主要酶成分为地衣芽孢杆菌蛋白酶,是一种丝氨酸型的内切蛋白酶,它能水解蛋白质分子肽链生成多肽或氨基酸,具有较强的分解蛋白质的能力,广泛应用

于食品、医疗、酿造、洗涤、丝绸、制革等行业。 1、碱性蛋白酶是一种无毒、无副作用的蛋白质,属于丝氨酸型内切蛋白酶,应用在食品行业可水解蛋白质分子肽链生成多肽或氨基酸,形成具有独特风味的蛋白质水解液。 2、碱性蛋白酶成功应用于洗涤剂用酶工业,可添加在普通洗衣粉、浓缩洗衣粉和液体洗涤剂当中,既可用于家庭洗衣,也可用于工业洗衣,可以有效的去除血渍、蛋类、乳制品、或肉汁、菜汁等蛋白类的污渍,另外也可作为医用试剂酶清洗生化仪器等。 3、在生物技术领域,碱性蛋白酶可作为工具酶用于核酸纯化过程中的蛋白质(包括核酸酶类)去除,而对DNA无降解作用,避免对DNA 完整性的破坏。 酸性蛋白酶如何灭活第一种方法几乎所有酶都适用,就是加热。第二种,既然是酸性酶,加入强碱应该也是可以的。 酸性蛋白酶产生菌的筛选方法?酸性蛋白酶是一种能在酸性环境下水解蛋白质的酶类,其最适作用pH值为2.5-5.0。由于酸性蛋白酶具有较好的耐酸性,因此被广泛地应用于食品、医药、轻工、皮革工艺以及饲料加工工业中。目前用于工业化生产的酸性蛋白酶大多为霉菌酸性蛋白酶,此类酶的最适作用pH值为3.0左右,当pH值升高时,酸性蛋白酶的酶活会明显降低,且此类酶不耐热,当温度达到50℃以上时很不稳定,从而限制了酸性蛋白酶的应用范围。因此,本研究以开发耐温偏酸性蛋白酶为目标,进行了以下几方面的研究:(1)偏酸性蛋白酶产生菌的分离筛选。 (2)偏酸性蛋白酶粗酶酶学性

植物蛋白饮料工艺设计

《食品工厂设计与环境保护》大作业 一工艺流程图 二、设计说明书 市场背景 植物蛋白饮料主要原料为植物核果类籽及植物的种籽。这些籽仁含有大量脂肪、蛋白质、维生素、矿物质等,是人体生命活动中不可缺少的营养物质。植物蛋白及其制品由于不含胆固醇而含大量的亚油酸和亚麻酸,长期食用不仅不会造成血管壁上的胆固醇沉积,而且还对血管壁上沉降胆固醇既有溶解作用。植物籽仁中含有较多的维生素E,可防止不饱和脂肪氧化,去除过剩的胆固醇,防止血管硬化,减少褐斑,有预防老年病的作用。植物蛋白饮料还富含钙、锌、铁等多种物质和微量元素,为碱性食品,可以缓冲肉类,鱼、蛋、家禽、谷物等酸性食品的不良作用。部分人尤其是多数亚洲人体内不含乳搪酶,饮用牛奶有过敏问题,而饮用不含乳糖的植物蛋白饮料就无此问题。 世界上部分地区食物与蛋白供应不足,己成为人类无法回避的问题。根据FAO统计,发展中国家有20%的居民热量不足,60%的居民食物中的蛋白质满足不了要求。这种实际情况,迫使各国政府和人民采取有效措施解决食物与蛋白的供应问题。 我国人民解决了温饱,但饮食结构中缺乏优质蛋白。鉴于我国人多地少及粮食转化为动物蛋白的效率低(即Ikg动物蛋白消耗能源和劳动工本分别高于植物蛋白的9倍和7倍)等因素,中国食品工业协会以及相关部门先后提出发展植物蛋白与动物蛋白并举的方针。 以椰子汁、杏仁露等为代表的植物蛋白饮料将掀起新一波饮料浪潮。《中国饮料行业“十二五”发展规划建议》中,中国饮料工业协会估计,以椰子、大豆、花生、杏仁、核桃等植物果仁、果肉为原料的植物蛋白饮料或将迎来高速发展期。与此同时,包括海南椰岛集团、汇源集团、维他奶等饮料企业纷纷进军植物饮料领域,欲抢占市场先机。据了解,随着饮料行业发展和国内消费者对健康饮料的追求,中国饮料产业结构也在不断调整。《中国饮料行业“十二五”发展规划建议》显示,中国饮料工业协会保守估计,未来五年,我国饮料

膳食教案2动植物蛋白类食物

动植物蛋白类食物教案 一、每天吃奶类、大豆或其制品 奶类营养成分齐全。组成比例适宜,容易消化吸收。奶类除含丰富的优质蛋白质和维生素外,含钙量较高,且利用率也很高,是膳食钙质的极好来源。大量的研究表明,儿童青少年饮奶有利于其生长发育,增加骨密度,从而推迟其成年后发生骨质疏松的年龄;中老年人饮奶可以减少其骨质丢失,有利于骨健康。2002年中国居民营养与健康状况调查结果显示,我国城乡居民钙摄入量仅为389mg/标准人日,不足推荐摄入量的一半;奶类制品摄入量为27g/标准人日,仅为发达国家的5%左右。因此,应大大提高奶类的摄入量。建议每人每天饮奶300g或相当量的奶制品,对于饮奶量更多或有高血脂和超重肥胖倾向者应选择减脂、低脂、脱脂奶及其制品。 大豆含丰富的优质蛋白质、必需脂肪酸、B族维生素、维生素E和膳食纤维等营养素,且含有磷脂、低聚糖,以及异黄酮、植物固醇等多种植物化学物质。大豆是重要的优质蛋白质来源。为提高农村居民的蛋白质摄入量及防止城市居民过多消费肉类带来的不利影响,应适当多吃大豆及其制品,建议每人每天摄入30g~50g大豆或相当量的豆制品。 1、奶及奶制品的营养价值 奶类是一种营养成分齐全、组成比例适宜、易消化吸收、营养价值高的天然食品,主要提供优质蛋白质、维生素A、维生素B2和钙。牛奶中蛋白质含量平均为3%,消化率高达90%以上,其必需氨基酸比例也符合人体需要,属于优质蛋白质。脂肪含量约为3%~4%,并以微脂肪球

