新课标八年级数学竞赛讲座:第二十三讲 代数证明

新课标八年级数学竞赛讲座:第二十三讲 代数证明
新课标八年级数学竞赛讲座:第二十三讲 代数证明

第二十三讲 代数证明

代数证明主要是指证明代数中的一些相等关系或不等关系.

在初中阶段,要证的等式一般可分为恒等式的证明和条件等式的证明.

恒等式的证明常用的方法有:

(1)由繁到简,从一边推向另一边;

(2)从左右两边人手,相向推进;

(3)作差或作商证明,即证明:左边一右边=0,)0(1≠=右边右边

左边. 条件等式的证明实质是有根据、有目的的代数式恒等变换,证明的关键是寻找条件与结论的联系,既要注意已知条件的变换,使之有利于应用;又要考虑求证的需求情况,使之有利于与已知条件的沟通.

代数证明不同于几何证明,几何证明有直观的图形为依托,而代数证明却取决于代数式化简求值变形技巧、方法和思想的熟练运用.

例题求解

【例1】(1)求证:a a z a y a x a az z a ay y a ax x

3111222+-+-+-=-+-+

- (2)求证:)1)(1)(1(4)1()1()1

(222ab

ab b b a a ab ab b b a a ++++=+++++. 思路点拨 (1)从较复杂的等式左边推向等式右边,注意左边每个分式分子与分母的联系;(2)等式两边都较复杂,对左、右两边都作变形或作差比较.

注 如果一个等式的字母在条件允许范围内的任意一个值,使得等式总能成立,那么这个等式叫做恒等式.把一个式子变形为与原式恒等的另一种不同形式的式子,这种变形叫做恒等变形,形变值不变是恒等变形的特点.

代数式的化简求值、代数证明其实质都是作恒等变形,分解、换元、引参、配方、分组、拆分,取倒数等是恒等变形常用的技巧与方法.

【例2】 已知b a y x +=+,且2222b a y x +=+.

求证:2001200120012001b a y x +=+.

(黄冈市竞赛题)

思路点拨 从完全平方公式入手,推出 x 、y 与a 、b 间关系,寻找证题的突破口.

【例3】 有18支足球队进行单循环赛,每个参赛队同其他各队进行一场比赛,假设比赛的结果没有平局,如果用i a 和i b ,分别表示第i(I=1,2,3…18)支球队在整个赛程中胜与负的局数.

求证:21822212182221b b b a a a +++=+++ .

(天津市竞赛题)

思路点拨 作差比较,明确比赛规则下隐含的条件是证题的关键.

【例4】 已知333cz by ax ==,且1111

=++z

y x . 求证:3333222c b a cz by ax ++=++.

思路点拨 条件中有一个连等式,恰当引入参数,把待证式两边都变形为与参数相同的

同一个代数式.

【例5】 已知0≠abc ,证明:四个数abc c b a 3)(++、abc a c b 3)(--、abc b a c 3)(--、abc c b a 3

)(--中至少有一个不小于6.

(北京市竞赛题)

思路点拨 整体考虑,只需证明它们的和大于等于24即可.

注 证明条件等式的关键是恰当地使用条件,常见的方法有:

(1)将已知条件直接代入求证式;

(2)变换已知条件,再代入求证式;

(3)综合变形巳知条件,凑出求证式;

(4)根据求证式的需求,变换已知条件,凑出结果等.

不等关系证明类似于等式的证明,在证明过程中常用如下知识:

(1)若A —B>0,则A>B ;

(2)若A —B<0,则A

(3)ab b a 222≥+;

(4)21≥+x

x (x>0); (5)若M a a a >+++ 21,则n a a a 、、、 21中至少有一个大于

n M . 学力训练

1.已知b a b a P +-=,c b c b q +-=,r=a

c a c +-,求证:)1)(1)(1()1)(1)(1(r q p r q p ---=+++. 2.已知1=++c z b y a x ,0=++z c y b x a .求证:122

2222=++c z b y a x .

3.已知:)

(3)(2a c a c c b c b b a b a -+=-+=-=,求证:0598=++c b a . 4.设43239-的小数部分为b ,求证:b b 1243239+

=-. 5.设x 、y 、z 为有理数,且(y —z)2+( x -y)2+(z —x)2=(y+z -2x)2+(z+x -2y)2+(x+y —2z)2,求证:1)1)(1)(1()

1)(1)(1(222=++++++z y x xy zx yz .

(重庆市竞赛题)

6.已知2222)32()(14c b a c b a ++=++,求证:a :b :c=1:2:3.

7.已知11111=++=++

z y x z y x ,求证:x 、y 、z 中至少有一个为1. 8.若z y x t y x t z x t z y t z y x ++=++=++=++,记z

y x t y x t z x t z y t z y x A +++++++++++=,证明:A 是一个整数. (匈牙利竞赛题) 9.已知

0=-+-+-b a c a c b c b a ,求证:0)()()(222=-+-+-b a c a c b c b a . 10.完成同一件工作,甲单独做所需时间为乙、丙两人合做所需时间的p 倍,乙单独做所需时间为甲、丙两人合做所需时间的q 倍;丙单独做所需时间为甲、乙两人合做所需时间

的x 倍,求证:1

2-++=

pq q p x . (天津市竞赛题) 11.设a 、b 、c 均为正数,且1=++c b a ,证明:

9111≥++c b a . 12.如果正数a 、b 、c 满足b c a 2=+,求证:a c c b b a +=+++2

1

1

(北京市竞赛题)

13.设a 、b 、c 都是实数,考虑如下3个命题:

①若02>++c ab a ,且c>1,则0

②若c>1且0++c ab a ;

③若0++c ab a 0,则c>1.

