基于自适应阈值的图像去噪方法

基于自适应阈值的图像去噪方法
基于自适应阈值的图像去噪方法

otsu自适应阈值分割的算法描述和opencv实现,及其在肤色检测中的应用

otsu算法选择使类间方差最大的灰度值为阈值,具有很好的效果 算法具体描述见otsu论文,或冈萨雷斯著名的数字图像处理那本书 这里给出程序流程: 1、计算直方图并归一化histogram 2、计算图像灰度均值avgValue. 3、计算直方图的零阶w[i]和一级矩u[i] 4、计算并找到最大的类间方差(between-class variance) variance[i]=(avgValue*w[i]-u[i])*(avgValue*w[i]-u[i])/(w[i]*(1-w[i])) 对应此最大方差的灰度值即为要找的阈值 5、用找到的阈值二值化图像 我在代码中做了一些优化,所以算法描述的某些地方跟程序并不一致 otsu代码,先找阈值,继而二值化 // implementation of otsu algorithm // author: onezeros(@https://www.360docs.net/doc/8416431021.html,) // reference: Rafael C. Gonzalez. Digital Image Processing Using MATLAB void cvThresholdOtsu(IplImage* src, IplImage* dst) { int height=src->height; int width=src->width; //histogram float histogram[256]= {0}; for(int i=0; iimageData+src->widthStep*i; for(int j=0; j

小波阈值去噪

基于小波阈值的图像去噪方法研究 摘要:本文根据已有的阈值处理函数的优缺点,提出了一种新的阈值处理函数,用于图像的小 波阈值去噪.实验表明,该方法比传统的硬阈值函数与软阈值函数具有更好的去噪效果 关键字:小波阈值去噪,阈值函数 0 引言 图像在获取或传输过程中会因各种噪声的干扰使质量下降,这将对后续图像的处理产生 不利影响.所以必须对图像进行去噪处理,而去噪所要达到的目的就是在较好去除噪声的基 础上,良好的保持图像的边缘等重要细节.近年来,小波理论得到了迅速的发展和广泛的应用. 由于其具有低熵性,多分辨性,去相关性和选基灵活性等优点,在图像去噪领域得到广泛的应 用.本文提出一种新阈值函数,并将其应用于小波阈值去噪,该函数是现有软、硬阈值函数的 推广,通过调整参数,可以克服硬阈值函数不连续和软阈值函数有偏差的缺点。 1 小波阈值处理 小波阈值收缩法是Donoho 和Johnstone 提出的,其主要理论依据是,小波变换具有很强的 去数据相关性,它能够使信号的能量在小波域集中在一些大的小波系数中;而噪声的能量却 分布于整个小波域内.因此,经小波分解后,信号的小波系数幅值要大于噪声的系数幅值.可 以认为,幅值比较大的小波系数一般以信号为主,而幅值比较小的系数在很大程度上是噪声. 于是,采用阈值的办法可以把信号系数保留,而使大部分噪声系数减小至零.小波阈值收缩法 去噪的具体处理过程为:将含噪信号在各尺度上进行小波分解,设定一个阈值,幅值低于该阈 值的小波系数置为0,高于该阈值的小波系数或者完全保留,或者做相应的“收缩 (shrinkage)”处理.最后将处理后获得的小波系数用逆小波变换进行重构,得到去噪后的图 像. 2 阈值函数的选取 阈值去噪中,阈值函数体现了对超过和低于阈值的小波系数不同处理策略,是阈值去噪中 关键的一步。 设w 表示小波系数,T 为给定阈值,sign(*)为符号函数,常见的阈值函数有: 硬阈值函数: ? ??<≥=T w T w w w new ,0, (1) 软阈值函数: ? ??<≥-=T w T w T w w w new ,0),)(sgn( (2) 分析(1)(2)式可以得出:硬阈值函数在阈值点是不连续的,软阈值函数,原系数和分解得 到的小波系数总存在着恒定的偏差,这将影响重构的精度.同时这两种函数不能表达出分解 后系数的能量分布。因此,寻找一种新阈值函数,使它既能实现阈值函数的功能,又具有高阶 导数,同时可以体现出分解后系数的能量分布,将是我们的目标。我们提出一种新的阈值函 数为:

