圆度,圆柱度及球度的测量及评价方法讲解

圆度,圆柱度及球度的测量及评价方法讲解
圆度,圆柱度及球度的测量及评价方法讲解

圆度

一. 基本概念

1. 圆要素几何特征

中心:横向截面与回转表面的轴线相交的交点; 半径:圆要素上各点至该中心的距离。 圆要素是一封闭曲线,其向量半径R 与相位角θ具有函数关系,即:()R F θ=

按傅里叶级数展开后,有:

()

001

cos m

k k R k k a c θθ==++∑

2. 圆度及圆度误差

圆度:回转表面的横向截面轮廓(圆要素)的形状精度;

圆度误差:表示实际圆要素精度的技术参数,即实际圆要素对理想圆的变动量。

3. 圆度误差评定原则

按形状误差评定原则,评定圆度误差时,应根据实际圆要素确定最小包容区域。圆度误差的最小包容区域与圆度公差带的形状一致,由两同心圆构成,当实际圆要素被两同心圆紧紧包容,即两同心圆的半径差为最小值时,即为最小包容区域。

4. 圆度检测原则

① 与理想要素比较原则:理想要素由测量器具模拟体现理想圆。在实际圆要素上获

得的信息,通常是实际要素的半径变化量,根据获得的半径变化量再评定圆度误差。

② 测量坐标值原则:对实际圆要素应用坐标测量系统对其采样点测取坐标值,由测

得的坐标值经过计算,求得圆度误差值。

③ 测量特征参数原则:根据实际圆要素的具体特征,采用能反映实际要素几何特征

的手段进行测量,从而方便的获得圆度误差值。

二. 圆度测量方法

1. 半径测量法

半径测量法是确定被测圆要素半径变化量的方法,是根据“与理想要素比较原则”拟定的一种检测方案。

① 仪器类型和工作原理(加备注解释)

下图分别为转轴式圆度仪和转台式圆度仪

圆度仪可运用测得信号的输出特性,将被测轮廓的半径变化量放大后同步自动记录下来,获得轮廓误差的放大图形,可按放大图形评定圆度误差。 ② 用圆度仪测量注意事项(加备注择项解释)

选择适当的侧头类型;静态测量力选择;测量平面和测量方向确定;频率响应选择;选择适当的放大倍率;正确安装被测件,径向偏心和轴向倾斜;主轴误差的影响

2. 坐标测量法

坐标测量法是根据测量坐标值原则提出的一种检测方案。将被测零件放置在设定的坐标系中,用相应的测量器具,测取被测零件横向截面轮廓上各点的坐标值,然后按要求,用相应的方法来评定圆度误差值。 ⑴极坐标测量法

在极坐标系中测量圆度,需要有精密回转轴系的分度装置,分度台或分度头。

测量前,按需要对被测轮廓拟定适量的采样点数。测量时,将被测零件安装到测量装置上,适当地调整安装位置,避免过大的径向偏心,用具有固定位置的指示器,对各采样点逐一进行采样,取得的示值反映了各采样点处的半径变化量R ?。被测横向截面轮廓的极坐标值为

()

,i

i

i

M R θ?。这些极坐标值时评定圆度误差的原始数据,由原始数据,

可以在极坐标系中描述出经放大后的被测轮廓误差曲线。最后可由图解法或计算法求得圆度误差值。

⑵直角坐标测量法

应用直角坐标测量装置

(

)