试判断哪些命题是正确的,哪些是不正确的,对你认为正确的命题给出证明;你认为不正确的命题,用反例予以否定. (武汉市选拔赛试题)

新课标人教版小学五年级数学竞赛试题

新课标人教版小学五年级数学竞赛试题 学校 班级 姓名 一、填空题(每空格2分) 1、一个四位数,给它加上小数点比原来数小2003.4,这个四位数是( )。 2、一个分数,分子加分母等于168,分子、分母都减去6,分数变成 7 5,原来的分数是( )。 3、一个三位小数,四舍五入到百分位后是3.90,那么这个三位 小数最大是( ),最小是( )。 5、规定:符号“△”为选择两数中较大的数,“○”为选择两数中较小的数。例如: 3△5=5,3○5=3。那么 [(7○3)△5]×[5○(3△7)]= 5、计算(6分) (1)567×789789-789×567567=( ) (2)0.036×250+3.6×7.5=( ) (3)100+99-98+97-96+95+……+3-2+1=( ) 6、仔细观察,找出规律并填空。 (1)0.1,0.2,0.3,0.5,0.8,( ),2.1,( ) (2)4×9=36 44×99=4356 444×999=443556 4444×9999=44435556 44……44×99……99=( ) 2005个 2005个 7、新来的教学楼管理员,拿15把不同的钥匙去开15个教室门,但不知哪一把钥匙开哪一个门,他最多试开( )次,就可将钥匙与教室门锁配对。

8、用1元、5元、10元、50元、100元人民币各一张,2元、20元的各两张,在不找钱的情况下,最多可以支付()种不同的款额。 9、一个同学在计算2.37加一个一位小数时,由于粗心将数的末尾对齐,结果得2.93,那么正确的结果比错误结果多()。 10、有七个数,平均数为49,前4个数的平均数为28,后4个数的平均数为68.25,那么第4个数为()。 11、正方形的一条对角线长是13cm,这个正方形的面积是()cm2 12、育才小学买10只羽毛球和25只乒乓球共付49.5元,人民路小学买同样的20只羽毛球和20只乒乓球共付54元,1只羽毛球比1只乒乓球便宜()元。 13、将1、2、3、4、5、6分别填在右图内, 使折叠成的正方形中对面数字和相等。 14、右图中,每个字母代表一个数, 任何三个相邻方格中的数之和都是21, 那么A+B+C+D=()。 15、小红用平底锅烙饼,每次只能放2张饼。烙一张饼需要2分钟(正、反面各需1分钟)。为了节约时间,小红要烙7张饼最少需要()分钟。 16、环形跑道一周长400米,李明和王伟从同一处同时起跑,李明每分跑300米,王伟每分跑250米,()分钟后两人第二次跑在同一处。 17、有三个人,他们是A、B、C,一个是医生,一个是护士,还有一个是病人。C比病人老;A和护士不同岁;护士比B年轻。那么()是护士,()是病人,()是医生。 18、甲堆棋子是乙堆的3倍,如果从甲堆拿20粒给乙堆,则两堆同样多,那么甲堆原来有()粒。

代数证明与恒等变形

代数证明与恒等变形 代数证明主要是指证明代数中的一些相等关系或不等关系、 在初中阶段,要证的等式一般可分为恒等式的证明和条件等式的证明、 恒等式的证明常用的方法有: (1)由繁到简,从一边推向另一边; (2)从左右两边人手,相向推进; (3)作差或作商证明,即证明:左边一右边=0,)0(1≠=右边右边左边、 条件等式的证明实质是有根据、有目的的代数式恒等变换,证明的关键是寻找条件与结论的联系,既要注意条件的变换,使之有利于应用;又要考虑求证的需求情况,使之有利于与条件的沟通、 代数证明不同于几何证明,几何证明有直观的图形为依托,而代数证明却取决于代数式化简求值变形技巧、方法和思想的熟练运用、 例1:设A 、B 、C 、D 都是整数,且M =A2+B2,N =C2+D2,MN 也可以表示成两个整数的平方和,其形式是______. 解MN =(A2+B2)(C2+D2) =A2C2+2ABCD +B2D2+A2D2+B2C2-2ABCD =(AC +BD )2+(AD -BC )2 =(AC -BD )2+(AD +BC )2, 所以,MN 的形式为(AC +BD )2+(AD -BC )2或〔AC -BD 〕2+(AD +BC )2. 例2:设X 、Y 、Z 为实数,且 (Y -Z )2+(X -Y )2+(Z -X )2=(Y +Z -2X )2+(Z +X -2Y )2+(X +Y - 2Z )2.求 )1)(1)(1() 1)(1)(1(222++++++z y x xy zx yz 的值. 解将条件化简成 2X2+2Y2+2Z2-2XY -2XZ -2YZ =0 ∴(X -Y )2+(X -Z )2+(Y -Z )2=0 ∴X =Y =Z ,∴原式=1. 例3:设A +B +C =3M ,求证:(M -A )3+(M -B )3+(M -C )3-3(M -A )(M - B )(M - C )=0. 证明令P =M -A ,Q =M -B ,R =M -C ,那么 P +Q +R =0. P3+Q3+R3-3PQR =(P +Q +R )(P2+Q2+R2-PQ -QR -RP )=0 ∴P3+Q3+R3-3PQR =0 即(M -A )3+(M -B )3+(M -C )3-3(M -A )(M -B )(M -C )=0 例4:假设67890123475678901235,67890123455678901234==B A ,试比较A 、B 的大小. 解设,y x A =那么 ,21++=y x B