自适应局部阈值

4.3.4自适应局部阈值 与全局阈值不同,局部阈值主要是通过考查在某一点或某一局部的特点,再根据灵活的判定原则来判定系数是“主噪”,还是“主信”,以实现去噪和保留信号之间的平衡,而且这些判定原则有时并不一定是从系数的绝对值来考虑的,而是从别的方面,例如从概率和模糊隶属度方面来考虑。 Vidakovic 等人利用主信系数和主噪系数在不同尺度中分布的不同特征,在Bayesian 框架下,结合假设检验,给出了一个阈值公式,并以此来对小波系数进行硬、软阈值处理;而Ching 则结合区间估计理论和假设检验的方法给出了另外一种局部阈值萎缩方法。实验结果表明,局部阈值确实比全局阈值对信号的适应能力好。 给定一个有较大白噪声的delmontl.mat图像。由于图像所含的噪声主要是白噪声,而且主要集中在图像的高频部分,所以我们可以通过全部滤掉图像中的高频部分实现图像的去噪。具体去噪过程可按照如下程序进行。 程序清单: %下面装入原始图像,X中含有被装载的图像 load wmandril; %画出原始图像 subplot(221);image(X);colormap(map); title('原始图像'); axis square %产生含噪图像 init=2055615866;randn('seed',init) x=X+38*randn(size(X)); %画出含噪图像 subplot(222);image(x);colormap(map); title('含噪声图像'); axis square; %下面进行图像的去噪处理 %用小波函数sym4对x进行2层小波分解 [c,s]=wavedec2(x,2,'sym4'); %提取小波分解中第一层的低频图像,即实现了低通滤波去噪

MATLAB中地阈值获取和阈值去噪(超级有用)

1.阈值获取 MATLAB中实现阈值获取的函数有ddencmp、thselect、wbmpen和wwdcbm,下面对它们的用法进行简单的说明。 (1)ddencmp的调用格式有以下三种: (1)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,IN2,X) (2)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,'wp',X) (3)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,'wv',X) 函数ddencmp用于获取信号在消噪或压缩过程中的默认阈值。输入参数X为一维或二维信号;IN1取值为'den'或'cmp','den'表示进行去噪,'cmp'表示进行压缩;IN2取值为'wv'或'wp',wv表示选择小波,wp表示选择小波包。返回值THR是返回的阈值;SORH是软阈值或硬阈值选择参数;KEEPAPP表示保存低频信号;CRIT是熵名(只在选择小波包时使用)。 (2)函数thselect的调用格式如下: THR=thselect(X,TPTR); THR=thselect(X,TPTR)根据字符串TPTR定义的阈值选择规则来选择信号X的自适应阈值。 自适应阈值的选择规则包括以下四种: *TPTR='rigrsure',自适应阈值选择使用Stein的无偏风险估计原理。 *TPTR='heursure',使用启发式阈值选择。 *TPTR='sqtwolog',阈值等于sqrt(2*log(length(X))).

*TPTR='minimaxi',用极大极小原理选择阈值。 阈值选择规则基于模型 y = f(t) + e,e是高斯白噪声N(0,1)。(3)函数wbmpen的调用格式如下: THR=wbmpen(C,L,SIGMA,ALPHA); THR=wbmpen(C,L,SIGMA,ALPHA)返回去噪的全局阈值THR。THR 通过给定的一种小波系数选择规则计算得到,小波系数选择规则使用Birge-Massart的处罚算法。{C,L]是进行去噪的信号或图像的小波分解结构;SIGMA是零均值的高斯白噪声的标准偏差;ALPHA是用于处罚的调整参数,它必须是一个大于1的实数,一般去ALPHA=2。 设t*使crit(t)=-sum(c(k)^2,k<=t) + 2 * SIGMA^2 * t*(ALPHA+log(n/t))的最小值,其中c(k)是按绝对值从大到小排列的小波包系数,n是系数的个数,则THR=|c(t*)|。 wbmpen(C,L,SIGMA,ALPHA,ARG)计算阈值并画出三条曲线。 2 * SIGMA^2 * t*(ALPHA+log(n/t)) sum(c(k)^2, k<=t) crit(t) (4)wdcbm的调用格式有以下两种: (1)[THR,NKEEP]=wdcbm(C,L,ALPHA); (2)[THR,NKEEP]=wdcbm(C,L,ALPHA,M); 函数wdcbm是使用Birge-Massart算法获取一维小波变换的阈值。返回值THR是与尺度无关的阈值,NKEEP是系数的个数。[C,L]是要进行压缩或消噪的信号在j=length(L)-2层的分解结构;LAPHA

基于灰度直方图的图像分割阈值自适应选取方法

中北大学 毕业设计(论文)任务书 学院、系: 专业: 学生姓名:车永健学号: 设计(论文)题目:基于灰度直方图的图像分割阈值自适应选取方法 起迄日期: 2015年3月9日~2015年6月20日设计(论文)地点: 指导教师:郭晨霞 系主任: 发任务书日期:2015年 2 月25 日

