柴油加氢装置节能降耗设备方面措施

柴油加氢装置节能降耗设备方面措施
柴油加氢装置节能降耗设备方面措施

柴油加氢装置节能降耗设备方面措施

本文以某公司3#柴油加氢装置为例,以对柴油加氢装置节能降耗设备方面措施进行深入研究。3#柴油加氢装置,主要生产国V标准产品,具有多种优点,如反应平稳、混合均匀、便于控制等,但是3#柴油加氢装置仍然存在不少缺陷和不足,包括电耗高、燃料消耗高、氢耗高等。基于此,本文提出了相应的节能降耗措施,具有重要意义。

标签:柴油加氢装置;节能降耗;措施

1 柴油加氢装置简介

3#柴油加氢装置,主要生产国V标准产品,主要原料为混合油,包括柴油、直馏柴油等,该装置每年约生产出2000000吨柴油。该装置反应部分主要选用炉前混氢,具有多种优点,如反应平稳、混合均匀、便于控制等,选用热高分流程,能够直接利用反应热,使其成为分馏热进料,能够对高压空冷投资成本进行有效节省,对能量进行有效节约。

2 柴油加氢装置节能降耗措施

2.1 选用变频调速技术

对于柴油加氢装置来说,选用变频调速技术,能够起到较为显著的节能作用。该装置地处高原,水资源不足,早晚气温冷热温差大,空气资源丰富,故而选用空冷电机变频+工频控制。实际生产中该柴油加氢装置种共装有8台空冷变频调节器,在正常运行状况下,变频空冷器是优先选用的,在对工艺参数进行有效保障的同时,还能够产生较好的节能效果,自8台变频空冷器投入使用以来,其转速降低约50%,根据轴功率和转速之间得到关系式,当前轴功率能够得以有效降低,变为原轴功率的13%。目前,该公司中的空冷变频调节器投用率100%,通过测算后,每小时能够有效节约35kW的电。

2.2 充分利用贺尔碧格气量调节系统

在3#柴油加氢装置中,新氢压缩机设计方案为“一开一备”。因为加氢装置处理量深受多种因素的影响,包括原料硫含量、原料品种、加工负荷等,导致补充氢的流量发生一定程度的额波动。在标准状态中,每台新氢机的最大流量是26000m3/h,其中一台新氢机主要选用出口返回式调节系统,在实际运行中,因为机器额定排量应大于实际氢气用量,一返、二返返回阀开度一般都处于20% -50%范围内,大量氢气经过压缩以后,在通过返回阀后,其压力会下降,导致大量能量出现严重浪费现象;而另外一台新氢机主要选用贺尔碧格公司的气量无级调节系统,对于贺尔碧格气量无级调节系统,压缩机的实际容积流量和功消耗二者呈正比关系,具有非常显著的节能效果,实际运行中贺尔碧格投用时一返和二返负荷一般在70%-85%之间。所以在正常工况下,3#柴油加氢装置所选用的

柴油加氢改质装置

柴油加氢改质装置 一工艺原理 1加氢精制 加氢精制主要反应为加氢脱硫、加氢脱氮、加氢脱氧、烯烃与芳烃的饱和加氢,以及加氢脱金属。其 典型反应如下 (1)脱硫反应: 在加氢精制条件下石油馏分中的含硫化合物进行氢解,转化成相应的烃和H2S,从而硫杂原 子被脱掉。 化学反应方程式: 二硫化物:RSSR’ + 3H2→RH + R’H + 2H2S 二硫化物加氢反应转化为烃和H2S,要经过生成硫醇的中间阶段,即首先S-S键上断开,生 成硫醇,再进一步加氢生成烃和硫化氢,中间生成的硫醇也能转化成硫醚。 噻吩与四氢噻吩的加氢反应: 噻吩加氢产物中观察到有中间产物丁二烯生成,并且很快加氢成丁烯,继续加氢成丁烷苯并噻吩在50-70大气压和425℃加氢生成乙基苯和硫化氢: 对多种有机含硫化物的加氢脱硫反应进行研究表明:硫醇、硫醚、二硫化物的加氢脱硫反应 多在比较缓和的条件下容易进行。这些化合物首先在C-S键,S-S键发生断裂,生成的分子碎片 再与氢化合。环状含硫化物加氢脱硫较困难,需要苛刻的条件。环状含硫化物在加氢脱硫时,首 先环中双键发生加氢饱和,然后再发生断环再脱去硫原子。 各种有机含硫化物在加氢脱硫反应中的反应活性,因分子结构和分子大小不同而异,按以下 顺序递减:

RSH>RSSR>RSR>噻吩 噻吩类化合物的反应活性,在工业加氢脱硫条件下,因分子大小不同而按以下顺序递减:噻吩>苯并噻吩>二苯并噻吩>甲基取代的苯并噻吩 (2)脱氮反应 石油馏分中的含氮化合物可分为三类: a 脂肪胺及芳香胺类 b 吡啶、喹啉类型的碱性杂环化合物 c 吡咯、咔唑型的非碱性氮化物 在各族氮化物当中,脂肪胺类的反应能力最强,芳香胺(烷基苯胺)等较难反应。无论脂肪族胺或芳香族胺都能以环状氮化物分解的中间产物形态出现。碱性或非碱性氮化物都是比较不活泼的,特别是多环氮化物更是如此。这些杂环化合物存在于各种中间馏分,特别是重馏分,以及煤及油母页岩的干馏或抽提产物中。在石油馏分中,氮化物的含量随馏分本身分子量增大而增加。在石油馏分中,氮含量很少,一般不超过几个ppm。 在加氢精制过程中,氮化物在氢作用下转化为NH3和烃。几种含氮化物的氢解反应如下: 根据发表的有关加氢脱氮反应的热力学数据,至少对一部分氮化物来说,当温度在300-500℃范围内,需要较高的氢分压才能进行加氢脱氮反应。从热力学观点来看,吡啶的加氢脱氮比其它氮化物更困难。为了脱氮完全,一般需要比脱硫通常采用的压力范围更高的压力。 在几种杂原子化合物中,含氮化合物的加氢反应最难进行,或者说它的稳定性最高。当分子结构相似时,三种杂原子化合物的加氢稳定性依次为: 含氮化合物>含氧化合物>含硫化合物 例如:焦化柴油加氢时,当脱硫率达到90%的条件处,其脱氮率仅为40%。