分数运算的技巧——小学数学奥林匹克竞赛辅导讲座

小学数学奥林匹克竞赛辅导讲座——分数运算的技巧 分数的四则混合运算,与整数四则混合运算一样,按先乘除后加减有顺序进行,整数四则混合运算中的定律和性质,在分数运算中同样适用。但是,要提高分数运算的速度和正确率,除了掌握这些常规的运算法则外,我们还应该掌握一些特殊的运算技能和技巧,常用的分数运算技巧和方法,主要有凑整法、裂项法、约分法等。 【例1】计算2002× [分析]本题可以按照整数乘以分数的计算法则计算,但这样做很显然比较麻烦,可以根据题中数的特点,合理灵活地选择计算方法,把题目中的因数拆成两数和或两数差的形式。 [解]方法—:2002×=2002×(1-) =2002×1-2002× =2002-1 方法二:2002×=(2001+1)× =2001×+1× =2000 点评:在一些分数乘法计算中,可根据数字的特点,合理地把参加运算的数拆成两数和或两数差的形式,在拆数时要注意:一要使参加运算的数变形不变值,二要达到便于简化计算目的。 【例2】计算3×25+37.9×6

[分析]注意观察3和6,它们的和为10,但是,只有当分别与它们相乘的另一个因数相同时,才能运用乘法分配律来进行简算,因此不难想到把37.9分拆成25.4和12.5两部分。当12.5与6.4相乘时,又可以将6.4看成8×0.8,这样计算就简便多了。 [解]3×25+37.9+6 =3+25+(25.4+12.5)×6.4 =3.6×25.4+25.4×6.4+12.5×6.4 =(3.6+6.4)×25.4+12.5×8×0.8 =254+85 =334 点评:有时可以结合题中数字可以凑整的特点,来对数进行合理的分拆。 【例3】× [分析]可以发现181818,818181都是两位数连写三遍得到的六位数,所以分别有约数18与81,同样,218218和182182分别有约数218与182,所以先把各分子、分母写成乘积的形式,把相同因数约分后再计算。 [解]×=× = = 点评:本题所用的方法为约分法,可以把分子分母中相同的因数通过约分来化简运算。同样,如果分子分母含有相同的因式,也可把它直接约去进行化简。 【例4】计算++++……+

新课标八年级数学竞赛讲座:第六讲 实数的概念及性质

第六讲 实数的概念及性质 数是随着客观实际与社会实践的需要而不断扩充的. 从有理数到无理数,经历过漫长曲折的过程,是一个巨大的飞跃,由于引入无理数后,数域就由有理数域扩充到实数域,这样,实数与数轴上的点就建立了一一对应的关系. 由于引入开方运算,完善了代数的运算.平方根、立方根的概念和性质,是学习二次根式、一元二次方程等知识的基础.平方根、立方根是最简单的方根,建立概念的方法,以及它们的性质是进一步学习偶次方根、奇次方根的基础. 有理数和无理数统称为实数,实数有下列重要性质: 1.有理数都可以写成有限小数或循环小数的形式,都可以表示成分数p q 的形式;无理数是无限不循环小数,不能写成分数 p q 的形式,这里p 、q 是互质的整数,且0≠p . 2.有理数对加、减、乘、除是封闭的,即任何两个有理数的和、差、积、商还是有理数;无理数对四则运算不具有封闭性,即两个无理数的和、差、积、商不一定是无理数. 例题求解 【例1】若a 、b 满足b a 53+3=7,则S =b a 32-的取值范围是 . (全国初中数学联赛试题) 思路点拨 运用a 、b 的非负性,建立关于S 的不等式组. 注: 古希腊的毕达哥拉斯学派认为,宇宙间的一切现象都能归结为整数或整数之比.但是该学派的成员希伯索斯发现边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示,这严重地冲击了当时希腊人的传统见解,这一事件在数学史上称为第一次数学危机.希伯索斯的发现没有被毕达哥拉斯学派的信徒所接受,相传毕氏学派就因这一发现而把希伯索斯投入海中处死. 【例2】 设a 是一个无理数,且a 、b 满足ab -a -b+1=0,则b 是一个( ) A .小于0的有理数 B .大于0的有理数 C .小于0的无理数 D .大于0的无理数 (武汉市选拔赛试题) 思路点拨 对等式进行恰当的变形,建立a 或b 的关系式. 【例3】已知a 、b 是有理数,且0320 91412)121341()233 1(=---++ b a ,求a 、b 的值. 思路点拔 把原等式整理成有理数与无理数两部分,运用实数的性质建立关于a 、b 的方程 组. 【例4】(1) 已知a 、b 为有理数,x ,y 分别表示75-的整数部分和小数部分,且满足axy+by 2=1,求a+b 的值. (南昌市竞赛题) (2)设x 为一实数,[x]表示不大于x 的最大整数,求满足[-77.66x]=[-77.66]x+1的整数x 的值.(江苏省竞赛题) 思路点拨 (1)运用估算的方法,先确定x ,y 的值,再代入xy+by 2=1中求出a 、b 的值;(2)运用[x]的性质,简化方程. 注: 设x 为一实数,则[x]表示不大于x 的最大整数,[x]]又叫做实数x 的整数部分,有以下基本性质: (1)x -1<[x]≤x (2)若y< x ,则[y]≤[x] (3)若x 为实数,a 为整数,则[x+a]= [x]+ a .