任务书填写要求 1.毕业设计(论文)任务书由指导教师根据各课题的具体情况填写,经学生所在系的负责人审查、系领导签字后生效。此任务书应在毕业设计(论文)开始前一周内填好并发给学生; 2.任务书内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,不得随便涂改或潦草书写,禁止打印在其它纸上后剪贴; 3.任务书内填写的内容,必须和学生毕业设计(论文)完成的情况相一致,若有变更,应当经过所在专业及系主管领导审批后方可重新填写; 4.任务书内有关“学院、系”、“专业”等名称的填写,应写中文全称,不能写数字代码。学生的“学号”要写全号(如020*******,为10位数),不能只写最后2位或1位数字; 5.有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2004年3月15日”或“2004-03-15”。

毕业设计(论文)任务书

毕业设计(论文)任务书 3.对毕业设计(论文)课题成果的要求〔包括毕业设计(论文)、图纸、实物样品等): 1、论文一份; 2、程序代码及图像结果; 3、英文翻译一份。 4.毕业设计(论文)课题工作进度计划: 起迄日期工作内容 2015年 3月 9 日~ 3 月20日 4 月 1 日~ 4月 20 日 4 月 21 日~ 5月 10 日 5 月 11 日~ 6月 15 日 6 月 16 日~ 6月 19 日查找资料,完成开题报告; 学习有关知识,方案确定,完成中期报告;完善算法并仿真验证; 撰写、修改、评阅毕业论文; 论文答辩 学生所在系审查意见: 系主任: 年月日

用matlab实现自适应图像阈值分割最大类方差法代码

%用matlab实现自适应图像阈值分割最大类方差法代码clear; warning off; SE = strel('diamond',4); BW1 = imread('cameraman.tif'); BW2 = imerode(BW1,SE); BW3 = imdilate(BW2,SE); BW4 = BW1-BW3; %rgb转灰度 if isrgb(BW4)==1 I_gray=rgb2gray(BW4); else I_gray=BW4; end figure,imshow(I_gray); I_double=double(I_gray);%转化为双精度 [wid,len]=size(I_gray); colorlevel=256; %灰度级 hist=zeros(colorlevel,1);%直方图 %threshold=128; %初始阈值 %计算直方图 for i=1:wid for j=1:len m=I_gray(i,j)+1; hist(m)=hist(m)+1; end end hist=hist/(wid*len);%直方图归一化 miuT=0; for m=1:colorlevel miuT=miuT+(m-1)*hist(m); end xigmaB2=0; for mindex=1:colorlevel threshold=mindex-1; omega1=0; omega2=0; for m=1:threshold-1 omega1=omega1+hist(m); end omega2=1-omega1; miu1=0; miu2=0; for m=1:colorlevel if m

改进的自适应阈值Canny边缘检测_雒涛

第36卷第11期 光电工程V ol.36, No.11 2009年11月Opto-Electronic Engineering Nov, 2009 文章编号:1003-501X(2009)11-0106-06 改进的自适应阈值Canny边缘检测 雒 涛1, 2,郑喜凤1,丁铁夫1 ( 1. 中国科学院长春光学精密机械与物理研究所,长春130033; 2. 中国科学院研究生部,北京100039 ) 摘要:针对传统Canny边缘检测算法的阈值需要人为设定的缺陷,本文提出了一种新的自适应改进方法。该方法根据梯度直方图信息,提出梯度差分直方图的概念,同时,对图像进行自适应分类处理,使得算法不仅不需要人工设定阈值参数,而且还能有效地避免Canny算法在边缘寻找中的断边和虚假边缘现象。对边缘信息丰富程度不同的灰度图和彩色图像运用该方法寻找边缘的实验结果表明,对于在目标与背景交界处的多数像素梯度幅值较大的图片,该算法具有边缘检测能力强、自适应能力强的优点。 关键词:Canny算法;自适应;边缘检测;图像处理 中图分类号:TN247;TP391 文献标志码:A doi:10.3969/j.issn.1003-501X.2009.11.022 Improved Self-adaptive Threshold Canny Edge Detection LUO Tao1, 2,ZHENG Xi-feng1,DING Tie-fu1 ( 1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; 2. Graduate School of Chinese Academy of Sciences, Beijing 100039, China ) Abstract: The two thresholds of classical Canny operator need to be set manually, which limits the application of this algorithm. Therefore, many researches about how to choose threshold adaptively are done to solve this problem. Based on the gradient histogram, a method of threshold-adaptable edge detection is proposed. This method is on the basis of gradient histogram difference diagram with adaptive image classification techniques. It not only automatically sets the two thresholds, but also avoids disconnected or false edges in detection. Experiments prove that the method is threshold-adaptive and advantageous for edge detection in color image whose pixels of larger gradient amplitude are mainly located in the edge between the target and background. Key words: Canny operator; threshold-adaptive; edge detection; image process 0 引 言 边缘是重要的图像特征。因此,边缘检测是图像处理与分析的基础性课题,受到人们广泛而深入的研究。传统边缘的检测算子,如Robert、Prewitt、Kirsch、Sobel、LoG、Canny等,本身存在种种不足,在许多情况下无法达到很好的检测效果。近年来,在传统方法的基础上,相继发展出了一批新的边缘检测方法,如曲面拟合法、基于自适应平滑滤波法、小波变换法等。尽管如此,Canny算子由于具有较好的信噪比和检测精度,仍然在图象处理领域得到广泛应用。 利用Canny算子进行边缘检测时,需要人为确定高、低阈值的参数,而且不同的阈值对边缘检测的结果影响很大。但是,在实际情况中,不同图像取得最佳边缘检测效果的阈值各不相同。如果简单地使用传 收稿日期:2009-05-12;收到修改稿日期:2009-07-14 基金项目:中国科学院东北振兴科技行动计划重点项目(DBZX-2-017);吉林省信息产业发展专项资金项目 作者简介:雒涛(1982-),男(汉族),山东济南人。博士研究生,主要研究图像处理与视频压缩。E-mail: luotaomao@https://www.360docs.net/doc/8416431021.html,。