的形式存在,有利于消化吸收。碳水化合物主要为乳糖,有调节胃酸、促进胃肠蠕动和促进消化液分泌的作用,并能促进钙、铁、锌等矿物质的吸收以及助长肠道乳酸杆菌繁殖,抑制腐败菌的生长。牛奶中富含钙、磷、钾、且容易被人体吸收,是膳食中钙的最佳来源。 提示:优质蛋白质是指食物中含有的必需搭配种类齐全、数量充足、比例适宜,不但能维持成人的健康,并能促进儿童生长发育,如乳类中的酪蛋白、乳清蛋白、大豆中的大豆蛋白等。 2、奶及奶制品的常见品种 常见的奶类有牛奶、羊奶和马奶等鲜奶,其中以牛奶的食用量最大。进一步加工可制成各种奶制品,如奶粉、酸奶、炼乳、奶酪等。 液态奶指挤出的奶汁,经过滤和消毒,再经均质化,即成为可供食用的鲜奶。鲜奶经巴氏消毒后除维生素B1和维生素C略有损失外,其余营养成分与刚挤出的奶汁差别不大。 奶粉是液态奶经消毒、浓缩、干燥处理而成,其中对热不稳定的营养素(如维生素A)略有损失,蛋白质消化能力略有改善。奶粉可分为全脂奶粉、低脂奶粉、脱脂奶粉及各种调味奶粉与配方奶粉等。奶粉储存期较长,食用方便。 酸奶是指在消毒的鲜奶中接种乳酸杆菌后,经发酵培养而成的奶制品,易于人体消化吸收,除乳糖分解形成乳酸外,其他营养成分基本没有变化。酸奶更适宜于乳糖不耐受者、消化不良的病人、老年人和儿童等食用。

动植物蛋白源替代鱼粉的研究进展

动植物蛋白源替代鱼粉的研究进展 1 鱼粉 1.1 鱼粉的特点 由于鱼粉具有必需氨基酸和脂肪酸含量高,碳水化合物含量低,适口性好,抗营养因子少以及能够被养殖动物很好的消化吸收等特点,一直以来是水产饲料中不可或缺的优质蛋白源。鱼粉在饲料中的营养作用主要是提高氨基酸平衡性和利用效率,与其它蛋白原料相比,有比较显著的优势。但鱼粉的作用不仅在于其蛋白、氨基酸的作用优势, 还在“未知生长因子”、维生素、微量元素等方面具有营养作用优势。 1.2 无鱼粉或低鱼粉饲料技术对策 在所有的饲料原料中,鱼粉在促进养殖动物生长、提高饲料利用效率方面的效果是最为明显的。在配合饲料中,是否使用鱼粉及使用量不同所获得的养殖效果会有很大的差异,即饲料中鱼粉的使用量与养殖鱼产品的生长速度、饲料效率具有显著的正相关关系, 鱼粉在配合饲料中的使用对配合饲料的质量有非常直接的关系。如在草鱼、武昌鱼饲料中基本不用鱼粉,但是使用1% ~2%的鱼粉后,鱼生长速度可以提高10%以上,同时鱼体的生理机能也会得到改善。因此,在不使用鱼粉或低鱼粉饲料中考虑的技术处理主要包括以下几方面的内容。 1.2.1 配合饲料中氨基酸的平衡性和有效性 蛋白质的营养实际上是通过氨基酸的营养作用来实现的,因此,在无鱼粉或低鱼粉饲料中优先考虑的技术处理是氨基酸的平衡性。由于鱼类对单体氨基酸的利用效果很差, 在部分种类鱼中使用单体赖氨酸、蛋氨酸是没有效果的。对于饲料氨基酸的平衡就只能依赖于饲料原料中氨基酸的互补作用来实现, 在设计无鱼粉或低鱼粉饲料配方时可以选择肉粉、肉骨粉、豆粕、菜粕、棉粕等通过比例调整来实现必需氨基酸的平衡。氨基酸平衡效果的评判可以采用必需氨基酸模式相关系数的大小来判定,即以养殖对象鱼肌肉必需氨基酸模式作为标准模式, 将配方中必需氨基酸模式与此进行比较, 计算两组模式的相关系数, 相关系数越大, 表明配方中必需氨基酸的平衡效果越好。但要考虑氨基酸的利用率问题, 即必需氨基酸的有效性问题。有些原料虽然蛋白含量很高, 但消化利用率很低, 如羽毛粉、皮革粉蛋白含量可以达到80% 以上, 但消化率只有30%左右, 无论是单独使用或是加人鱼粉(掺假鱼粉)中, 均会使配方中必需氨基酸的有效性显著降低。因此,在计算必需氨基酸平衡效果时, 尽可能选择消化率高的饲料原料组成配方来进行必需氨基酸的平衡。

QZH 0005 S-2015 山东中惠生物科技股份有限公司 酸水解植物蛋白调味粉

Q/ZH 山东中惠生物科技股份有限公司企业标准 Q/ZH 0005S-2015 酸水解植物蛋白调味粉 2015-06-4发布2015-06-10实施山东中惠生物科技股份有限公司发布

Q/ZH 0005S-2015 前言 根据《中华人民共和国食品安全法》制定本标准。 本标准严格按照GB/T 1.1《标准化工作导则第1部分:标准的结构和编写规则》的要求进行编写。本标准由山东中惠生物科技股份有限公司提出并起草。 本标准主要起草人:赵吉兴 本标准自发布之日起有效期限3年,到期复审。

Q/ZH 0005S-2015 酸水解植物蛋白调味粉 1 范围 本标准规定了酸水解植物蛋白调味粉的技术要求、食品添加剂、生产加工过程卫生要求、检验方法、检验规则、标志、包装、运输与贮存。 本标准适用于以大豆为主要原料,经盐酸水解、过滤、氢氧化钠中和、过滤、脱醇、调配、检验、喷雾、干燥、包装等主要工艺加工制成的酸水解植物蛋白调味粉。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 191包装储运图示标志 GB 1352 大豆 GB 1897 食品添加剂盐酸 GB 2760食品安全国家标准食品添加剂使用标准 GB 4789.2 食品安全国家标准食品微生物学检验菌落总数测定 GB 4789.3 食品安全国家标准食品微生物学检验大肠菌群计数 GB 4789.4 食品安全国家标准食品微生物学检验沙门氏菌检验 GB 4789.5 食品安全国家标准食品微生物学检验志贺氏菌检验 GB 4789.10 食品安全国家标准食品微生物学检验金黄色葡萄球菌检验 GB 5009.3 食品安全国家标准食品中水分的测定 GB 5009.5 食品安全国家标准食品中蛋白质的测定 GB/T 5009.11 食品中总砷及无机砷的测定 GB 5009.12 食品安全国家标准食品中铅的测定 GB/T 5009.191 食品中氯丙醇含量的测定 GB/T 5009.39 酱油卫生标准的分析方法 GB 5175 食品添加剂氢氧化钠 GB 5749 生活饮用水卫生标准 GB/T 6543 运输包装用单瓦楞纸箱和双瓦楞纸箱 GB 7718 食品安全国家标准预包装食品标签通则 GB 9683 复合食品包装袋卫生标准 GB 14881 食品安全国家标准食品生产通用卫生规范 SB 10322 pH值测定法 JJF 1070 定量包装商品净含量计量检验规则 国家质量监督检验检疫总局[2005]第75号令《定量包装商品计量监督管理办法》 3 技术要求 3.1 原辅料 3.1.1 大豆 应符合GB 1352的规定。 3.1.2 盐酸 应符合GB 1897的规定。