汽油加氢装置工艺流程培训教案

汽油加氢装置工艺流程培训教案 1 汽油加氢装置简介 1.1 概况 乙烯装置来的裂解汽油(C5—C9馏份)中含有大量的苯、甲苯、二甲苯等芳烃成份,是获得芳烃的宝贵原料。裂解汽油中除芳烃外,还含有单烯烃,双烯烃和烯基芳烃,还含有硫、氧、氮杂质。由于有不饱和烃的存在,裂解汽油是不稳定的。裂解汽油加氢的目的就是使不饱和烃变成饱和烃,并除去硫、氮、氧等杂质,为芳烃抽提装置提供稳定的高浓度芳烃含量的原料—加氢汽油。 1.2 原辅料及成品的特性 本装置在工艺上属于易燃、易爆、高温生产线,易发生着火、爆炸和气体中毒等事故。 裂解汽油为淡黄色芳香味挥发性液体,是芳香族和脂肪碳氢化合物的混合体。主要是由苯、甲苯、二甲苯、乙苯及C5-C9以上烃类组成。对人体存在危害作用。 氢气是种易燃易爆气体。氢气与空气混合,爆炸范围为4-74%(V)。 加氢汽油主要是由由苯、甲苯、二甲苯、乙苯及C5-C8饱和烷烃组成,对人体也存在危害作用。 过氧化氢异丙苯为无色或黄色油状液体,有特殊臭味,易分解引起爆炸。 硫化氢属于高危害毒物,密度比空气重,能沿地面扩散,燃烧时会产生二氧化硫有毒蒸汽,对人体存在危害作用。 2 工艺流程简介

2.1工艺特点 汽油装置采用国产化汽油加氢技术,其生产方法是先切除C 5馏份和C 9馏份,剩下的C 6—C 8馏份进行一段加氢,二段加氢,最终得到芳烃抽提的原料—加氢汽油。 2.2装置组成 汽油加氢装置由以下三部分组成: A :预分馏单元(主要包括切割C 5、脱砷、切割C 9) B :反应单元(主要包括一段加氢、二段加氢、压缩、和过热炉) C :稳定单元(主要包括脱硫化氢系统) 2.3工艺说明 2.3.1生产方法 利用裂解汽油中各组分在一定温度、压力的条件下,其相对挥发度不同,采用普通精馏的方法,将C 5馏份和沸点在其以下的轻馏份、C 9馏份和沸点在其以上的重组份,通过脱C 5塔和脱C 9塔分离,得到C 6—C 8馏份,然后通过钯或镍系催化剂和钴钼催化剂,进行选择性二次加氢,将C 6—C 8馏份中的不饱和烃加氢成饱和烃,并除去其中的有机硫化物、氧化物、氯化物,其主要化学反应有: (1)双烯加氢,在一段反应器进行。例如: (2)单烯及硫、氧、氮、氯化物加氢,在二段反应器进行。 例如: H 3C-CH=CH-CH=CH-CH 3+H 2 H 3C-CH=CH-CH 2-CH 2-CH 3 Pa Al 2O 3 CH 3-CH 2-CH=CH-CH 2-CH 3+H 2 CH 3-(CH 2)4-CH 3 Co+Mo Al 2O 3

加氢裂化装置掺炼催化柴油技术工业应用实践

加氢裂化装置掺炼催化柴油技术工业应用实践 发表时间:2019-09-01T18:59:57.400Z 来源:《防护工程》2019年12期作者:薛晓阳 [导读] 为了适应全厂生产的灵活性,本装置设计为全循环和60%转化率两种工况。 中国石油哈尔滨石化公司 150030 摘要:随着社会日益发展的需要和原油的日益劣质化、重质化,以及环境的污染,国家对干净、清洁的能源燃料越来越重视,而蜡油加氢裂化技术是原油深度加工生产清洁燃料的重要方式,所以在未来加氢裂化技术将会越来越普遍和推广。本文就以美国UOP公司的 Unicraking两段加氢裂化工艺技术为例进行实践论证。 关键词:加氢裂化;?催化柴油;?产品质量; 1 装置概况 为了适应全厂生产的灵活性,本装置设计为全循环和60%转化率两种工况。设计加工来自国外的减压蜡油,经过加氢脱硫、加氢脱氮、加氢裂化等反应,生产优质的轻、重石脑油、航煤和柴油产品,加氢尾油作为催化裂化装置原料。本装置反应的部分流程如下: 图1 装置反应部分流程 2?催化剂分布及原料性质 2.1 催化剂分布 本装置一段反应器共六个床层,其中第一床层到第四床层为加氢精制床层,催化剂型号分别为CT-30、KF-542、KG-5、HYT-8109、HYT-8119、KF-848 (再生) 、HYT-6219,第五床层和第六床层为加氢裂化床层,催化剂型号为HC-115LT (再生) ,反应器底部后精制剂型号为KF-851 (再生) 。 表1 原料油性质分析对比表 2.2 原料性质及特点 本装置自开工正常运转一段时间后,为了维持全厂物料平衡和实现效益最大化,开始在原料油中掺入催化柴油,并逐步增加至60 t/h。如表1所示为在总进料量330 t/h不变的情况下,原料中未掺入以及掺入20 t/h、40 t/h及60 t/h数量催化柴油组成的滤后原料油的主要性质参数。在整个掺炼观察期间,装置正常运行,各产品质量合格。 通过表1原料油性质分析对比表可以看出随着催化柴油掺炼比例的提高,混合原料油的密度逐渐增大,氮含量、硫含量所占比例都有相应的升高,这与催化柴油高硫、高氮性质特点相吻合,但由于本装置氮含量设计要求不大于867 mg/kg,所以为保证本装置催化剂失活速率在正常范围内,建议在装置运行前期,当混合原料油中氮含量大于867mg/kg时,操作人员应密切关注原料油性质及反应器床层温度变化。随掺炼比例的增加,初馏点温度呈现下降趋势和350℃馏出量所占体积分数逐渐增大的情况来看,催柴中含有一定比例的小分子轻组分;根据混合原料终馏点温度的逐渐上升和500℃馏出量所占体积分数下降的情况,得出催化柴油中同时含有大量的单环和多环芳烃,使得混合后