图像的阈值分割方法研究

第1章相关知识 1.1图像分割的概述 在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景),他们一般对应图像中特定的、具有独特性质的区域。为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。图像分割就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。这里特性可以是象素的灰度、颜色、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区域。现有的图像分割算法有:阈值分割、边缘检测和区域提取法。本文着重研究基于阈值法的图像分割技术。 所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内,表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的讲,就是在一幅图像中,把目标从背景中分离出来,以便于进一步处理。图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要的领域之一,它是对图像进行视觉分析和模式识别的基本前提。同时它也是一个经典难题,到目前为止既不存在一种通用的图像分割方法,也不存在一种判断是否分割成功的客观标准。 阈值法是一种传统的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。已被应用于很多的领域,例如,在红外技术应用中,红外无损检测中红外热图像的分割,红外成像跟踪系统中目标的分割;在遥感应用中,合成孔径雷达图像中目标的分割等;在医学应用中,血液细胞图像的分割,磁共振图像的分割;在农业工程应用中,水果品质无损检测过程中水果图像与背景的分割。在工业生产中,机器视觉运用于产品质量检测等等。在这些应用中,分割是对图像进一步分析、识别的前提,分割的准确性将直接影响后续任务的有效性,其中阈值的选取是图像阈值分割方法中的关键技术。 1.2 阈值分割的基本原理

小波变换-软硬阈值半软阈值图像去噪matlab程序

% %软阈值硬阈值半软阈值巴特沃斯滤波 clc close all clear all map=gray(256); x=imread(''); x=rgb2gray(x); > subplot(2,3,1); image(x); colormap(map); title('原始图片'); axis square; init=66; randn('seed',init); ) x1=50.*randn(size(x)); %均值为0 方差50^2 x=double(x) nx=x+x1; subplot(2,3,2); image(nx); colormap(map); title('加噪后的图片'); — axis square; c=num2str(c); text(100,100,'PSNR:'); text(300,100,c); %硬阈值 [thr,sorh,keepapp]=ddencmp('den','wv',nx); nx1=wdencmp('gbl',nx,'sym5',2,thr,'h',keepapp); ; subplot(2,3,3); image(nx1); title('ó2?D?μè¥??oóí???'); axis square; a1=psnr(nx1,x); a1=num2str(a1); text(100,100,'PSNR:'); text(300,100,a1); > %软阈值 nx2=wdencmp('gbl',nx,'sym5',2,thr,'s',keepapp); subplot(2,3,4); image(nx2); title('èí?D?μè¥??oóí???'); axis square;

自适应阈值化的函数

自适应阈值化的函数为: AdaptiveThreshold 自适应阈值方法 void cvAdaptiveThreshold( const CvArr* src, CvArr* dst, double max_value, int adaptive_method=CV_ADAPTIVE_THRESH_MEAN_C, int threshold_type=CV_THRESH_BINARY, int block_size=3, double param1=5 ); src 输入图像. dst 输出图像. max_value 使用CV_THRESH_BINARY 和CV_THRESH_BINARY_INV 的最大值. adaptive_method 自适应阈值算法使用:CV_ADAPTIVE_THRESH_MEAN_C 或 CV_ADAPTIVE_THRESH_GAUSSIAN_C (见讨论). threshold_type 取阈值类型:必须是下者之一 ?CV_THRESH_BINARY, ?CV_THRESH_BINARY_INV block_size 用来计算阈值的象素邻域大小: 3, 5, 7, ... param1 与方法有关的参数。对方法CV_ADAPTIVE_THRESH_MEAN_C 和 CV_ADAPTIVE_THRESH_GAUSSIAN_C,它是一个从均值或加权均值提取的常数(见讨论), 尽管它可以是负数。 函数cvAdaptiveThreshold 将灰度图像变换到二值图像,采用下面公式: threshold_type=CV_THRESH_BINARY: dst(x,y) = max_value, if src(x,y)>T(x,y)