植物水解蛋白

植物水解蛋白 一.植物水解蛋白的性质 植物蛋白质水解物(HVP,hydrolyzed vegetable protein)是指在酸或酶的作用下,水解含蛋白质的植物组织所得到的多肽及氨基酸的中间混合胶体溶液,再经加工处理后得到的产物。HVP主要性状为淡黄色至黄褐色液体、糊状体、粉状体或颗粒。糊状体含水分17%-21%,粉状及颗粒状者含水分3%-7%,总氮量5%-14%(相当于粗蛋白25%-87%),2%水溶液的pH 值为5.0-6.5,所含氨基酸组成视所用原料而定,其鲜味物质和程度不尽相当,视所用原料和加工方法而各异。 水解植物蛋白是近年来蓬勃发展起来的新型食品增味剂,它集色、香、味等营养成分于一体,主要作用为鲜味剂、营养强化剂以及肉类香精原料,投放市场以来即为广大消费者认可。由于其谷氨基酸含量较高,逐渐成为取代味精的新一代调味品,并且HVP的制造原料植物蛋白质来源丰富,经水解、脱色、除臭、除杂、调味、杀菌、喷雾干燥等工艺制造而成,可机械化、大规模、自动化生产。 植物蛋白质占世界蛋白供应总量70%以上,其营养价值与动物蛋白质接近,且胆固醇含量低,含有大量人体必需氨基酸,是人类食用蛋白质重要来源。因此,水解植物蛋白作为调味品前景非常广阔。 以下为3种水解蛋白的含量指标 氨基酸大豆蛋白水解产品小麦蛋白水解产品玉米蛋白水解产品 名称 赖氨酸8.62 1.98 1.81 组氨酸 2.89 1.73 2.59 精氨酸7.05 2.97 4.40 苏氨酸 4.06 2.48 3.57 丝氨酸 5.39 3.96 5.70 谷氨酸19.67 40.08 24.12 脯氨酸11.83 15.84 11.93 甘氨酸 5.02 2.23 2.85 丙氨酸 6.05 2.33 7.78 缬氨酸 4.75 3.96 2.07 蛋氨酸0.78 1.98 2.59 异亮氨酸 3.08 7.67 9.08 亮氨酸 3.87 3.47 4.15 酪氨酸0.32 1.00 3.89 苯丙氨酸 3.45 4.46 5.70 天冬氨酸13.17 3.96 7.77 合计100 100 100 二.植物水解蛋白生产工艺 目前,水解植物蛋白常用的方法有酸法和酶法,一般为酸法为主。 1. 酸水解法生产HVP 常用的酸水解方法是:在大豆、小麦、花生、玉米和大米等植物蛋白原料中,加浓盐酸进行加水分解(110℃回流酸解),中和后,经脱色、脱臭、再过滤并浓缩而成浆状体,或喷雾干燥制成粉状成品。

2013年植物蛋白饮料杏仁露市场分析

2013年植物蛋白饮料杏仁露市场分析 一、杏仁露简介——植物蛋白饮料的代表之一 (2) 二、植物蛋白饮料方兴未艾 (3) 三、知名植物蛋白饮料企业简介——河北养元、银鹭 (4)

一、杏仁露简介——植物蛋白饮料的代表之一 “露露”牌杏仁露是以野生杏仁为原料,采用特殊工艺精制而成的植物蛋白饮料。露露洁白如奶,细腻如玉,香味独特,回味悠长,冷饮清暑,热饮祛寒,老幼皆宜。 主要原料野生甜杏仁是一种健康食品,适量食用不仅可以有效控制人体内胆固醇的含量,还能显著降低心脏病和多种慢性病的发病危险。素食者食用甜杏仁可以及时补充蛋白质、微量元素和维生素,例如铁、锌及维生素E。野生杏仁是一种再生能力很强的野生植物,不需人工任何管理;主要分布在我国北纬35°-45°的范围内燕山山脉河北一带,其中承德地区是野生杏仁的主产区,产量占全国的1/4左右。另外周边地区辽宁朝阳市、内蒙赤峰市、河北张家口市的杏仁产量也很丰富。 “露露”牌杏仁露属于天然植物蛋白饮料,含有丰富的碘、钙、锌等微量元素和18种氨基酸,具有止咳、润肺、降血脂、防止动脉硬化、增强人体免疫力等保健功能,长期饮用可以降低胆固醇和甘油三酯,具有预防心血管疾病的保健作用。1997年9月被国家卫生部正式批准为保健食品;1998年10 月有中国绿色食品发展中心批准为绿色食品;1999 年1 月国家工商局商标局认定"露露"商标为中国驰名商标。在全国植物蛋白领域曾有“南椰树,北露露”的美誉。

二、植物蛋白饮料方兴未艾 植物蛋白饮料,在原料上,相对于动物蛋白饮料而言,以蛋白质含量较高的五谷杂粮、大豆、植物果实等为原料,经处理、制浆、调配、均质、灌装、杀菌等工序加工而成的饮料。在成份和功能上,这些植物含有大量蛋白质、脂肪、维生素、矿物质等,是人体所需的营养物质,还富含钙、锌、铁等多种矿物质和微量元素,可以缓冲肉、鱼、蛋、等酸性食品的不良作用。另外,许多植物籽仁还具有良好的保健和疗效作用,如杏仁有降血脂和预防动脉粥样硬化形成的功能;花生仁可预防高血压、动脉硬化和心血管疾病等。植物蛋白饮料蛋白含量与牛奶的蛋白含量相近,更便于人体吸收、更安全,既可以解渴,又能补充营养。 植物蛋白饮料相对于其他饮料具有明显的优点:一是植物蛋白能够提供比动物蛋白更完善的营养结构,不仅解渴,还可以快速补充营养。二是植物蛋白饮料不会对消费者产生乳糖不耐受症,更适合国人