,i

i i

y

x M

,对被测轮廓上的采样点测取直角坐标。

各采样点至理想圆圆心的距离用下式求得

i R 1,2,

,.i n =

被测轮廓的圆度误差值,就是

R中的最大值与最小值之差。

i

3.两点测量法

①测量装置

两点测量装置是由在同一直线上的一个固定支承

和一个可移动侧头构成。左图所示为分别对外表面

和内表面进行两点法测量。在被测零件回转一周中

取指示器的最大示值与最小示值之差,作为评定圆

度误差的原始数据。

②测量原理

两点测量也称直径测量。测量圆柱面的圆度时,该法是在垂直与被测圆柱面轴线的测量平面内,按多个方向测量直径的变化情况。下图a,b是接触式测量。

两点测量的特点是只能反映被测轮廓具有偶数棱的圆度误差。当已知被测轮廓具有偶数棱后,设由该法在不同方向上测得的直径最大差为?,则圆度误差值f用下式求

f=?即圆度误差值时被测轮廓直径最大差之半。

得:/2

4.三点测量法

①测量装置

三点测量装置由两个固定支承和一个可沿测量方向移动的侧头构成。三点测量装置分为顶式和鞍式两类。顶式装置还可分为对称式和非对称式两种。下图分别为顶式对称装置,顶式非对称装置,鞍式装置。在三点测量装置上测量圆度时,被测零件回转一周中以指示器的最大示值与最小示值之差作为评定圆度误差的原始数据。

测量时,被测零件在两固定测量支承上,回转一周中取指示器示值的最大差?,

被测轮廓的圆度误差值

f

为:

/f F =?,

其中:F ——对应于所用测量装置的反映系数

5. 两点,三点组合测量法

一般情况下,测量前被测轮廓的棱数常为未知,故确定反映系数F 就有困难,为了能够在未知棱数的情况下,真实地反映圆度误差,采用两点法和三点法测量装置进行组合测量,能够获得良好效果。

用两点,三点法进行组合测量,可有三种方案:一个两点和两个三点法组合;一个两点和一个三点法组合;两个三点法组合。目前,常用的测量方案有四种典型组合及七种标准组合。

6. 双侧头四点测量法

①测量装置

双侧头四点测量法是前述三点测量法的改进。如下图所示:

测量装置的固定支承用V 形座体现,在原来的顶式三点非对称测量装置的基础上增设了一个指示器,成为一种双测头四点接触式的测量装置,对于被测轮廓棱数未知时,用该法测量,要比前述的两点,三点组合测量法更为简便,同时具有较高的测量精度。 ②测量原理

将被测零件放在固定支承V 形座上,当被测轮

廓存在形状误差时,零件在V 形座上回转,两个指示器的示值将会发生变化。设在某一测量

位置上指示器A 的示值为

Ai

M

;指示器B 的示值为

Bi

M

,将

Ai

M

Bi

M

相加得

i

M

,即

i

Ai

Bi M M

M =+

在零件回转一周中,取i

M

中的最大值

max

M

和最小值

min

M

,并求得最大值与最小值

之差?,即:max

min M

M ?=

-

于是,被测轮廓的圆度误差值f 用下式计算:/f F =?

其中:F ——对应于所用测量装置的反映系数

7. 三测头测量法

三测头测量法是指测量零件的圆度误差时,在垂直于零件轴线的同一测量平面内,按相互间具有某种定角,安装三个传感器对被测轮廓同时进行测量的一种方法。三测点法可以分离测量装置回转轴系的回转误差,具有较高的测量精度,测量装置简单,且可直接利用几场的回转轴系进行在线测量等特点,它也为大型零件的圆度测量创造了条件。 ① 测量装置

测量装置由基座,回转轴系,载物工作台,测量传感器和信息处理系统组成。在线测量时,测量装置的基座和回转轴系部分可直接利用机床的相应部分代替,使

测量装置大为简化。

② 测量原理

将三个传感器安装在同一测量平面内,传感器间的相互位置,按一定的位置角确定,测量方向为被测轮廓的半径方向。如下图所示:

图a 为测量外表面的圆度;图b 为测量内表面的圆度。

O 为被测轮廓中心,'

O 为

测量时的回转中心;A,B,C

表示三个传感器;

AB

?,

BC

?

分别表示传感器A 与B ,B 与C 之间的位置角;θ为起始位置角;ω为

回转中心起始位置角。三测点法测量圆度的测量方程为

()()(

)()

23

AB

AB

BC

S r r r c c θθθθ?