八年级数学竞赛讲座代数证明附答案

第二十三讲 代数证明 代数证明主要是指证明代数中的一些相等关系或不等关系. 在初中阶段,要证的等式一般可分为恒等式的证明和条件等式的证明. 恒等式的证明常用的方法有: (1)由繁到简,从一边推向另一边; (2)从左右两边人手,相向推进; (3)作差或作商证明,即证明:左边一右边=0,)0(1≠=右边右边 左边. 条件等式的证明实质是有根据、有目的的代数式恒等变换,证明的关键是寻找条件与结论的联系,既要注意已知条件的变换,使之有利于应用;又要考虑求证的需求情况,使之有利于与已知条件的沟通. 代数证明不同于几何证明,几何证明有直观的图形为依托,而代数证明却取决于代数式化简求值变形技巧、方法和思想的熟练运用. 例题求解 【例1】(1)求证:a a z a y a x a az z a ay y a ax x 3111222+-+-+-=-+-+- (2)求证:)1)(1)(1(4)1()1()1(222ab ab b b a a ab ab b b a a ++++=+++++. 思路点拨 (1)从较复杂的等式左边推向等式右边,注意左边每个分式分子与分母的联系;(2)等式两边都较复杂,对左、右两边都作变形或作差比较. 注 如果一个等式的字母在条件允许范围内的任意一个值,使得等式总能成立,那么这个等式叫做恒等式.把一个式子变形为与原式恒等的另一种不同形式的式子,这种变形叫做恒等变形,形变值不变是恒等变形的特点. 代数式的化简求值、代数证明其实质都是作恒等变形,分解、换元、引参、配方、分组、拆分,取倒数等是恒等变形常用的技巧与方法. 【例2】 已知b a y x +=+,且2222b a y x +=+. 求证:2001200120012001b a y x +=+. (黄冈市竞赛题) 思路点拨 从完全平方公式入手,推出 x 、y 与a 、b 间关系,寻找证题的突破口. 【例3】 有18支足球队进行单循环赛,每个参赛队同其他各队进行一场比赛,假设比赛的结果没有平局,如果用i a 和i b ,分别表示第i(I=1,2,3…18)支球队在整个赛程中胜与负的局数. 求证:21822212182221b b b a a a +++=+++ .

数学竞赛专题讲座七年级第1讲_跨越—从算术到代数(含答案)

第一讲跨越——从算术到代数 “加里宁曾经说过:数学是锻炼思维的体操,体操能使你身体健康,动作敏捷;数学能使你的思想正确敏捷,有了正确的思想,你们才有可能爬上科学的大山.” _______华罗庚。 华罗庚,我国现代有世界声誉的数学家,初中毕业后,靠自学成才,在数论、矩阵几何等许多领域中做出过卓越贡献. 纵观历史,数学的发展创造了数学符号,新的数学符号的使用又反过来促进了数学的发展.历史是这样一步一步走过来的,并将这样一步一步地继续走下去,数学的每一个进步都必须伴随着新的数学符号的产生.在文明和科学的发展过程中,人类创造用符号代替语言、文字的方法,这是因为符号比语言、文字更简练、更直观、更具一般性.“算术”可以理解为“计算的方法”,而“代数”可以理解为“以符号替代数字”,即“数学符号化”.著名数学教育家玻利亚曾说:“代数是一种不用词句而只用符号所构成的语言.” 用字母表示数是数学发展史上的一件大事,是由算术跨越到代数的桥梁,是人类发展史上的一个飞跃,也是代数与算术的最显著的区别. 字母表示数使得数学具有简洁的语言,能更普遍地说明数量关系,在列代数式、求代数式的值、形成公式等方面有广泛的应用. 例题讲解 【例1】观察下列等式9—l=8,16—4=12,25—9=16,36—16=20,…… 这些等式反映出自然数间的某种规律,设n表示自然数,用关于n的等式表示出来: .(河南省中考题) 思路点拨在观察给定的等式基础上,寻找数字特点,等式的共同特征,发现一般规律.链接:从个别事物中发现一般性规律.这种研究问题的方法叫“归纳法”,是由特殊到一般的思维过程,是发明创造的基础. 【例2】某商品2002年比2001年涨价5%,2003年又比2002年涨价10%,2004年比2003年降价12%,则2004年比2001年( ). A.涨价3%B.涨价1.64%C涨价1.2%D.降价1.2% 思路点拨设此商品2001年的价格为a元,把相应年份的价格用a的代数式表示,由计算作出判断.

浙江省九年级数学竞赛辅导系列 讲座九 圆练习

数学竞赛辅导系列讲座九——圆 1、如图,已知P 是边长为a 的正方形ABCD 内一点,△PBC 是等边三角形,则△PAD 的外接圆半径是( ) A 、a B 、 2 a C 、 3 2 a D 、12 a 2、如图,在矩形ABCD 中,AB=3,BC=2,以BC 为直径在矩形内作半圆,自点A 作半圆的切线AE ,则Sin ∠CBE=( ) A 、63 B 、2 3 C 、1 3 D 、 1010 3、如图,圆心在原点,半径为2的圆内有一点P (22 ,22 ),过P 点作弦AB 与劣弧AB 组成一个弓形,则该弓形面积的最小值为( ) A 、π-1 B 、π-2 C 、4 3 π-1 D 、4 3 π- 3 4、如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴切与点Q ,与y 轴交于点M (0,2),N (0,8),则点P 的坐标是( ) A 、(5,3) B 、(3,5) C 、(5,4) D 、(4,5) 5、在底面直径是2,母线长为4的圆锥,若一只小虫子以点A 出发,绕侧面一周又回到点A ,则它爬行的最短路线长是( ) A 、2π B 、 4 2 C 、4 3 D 、5 6、如果一个三角形的面积和周长都被一直线所平分,则这条直线必经过这个三角形的( ) A 、内心 B 、外心 C 、重心 D 、垂心 7、如图,⊙O 与Rt △ABC 的斜边AB 切于点D ,与直角边AC 交于点E 且,DE ∥BC ,已知AE=2 2 ,AC=3 2 ,BC=6,则⊙O 的半径是( ) A 、3 B 、4 C 、4 3 D 、2 3 D A C P D E Y X A O P B y x N M O P Q

新课标八年级数学竞赛讲座:第三十四讲 分式方程(组)