加氢车间工艺描述

加氢车间工艺描述 Prepared on 24 November 2020

加氢车间工艺描述 1、制氢装置: 制氢工艺采用轻烃蒸汽转化法制氢,制氢装置设计以催化干气为原料为主。转化制氢过程可分为原料净化、轻烃蒸汽转化、CO中温变换等过程。制氢装置全系统包括原料气压缩、原料气精制、轻烃蒸汽转化、CO中温转换、余热锅炉、PSA等部分。 制氢工艺基本过程是:原料气进入精制系统加氢、脱硫反应器,在一定的操作温度、氢气压力和空速条件下,在催化剂作用下,进行加氢烯烃饱和、脱硫、脱氯化学反,把原料气中有机硫化物、氯化物脱除,烯烃完全饱和。精制原料气进入转化炉炉管,并在一定压力、温度、空速、水碳比条件下,通过转化催化剂作用,生成氢气和一氧化碳、二氧化碳和少量的甲烷,进入中变反应器,通过中温变换催化剂的作用,使CO与水蒸汽进行中温变换反应生成氢气和。中变气进入PSA氢提纯装置,进行变压吸附脱除中变气中杂质,得到纯 CO 2 度%的高纯度氢气。 2、柴油加氢装置 加氢精制工艺主要是用于油品精制方面,其目的是除掉油品中的硫、氮、氧化合物,饱合油品中烯烃以及去掉油品中金属、非金属杂质。 本套以催化柴油、常柴的混合油为原料,经过加氢反应进行脱硫、脱氮、烯烃饱和等反应,生产满足国五要求的精制柴油。 工艺流程如下:混合原料经预热后热氢混合后进入反应炉加热升温。进入反应器进行加氢脱硫、脱氮、脱氧反应。加氢反应产物经冷却进入高、低压分离系统进行气、液、水三相分离。分离出的氢气进入循环氢压缩机建立临氢系统氢气循环。柴油进入汽提塔进行硫化氢汽提。汽柴油进入分馏塔进行分馏。

3、汽油加氢装置 汽油加氢装置根据催化裂化汽油中硫、烯烃、芳烃含量的分布特点,将催化裂化汽油切割为LCN和HCN两个汽油馏分。HCN部分在选择性加氢脱硫催化剂作用下,通过缓和条件进行加氢脱硫反应,,LCN部分不经过选择性加氢脱硫反应,从而使芳烃基本不饱和,烯烃也得到最大程度的保留,从而实现在脱硫的同时辛烷值损失最小。该装置由预加氢部分,预分馏部分,选择性加氢部分,汽提部分及公用工程部分组成,原料油为催化汽油。 工艺流程简述:原料油经过滤换热后进入预加氢反应器,预加氢反应流出物通过换热减压后进入预分馏塔,塔顶油气经冷凝冷却后进入预分馏塔顶回流罐进行油、气、水分离,闪蒸出的气体送出装置处理,油相经预分馏塔顶回流泵升压后分别作为塔顶回流一路作为轻汽油外出。重汽油进入HDS 第一反应器、HDS 第二反应器,进行深度加氢脱硫反应。反应流出物进入分离器进行气、油、水三相分离,分离器底部出来的低分油进入汽提部分;含硫污水送出装置处理;顶部出来的循环氢脱硫后与装置外来新氢混合后与重汽油混合作为混合进料。低分油进入汽提塔,塔顶油气进入汽提塔顶回流罐进行油、气、水分离,闪蒸出的气体送出装置处理,油相作为塔顶回流,塔底精制重汽油与轻汽油混合后作为产品送出装置。 加氢车间

蜡油加氢装置简介分解

100万吨/年蜡油加氢装置装置简介 中国石化股份有限公司 上海高桥分公司炼油事业部 2007年3月

编制:何文全审核:严俊校对:周新娣

目录 第一章工艺简介 (1) 一、概述 (1) 二、装置概况及特点 (1) 三、原材料及产品性质 (2) 四、生产工序 (4) 五、装置的生产原理 (5) 六、工艺流程说明 (5) 七、加工方案 (6) 八、自动控制部分 (10) 九、装置内外关系 (11) 第二章设备简介 (13) 一、加热炉 (13) 二、氢压机 (13) 三、非定型设备 (13) 四、设备一览表 (15) 五、设备简图 (20)

第一章工艺简介 一、概述 中国石化股份有限公司上海高桥分公司炼油事业部是具有五十多年历史的加工低硫石蜡基中质原油的燃料——润滑油型炼油企业,根据中国石化股份有限公司原油油种变化和适应市场发展的需求,上海高桥分公司到2007年以后除了加工大庆原油、海洋原油等低硫原油外,将主要加工含硫2.0%左右的含硫含酸进口原油。由于常减压生产的减压蜡油和延迟焦化装置生产的焦化蜡油中含有较多的不饱和烃及硫、氮等有害的非烃化合物,这些产品无法达到催化裂化装置的要求。为了使二次加工的蜡油达到催化裂化装置的要求,必须对焦化蜡油和减压蜡油进行加氢精制,因此上海高桥分公司炼油事业部进行原油适应性改造时,将原100万吨/年柴油加氢精制装置改造为100万吨/年蜡油加氢装置。本装置的建设主要是为了催化裂化装置降低原料的硫含量和酸度服务。本装置由中国石化集团上海工程有限公司设计,基础设计于2005年6月份完成,2005年8月份进行了基础设计审查,工程建设总投资2638.73万元,其中工程费用2448.74万元。2006年7月降蜡油含硫量由原设计2.44%提高至3.28%,工程建设总概算增加820.8万元。 二、装置概况及特点 1.装置规模及组成 蜡油加氢精制装置技术改造原料处理能力为100万吨/年,年开工时数8400小时。本装置为连续生产过程。主要产品为蜡油、柴油、汽油。 本装置由反应部分、循环氢脱硫部分、氢压机部分(包括新氢压缩机、循氢压缩机)、加热炉部分及公用工程部分等组成。 2.生产方案 混合原料经过滤后进入缓冲罐,用泵升压,经换热、混氢,再经换热进入加热炉,加热至350℃后进反应器进行加氢,反应产物经换热后进热高分进行气液分离,气相进一步冷却,进冷高分进行气液分离,气相进新增的循环氢脱硫塔脱硫后作为循环氢与新氢混合,组成混合氢循环使用;液相减压后至热低分,热低分的液相至催化裂化装置。热低分气相经冷凝冷却至冷低分,冷低分的液相至汽柴油加氢装置。 3.装置平面布置