小波阈值去噪的基本原理_小波去噪阈值如何选取

小波阈值去噪的基本原理_小波去噪阈值如何选取 小波阈值去噪的基本原理小波阈值去噪的基本思想是先设置一个临界阈值,若小波系数小于,认为该系数主要由噪声引起,去除这部分系数;若小波系数大于,则认为此系数主要是由信号引起,保留这部分系数,然后对处理后的小波系数进行小波逆变换得到去噪后的信号。具体步骤如下: (1)对带噪信号f(t)进行小波变换,得到一组小波分解系数Wj,k; (2)通过对小波分解系数Wj,k进行阈值处理,得到估计小波系数Wj,k,使Wj,k-uj,k尽可能的小; (3)利用估计的小波系数Wj,k进行小波重构,得到估计信号f(t),即为去噪后的信号。提出了一种非常简洁的方法对小波系数Wkj,进行估计。对f(k)连续做几次小波分解后,有空间分布不均匀信号s(k)各尺度上小波系数Wkj,在某些特定位置有较大的值,这些点对应于原始信号s(k)的奇变位置和重要信息,而其他大部分位置的Wkj,较小;对于白噪声n(k),它对应的小波系数Wkj,在每个尺度上的分布都是均匀的,并随尺度的增加Wkj 把低于的小波函数Wkj,(主要由信号n(k Wkj,(主要由信号s(k)引起),则予以保留或进行收缩,从而得到估计小波系数Wkj,它可理解为基本由信号s(k)引起,然后对Wkj进行重构,就可以重构原始信号。 本文提出的小波阈值去噪方法可以分为5步描述:(1)对带噪图像g(i,j)进行s层正交冗余小波变换,得到一组小波分解系数Wg(i,j)(s,j),其中j=1,2,s,s表示小波分解的层数。 小波阈值去噪法有着很好的数学理论支持,实现简单而又非常有效,因此取得了非常大的成功,并吸引了众多学者对其作进一步的研究与改进。这些研究集中在两个方面:对阈值选取的研究以及对阈值函数的研究。 阈值的确定在去噪过程中至关重要,目前使用的阈值可以分为全局阈值和局部适应阈值两类。其中,全局阈值是对各层所有的小波系数或同一层内不同方向的小波系数都选用同一