第三十四讲 分式方程(组) 本讲我们将介绍分式方程(组)的解法及其应用. 【知识拓展】 分母里含有未知数的方程叫做分式方程.解分式方程组的基本思想是:化为整式方程.通常有两种做法:一是去分母;二是换元. 解分式方程一定要验根. 解分式方程组时整体代换的思想体现得很充分.常见的思路有:取倒数法方程迭加法,换元法等. 列分式方程解应用题,关键是找到相等关系列出方程.如果方程中含有字母表示的已知数,需根据题竞变换条件,实现转化.设未知数而不求解是常见的技巧之一. 例题求解 一、分式方程(组)的解法举例 1.拆项重组解分式方程 【例1】解方程6 4534275--+--=--+--x x x x x x x x . 解析 直接去分母太繁琐,左右两边分别通分仍有很复杂的分子.考虑将每一项分拆:如7 2175-+=--x x x ,这样可降低计算难度.经检验211=x 为原方程的解. 注 本题中用到两个技巧:一是将分式拆成整式加另一个分式;二是交换了项,避免通分后分子出现x .这样大大降低了运算量.本讲趣题引路中的问题也属于这种思路. 2.用换元法解分式方程 【例2】解方程08 1318218111222=--+-++-+x x x x x x . 解析 若考虑去分母,运算量过大;分拆也不行,但各分母都是二次三项式,试一试换元法. 解 令x 2+2x —8=y ,原方程可化为0151191=-+++x y y x y 解这个关于y 的分式方程得y=9x 或y=-5x . 故当y=9x 时,x 2+2x —8=9x ,解得x 1=8,x 2=—1. 当y=-5x 时,x 2+2x —8=-5x ,解得x 3=—8,x 4=1. 经检验,上述四解均为原方程的解. 注 当分式方程的结构较复杂且有相同或相近部分时,可通过换元将之简化. 3.形如a a x x 11+=+ 结构的分式方程的解法 形如a a x x 11+=+的分式方程的解是:a x =1,a x 12=. 【例3】解方程 3 10511522=+++++x x x x . 解析 方程左边两项的乘积为1,可考虑化为上述类型的问题求解. 11=x ,22=x 均为原方程的解. 4.运用整体代换解分式方程组

近世代数证明题

证明题 1、设G 是群,a ∈G ,令C G (a )= {x |x ∈G ,xa = ax },证明:C G (a )≤G 2、设G ~ G ,H ≤G ,H = {x | x ∈G ,f (x )∈ H }。证明:H /Kerf ≌H . 3、证明:模m 的剩余类环Zm 的每一个理想都是主理想。 4、设R = ???? ??c o b a ,a ,b ,c ∈Z ,I = ???? ??o o x o x ∈Z 。 (1)验证R 是矩阵环Z 2×2的一个子环。 (2)证明I 是R 的一个理想。 5、设G 是群,u 是G 的一个固定元,定义“o ”:aob = a u 2 b (a ,b ∈G ),证明 (G , o )构成一个群. 6、设R 为主理想整环,I 是R 的一个理想,证明R /I 是域?I 是由R 的一个素元生成 的主理想. 7、证明:模m 的剩余类环Zm 的每个子环都是理想. 8、设G 是群,H ≤G 。令N G (H ) = {x | x ∈G ,xH = Hx }.C G (H )= { x | x ∈G ,?h ∈ H ,hx = xh }.证明: (1)N G (H )≤G (2)C G (H )△N G (H ) 9、证明数域F = {a +b 7|a ,b ∈Q}的自同构群是一个2阶循环群. 10、设R 是主理想环,I = (a )是R 的极大理想,ε是R 的单位,证明:εa 是R 的 一个素元. 11、设G 与G 是两个群,G ~ G ,K = Kerf ,H ≤G ,令H = {x |x ∈G ,f (x ) ∈ H },证明:H ≤G 且H /K ≌H . 12、在多项式环Z [x ]中,证明: (1)(3,x )= {3a 0+a 1x +…+a n x n |a i ∈Z }. (2)Z [x ]/(3,x )含3个元素. 13、设H 是群G 的子群,令N G (H )={x |x G , xH =Hx },证明N G (H)是G 的子群. 14、在整数环Z 中, a, b Z,证明(a, b )是Z 的极大理想的充要条件是a , b 的最大公 因数是一个素数。 f f

《小学数学竞赛辅导》教学大纲

《小学数学竞赛辅导》教学大纲 课程编号:12307057 总学时: 14 课程学分:1 开课对象:小学教育专业本科学生 课程类别:专业任选课 课程英文译名:Tutorship of Mathematics Competition in Primary School 一、课程任务和目的 任务:使学生了解小学数学竞赛选手的选拔与培养的方式、途径和策略,了解小学数学竞赛题型,掌握小学数学竞赛题的解题规律,培养学生研究小学数学的兴趣,提高学生的解题能力和数学思维能力。 目的:小学数学竞赛辅导是为将来从事小学数学教学打下坚实基础。 二、课程教学内容与要求 (一)绪论(2学时) 教学要求:明确开设小学数学竞赛辅导课程的意义,教学的方式和要求,了解小学数学竞赛的内容,发展趋势,以及小学数学竞赛选手的选拔与培养的方式、途径和策略。 教学重点:小学数学竞赛选手的选拔与培养的方式、途径和策略。 教学难点:数学竞赛的题型 教学内容: 1.课程的意义 2.小学数学竞赛的教学内容,发展趋势 3.小学数学竞赛选手的选拔与培养的方式、途径和策略 4.小学数学竞赛的题型介绍 (二) 假设法问题(2学时) 教学要求:掌握假设法解题的方法、步骤,了解应用假设法解决的典型题型及基本解法。 教学重点:假设法解题的方法、步骤。 教学难点:假设法解题。 教学内容: 1.假设法解题的方法、步骤 2.鸡免同笼问题的解决方法及推广 3.分数应用题应用假设法解题举例 (三) 盈亏、还原问题(2学时)