??=+++++

该测量方程可用离散傅里叶变换,矩阵平差及从泛函分析得出广义逆矩阵等方

法,求得轮廓各采样点的半径变化量r

?

,即:

1

r S A

-=??

其中,

1

A

-为测量方程系数矩阵A 的逆矩阵;

S ?为三个传感器的合成信号。上

述计算过程十分繁琐,需用计算机编成计算。

8. 三点循环联系测量法

① 测量装置

三点循环联系测量法的装置分为手动式测量装置和自动式测量装置。手动式装置又分为定跨距式和变跨距式;自动式装置由检测装置,控制系统和运算系统组成。 ② 工作原理 如下图所示:

测量装置的两固定测头与指示器的测头,同时与被测轮廓成三点接触,这三个点就决定了一个具有一定半径的参考圆。接着将测量装置移动至下一个测量位置,若指示器的示值变化,则说

明第四点相对于参考圆存在半径变化。指示器的示值为h ?,采样点的半径变化量为

i

R ?,由测得的数据,利用计算机可得圆度误差。

三.圆度误差评定

1. 最小区域法

⑴圆度的最小包容区域

最小包容区域:由两同心圆包容实际轮廓时,具有半径差为最小的两同心圆构成的区域。

圆度误差值

f

:两同心圆间的半径差。

具备最小包容区域的条件:当两同心圆包容实际轮廓且与之接触时,必须至少具有内外相间四个接触点。如左图所示:(做

适当解释)

⑵求解方法

① 模拟最小区域法

当被测轮廓在测量中已被记录下轮廓的误差图形时,用一刻有一系列等间距的同心圆的透明膜版,用这些同心圆去套切记录的轮廓误差图像,寻找两同心圆模拟最小区域。当找到了某两同心圆包容区域误差的图像并形成内外相间四点接触时,该两同心圆间的宽度,即为所求的圆度误差值。 ② 作图法

先按测得的轮廓误差的坐标值,用适当倍率放大,描出各采样点在坐标系中的位置,然后按各采样点实际分布情况,通过作图找到最小区域圆的圆心,最后在图上直接量得圆度误差。 ③ 计算法

常用方法为逐步逼近法。在被测轮廓中央任找一点O ,计算轮廓上各采样点至点O

的距离

i

R

,在其中找出最大值,次大值与最小值,次小值所对应的四个采样点,判

断该四点是否符合内外相间构成最小区域的条件,若不满足则重新选定次大值与次小值之点。若以满足,则分别求出最大值与次大值,最小值与次小值两条连线的垂直平分线,并求得垂直平分线的交点

'

O

,计算各采样点至改点的距离R ,检查R 中

的最大值与最小值是否是以上选定的内外相间的四点处的半径。若否,则重新选定四点,若是,则圆度误差值f 为最大值与最小值之差。

2. 最小二乘方圆法

最小二乘方圆:当被测轮廓上各点至某一

圆的距离平方和为最小时,该圆即为最小二乘方圆。如图所示:

最小二乘方圆的确定:被测轮廓上各采样点用

i

P

表示,其直角坐标值为

(),i

i

i

y x

P ,极坐标值为

()

,i

i

i

P r θ,最小二乘圆的圆心为

()

'

,a b O 。由计算可得/i

R n

r

=

∑,2

/i

a n x =∑,2/i

b n

y

=∑。即最小二乘圆的半径

为轮廓向量半径的平均值,最小二乘圆的圆心坐标分别为采样点各坐标值的平均值的两倍。

则各采样点对最小二乘圆的偏离量按下式计算:

()

cos sin i i i i R a b R r θθ?=-++

i

R ?中的最大值,即为圆度误差值。

3. 最小外接圆法

最小外接圆:与实际轮廓外接,且半径为最小的圆,

该圆要满足两点接触(两点连线过直径)或三点接触(三点构成的三角形为锐角三角形)。

圆度误差值:轮廓上各采样点相对于最小外接圆的径向偏离量中的最大偏离量。求圆度误差的方法有模拟最小外接圆法,作图法和计算法。

4. 最大内接圆法

最大内接圆:内切于实际轮廓,且半径为最大的圆,该圆要满

足两点接触(两点连线过直径)或三点接触(三点构成的三角形

为锐角三角形)。

以上介绍的四种圆度误差评定方法中,最小区域法是符合圆度误差定义的一种评定方法,所评定的圆度误差值最小,且有唯一性。另外三种方法也是在圆度测量标准中规定允许采用的评定法,由它们评定的圆度误差值,一般略大于按最小区域法评定的结果。