植物蛋白加工与工艺学

1.何谓氨基酸?必需氨基酸有那几种? 2.氨基酸熔点非常高的原因是什么? 3.那三种氨基酸在紫外区有吸收?为什么? 4.何谓氨基酸的等电点?已知Glu的pK值分别为2.19、4.25、9.67,推导并计算pI值? 5.氨基酸为何具有缓冲作用? 6.酸水解蛋白质有那些特点? 7.什么是蛋白酶和肽酶?酶水解蛋白质有那些特点? 8.何谓分配定律? 9.氨基酸有那些重要的呈色反应? 10.氨基酸在食品中有那几方面的应用? 11.肽键学说正确性依据是什么?何谓肽? 12.何谓N-末端和C-末端?什么是氨基酸残基? 13.一级、二级、三级结构的定义是什么? 14.何谓超二级结构,结构域? 15.构成蛋白质种类众多的原因是什么? 16.何谓构型和构象? 17.蛋白质分子中有那些重要的次级键?它们是怎样形成的? 18.蛋白质立体化学结构所允许的基本原则是什么? 19.α—螺旋稳定的原因是什么? 20.影响形成α—螺旋的因素有那些?哪两种氨基酸是破坏者? 21.球状蛋白质分子的特点? 22.何谓超速离心沉降速度法和超速离心沉降平衡法? 23.何谓沉降系数?一个漂移单位是多少? 24.什么是蛋白质的等电点?等电点时蛋白质的那些物理特性降为最低? 25.何谓蛋白质的沉淀作用?有那几种? 26.蛋白质胶体溶液稳定的因素有那些? 27.何谓蛋白质的变性作用?有那些变性因素? 28.什么是盐析和盐溶作用? 29.蛋白质形成凝胶的原因是什么?溶胶和凝胶有区别? 30.何谓蛋白质的凝固作用? 31.蛋白质在食品加工中有那些功能特性? 32.加热引起蛋白质营养价值降低的原因有那些? 33.何谓失效氨基酸?蛋白质中有那两种氨基酸容易被破坏? 34何谓蛋白质改性?主要方法有? 35.化学改性及酶法改性的限制因素?

植物蛋白饮料的市场规模发展现状

植物蛋白饮料的市场规模发展现状及因素解析 露露、椰树多年停留在10亿左右的销售规模 以承德露露和海南椰树椰汁为代表的植物蛋白饮料的市场规模一直做不大,相对茶饮料和果汁饮料的市场规模相差甚远。露露和椰树着两个领先品牌多年来也基本徘徊在10亿元左右的销售规模,再往上做就变的非常困难。其主要原因到底是植物蛋白饮料市场规模本身就小,还是对目标消费者及其需求把握不准,以及对消费者需求引导不够呢?北京精准企划凭借15年食品企业成功营销策划的实战经验,我们认为虽然植物蛋白饮料的市场规模没有茶饮料大,但如果生产企业的营销水平不断提高,营销方式不断创新,从现在卖一瓶饮料,发展到卖二瓶,甚至是三瓶,植物蛋白饮料的市场规模必然会成倍增长。就像有了王老吉后,凉茶饮料的市场规模由几个亿变成了150亿以上,一下翻了数十倍。 植物蛋白饮料强势品牌存在的营销漏洞 应该说植物蛋白饮料的知名品牌中承德露露、椰树椰汁和大寨核桃露都是非常努力的企业,在营销方面走在了其它植物蛋白饮料的前面,同时也都表现出了专业的营销水平。尤其是露露的品牌规划和市场规划已接近可口可乐、康师傅这样国际品牌的营销模式。但精准企划认为这三个品牌都还有不足之处,直接影响了产品销量的进一步提升。 承德露露:品牌代言人是许晴。露露美颜坊的卖点是润出自然美丽。品牌传播口号是“我的私房美容饮品”。露露基本代表了植物蛋白饮料营销的最高水准。但也有明显的不足之处,就是没有将品牌传播上升到历史、文化的高度。让自己成为杏仁功效、历史文化的传承者和发扬者,是正宗杏仁饮料的第一品牌。这不仅限制了产品销量的扩大,也为潜在的竞争对手留下的市场机会。 椰树椰汁:广告口号是“喝椰树椰汁,白白嫩嫩”。传播口号太直白,容易引起目标消费者的反感。椰树椰汁有着非常突出的产品力,产品的口感也非常好。就是品牌规划和营销模式一直处在不温不火的状态。没有精准的品牌定位;没有一句能让消费者记住的广告口号;没有提炼出打动消费者的产品卖点。公司网站的设计也完全与椰树椰汁的品牌形象相差甚远。椰树椰汁在营销方面的表现好像有越来越弱的趋势。