最新240万加氢装置循环氢压缩机ITCC系统联锁逻辑说明汇总

240万加氢装置循环氢压缩机I T C C系统联锁逻辑说明

目录 目录 (2) 1 联锁逻辑 (3) 2 开车步骤 (5) 3 超速实验与正常停机 (7) 4 润滑油备泵自启动逻辑 (7) 5 防喘振控制 (7) 附:联锁报警值一览表 (9)

1 联锁逻辑 1.1联锁条件: (1)压缩机止推轴承温度TT11447A/B高高二取二(HH:115℃),分别带旁路软开关TI11447A/B (2)压缩机止推轴承温度TT11448A/B高高二取二(HH:115℃),分别带旁路软开关TI11448A/B (3)压缩机支撑轴承温度TT11446A/B高高二取二(HH:115℃),分别带旁路软开关TI11446A/B (4)压缩机支撑轴承温度TT11445A/B高高二取二(HH:115℃),分别带旁路软开关TI11445A/B (5)压缩机轴位移ZSHH11442A/B过大二取二(HH:0.7mm),分别带旁路软开关ZSHH11442A/B (6)压缩机轴振动VSHH11443过大(HH:88.9μm),带旁路软开关VSHH11443 (7)压缩机轴振动VSHH11444过大(HH:88.9μm),带旁路软开关VSHH11444 (8)汽轮机径向轴承温度TT11463A/B高高二取二(HH:115℃),分别带旁路软开关TI11463A/B (9)汽轮机径向轴承温度TT11464A/B高高二取二(HH:115℃),分别带旁路软开关TI11464A/B (10)汽轮机推力轴承温度TT11461A/B高高二取二(HH:115℃),分别带旁路软开关TI11461A/B (11)汽轮机推力轴承温度TT11462A/B高高二取二(HH:115℃),分别带旁路软开关TI11462A/B (12)汽轮机轴位移ZSHH11461A/B过大二取二(HH:0.8mm),分别带旁路软开关ZSHH11461A/B (13)汽轮机轴振动VSHH11461过大(HH:88.9μm),带旁路软开关VSHH11461 (14)汽轮机轴振动VSHH11462过大(HH:88.9μm),带旁路软开关VSHH11462 (15)驱动端一级密封泄漏量PDT11495高高(HH:78.6kPa),带旁路软开关PDI11495 (16)非驱动端一级密封泄漏量PDT11496高高(HH:78.6kPa),带旁路软开关PDI11496 (17)汽轮机速关油压力PT11460低(L:0.15MPa) ,带旁路软开关PI11460 (18)汽轮机转速高高自203 SSHH11463A,带旁路软开关SSHH11463A

柴油加氢精制工艺(工程科技)

柴油加氢精制工艺 定义:加氢精制是指在一定温度、压力、氢油比和空速条件下,原料油、氢气通过反应器内催化剂床层,在加氢精制催化剂的作用下,把油品中所含的硫、氮、氧等非烃类化合物转化成为相应的烃类及易于除去的硫化氢、氨和水。提高油品品质的过程。 石油馏分中各类含硫化合物的C—S键是比较容易断裂的,其键能比C—C或C—N键的键能小许多。在加氢过程中,一般含硫化合物中的C—S键先行断开而生成相应的烃类和H2S。但由于苯并噻吩的空间位阻效应,C-S键断键较困难,在反应苛刻度较低的情况下,加氢脱硫率在85%左右,能够满足目前产品柴油硫含量小于2000ppm 的要求。 柴油馏分中有机氮化物脱除较困难,主要是C-N键能较大,正常水平下,在目前的加氢精制技术中脱氮率一般维持在70%左右,提高反应压力对脱氮有利。 烯烃饱和反应在柴油加氢过程中进行的较完全,此反应可以提高柴油的安定性和十六烷值。 当然,在加氢精制过程中还有脱氧、芳烃饱和反应。加氢脱硫、脱氮、脱氧、烯烃饱和、芳烃饱和反应都会进行,只是反应转化率纯在差别,这些反应对加氢过程都是有利的反应。但同时还会发生烷烃加氢裂化反应,此种反应是不希望的反应类型,但在加氢精制的反应条件下,加氢裂化反应有不可避免。目前为了解决这个问题,主要是

调整反应温度和采用选择性更好的催化剂。 下面以我厂100万吨/年汽柴油加氢精制装置为例,简单介绍一下工艺流程: 60万吨柴油加氢精制 F101D201 D102 D101 SR101 P101P102E103E101 R101 K101 D106 E104 D103D104 D105 D107 P103 P201 E201A202 P202 A201 K101 E101E102E103A101 产品柴油 循环氢 低分气 C201 催化汽油选择性加氢脱硫醇技术(RSDS技术) 催化汽油加氢脱硫醇装置的主要目的是拖出催化汽油中的硫含量,目前我国大部分地区汽油执行国三标准,硫含量要求小于150ppm,烯烃含量不大于30%,苯含量小于1%。在汽油加氢脱硫的过程中,烯烃极易饱和,辛烷值损失较大,针对这一问题,石科院开发了RSDS技术。本技术的关键是将催化汽油轻重组分进行分离,重组分进行加氢脱硫,轻组分碱洗脱硫。采取轻重组分分离的理论基础是,轻组分中烯烃含量高,可达到50%以上,通过直接碱洗,辛烷值