教学要求:掌握盈亏、还原问题的类型,解法,介绍应用方程思想解决此类问题的方法及典型题的介绍。 教学重点:掌握盈亏、还原问题的类型,解法。 教学难点:确定类型 教学内容: 1.盈亏、还原问题的类型 2.盈亏、还原问题的解题思想、方法 3.典型题的介绍,应用方程思想解决的方法 (四)相遇和追及问题(2学时) 教学要求:掌握相遇和追及问题的类型,解法,以及变异问题。 教学难点:较难相遇与追及问题的解法。 教学重点:变异问题—追及问题在钟面上数学问题中的应用。 1.相遇和追及问题的类型,求解的方法 2.典型题的介绍 3.钟面上的数学问题 (五) 整除问题(2学时) 教学要求:深刻理解整除的概念、性质、数的整除特征,以及整除问题的具体应用实例。 教学重点:数的整除特征及其应用。 教学难点:数的整除特征。 教学内容: 1.整除的概念、性质 2.数的整除特征 3.整除问题的应用实例 4.典型题的介绍 (六) 工程问题(2学时) 教学要求:掌握工程问题的类型、计算公式,解法。 教学重点:工程问题的分数应用题。 教学难点:工程问题的分数应用题。 教学内容: 1.工程问题的类型 2.工程问题的计算公式、解法 3.工程问题的分数应用题 4.典型题的介绍 (七) 抽屉原理(2学时)

八年级数学下册竞赛试题 人教新课标版

八年级数学竞赛练习题 一、选择题: 1.如果a >b ,则2a -b 一定是( ) A.负数 B.正数 C.非负数 D.非正数 2.n 是某一正整数,由四位学生分别代入代数式n 3-n 算出的结果如下,其中正确的结果是 ( ) A.337414 B.337415 C.337404 D.337403 3.三进位制数201可表示为十进位制数21023031319?+?+?=,二进位制数1011可表示为十进位制数32101202121211?+?+?+?=,现有三进位制数a=221,二进位制数b=10111,则a ,b 的大小关系是( ) A.a >b B.a=b C.a <b D.不能比较 4.若2x+5y+4z=6,3x+y-7z=-4,则x+y-z 的值为( ) A.-1 B.0 C.1 D.4 5.过点P (-1,3)作直线,使它与两坐标轴围成的三角形面积为5,这样的直线可以作( ) A.1条 B.2 条 C.3条 D.4条 6.已知731 -的整数部分是a ,小数部分是b ,则a 2 +(1+7)ab=( ) A.12 B.11 C.10 D.9 7.某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要,单片软件至少买3片,盒装磁盘至少买2盒,则不同的选购方式共有( ) A.5种 B.6种 C.7种 D.8种 8.如图,是一个边长为2的正方体,现有一只蚂蚁要从一条棱的中点A 处沿正方体的表面到C 处,则它爬行的最短线路长是( ) A.5 B.4 C.13 D. 17 二、填空题: 9.如果整数a(a ≠2)使得关于x 的一元一次方程ax+5=a 2+2a+2x 的解是整数,则满足条件 的所有整数a 的和是__________. 10. 对于所有的正整数k ,设直线kx+(k+1)y-1=0与两坐标轴所围成的直角三角形的面积为S k ,则 S 1+S 2+S 3+…+S 2006= .

近世代数证明

11.10 设G是群, 则G中阶大于2的元素有偶数个. 证: 11.10 设G是群, 则G中阶大于2的元素有偶数个. 证: 首先由定理11.4 , 对?a ∈G, 有 a &su; = e ? |a| = 1 或|a|=2 (1) 其次来证明a &su;= e ? a = (2) 事实上, 若a &su;= e. 则 反之, 若 a = , 则 a &su; = a a = a = e. 故(2)式得证。由(1)和(2)可知: a = ? |a| = 1 或|a|=2. 因此, G中阶大于2的任何元素a, 必有 a ≠. 又因|a|=||, 故G中阶大于2的元素必定成对出现, 从而G中阶大于2的元素必有偶数个(若G中无阶大于2的元素,则为0个, 也是偶数). 11.设G是非交换群,则G中存在非单位元a和b,a=!b且ab=ba’ 证明:设存在|b|=k k>1 b^k=a^-1 b^k a =(a^-1 b a)^k 当k>2时|b^-1|=|b|=k 且b^-1 =!b (否则b^2=b b^-1=e,k=2,矛盾),所以b^-1 b =b b^-1=e 否则所有k<=2,由例题可指G是交换群,矛盾,所以G中存在非单位元a和b,a=!b且ab=ba 由定理11.4 , 对?a ∈G, 有 a &su; = e ? |a| = 1 或|a|=2 (1) 其次来证明a &su;= e ? a = (2) 事实上, 若a &su;= e. 则 反之, 若 a = , 则 a &su; = a a = a = e. 故(2)式得证。由(1)和(2)可知: a = ? |a| = 1 或|a|=2. 因此, G中阶大于2的任何元素a, 必有 a ≠. 又因|a|=||, 故G中阶大于2的元素必定成对出现, 从而G中阶大于2的元素必有偶数个(若G中无阶大于2的元素,则为0个, 也是偶数). 11.设G是非交换群,则G中存在非单位元a和b,a=!b且ab=ba’ 证明:设存在|b|=k k>1 b^k=a^-1 b^k a =(a^-1 b a)^k 当k>2时|b^-1|=|b|=k 且b^-1 =!b (否则b^2=b b^-1=e,k=2,矛盾),所以b^-1 b =b b^-1=e 否则所有k<=2,由例题可指G是交换群,矛盾,所以G中存在非单位元a和b,a=!b且ab=ba