植物蛋白饮料的常见质量问题及控制措施

植物蛋白饮料的常见质量问题及控制措施摘要:本文阐述了植物蛋白饮料在生产、运输、销售、贮存过程中容易出现的坏包、脂肪上浮及蛋白质聚集、絮凝、凝结、沉淀等主要质量问题。从原辅料、加工工艺、加工设备的技术水平、包装材料、贮存等过程,分析其产生原因,并提出相应的控制措施,特别是在乳化稳定剂的使用方面。 植物蛋白饮料是以各种核果类及植物的种子(如花生、核桃、大豆、杏仁、椰子等)为主料,经过原料预处理、浸泡、磨浆、过滤、均质、杀菌等工序,调配制成的植物蛋白饮品。这些产品口味鲜香独特,富含丰富的蛋白质和脂肪,且药食兼备。随着人们对健康、营养的日益关注,植物蛋白饮料的消费日益增长,品种日益增多。 植物蛋白饮料是多种成分组成的一种复杂的分散体系,其分散质为蛋白质和脂肪,分散剂为水,外观呈乳状液态,属热力学不稳定体系。本文针对植物蛋白饮料常见的坏包、脂肪上浮及蛋白质聚集、絮凝、分层、沉淀等质量问题进行分析,并提出相应的解决办法,从而使该类产品质量稳定。 1、坏包 植物蛋白饮料富含蛋白质、脂肪,很容易发生胀罐、胀袋、酸败等变质现象。 原因分析及控制措施: 1.1、原料的选取不当 生产植物蛋白饮料宜选择新鲜、无霉变、成熟度较高的植物籽仁。 1.2、杀菌方式选择不正确 欲达到室温下长期存放产品的效果,有两种杀菌方式可以选择,一种是先灌装,然后经过121℃、保温15~20min的高压杀菌方式;另一种就是采用超高温瞬时杀菌(即UHT法)和无菌灌装。 1.3、杀菌过程控制不当 在高压杀菌过程中,产品在进入杀菌罐之前要分层放置,不能过多、过挤,以防止引起杀菌不透的现象;对UHT-无菌灌装方式,按规定对UHT杀菌机进行有效的CIP清洗,使UHT杀菌机处于正常工作状态,温度显示准确。对于包材必须经过双氧水杀菌,不能有遗漏之处。无菌灌装区域在工作期间应始终处于无菌状态,严格检查封口质量。 1.4、设备、管道的清洗与消毒不彻底 就我国现有的生产工艺条件,要想生产杀菌效果很好的产品,不但杀菌方式的选择、杀菌过程的控制十分重要,而且设备、管道的清洗与消毒也是保证产品品质的一个相当重要的因素。管道的清洗程序如下:①用清水冲洗10~15min;②用生产温度下的热碱性洗涤剂循环10~15min(加浓度为2%-2.5%的氢氧化钠溶液);③用清水冲洗至中性,即pH 值为7;④定期(如每周)用65~70℃的酸性洗涤剂循环15~20min。对于UHT杀菌方式,除按照规定进行有效的CIP清洗外,对UHT杀菌机与无菌灌装机之间的所有管路和无菌罐在进料前,用高温热水循环40min,杀菌前应仔细检查管路活节处有无渗漏现象,检查活节处的密封垫是否完好。 2、脂肪上浮与蛋白质聚集、絮凝、凝结、沉淀等 在生产工艺、设备控制相对较好的前提下,产品在货架期内出现的主要问题为产品的稳定性问题(即脂肪上浮与蛋白质聚集、絮凝、凝结、沉淀等); 原因分析及控制措施: 2.1、水质不符合软饮料用水要求 水的硬度对植物蛋白饮料的影响,不但会降低蛋白质的提取率(即降低蛋白质的溶解度),而且会引起蛋白质一定程度的变性,从而造成饮料分层及沉淀量增加。所以用水一定要符合软饮料用水要求,特别是水的硬度。 2.2、原料的预处理不当 对于该类产品,原料的预处理是十分关键的。这不但会影响产品的口感和风味,而且对产品的稳定性影响较大。如花生奶,如果花生烘烤过度,会引起蛋白质部分变性,沉淀量增多。一般花生的烘烤温度为120~130℃,时间为20~25min最好。 2.3、均质条件的选择不合适 植物蛋白饮料通过高压均质可减小颗粒直径,在不考虑电荷影响时,颗粒沉降速度符合斯托克斯定律。要使饮料稳定,必须选择沉降速度的最小值,对于特定的蛋白饮料,粒子密度、介质粘度都为定值,无疑是有选择颗粒的最小值,而采用高压均质,使颗粒直径减小,粒子达到微粒化的一个重要措施。其中均质的压力、温度和均质次数是保证均质效果的重要工艺参数。如果均质压力、温度较低,则脂肪、蛋白粒子的直径较大,容易引起颗粒聚集,从而引起脂肪上浮和沉淀。在生产中建议采用两次均质,一次均质压力为20~25MPa,二次均质压力为30~40MPa,均质温度为75℃左右,均质效果较好,颗粒直径可达到1~2μm。 2.4、杀菌强度的控制不当 在杀菌过程中,高温对植物蛋白饮料稳定性的影响主要表现在对蛋白质变性作用的影响。高温使分子

认识动物性蛋白质与植物性蛋白质

认识动物性蛋白质与植物性蛋白质 蛋白质是一类重要的营养素,它的存在与生命的各种活动紧密联系,例如参与机体的构成及机体的代谢,参与遗传信息构成和代谢,同时也为机体提供热量。 蛋白质的种类极其繁多,不同食物来源的蛋白质,能被人体消化、吸收和利用的程度也不同,也就是说,不同种类的蛋白质其营养价值有所区别,而决定蛋白质营养价值的主要因素是蛋白质中必需氨基酸的种类和含量。氨基酸评分(AAS)是测评蛋白质中必需氨基酸种类和含量的一个常用指标。 蛋白质含有的氨基酸之所以会有不同,与蛋白质的来源有很大的关系。蛋白质主要来源于动物性食物与植物性食物,动物性蛋白质和植物性蛋白质所含的氨基酸是不同的,这即意味着它们的营养价值也有差异。 动物性蛋白质主要来源于禽、畜及鱼类等的肉、蛋、奶。其蛋白质构成以酪蛋白为主(78~85%),能被成人较好地吸收与利用。更重要的是,动物性蛋白质的必需氨基酸种类齐全,比例合理,因此比一般的植物性蛋白质更容易消化、吸收和利用,营养价值也相对高些。一般来说,肉类(如鱼肉、牛肉)蛋白质和奶类中的蛋白质,其氨基酸评分均在0.9~1.0的水平。 植物性蛋白质主要来源于米面类、豆类,但是米面类和豆类的蛋白质营养价值不同。米面类来源的蛋白质中缺少赖氨酸(一种必需氨基酸),因此其氨基酸评分较低,仅为0.3~0.5,这类蛋白质被人体吸收和利用的程度也会差些。当然,这种不足可以通过科学的方法加以改善,例如在米面中适当加入富含赖氨酸的豆类食品,则可明显提高蛋白质的氨基酸评分。 在众多的植物性蛋白质中,营养价值最高的是豆类蛋白质(又称大豆蛋白),而且豆类食物不含胆固醇,这是动物性食物所不具备的特点。没有经过任何加工的大豆蛋白质有它的缺陷:蛋氨酸(一种必需氨基酸)含量相对较少。因此,整粒大豆的氨基酸评分大约为0.6~0.7。但是,由于大豆的蛋白质含量高,而且不含胆固醇,大豆蛋白被人们广泛利用。

植物蛋白饮料项目计划方案

植物蛋白饮料项目计划方案 一、项目提出的理由 从行业构成看,由于新产业和新商业模式发展迅速,带动相关行业的增加值增长较快,占比不断提高。今年前三季度,信息传输软件和信息技术服务业、租赁和商务服务业、交通运输仓储和邮政业增加值分别比2017年同期增长31.2%、9.4%和8.0%,领先于其他行业的增长。在这些行业的带动下,第三产业增加值增速高于GDP增速。 二、项目选址 项目选址位于xxx经济新区。地区生产总值2526.07亿元,比上年增长9.68%。其中,第一产业增加值202.09亿元,增长10.65%;第二产业增加值1566.16亿元,增长8.73%第三产业增加值757.82亿元,增长5.55%。 一般公共预算收入218.22亿元,同比增长8.65%,一般公共预算支出538.93亿元,同比增长9.17%。国税收入332.47亿元,同比增长11.17%;地税收入亿元64.86,同比增长6.65%。