PHF-102型催化剂在柴油加氢精制装置的应用

PHF-102型催化剂在柴油加氢精制装置的应用 前言 某厂70万吨/年柴油加氢精制装置采用柴油深度加氢脱硫技术。装置由反应、分馏以及公用工程三部分组成, 2013年12月完成设计,2014年10月建成投产。装置加工的原料油为直馏柴油和焦化柴油。装置的主要产品是低硫柴油,副产品是低分气和酸性气,其主要目的是脱硫、脱氮、脱氧和解决色度及贮存安定性的问题,满足日益严格的环保要求,同时提高柴油的十六烷值,降低芳烃含量,使总厂调和柴油达到国Ⅳ柴油标准。本文仅对PHF-102型催化剂在某厂柴油加氢精制装置中的首次应用进行分析。 1反应部分工艺流程 柴油加氢精制装置反应部分流程简图见图1。原料油自装置外来经原料油过滤器进行过滤,再经原料油聚结器脱水后进入原料油缓冲罐,再经反应进料泵升压,经精制柴油-原料油换热器与精制柴油换热后,与混合氢混合作为混合进料。 混合进料经过反应产物-混氢油换热器换热后,进入反应进料加热炉加热至反应所需温度,再进入加氢精制反应器。该反应器设置二个催化剂床层,床层间设有注急冷氢设施。 来自加氢精制反应器的反应产物,经反应产物-混氢油换热器、反应产物-低分油换热器换热后,经反应产物空冷器冷却,进入冷高压分离器。冷高压分离器顶部出来的气体(循环氢)进入循环氢脱硫塔入口分液罐分离出气体中夹带的液体后,进入循环氢脱硫塔(C-101)脱除其中的H2S 气体,然后经过循环氢压缩机入口分液罐分液后,进入循环氢压缩机(K-102)升压后分三路:―路作为急冷氢进入反应器;―路与升压后的新氢混合,混合氢与原料油混合作为混合进料。另―路打旁路至冷高分气空冷器前,返回至循环氢压缩机入口。 冷高压分离器油相减压后送至冷低压分离器进行再次闪蒸分离,低分油经反应产物-低分油换热器换热后进入脱硫化氢汽提塔(C-201)。装置外来的PSA氢气经新氢压缩机入口分液罐分液后进入新氢压缩机(K-101),经二级升压后与循环氢混合,作为反应所需的混氢原料。 柴油加氢精制装置反应部分流程简图见图1。原料油自装置外来经原料油过滤器和聚结器滤除杂质和明水后进入原料油缓冲罐,再经反应进料泵升压,经精制柴油-原料油换热器与精制柴油换热后,与混合氢混合作为混合进料。装置外来的PSA氢气经新氢压缩机入口分液罐分液后进入新氢压缩机(K-101),经二级升压后与循环氢混合,作为反应所需的混合氢。 混合进料经过反应产物-混氢油换热器换热后,进入反应进料加热炉加热至反应所需温度,再进入加氢精制反应器。该反应器设置二个催化剂床层,床层间设有注急冷氢设施。 来自加氢精制反应器的反应产物,分别与混氢油、低分油换热后,经反应产物空冷器冷却,进入冷高压分离器。冷高压分离器顶部出来的气体(循环氢)进入循环氢脱硫系统脱除其中的H2S 气体,循环氢经循环氢压缩机(K-102)升压后分三路:―路作为急冷氢进入反应器;―路与升压后

柴油加氢装置停工总结要点

柴油加氢装置停工总结 按照公司停工检修统一统筹安排,柴油加氢装置于2011年6月20日22时开始停工,现对柴油加氢装置停工过程中停工进度、对外管线吹扫、人员分工、盲板管理、停工过程中存在的不足等几个方面对本次停工总结如下: 一、停工过程与分析 表1 装置停工进度表

柴油加氢装置停工总结 图1装置停工反应器实际降温曲线与原先方案降温曲线比较 4

装置停工实际进度与原计划停工统筹差异主要有以下几点: (1)、装置停进料泵P-102A后,反应系统热氢带油阶段,原先计划安排热氢带油16h。实际停工阶段热氢带油10h后,热高分液位基本未见上涨,同时由于重整装置停工安排,氢气中断供应,反应系统热氢带油比原先计划缩短6h。 (2)、反应系统热氮脱氢阶段,反应器入口温度维持220℃,反应系统压力维持2.7MPa,进行热氮脱氢12小时,比原先停工计划缩短12h。原计划反应系统热氮脱氢阶段,循环气中氢+烃置换至<0.5V%后结束热氮脱氢。实际停工过程中,热氮脱氢结束时,循环气中氢+烃含量为25.86V%,反应系统降温阶段继续进行氮气置换,直至循环气中氢+烃含量<0.5V%。 (3)、反应系统降温阶段,停F-101后,F-101快开风门全部打开,A-101维持最大冷却负荷进行循环降温,R-101床层温度降至150℃前,实际降温速度为7℃/h R-101床层温度降至100~150℃阶段,实际降温速度为4~5℃/h,R-101床层温度自220℃降至70℃,实际降温时间为39h。与原先计划差别不大。由于装置反应器内径较大(5.2m),系统补充氮气量受公司氮气总量限制,R-101床层温度未降至原先计划德60℃。 (4)、反应器降温结束后,停K-102、K-101,反应系统泄压至0.5MPa,自K-102出口补入氮气继续置换反应系统18h后,反应系统循环气化验分析氢+烃<0.2V%,反应系统泄压至微正压。公用工程系统吹扫合格后,装置交出检修。 (5)、装置塔、罐蒸煮结束后,C-201、D-103、D-105、D-305、D-117高硫氢部位进行钝化清洗,由于D-103、D-105、D-117导淋堵塞,废钝化液外排比较困难。从开始钝化至废钝化液排净用时约为48h,远超过原先计划的钝化时间(16h)。 二、公用工程消耗 表2 装置停工公用工程消耗 (1)、由于柴油加氢装置低压氮气流量表量程为(0~1000m3/h),装置停工吹扫期间经常出现满量程问题,低压氮气实际耗量比MES数据要大。

加氢操作规程解析

目的 为了搞好加氢精制装置的正常操作,保证该装置的“安、稳、长、满、优”运行,特制订本规程。 范围 本规程规定了加氢精制装置工艺原理与流程、正常操作法、特殊情况处理、开停工方法和步骤、安全和环保要求等内容。 本规程适用于沧州分公司80×104t/a加氢精制装置的工艺操作。 引用依据 本规程是在参照沧州分公司80×104t/a加氢精制装置设计说明书以及国内其他同类型装置的操作规程编制而成的,对原版规程做了修订。 职责和权限 1. 生产管理部是本规程的归口管理部门。负责组织车间和有关部门或人员编写、修改修订本规程;每周负责按照本规程规定的要求对车间执行情况进行抽查、监督和考核。 2. 机动部、安环部是本规程的分管部门。参与本规程的编写、修改修订和审核会签工作;每周负责按照部门专业管理的职责和权限以及本规程规定的要求对车间执行情况进行抽查、监督和考核。 3.炼油二部是本规程的执行部门。参与本规程编写或修订的起草工作,负责组织岗位操作人员贯彻执行,并对本单位日常执行情况进行监督、检查和考核。 4.其他相关单位进入本装置进行施工、检维修作业时,必须遵守本规程