高中数学竞赛专题讲座---竞赛中的数论问题

竞赛中的数论问题的思考方法 一. 条件的增设 对于一道数论命题,我们往往要首先排除字母取零值或字母取相等值等“平凡”的情况,这样,利用字母的对称性等条件,往往可以就字母间的大小顺序、整除性、互素性等增置新的条件,从而便于运用各种数论特有手段。 1. 大小顺序条件 与实数范围不同,若整数x ,y 有大小顺序x m ,而令n =m +u 1,n >u 1≥1,得-2 (m -1mu 1)(22112=--u mu m 。同理,又可令m = u 1+ u 2,m >u 2≥1。如此继续下去将得u k+1= u k =1,而11+-+=i i i u u u ,i ≤k 。故n m u u u u k k ,,,,,,121 +是不大于1981的裴波那契数,故m =987,n =1597。 例2. (匈牙利—1965)怎样的整数a ,b ,c 满足不等式?233222c b ab c b a ++<+++ @ 解:若直接移项配方,得01)1()12(3)2(222<--+-+-c b b a 。因为所求的都是整数,所以原不等 式可以改写为:c b ab c b a 234222++≤+++,变形为:0)1()12 (3)2(222≤-+-+-c b b a ,从而只有a =1, b =2, c =1。 2. 整除性条件 对于整数x ,y 而言,我们可以讨论其整除关系:若x |y ,则可令y =tx ;若x ?y ,则可令y =tx +r ,0,则q a b +≥。结合高斯函数,设n 除以k ,余数为r ,则有r k k n n +?? ????=。还可以运用抽屉原理,为同余增设一些条件。整除性与大小顺序结合,就可有更多的特性。 例3. 试证两相继自然数的平方之间不存在自然数a q )由p ,q 的互素性易知必有q |a ,q |b 。这样,由b >a 即得q a b +≥。(有了三个不等式,就可对 q p 的范围进行估计),从而q n n q a d b d q p q q q ++<+≤=<+=+22)1(111。于是将导致矛盾的结果:0)(2<-q n 。这里,因为a ,b 被q 整除,我们由b >a 得到的不仅是b ≥a +1,而是更强的条件b ≥a +q 。 例4. (IMO-25)设奇数a ,b ,c ,d 满足0

【重磅】初中数学竞赛辅导讲座19讲(全套)

第一讲有理数 一、有理数的概念及分类。 二、有理数的计算: 1、 善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少 个? 例2、 将99 98 ,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个 数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是的自然数) 注:P 的表示方法不是唯一的。 2、 符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“—”并依次运算,所得可能的最小非 负数是多少?

提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算-1-2-3-…-20KK -20KK -20KK 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算1+2-3-4+5+6-7-8+9+…-20KK+20KK+20KK 提示:仿例5,造零。结论:20KK 。 例8、 计算 9 9 9 9991999999个个个n n n +? 提示1:凑整法,并运用技巧:199…9=10n +99…9,99…9=10n -1。 例9、 计算 -+++?----)20021 3121()2001131211( )2001 13121()2002131211(+++?---- 提示:字母代数,整体化:令2001 1 3121,2001131211+ ++=----= B A ,则 例10、 计算 (1)100991 321211?++?+? ;(2)100981421311?+ +?+? 提示:裂项相消。 常用裂项关系式: (1)n m mn n m 1 1+=+; (2)111)1(1+-=+n n n n ; (3))11(1)(1m n n m m n n +-=+;(4) ]) 2)(1(1 )1(1[21)2)(1(1++-+=++n n n n n n n 。 例11计算n +++++ ++++++ 3211 32112111(n 为自然数) 例12、计算1+2+22+23+…+220KK 提示:1、裂项相消:2n =2n+1-2n ;2、错项相减:令S=1+2+22+23+…+220KK ,则S=2S -S=220KK -1。 例13、比较20002 2000 164834221+++++= S 与2的大小。 提示:错项相减:计算S 2 1 。 第二讲绝对值 一、知识要点

新课标八年级数学竞赛讲座:第二十二讲 直角三角形的再发现

第二十二讲直角三角形的再发现 直角三角形是一类特殊三角形,有着丰富的性质:两锐角互余、斜边的平方是两直角边的平方和、斜边中线等于斜边一半、30°所对的直角边等于斜边一半等,在学习了相似三角形的知识后,我们利用相似三角形法,能得到应用极为广泛的结论. 如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,则有: 1.同一三角形中三边的平方关系:AB2=AC2+BC2, AC2=AD2+CD2,BC2=CD2+BD2. 2.角的相等关系:∠A=∠DCD,∠B=∠ACD. 3.线段的等积式:由面积得AC×BC=AB×CD; 由△ACD∽△CBD∽△ABC,得CD2=AD×BD,AC2=AD×AB,BC2=BD×AB.以直角三角形为背景的几何问题,常以下列图形为载体,综合了全等三角形、相似三角形、等腰三角形,特殊四边形等丰富的知识. 注直角三角形被斜边上的高分成的3个直角三角形相似,由此导出的等积式的特点是:一线段是两个三角形的公共边,另两条线段在同一直线上,这些等积式广泛应用于与直角三角形问题的计算与证明中. 例题求解 【例1】等腰三角形ABC的底边长为8cm,腰长5cm,一动点P在底边上从B向C 以0.25cm/秒的速度移动,当点P运动到PA与腰垂直的位置时,点P运动的时间为.(江苏省常州市中考题) 思路点拨为求BP需作出底边上的高,就得到与直角三角形相关的基本图形,注意动态过程. 【例2】如图,在矩形ABCD中,AE⊥BD于E,S矩形ABCD=40cm2,S△ABE:S△DBA=1:5,则AE的长为( ) A.4cm B.5cm C.6cm D.7cm (青岛市中考题) 思路点拨从题设条件及基本图形入手,先建立AB、AD的等式. 【例3】如图,在Rt△ABC中,∠BAC=90°,AB=AC,DB为BC的中点,E为AC上一点,点G在BE上,连结DG并延长交AE于F,若∠FGE=45°. (1)求证:BD×BC=BG×BE; (2)求证:AG⊥BE; (3)若E为AC的中点,求EF:FD的值.(盐城市中考题)