居民消费价格上涨1.08%。其中,食品烟酒上涨0.78%,衣着上涨0.66%,居住上涨0.70%,生活用品及服务上涨0.81%,教育文化和娱乐上涨0.67%,医疗保健上涨0.99%,其他用品和服务上涨1.04%,交通和通信上涨0.79%。 全部工业完成增加值1929.69亿元。规模以上工业企业实现增加值1233.52亿元,比上年增长5.58%。 所选场址应避开自然保护区、风景名胜区、生活饮用水源地和其他特别需要保护的环境敏感性目标。项目建设区域地理条件较好,基础设施等配套较为完善,并且具有足够的发展潜力。 三、建设背景及必要性 1、本期工程项目建设有利于促进项目建设地先进制造业的发展,有利于形成市场规模和良好经济社会效益的产业集群,推动产业结构转型升级;坚持自主创新与技术引进、利用全球创新资源有机结合;推进产学研联合攻关,构建“政府—企业—高校—科研院所—金融机构”相结合的产业技术研发模式,推动一批关键共性技术开发,大力推进科技成果产业化;同时,积极引进境外先进技术,加快引进、消化、吸收和再创新。 2、《中国制造2025蓝皮书(2017)》6月30日在北京发布。蓝皮书称,中国制造业取得诸多成就,但长期积累的发展环境不优的问题仍待彻底改变。蓝皮书由国家制造强国建设战略咨询委员会编著,该书总结《中国制造2025》实施两年来各项重点任务落实情况,评估相关政策实施效果,分

如何解决植物蛋白饮料生产中的常见问题

如何解决植物蛋白饮料生产中的常见问题 问:植物蛋白饮料生产中有哪些常见问题?如何解决? 答:植物蛋白饮料如花生奶、核桃奶、杏仁露、椰奶等奶饮品的营养价值早已被世人所知,但许多厂家在生产中存在这样或那样的问题,如絮凝、沉淀、浮油、水析、色泽较深、香味不够或带有生青味或豆腥味等等。 1.产生絮凝、沉淀 1.1 生产用水的水质不行水的硬度过高,水中铁、锰等离子含量过高,会使蛋白质饮料絮凝沉淀,可以通过对水进行软化处理解决。也可以不对水进行处理,添加一定量的磷酸盐或熬和剂解决。 1.2 pH值过低奶品在灌装杀菌前pH值过低,也会引起蛋白质在高温杀菌过程中絮凝沉淀,所以应该在奶品灌装前用NaOH或NaHCO3溶液调整pH值为7.0左右,使产品的pH值远离蛋白质的等电点。但pH值也不能太高,否则会使产品带有不好闻的碱味,并使奶品的颜色过深。 1.3 杀菌强度过大,冷却不及时中性奶的高温杀菌温度一般为121℃,20分钟,若杀菌温度过高,时间过长,会使蛋白质絮凝、沉淀,颜色加深。解决办法是降低杀菌强度,及时冷却至室温。 1.4 稳定剂使用不当也会产生絮凝沉淀解决办法:若产品油脂含量高,则选用爱可瑞牌XGW-ZH02型---植物蛋白饮料乳化稳定剂;脂肪含量较低,则选用爱可瑞牌XGW-ZH01型---植物蛋白饮料乳化稳定剂。 1.5 颗粒太大均质操作不当引起的。解决方法:应该先用胶体磨磨两遍,然后采用二级均质机均质,均质时料液的温度一般为70--80℃,一级压力为30Mpa以上,二级压力为25Mpa左右,使均质后的颗粒达到50微米以下。 1.6 稳定剂的用量不够若产生的沉淀为粉末状而不是絮凝状,则可能是稳定剂用量不够,应适当增加用量。 2. 产品带有生青味或豆腥味产生生青味或豆腥味一般是因为灭酶强度不够或操作不当。对于花生,采用烘烤灭酶,烘烤温度为130--140℃,时间30—40分钟(时间长短与花生的干燥程度有关),也不能烤得不够,否则可能产生絮凝,一般烤到花生皮转色较好。对于大豆,则采用热烫灭酶,快速使大豆中的脂肪氧化酶失活,以免产生豆腥味;采用热水磨浆,同时选用好的香精增强奶的香味。花生奶中添加蝶之舞牌花生香精可以很好的掩盖生花生味。 3. 油圈严重产生原因:乳化稳定剂选用不当;乳化稳定剂添加不足或过头。解决方法:选用爱可瑞牌XGW-ZH02型---植物蛋白饮料乳化稳定剂,使用量和使用方法参照产品说明。 4. 水析水析是指产品中的蛋白质从水中析出并呈皱褶状凝聚,悬浮于瓶中上部,瓶的下层为淡黄色的清水层。产生的原因有:稳定剂使用不当;灭菌操作不当;封口不良等。若因稳定剂原因引起的水析,则选用爱可瑞牌XGW-ZH01或ZH02稳定剂就可以解决问题;若是因灭菌操作不当引起水析则采用15ˊ--20ˊ--10ˊ/121℃(即15分钟内升到121℃,接着恒温20分钟,然后快速将温度降到常温)就可以避免水析。若是由于封口不良引起的水析,则只要加强封口检查。 5. 微生物引起的腐败腐败了的奶也会出现上述几种现象。解决方法:改

含乳饮料及植物蛋白饮料生产许可证审查细则

含乳饮料及植物蛋白饮料生产许可证审查细则 一、发证产品范围 实施食品生产许可证管理的含乳饮料及植物蛋白饮料产品包括以鲜乳或乳制品(经发酵或未经发酵)为主要原料,经调配、均质、灌装、杀菌(或杀菌、灌装)等工序加工而成的含乳饮料和以蛋白质含量较高的植物果实、种子或核果类、坚果类的果仁等为原料,经处理、制浆、调配、均质、灌装、杀菌(或杀菌、灌装)等工序加工而成的植物蛋白饮料产品。 二、基本生产流程和关键控制环节 (一)基本生产流程。 1.含乳饮料 乳(复原乳)→调配→均质→杀菌灌装(灌装杀菌)→成品 ↓↑ 杀菌冷却水+辅料 ↓↓ 发酵→均质→调配→均质→杀菌灌装(灌装杀菌)→成品 注:活性乳酸菌饮料无最后一步杀菌过程。 2.植物蛋白饮料 水水+辅料 ↓↓ 原料→预处理→制浆→过滤脱气→调配→均质→杀菌灌装(或灌装杀菌)→成品 (二)关键控制环节。 原辅材料、包装材料的质量控制;生产车间,尤其是配料和灌装车间的卫生管理控制;水处理工序的管理控制;管道设备的清洗消毒;配料计量;杀菌工序的控制;瓶及盖的清洗消毒;操作人员的卫生管理。 (三)容易出现的质量安全问题。 设备、环境、原辅材料、包装材料、水处理工序、人员等环节的管理控制不到位,易造成化学和生物污染,而使产品的卫生指标等不合格;原料质量及