的有关安全、检维修规定。

1. 装置概述 1.1装置概况及特点 1.1.1 装置简介 中国石油化工股份有限公司沧州分公司60万吨/年汽柴油加氢精制装置是依据中石化(1997)建字293号文《关于沧州炼油厂改炼胜利原油改造工程初步设计的批复》,由中国石化北京设计院设计、中国石化第四建设公司承建,于1998年2月28日动工建设。1999年3月28日实现中交,4月29日开始催化剂预硫化,4月30日切换原料油实现一次开车成功。2001年1月由于加氢石脑油硫含量超高,进行了技术改造,增设了石脑油脱硫塔单元。2002年10月大检修期间,进行了装置扩能改造,增上了一台加氢大流量进料泵、注水泵,其它方面进行配套改造,由60万吨/年改为80万吨/年。2003年10月,再次进行技术改造,增上一汽提塔,用于生产低凝点柴油。2004年大修期间将加氢柴油泵改为大流量泵,并增上变频,满足柴油外送需求。2007年7月大修期间进行了加氢热料直供流程改造,打通了催化柴油、焦化柴油、焦化汽油和常三线直柴的热料直供流程(当前因焦化汽柴油携带的杂质过高而没有直接进装置),实现了催化柴油热料直供。 1.1.2 装置规模: 初建设计公称规模60万吨/年。

炼油厂催化柴油转化装置运行方式

炼油厂催化柴油转化装置运行方式摘要在国五车用柴油升级后,催化柴油组分油无法全部平衡,只能外销部分催化柴油,效益损失大。为应对2017年国五普柴升级,新建催化柴油转化装置。本文对催化柴油转化装置与其它加氢精制装置并行运行方式进行总结,提出未来的运行思路。 关键词催化柴油十六烷值辛烷值转化芳烃含量 1.普通柴油升级进度说明 按照国家规定,普通柴油从2017年7月1日开始执行国Ⅳ标准,从2018年1月1日开始执行国Ⅴ标准。 按照总部规定,普通柴油的升级时间比国家要求还要提前一个季度,从2017年4月1日开始执行国Ⅳ标准,从2017年10月1日开始执行国Ⅴ标准。也就是说,2017年内,普通柴油质量在半年时间需跳跃2级。 总部要求普柴升级规定(比国家要求提前三个月) 普柴内控指标2017年4月1日前2017年4月1日(国Ⅳ)2017年10月1日(国Ⅴ) 硫含量(mg/kg) 340 47 8 十六烷值45.5 45.5 45.5 十六烷指数45 45 45 下表为外销混合催化柴油分析数据,因外销柴油没有芳含数据要求,总芳烃含量用历史数据表示。 表一: 第一批第二批第三批第四批 密度(kg/m3)936.3 946.3 952.4 948.4 馏程(℃)170-345 159-351 161-348 162-345 氮含量(ppm) 743 905 857 822 十六烷指数22.3 21.1 20.6 20.7 总芳烃(%) 80-85 硫含量(%) 0.6477 0.6097 0.6283 0.5201 由此表可以看出催化柴油密度大、十六烷值低、芳烃含量高。富含芳烃是催化柴油 质量差的根源(80%~85%芳烃),如何有效利用催化柴油是柴油质量升级必须解决的难题。

柴油加氢装置的原理

由焦化柴油,催化柴油经过液控阀进入柴油反冲洗过滤器除去原料油中大于25μm的颗粒,过滤后的原料油经原料油/精制柴油换热器,与精制柴油换热后进入原料油缓冲罐稳压,然后经原料油泵升压,在流量的控制下,与混合氢混合作为混合进料混合进料经反应流出物/混合进料热热器与反应流出物换热后分四路进入加热炉进行加热,加热后汇成一路进入反应器(R101),反应后经反应流出物/混合进料换热器与混合进料换热后进热高压分离器。热高分气体经热高分气/混合氢换热器换热后,再经热高分器空冷器冷至49℃进入冷高压分离器。为了防止反应流出物中的铵盐在低温部分析出,通过注水泵将脱盐水注至上游处的管道中。冷却后的热高分气在中进行油、气、水三相分离。自塔顶部出来的循环氢(冷高分气)经循环氢脱硫塔入口分液罐分液后,进入循环氢脱硫塔底部,设有层浮阀塔盘,自贫溶剂缓冲罐来的贫溶剂,经循环氢脱硫塔贫溶剂泵升压后进入第一层塔盘。脱硫后的循环氢自塔顶出来,经循环氢压缩机入口分液罐分液后进入循环氢压缩机升压,然后分成两路,一路作为急冷氢去反应器(R101)控制反应器床层温升,另一路与来自新氢压缩机出口的新氢混合成为混合氢。自底部出来的富液在液位控制下与来自底部来的富液合并后至装置外。V102底部出来的热高分油在液位控制下经过液力透平(HT101)回收能量后进入热低压分离器(V104)。热低分气经热低分气/冷低分油换热器(E103)与冷低分油换热,再经热低分气冷却器(E104)冷却到49℃后与冷高分油混合进入冷低压分离器(V105)。自V104底部出来的热低分油与经热低分气/冷低分油换热器(E103)与热低分气换热后的自V105底部出来的冷低分油混合后进入产品分馏塔第26层塔盘。V105气相与产品分馏塔顶气及汽油脱硫化氢汽提塔塔顶气合并后去干气脱硫塔(T104)脱硫后送装置外管网。V103与V105底部排出的酸性水及分馏部分V106、V107排出的酸性水合并至公用工程部分含硫污水除油器(V117)进行脱气除油后,污水经泵送至装置外处理。 装置外来的新氢经新氢压缩机入口分液罐(V108)分液后进入新氢压缩机(C102A,B),经三级升压后与C101出口的循环氢混合成为混合氢。 二、分馏部分 从反应部分来的低分油直接进入产品分馏塔(T101),T101设与36层浮阀塔盘,塔底通入汽提蒸气。塔顶油气经产品分馏塔顶空冷器(A102)。产品分馏塔顶冷