一种自适应阈值的运动目标提取算法

万方数据

万方数据

?2382?计算机应用研究第27卷 称为(F,B)的最大类间方根一算术均值距离(maxclusters’squarerootarithmeticmeandivegence,MCSAM)。 2.2算法步骤 自适应阈值的运动目标提取算法的具体步骤如下: a)初始化:Threshold=Ave,No=0,N1=0,Gmyo=0,Gray。=0,MCSAM(F,B)=0,Times=0(表示迭代次数)。 b)如果Times<T(T为阈值调整次数,即最大迭代次数),Times++;否则,转步骤f)。 c)遍历图像,由上述定义分别计算Ⅳo,N。,Grayo,Gray。。 d)计算Aveo,AveI,∞o,∞1,Ave,CSAM(Fi,B1)。 e)如果MCSAM(F,B)<CSAM(f,曰;),则令MCSAM(F,B)=CSAM(Fi,B;),Threshold=Threshold+Step(Step表示阈值调整步长),转步骤b);否则,不变,Threshold=Threshold—Step,转步骤b)。 f)此时的MCSAM(,,鳓就是所要寻找的最佳阈值,算法结束。 将运动目标和背景作为两个聚类,把聚类问的方根一算术均值距离最大作为阈值选择的准则是本算法的核心。背景和运动目标之间的CSAM越大,说明构成图像的两部分差别越大,当部分目标错分为背景或者部分背景错分为目标时,都会导致两部分差别变小,使得CSAM值变小。因此,MCSAM意味着错分的概率最小,该方法能保证运动目标提取的准确性。2.3阈值更新策略 本文的算法主要采用两种方法进行阈值更新。第一种是定时更新,即在规定时间段中(通常3—5min),抽取10张连续图像序列利用该算法计算下一时间段差分图像的分割阈值。这种方式适用于背景缓慢变化的情况,如一天当中太阳光照的缓慢变化。第二种方法¨21是实时更新,若在当前帧图像与背景模型差分后所得差分图像中,∞。大于某一个阈值(通常取80%),则认为整个背景发生了变化;若连续多帧图像中这一比值依然很大,则不仅更新背景模型,同时更新阈值Thresh—old。这种方式适用于背景发生突变时的情况,如室内突然开灯或关灯。此外,如果图像中某些固定区域(非整幅图像)在较长时间内一直保持变化状态,有两种情况:一种是该区域像素灰度均值平稳变化,则认为该处背景的实际状态发生了变化(如户外汽车的停泊和驶走),此时执行分割阈值更新操作;另一种情况是该区域像素灰度均值变化不平稳,则该处背景可能存在显示器屏幕一类的物品,此时标记该区域,只检测该区域以外的图像,进行阈值更新。 3实验结果 利用本文的算法对大量实际视频图像序列进行了运动目标提取的实验,并且在实验中总结了阈值调整次数Tin螂和阈值调整步长Step的最优选择方法。 3.1阈值调整次数和阈值调整步长的确定 阈值调整次数和阈值调整步长为本算法中可调整的参数。对视频中图像序列计算分割阈值时,可通过改变阈值调整步长Step和阈值调整次数Tim鹤的值,比较每帧图像的分割阈值。由实验统计数据可知:分割阈值准确度与阈值调整步长成反 比,与阈值调整次数成正比,即阈值调整步长Step越小,阈值调整次数Times越大,得到的分割阈值准确度越高,但同时也带来了巨大的计算量。因此,本文采用如下办法解决此问题:首先固定Times值,选择阈值变化减缓时的最小Step值;然后固定Step,寻找阈值变化减缓时的最小Times值;将选定的Step作为阈值调整步长,Times作为阈值调整次数。 3.2运动目标提取实验 利用本文算法对不同情况下的多组视频序列进行了运动目标提取实验,视频包括室内、室外、开关照明等场景,并将运动目标区域提取结果与基于背景差法的运动目标提取结果进行了比较。其中,后处理采用数学形态学的开运算。 实验1图3为摄像头获取的室内场景关灯条件下的视频序列,其中,(a1)(a2)(a3)分别是该图像序列中第50、110和150帧图像;图3(c)为利用本文算法分别对图1(a)中图像进行运动目标提取的结果,运动目标完整,且干扰噪声点较少;图3(b)是利用普通背景差法进行运动目标提取的结果,可以看到除由于未进行阴影消除出现伪影外,效果与图3(c)相差不多。 (c)基于自适应闻值运动目标提取算法的提取结果 图3室内人侧面走过摄像头视频(关灯情况下)实验2图4为摄像头获取的室内场景突然开灯情况下的视频序列。其中,(a1)(a2)(a3)分别是该图像序列中第250、310和350帧图像;图4(b)是利用背景差法进行运动目标提取的结果,可以看到,提取效果较差,这是由于照明环境的突然变化,使背景模型发生改变,而运动目标提取阈值固定不变所导致的结果;图4(C)是利用本文算法对运动区域提取阈值进行了自动调整,使得分割更灵活可行,因此,提取结果依然是运动目标完整,且干扰噪声点较少,从而验证了本算法对环境亮度突变的鲁棒性。 实验3图5为摄像头获取的室外场景视频序列,室外场景中通常存在一些微小的变化区域,如树叶的轻微摆动。由于本文算法后处理采用了数学形态学方法,可以有效去除这些微小变化引起的误检。但是,当背景中变动区域的运动幅度非常大,如狂风中摇摆的树木等,则该处理方法便无法完全去除变动区域的影响。 执行时间也是本算法的一个重要检测指标,本文使用1.8GHzIntelPentium@DCPU,512 MB内存的普通Pc机,图像分 万方数据

基于阈值的图像分割方法

基于阈值的图像分割方法

课程结业论文 课题名称基于阈值的图像分割方法姓名湛宇峥 学号1412202-24 学院信息与电子工程学院专业电子信息工程 指导教师崔治副教授 2017年6月12日

湖南城市学院课程结业论文诚信声明 本人郑重声明:所呈交的课程结业论文,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担

目录 摘要 (1) 关键词 (1) ABSTRACT (2) KEY WORDS (2) 引言 (3) 1基于点的全局阈值选取方法 (4) 1.1最大类间交叉熵法 (5) 1.2迭代法 (6) 2基于区域的全局阈值选取方法 (7) 2.1简单统计法 (8) 2.3 直方图变化法 (9) 3局部阈值法和多阈值法 (10) 3.1水线阈值算法 (11) 3.2变化阈值法 (12) 4仿真实验 结论 (12) 参考文献 (13) 附录