配料控制等环节易造成蛋白质不达标、食品添加剂超范围和超量使用。

三、必备的生产资源 (一)生产场所。 1.对于生产含乳饮料及植物蛋白饮料产品的企业,应具备原辅材料及包装材料仓库、成品仓库、水处理车间、配料车间、杀菌及自动灌装封盖车间、包装车间等生产场所。各生产车间进口处须安装手的清洗消毒设施(应采用非手动式开关)以及符合要求的鞋靴消毒池(或其他设施)。 2.生产车间依其清洁度要求应分为:非食品生产处理区(办公室、配电、动力装备等)、一般作业区(品质实验室、原料处理、仓库、外包装等)、准清洁作业区(杀菌车间、配料车间、预包装清洗消毒车间等)、清洁作业区(灌装车间、乳酸菌发酵车间、菌种培养车间等)。各区之间应给予有效隔离,防止交叉污染。 3.准清洁区和清洁作业区应相对密闭,设有空气处理装置和空气消毒设施,清洁作业区应为10万级以上洁净厂房,入口处应设有人员和物流净化设施。 (二)必备的生产设备。 1.原料预处理设施(适用植物蛋白饮料); 2.磨浆机或胶体磨(适用植物蛋白饮料); 3.过滤机或离心机(适用植物蛋白饮料); 4.贮罐; 5.发酵罐(适用发酵型产品); 6.均质机; 7.杀菌设备; 8.自动灌装封盖设备; 9.水处理设备;10.生产日期和批号标注设施;11.管道设备清洗消毒设施。 四、产品相关标准 GB11673-2003《含乳饮料卫生标准》;GB16321-2003《乳酸菌饮料卫生标准》;GB16322-2003《植物蛋白饮料卫生标准》;QB1554-92《乳酸菌饮料》;QB/T2439-99《花生乳(露)》;QB/T2438-99《杏仁乳(露)》;QB/T2300-97《椰子乳(汁)》;QB/T2132-95《豆乳和豆乳饮料》;QB/T2301-97《核桃乳(露)》;备案有效的企业标准。 五、原辅材料的有关要求 原料乳要符合GB6914《生鲜牛乳收购标准》的要求,乳粉要符合GB5410《全脂乳粉》和GB5411《脱脂乳粉》的要求;植物蛋白饮料的原料(大豆、花生等)应符合其产品标准的要求;其他原辅材料应符合GB10791-1989《软饮料原辅材料的要求》的规定;包装材料应符合GB10790-1989《软饮料的检验规则、标志、包装、运输、贮存》的规定。原辅材料中涉及生产许可证管理的产品必须采购获证企业的合格产品。

食品检验与分析 第十四章 食品中有害物质的测定

第十四章食品中有害物质的测定 一、选择题:(共20分,每小题2分) 1.一般有毒物质的毒性分级是以()作为基准。 (1)剧毒(2)高毒(3)中等毒(4)低毒 2.毛细管柱选择应考虑的因素不包括()。 (1)柱的极性与待测物的极性相匹配(2)固定相膜厚度 (3)内径及柱长(4)柱的材质 3.可引起动物致癌的一组毒素是()。 (1)桔青霉素、杂色曲霉素和展青霉素 (2)黄曲霉毒素(B1、G1、M1)、黄天精和环氯素 (3)黄曲霉毒素、赭曲霉毒素和杂色曲霉素 (4)展青霉素、单端孢霉素类和玉米赤霉烯酮 4.()进入体内水解后产生HCN, 从而具有较强的毒性,其食源性植物有木薯、豆类以及一些果树的种子如杏仁、桃仁、枇杷仁及亚麻仁等。 (1)氰苷(2)红细胞凝集素(3)皂甙(4)龙葵碱 5.食品加工过程中形成的有害物质不包括的一项是()。 (1)N-二乙基亚硝胺(2)苯并[α]芘 (3)N-二甲基亚硝胺(4)N-硝基化合物 6.1998年,WHO 根据最新毒性资料,规定二恶英日摄入量不超过()体重。 (1)1pg/kg~2pg/kg (2)1pg/kg~4pg/kg (3)2pg/kg~4pg/kg (4)2pg/kg~3pg/kg 7.氯丙醇主要来源于()。 (1)碱水解植物蛋白(2)酸水解动植物蛋白 (3)水解脂肪和蛋白质(4)酸水解动物蛋白 8.二恶英含量最常用的分析方法是()。 (1)高分辨率气相色谱一质谱法(2)气相色谱法 (3)质谱法(4)高效液相色谱法 9.高效液相色谱特点的描述中不正确的一项是()。 (1)高效液相色谱的流动相为液相,属于柱色谱的一种 (2)高效液相色谱采用不锈钢柱及高压促流, 而且填充料的粒径小而均匀, 从而达到了“快”而“重复性好”的高效效果 (3)高效液相色谱仪包括贮液瓶、泵、进样阀、色谱柱、检测器及数据处理器等部件 (4)色谱柱是 HPLC 重要组成部件, 价格较贵, 而且使用寿命较短 10.以小剂量进入机体, 通过化学或物理化学作用能够导致健康受损的物质称为()。 (1)有害物质(2)有毒物质 (3)危险物质(4)致癌物质 二、填空题 1.色谱法最初是一种分离技术, 是依靠不同被分离物质在和二者间的不同而使混合物达到分离的技术。依靠该技术所得到的谱图称为。 2.检测器的 ,亦称响应值或应答值, 只是检测器的 , 即, 单位变化量的样品进入检测器后所引起的检测变化的大小。 3.食品中有害物质可分为三类:一是,二是,三是。 4.气相色谱的流动相是。按固定相状态的不同, 又可分为和;按柱内径的粗细可分为和。 5.常用的高效液相色谱法包括正相色谱、离子对色谱、、离子色谱、排阻色谱。在这些高效液相色谱法中, 以最常用, 占高效液相色谱法的70%~80%。 6.在食品卫生监测中, 主要以黄曲霉毒素为污染指标。主要污染的品种是粮油及其制