代数系统证明题

问答题: 1:是一个代数系统,*是A 上的一个二元运算,如何根据运算表看出是否有①封闭性;②可交换性;③等幂元;④零元;⑤幺元。 )①封闭性:A 中的每个元素都在运算表中;②可交换性:运算表关于主对角线是对称的;③等幂性: 运算表中主对角线中的元素等于它所在行和列的表头元素;④零元:该元素所在行和所在列的元素值都与该元素相同;⑤幺元: 该元素所在的行和列依次与运算表中的行和列相同。 2:请叙述群的定义。 设是一个代数系统,其中G 是非空集合,*是G 上一个二元运算,如果 (1) 运算*是封闭的。 (2) 运算*是可结合的。 (3) 存在幺元e 。 (4) 对于每一个元素x ∈G,存在着它的逆元x-1。 则称是一个群。 证明题: 1: 在R 上定义运算:。证明是独异点。 证明过程: (1)∵对于任意a,b ∈R 显然a*b=a+b+ab ∈R , ∴*运算满足封闭性 (2)对于任意a,b,c ∈R 有 (a*b)*c=(a+b+ab)*c=a+b+ab+c+(a+b+ab)c =a+b+c+ab+ac+bc+abc 而a*(b*c)=a*(b+c+bc)=a+b+c+bc+a(b+c+bc) =a+b+c+bc+ac+ab+abc ∴(a*b)*c=a*(b*c) ∴*运算满足结合性 (3)设对任意元素a ∈R ,则有 a*0=a+0+a ×0=a 0*a=0+a+0×a=a 即有 a*0=0*a=a ∴0是幺元 由于中*运算封闭,满足结合律,有幺元,所以是独异点。 2: 设是一个群,证明是阿贝尔群的充要条件是对于任意的a ,b ∈G 有(a*b)*(a*b)=(a*a)*(b*b)。 证明过程: 证明:充分性证明: 设对任意,,a b G ∈有(*)*(*)(*)*(*)a b a b a a b b = 因为 ab b a b a ++=*

数学竞赛专题讲座七年级第2讲创造的基石—

第二讲 创造的基石——观察、归纳与猜想 当代著名科学家波普尔说过:我们的科学知识,是通过未经证明的和不可证明的预言,通过猜测,通过对问题的尝试性解决,通过猜想而进步的. 从某种意义上说,一部数学史就是猜想与验证猜想的历史.20世纪数学发展中巨大成果是,1995年英国数学家维尔斯证明了困扰数学界长达350多年的“费尔马大猜想”,而著名的哥德巴赫猜想,已经历经了两个半世纪的探索,尚未被人证实猜想的正确性. 当一个问题涉及相当多的乃至无穷多的情形时,我们可以从问题的简单情形或特殊情况人手,通过对简单情形或特殊情况的试验,从中发现一般规律或作出某种猜想,从而找到解决问题的途径或方法,这种研究问题的方法叫归纳猜想法,是创造发明的基石. “要想成为一个好的数学家,你必须是一个好的猜想家,数学家的创造性工作的结果是论证推理,是一个证明,但证明是由合情推理、由猜想来发现的.”______G .波利亚 链接:G .波利亚,美籍匈牙利人,现代著名数学家,他的《怎样解题》等著作,被誉为第二次世界大战后的数学经典著作之一. 观察、实验、猜想是科学技术创造过程中一个重要方法,通过观察和实验提出问题,再提出猜想和假设,最后通过推理去证明假设和猜想. 举世瞩目的“数学皇冠上的明珠”——哥德巴赫(德国数学家)猜想,就是从下面这些等式:6=3+3,8=3+5,10=3+7,12=5+7,14=3+11.归纳得出:“任何不小于6的偶数均可以表示成两个奇质数的和.”我国数学家陈景润于1973年证明了“1+2”,离解决哥德巴赫问题,即“1+1”仅一步之遥. 例题讲解 【例1】 (1)用●表示实圆,用○表示空心圆,现有若干实圆与空心圆按一定规律排列如下: ●○●●○●●●○●○●●○●●●○●○●●○●●●○…… 问:前2001个圆中,有 个空心圆. (江苏省泰州市中考题) (2)古希腊数学家把数1,3,6,10,15,2l ,…叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 . (舟山市中考题) 思路点拨 (1)仔细观察,从第一个圆开始,若干个圆中的实圆数循环出现,而空心圆的个数不变;(2)每个三角形数可用若干个数表示. 【例2】观察下列图形,并阅读图形下面的相关文字: 像这样,10条直线相交,最多交点的个数是( ). A .40个 B .45个 C .50个 D .55个 (湖北省荆门市中考题) 思路点拨 随着直线数的增加,最多交点也随着增加,从给定的图形中,探讨每增加一条直线,最多交点的增加数与原有直线数的关系.是解本例的关键. ......四条直线相交,最多有六个交点 三条直线相交,最多有三个交点两条直线相交,最多只有一个交点

-初中数学竞赛辅导讲座19讲(全套)

初中数学竞赛辅导讲座19讲(全套) 第一讲 有 理 数 一、有理数的概念及分类。 二、有理数的计算: 1、善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少个? 例2、 将99 98,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是 的自然数) 注:P 的表示方法不是唯一的。 2、符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非 负数是多少? 提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算 -1-2-3-…-2000-2001-2002 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算 1+2-3-4+5+6-7-8+9+…-2000+2001+2002

相关文档
最新文档