基于阈值的图像分割方法 摘要:图像分割多年来一直受到人们的高度重视,至今这项技术也是趋于成熟,图像分割方法类别也是不胜枚举,近年来每年都有上百篇有关研究报道发表。图像分割是由图像处理进到图像分析的关键环节,是指把图像分成各具特性的区域并提取出有用的目标的技术和过程。在日常生活中,人们对图片的要求也是有所提高,在对图像的应用中,人们经常仅对图像中的某些部分感兴趣,这些部分就对应图像中的特定的区域,为了辨识和分析目标部分,就需要将这些有关部分分离提取出来,因此就要应用到图像分割技术。 关键词:图像分割;阈值;matlab

数字图像灰度阈值的图像分割技术matlab要点

1.课程设计的目的 (1)使学生通过实验体会一些主要的分割算子对图像处理的效果,以及各 种因素对分割效果的影响 (2)使用Matlab软件进行图像的分割 (3)能够进行自行评价各主要算子在无噪声条件下和噪声条件下的分割 性能 (4)能够掌握分割条件(阈值等)的选择 (5)完成规定图像的处理并要求正确评价处理结果,能够从理论上做出合 理的解释 2.课程设计的要求 (1)能对图像文件(bmp,jpg,tiff,gif)进行打开,保存,退出等功能操作 (2)包含功能模块:图像的边缘检测(使用不同梯度算子和拉普拉斯算子)(3)封闭轮廓边界 (4)区域分割算法:阈值分割,区域生长等

3.前言 3.1图像阈值分割技术基本原理 所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内,表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的讲,就是在一幅图像中,把目标从背景中分离出来,以便于进一步处理。图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要的领域之一,它是对图像进行视觉分析和模式识别的基本前提。同时它也是一个经典难题,到目前为止既不存在一种通用的图像分割方法,也不存在一种判断是否分割成功的客观标准]5[。 在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景),他们一般对应图像中特定的、具有独特性质的区域。为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。图像分割就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。这里特性可以是象素的灰度、颜色、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区域。现有的图像分割算法有:阈值分割、边缘检测和区域提取法。本文着重研究基于阈值法的图像分割技术。 若图像中目标和背景具有不同的灰度集合:目标灰度集合与背景灰度集合,且两个灰度集合可用一个灰度级阈值T进行分割。这样就可以用阈值分割灰度级的方法在图像中分割出目标区域与背景区域,这种方法称为灰度阈值分割方法。 在物体与背景有较强的对比度的图像中,此种方法应用特别有效。比如说物体内部灰度分布均匀一致,背景在另一个灰度级上也分布均匀,这时利用阈值可以将目标与背景分割得很好。如果目标和背景的差别是某些其他特征而不是灰度特征时,那么先将这些特征差别转化为灰度差别,然后再应用阈值分割方法进行处理,这样使用阈值分割技术也可能是有效的 设图像为f(x,y),其灰度集范围是[0,L],在0和L之间选择一个合适的灰度

一种改进的小波阈值去噪方法

来稿日期:2011-11- 20 作者简介:刘艳霞(1979-) ,女,河北赤城人,讲师,硕士.一种改进的小波阈值去噪方法 刘艳霞,刘建军,曹燕燕 (河北北方学院信息科学与工程学院,河北张家口075000 ) 摘要:为了改进滤波效果,提高去噪质量,在分析目前被广泛应用的软、硬阈值去噪方法的基础上,提出 了一种改进的阈值去噪方法.该方法既兼顾了软、硬阈值函数的优点,同时又在一定程度上弥补了它们在图像 去噪中的缺陷.有效克服了硬阈值法去噪信号失真的和软阈值法细节模糊现象.仿真结果表明:该方法可以有 效地去除白噪声干扰,无论在视觉效果上还是在信噪比定量指标上均明显优于传统的软、硬阈值算法,达到良 好的去噪效果. 关键词:小波变换;硬阈值;软阈值;阈值函数;去噪 中图分类号:TN 911.7 文献标识码:A文章编号:1673-1492(2012)01-0030- 04An Imp roved Method for Wavelet Threshold De-noisingLIU Yan-xia,LIU Jan-j un,CAO Yan-yan(College of Information and Engineering,Hebei North University,Zhangj iakou 075000,Hebei China)Abstract:An improved method for wavelet threshold de-noising  put forward to promote the filteringeffect and the quality of denoising  based on the analysis of the soft and hard threshold denoising.It main-tains the advantage of the soft threshold and hard threshold denoising  method.At the same time,themethod compensates for the lack of two kinds of alg orithms in a certain extent.It is an effective method toovercome distortion of denoising  the signal of hard threshold or vague details of soft threshold method.The results of simulation show:the method can remove the white noise effectively,and achieve g ood re-sults.It is better than soft and hard threshold algorithms in the visual effects and sig nal to noise ratioq uantitative index.Key  words:wavelet transform;hard-threshold;boft-threshold;threshold function;de-noising数字图像在采集与传输等过程中,不可避免地会受到大量噪声的干扰.当噪声较严重时,会直接影响 图像的分割、识别和理解.因此,从含噪信号中提取有用信息是非常必要的[1]. 近年来,随着小波理论的不断完善和小波研究的不断深入,小波分析的应用也日趋广泛.其中,小波分析的一个重要应用之一是对信号进行去噪处理,小波分析比传统的傅里叶分析更加具有优越之势.小波去噪方法大致可分为三类,第一类是基于小波变换模极大值原理去噪;第二类是对含噪信号作小波变换,然后计算相邻尺度间小波系数的相关性,根据相关性区别小波系数的类型去噪;第三类是阈值去噪,即对小波系数设置阈值,在众多小波系数中,把绝对值较小的小波系数置为零,而让绝对值较大的系数保留或 收缩,然后对阈值处理后的小波系数进行小波逆变换,直接进行信号重构,即可达到去噪的目的[2-5]. 1 小波阈值去噪原理[6-8] 小波阈值收缩法是Donoho和Johnstone于1992年提出的,主要理论依据为:信号在小波域内的能量主要集中在有限的几个小波系数中,而噪声的能量却分布在整个小波域内.因此经小波变换后,信号的小波变换系数大于噪声的小波变换系数.这样就可以找到一个合适的数作为阈值,当小波的变换系数小于该阈值时,认为这时的小波系数主要是由噪声引起的进行去除;当小波系数大于该阈值时,则认为其主要是 第28卷第1期2012年2月 (自然科学版)Journal of Hebei North University( Natural Science Edition) Vol.28No.1Feb.2012