如何做大植物蛋白饮料市场及销售

如何做大植物蛋白饮料市场 国内植物蛋白饮料几乎与果汁、乳饮、碳酸饮料等细分饮料行业同步发展,但现今的销售规模差距很大。椰树椰汁、承德露露两大巨头的植物蛋白饮系(不含两公司的其它系列饮品)加在一起的销量规模在18 亿元左右,整个植物蛋白饮料行业总体销售规模不到50亿元。这与国内潜在的500亿元以上的市场容量,距离相差甚远。 植物蛋白饮品虽然具备天然、营养等先天优势,但销量始终难有突破。是什么原因造成其发展迟滞,销售规模难以突破?又该如何突破销售发展瓶颈呢? 五个关键因素阻碍行业发展 1、产品品规单一 一是包装材质单调,马口铁材质三片罐装几乎成了统一的产品包装。 二是产品品种太少,市场上植物蛋白饮品主要有椰汁、杏仁露、花生露、核桃露、大豆饮品(商超只有冲饮)等几大类。行业内的领军品牌绝大多数的植物饮料产品非常少。如:椰树椰汁、承德露露杏仁露、大寨核桃露等。除了银鹭等极少数企业开发了少数的混合型植物蛋白饮料外,其它基本走的是单一产品路线。过于单调的产品规规与口感无法适应不同销售渠道与差异化口感需求; 三是包装容量小,以椰树椰汁与承德露露为代表的植物蛋白饮料企业,240ml左右的装量只够一饮而尽,产品包装量首先难以与饮料首先应该满足解渴这个刚性需求相匹配。 四是产品包装不能与时共进,产品包装陈旧、落伍同样不能满足现代时尚消费需求。 2、渠道表现力弱 植物蛋白饮料做为典型的快速消费品,在渠道表现上忽略了快消品的方便购买和感性视觉化产品这两个影响销量的主要因素。走进各大超市的饮料区,植物蛋白饮料的陈列可谓形单影只,排面小,出样单一,销售旺季时节,各类饮料轰轰烈烈地争夺销售终端资源时,植物蛋白饮料的地堆、端架、大排面、异型等抢眼陈列鲜见;平时的终端陈列与售点氛围表现更是形影相吊。 通过笔者对各类型的终端走访与了解的情况来看,植物蛋白饮料有效网点的覆盖率在40%以下。大、中学校、车站码头、旅游景点、网吧等有效终端的见面率也不是很高;甚至一些诸如沃尔玛等现代大型商业系统都难觅踪迹。餐饮类饮料销售主渠道表现上更现不足,大型餐饮终端比较少见,中小型餐馆铺货率凤毛麟角。火车、团购等特殊销售渠道感觉都视乎无力而为之。 3、宣传推广保守

植物蛋白饮料制作过程

1. 材料与设备 (1)原料核桃仁、花生仁、鲜奶、奶粉、蔗糖、稳定剂。 (2)菌种嗜热链球菌、保加利亚乳杆菌(绵阳雪宝乳品厂提供)。 (3)仪器与设备FA1004型全自动电子天平、250B生化培养箱、远红外线食品烤炉、食物搅拌器、HH.S21-HI4型电热恒温水浴祸、SS-350型原子吸收分光光度计。 2. 工艺流程 ①核桃仁→浸泡→去皮→磨浆→过滤→核桃浆;②花生仁→焙烤→去皮→浸泡→磨浆→过滤→花生浆;③鲜奶→检测→过滤。 甜味剂、乳化剂、稳定剂 ①+②+③→混合→调配→均质→过滤→ 杀菌→冷却→接种→灌装→发酵→成熟→成品。 3. 操作要点 (1)核桃浆的制备核桃仁先用热水浸泡约20 min后,用7%的氢氧化钠溶液煮沸5 min,用流动水冲洗干净,然后在0.36%~ 0.38%的盐酸溶液中浸泡10 min,再用清水冲洗,将去皮后的核桃仁以1∶4的比例加入60 ℃的软水进行磨浆、过滤,即成核桃浆。 (2)花生浆的制备先将花生在120 ℃烘箱中焙烤17 min。焙烤后的花生仁要做去皮处理,再用60 ℃的温水浸泡4 h,与约80 ℃的水以1∶1的比例进行磨浆,用0.01%氢氧化钠溶液调节pH值,后经过滤得花生浆。 (3)鲜奶处理验收后的鲜奶经过滤,再加入适量脱脂奶粉调节固形物含量。 (4)混合将核桃浆、花生浆、鲜奶,以1∶5∶4的比例混合均匀。 (5)调配将甜味剂、稳定剂、乳化剂分别用蒸馏水溶解后,加入到上述混合液中。 (6)均质将调配好的混合液在20 MPa ~30 MPa压力下均质。 (7)杀菌、冷却、接种杀菌温度应控制在90 ℃,时间为20 min。杀菌后要迅速将混合液冷却到42 ℃~45 ℃。将冷却后的混合乳液接种4%的生产发酵剂。 (8)分装、发酵将接种后的乳液分装后放入生化培养箱中,在44 ℃的温度条件下培养4 h。 (9)冷却、后熟从培养箱中取出发酵产品迅速冷却到10 ℃以下,再放入冰箱中,在2 ℃~5 ℃条件下存放12 h~24 h,即得成品。 4. 结果分析 (1)花生浆制备关键点①烘烤工艺参数的确定。由试验得知,花生仁在高温烘烤时,若箱内温度较高,时间过长时,花生组织便可能受热破坏,蛋白质变性,花生浆稳定性较差,蛋白质量相对较低;温度低时间又短时,有些抗营养因子未被破坏,某些羰基化合物仍然存在,有明显的生腥味。试验结果表明最佳工艺参数是,烘烤温度为120 ℃,时间为17 min。经此条件烘烤后,花生仁的胰原酶阻碍因子、甲状腺肿素、植物性血球凝素及植酸、草酸等成分被破坏或失去活性,可消除食用后的不适症状,避免了成品的生味,还会诱发出各种芳香物。②加水量的确定。磨浆时的加水量对成品的营养成分含量有很大影响。加水量越多,营养成分越易溶出,固形物含量降低,不利于发酵。结果见表1。 (2)核桃浆制备的主要因素核桃蛋白质的溶出率与温度、pH值的变化有关。温度较低时,不利于蛋白质的溶出;温度升高,有利于蛋白质的溶出。经实验确定温度保持在60 ℃为宜。核桃蛋白质是由多种等电点所组成的复杂蛋白质。在等电点时,核桃蛋白以两性离子状态存在,溶解度很低,溶出率也低。在偏离等电点的酸性介质中,蛋白质分子主要

相关文档
最新文档