加氢裂化装置掺炼催化裂化柴油研究

加氢裂化装置掺炼催化裂化柴油研究 发表时间:2018-10-16T16:07:47.777Z 来源:《基层建设》2018年第27期作者:白广友 [导读] 摘要:文章以加氢裂化装置掺炼催化裂化柴油为研究对象,首先对加氢裂化装置概况进行了阐述分析,随后分析研究了加氢裂化装置进行FCC柴油掺炼催化产品,最后运用加氢裂化装置掺炼FCC柴油应注意的问题以供参考。 中石化天津分公司炼油部天津市 300270 摘要:文章以加氢裂化装置掺炼催化裂化柴油为研究对象,首先对加氢裂化装置概况进行了阐述分析,随后分析研究了加氢裂化装置进行FCC柴油掺炼催化产品,最后运用加氢裂化装置掺炼FCC柴油应注意的问题以供参考。 关键词:加氢裂化装置;催化裂化柴油;掺炼 前言:FCC柴油具有杂质含量高、密度较大、储存安全性差等特点,并且直接用作车用能源产生的污染气体较多,随着人们的环保意识不断增强,国家对车用柴油产品质量要求不断提升,需要进一步加强对FCC柴油的处理,有效改善并提升FCC柴油的品质,降低柴油用作能源带来的污染,从而有效满足我国对车用柴油质量品质的要求。 一、加氢裂化装置概况 该加氢裂化装置为2.0Mt/a 高压加氢裂化装置,由中国石化工程建设公司参与设计,并于2007年成功投料开车。该装置主要由四部分组成,分别是反应部分、分馏部分、吸收稳定部分及脱硫部分组成,其中反应部分采用的是目前国内外已经应用较为成熟的炉前混氢流程,操作更加简便,传热效率更加高效,流程也得到了良好的优化。分馏部分通过设置硫化氢汽提塔,并采用分馏塔进料,常压塔与加热炉出柴油的方案,在分馏塔中,还设置了两个中段回流,从而使得热量得到了较好的回收,有利于整体装置能耗降低。吸收稳定部分在吸收方案选择上,采用的是重石脑油作为吸收剂的方案,从而使得干气中的液化气得到很好的回收,有效避免了轻石脑油与液化气出现更大的损失;最后对于脱硫部分来说,在脱硫剂选择上,选择的是N-甲基二乙醇胺,进行低分气与液化气的脱硫方案。主要产品为石脑油、航煤、柴油及用作制乙烯原料的尾油。该装置所得产品众多,并且分向不同的去向,例如所得的柴油更加清洁,十六烷值高,倾点低,造成污染更小;所得的尾油作为乙烯原料,烷烃含量高,芳烃指数值较低;所得的重石脑油作为催化重整原料,芳烃潜含量较高。在2010年,该装置转入了第二生产周期,结合实际生产需求,该装置采用了RN—32V 制催化剂和 RHC—3 裂化催化剂,上述两种催化剂由中国石化石油化工科学研究院研发,对尾油质量提升上具有较为积极的影响意义。 二、加氢裂化装置进行FCC柴油掺炼催化产品分析 (一)FCC柴油前后掺炼条件分析 具体条件如表1所示,通过表一我们可以看出,在掺炼前与掺炼后二者总的加工量基本保持一致的前提下,FCC柴油在掺炼后变得更加轻量,精制反应平均温度和裂化反应平均温度都有所降低,总的能耗相对更低。但同时我们应注意到,相应的耗氢量增加,冷氢用量更多。究其原因在于,从FCC 柴油本身来看,由于其含有大量的芳烃,因此在高压加氢裂化条件下,芳烃想要达到深度饱,就必然要消耗大量的氢。 表1:掺炼催化柴油主要操作条件 (一)FCC柴油前后掺炼液化气(脱硫后)质量对比 由表2我们可以看出,FCC柴油在掺炼后,并没有对液化气的质量产生任何不利影响,并在在其具体的烃组成中,丙烷的含有呈上升

240万加氢装置循环氢压缩机ITCC系统联锁逻辑说明

目录 目录 (1) 1 联锁逻辑 (2) 2 开车步骤 (3) 3 超速实验与正常停机 (5) 4 润滑油备泵自启动逻辑 (5) 5 防喘振控制 (5) 附:联锁报警值一览表 (8)

1 联锁逻辑 1.1联锁条件: (1)压缩机止推轴承温度TT11447A/B高高二取二(HH:115℃),分别带旁路软开关TI11447A/B (2)压缩机止推轴承温度TT11448A/B高高二取二(HH:115℃),分别带旁路软开关TI11448A/B (3)压缩机支撑轴承温度TT11446A/B高高二取二(HH:115℃),分别带旁路软开关TI11446A/B (4)压缩机支撑轴承温度TT11445A/B高高二取二(HH:115℃),分别带旁路软开关TI11445A/B (5)压缩机轴位移ZSHH11442A/B过大二取二(HH:0.7mm),分别带旁路软开关ZSHH11442A/B (6)压缩机轴振动VSHH11443过大(HH:88.9μm),带旁路软开关VSHH11443 (7)压缩机轴振动VSHH11444过大(HH:88.9μm),带旁路软开关VSHH11444 (8)汽轮机径向轴承温度TT11463A/B高高二取二(HH:115℃),分别带旁路软开关TI11463A/B (9)汽轮机径向轴承温度TT11464A/B高高二取二(HH:115℃),分别带旁路软开关TI11464A/B (10)汽轮机推力轴承温度TT11461A/B高高二取二(HH:115℃),分别带旁路软开关TI11461A/B (11)汽轮机推力轴承温度TT11462A/B高高二取二(HH:115℃),分别带旁路软开关TI11462A/B (12)汽轮机轴位移ZSHH11461A/B过大二取二(HH:0.8mm),分别带旁路软开关ZSHH11461A/B (13)汽轮机轴振动VSHH11461过大(HH:88.9μm),带旁路软开关VSHH11461 (14)汽轮机轴振动VSHH11462过大(HH:88.9μm),带旁路软开关VSHH11462 (15)驱动端一级密封泄漏量PDT11495高高(HH:78.6kPa),带旁路软开关PDI11495 (16)非驱动端一级密封泄漏量PDT11496高高(HH:78.6kPa),带旁路软开关PDI11496 (17)汽轮机速关油压力PT11460低(L:0.15MPa) ,带旁路软开关PI11460 (18)汽轮机转速高高自203 SSHH11463A,带旁路软开关SSHH11463A (19)汽轮机转速高高203 SSHH11463B,带旁路软开关SSHH11463B (20)汽轮机转速ST11462A/B高选后<600rpm且转速调节去电液转换器输出SV11454>40%,带旁路软开关SV11454_FAULT (21)汽轮机转速ST11462A高高(HH:12304rpm),带旁路软开关SI11462A (22)汽轮机转速ST11462B高高(HH:12304rpm),带旁路软开关SI11462B (23)润滑油总管压力PT11440A/B/C低低三取二(LL:0.1MPa),分别带旁路软开关PI11440A/B/C (24)汽轮机排气压力PT11461A/B/C低低三取二(LL:0.9MPa(a)),分别带旁路软开关PI11461A/B/C (25)辅操台压缩机紧急停机按钮HSS11431_1按下