数字图像阈值自动分割的实现

数字图像阈值自动分割的实现 针对不同图像实现图像二值化的自动分割

一、摘要 本文主要讨论了数字图像阈值自动分割的实现和针对不同图像实现图像二值化的自动分割的课题。其中包括直方图阈值分割技术、类间方差阈值分割、迭代法阈值分割三种图像阈值分割的原理和基本内容,提出几种常用的图像阈值分割方法和比较几种方法的优缺点,更好地完成课题要求,并且从中获得一定的专业知识和技能。 关键词:阈值分割、二值化、直方图阈值分割技术、类间方差阈值分割、迭代法阈值分割

二、前言 本课题的主要目的是实现数字图像阈值自动分割,我们主要介绍三种有效的阈值分割方法:(1) 直方图阈值分割技术(2)类间方差阈值分割(3)迭代法阈值分割。我们分别介绍三种方法的原理、程序和运行结果,并结合结果进行优缺点的比较。 我们经过广泛的查取资料,注意到以下几个问题(1)编译的程序原理能够实现不同图像的自动阈值分割(2)对于彩色图像的阈值分割,要把彩色图像转化成灰度图像。

三、正文 3.1定义 图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。1998年以来,研究人员不断改进原有的图像分割方法并把其它学科的一些新理论和新方法用于图像分割,提出了不少新的分割方法。图像分割后提取出的目标可以用于图像语义识别,图像搜索等等领域。 图像阈值分割是一种广泛应用的分割技术,阈值分割法的特点是:适用于目标与背景灰度有较强对比的情况,重要的是背景或物体的灰度比较单一,而且总可以得到封闭且连通区域的边界。 阈值分割法基本原理是:通过设定不同的特征阈值,把图像像素点分为若干类.常用的特征包括:直接来自原始图像的灰度或彩色特征;由原始灰度或彩色值变换得到的特征.设原始图像为f(x,y),按照一定的准则在f(x,y)中找到特征值T,将图像分割为两个部分,分割后的图像为 : 若取: b0=0(黑),b1=1(白),即为我们通常所说的图像二值化。一般意义下,阈值运算可以看作是对图像中某点的灰度、该点的某种局部特性以及该点在图像中的位置的一种函数,这种阈值函数可记作:T(x,y,n(x,y),f(x,y))式中,f(x,y)是点(x,y)的灰度值;n(x,y)是点(x,y)的局部邻域特性.根据对T的不同约束,可以得到3种不同类型的阈值,即 (1)点相关的全局阈值T=T(f(x,y)):只与点的灰度值有关 (2)区域相关的全局阈值T=T(n(x,y),f(x,y)):与点的灰度值和该点的局部邻域特征有关 (3)局部阈值或动态阈值T=T(x,y,n(x,y),f(x,y)):与点的位置、该点的灰度值和该点邻域特征有关 本文对三种阈值分割技术进行综述: (1)直方图阈值分割技术 (2)类间方差阈值分割 (3)迭代法阈值分割

相关文档
最新文档