催化柴油加氢裂化生产BTX研究现状

2018年2月第26卷第2期 工业催化 INDUSTRIAL CATALYSIS Feb. 2018 Vol. 26 No. 2 综述与展望 催化 氢裂化生产BTX研究现状 徐洁,吴韬,陈胜,袁桂梅 (中国石油大学(北京)重质油国家重点实验室,北京102249)摘要:总结催化柴油中的主要组分(双环芳烃和单环芳烃)在发生加氢裂化过程中的反应机理和 动力学研究现状,分析催化剂中活性组分和载体的选择对产物分布的影响,介绍国内外以催化柴油 为原料生产轻质芳烃B T X的工艺进展。 关键词:石油化学工程;催化柴油;加氢裂化;B T X doi:10. 3969/j.issn. 1008-1143. 2018. 02. 002 中图分类号:T Q241. 1;0643. 1文献标识码:A文章编号:1008-1143(2018)02-0015-08 Research progress of hydrocracking of diesel to produce BTX Xu Jie,Wu Tao,Chen Shengli&,Yuan Guimei (State Key Laboratory of Heav? Oil Processing,China UrdversiPy of Petr o leum(Beijing),Beijing 102249,China) Abstract:Hydrocracking reaction rule and kinetics of main components(double - ring aromatics and monocylic aromatics)in catalytic diesel are summarized.And effects of active component and carrier of catalyst on product distribution are stated.Technology progress of producing B T X using catalytic diesel as feedstock i s introduced as well. Key words:petrochemical engineering;FCC diesel;hydrocracking;B T X doi:10. 3969/j.issn. 1008-1143. 2018. 02. 002 CLC number:T Q241.1$0643.1 Document code:A Article I D:1008-1143(2018)02-0015-08 轻质芳经,如苯(Benzene)、甲苯(Tolene)、二甲 苯(Xylene)是重要的基本化工原料。随着工业发展 和人类生活水平的提高,纤维、塑料和合成 橡胶工业发展迅速,对B T X的需求逐年增长,已出 现供不应求的现状。目前,我国B T X年消费量超过 20 M t,其中以对二甲苯为主,约占B T X总量的 45'。2012年我国对二甲苯(P X)表观消费量13.85 M t,国内产品自给率仅56'[1]。一直以来,我国B T X的生产主要利用直馏汽油、石脑油经贵金 属铂重整工艺和蒸汽 制乙烯工艺获得[2],原料供应不足,苯 衍生物的 在很大程度上受到限制。另一方面,受我国经济 调整、天然替代燃料发展较快等因素的影响,对柴油需求增长 慢,且国内炼油能力与水 ,柴油供过于求。催化裂化柴油约占我国柴油生 的三分之一,其芳经质量分数为70% ~ 90',且芳烃中大部分为 十 、安 差的双环芳烃和单环芳烃,是柴油中最差的组分[3]。为解决柴油过剩的问题,炼 油企业积极调整汽柴油的生产比,但受生产工艺的 制,柴汽 不能从根本上抑制柴油产能过剩[4]。 采用加氢裂化工艺将催化柴油中的双环芳经转 化为轻质芳烃(如B T X等),是解决柴油过剩和低碳 芳烃短缺的理想途径[54]。在加氢裂化过程中,双 收稿日期:2017 -11-28 作者简介:徐洁,1994,女,辽宁省沈阳市人,在读硕士研究生。 通讯联系人:陈胜利,男,教授,博士研究生导师,研究方石油化工。E -mall:Slchen@cup. edu. c

催化柴油加氢裂化

催化柴油加氢裂化 催化柴油加氢裂化多产高辛烷值、低硫汽油的工艺,目前我知道的是燕山石化、金陵石化都是改造而成的,整体效益是很可观的。汽油总收可达到44%,柴油在42%、干气不到2%,其余为液化气。 11月11日,金陵石化1#加氢裂化装置加工催化柴油出产的柴油密度已由940kg/m3降低到880kg/m3,汽油组分辛烷值最高达到95.1,重石脑油芳,烃含量达到38%,各类试验数据基本达到设计指标。 生产的汽油密度80左右,RON92~95。 操作压力需要80公斤,氢耗3%,即336Nm3/吨,成本750元。 抚研院:操作压力需要90公斤,氢耗3~4%,即336Nm3/吨,成本750元。 反应器设置:两个反应器,前精制,后裂化。 产品分布:加氢柴油52.0%,加氢汽油40.0%,高清洁液化气6.0%,干气1.0%。 催化柴油加氢改质 氢耗3%,密度从0.93降至0.86。 改质C1~C4占1%,汽油10%,其他为柴油。双环单环的侧链不断,所以氢耗比催化柴油加氢裂化低一些,液化气收率高一些。 催化柴油加氢精制 张孔远:在此压力下(80公斤)精制是没有用的,只能脱脱色,

脱脱硫,密度不会有较大改变。 直接把100万吨/年的汽柴油混合加氢的第二个反应器全部装填改质剂也是不合适的,因为石脑油在第二个反应器中也会裂化,生产部分液化气。中石化倒是也有这方面的工艺,就是在俩个反应器之间加入分馏单元,把加氢石脑油与柴油分开,加氢柴油再去改质反应器继续改质,但这样改造起来就太麻烦了。 完全是石脑油加氢可否?张孔远说可以,焦化石脑油占70%,常压石脑油占30%,比起柴油加氢,空速可提至多少?焦化汽油350吨,常压石脑油150吨,共500吨/天,即20吨/小时。总放热温升在120℃。 这样,100万吨/年的汽柴油混合加氢就变成了纯的柴油加氢改质,第一个反应器精制,第二个反应器改质,其降密度的效果应该比现在要好。

相关文档
最新文档