圆柱度

一. 基本概念

1. 圆柱面要素几何特征

半径:圆柱面要素至轴线的距离; 圆柱面要素的形状,用函数表示为

(),R F z θ=

2. 圆柱度误差

圆柱度误差:实际圆柱面要素对其理想圆柱面的变动量,分解为横向截面内的圆要素误差,轴向截面内直线要素的误差以及相应直线要素之间的平行度误差。

3. 圆柱度误差评定原则

该原则与圆度误差评定原则相同

4.圆柱度检测原则

该原则与圆度检测原则相同

二.圆柱度测量方法

1.半径测量法

在测量时,以测头相对于被测圆柱面移动的轨迹,模拟理想圆柱面。半径变化量即是实际圆柱面上的采样点相对于理想圆柱面的偏离量。

⑴测量截面布置

为测量和数据处理上的需要,应对被测表面布置测量截面,再沿测量截面与被测表面的交线布量适当数量的采样点。测量截面有三种类型:横向截面,螺旋形截面,横向与螺旋形截面相结合。如下图:

⑵测量装置

①圆柱度仪

该仪器具有一个精密的回转轴系和一个平行于

回转轴线的直线导向件联合构成。通过测量获得被

测圆柱面上的一系列径向变化量,据此可进一步评

定圆柱度误差值。

②圆度仪

用圆度仪测量圆柱度,因受仪器功能的限制,故测量全过程不能连续进行,应布置横向测量截面进行测量

2.坐标测量法

⑴直角坐标测量法

对被测圆柱面拟定若干等间距横向测量截面,并由坐标Z确定各测量截面的位置,在各测量截面内拟定一定数量的采样点,逐点进行测量。

⑵圆柱坐标测量法

测量时,需要有一个回转分度装

置。

用分度装置指示被测零件

在测量中回转的角度,直线导向刻度装置体现轴线方向和指示测量截面的位置,由指示器指示被测轮廓的径向变化量。

3.两点测量法

两点测量法采用L 形座测量装置,如下图:

测量时,被测零件安放在L 形座上,并靠紧其垂直面。拟定若干个横向测量截面后,用指示器在横向测量截面内进行测量,取测量全过程中指示器所指示的最大示值与最小示值差之半为圆柱度误差值。

3. 三点测量法

采用V 形座测量装置,如下图:

测量时,运用具有不同夹角的两个V 形座进行组合测量。拟定若干个横向测量截面后,用指示器在横向测量截面内进行测量,取测量全过程中指示器所指示的最大示值与最小示值差之半为圆柱度误差值。因在两个不同夹角的V 形座上分别进行测量,故取两者中数值较大者为最终圆柱度误差值。

4. 分解测量法

⑴外表面分解测量法 ① 分项测量

有两种方案,其一为在若干横向截面内测量圆度误差,同时分解出素线对轴的平行度误差;其二,在横向截面内测量圆度误差,并在轴向截面内测量素线对轴线的平行误差,按某一横向测量截面,当被测零件在V 形座上回转时找出该截面轮廓的最高点,过最高点的轴向截面内布点采样,对各采样点处测得的示值中取最小示值为最低点。 ② 叠加评定圆柱度误差

由被测零件上的最小直径处的圆度误差值和素线对轴线的平行度误差值经叠加后即为被测圆柱面的圆柱度误差。 ⑵内表面分解测量法 ① 分项测量

a. 测量素线平行度

用三点式测量装置在某一横向截面内找出轮廓的最高点,并使其位于上方,在过最高点的轴向截面内用指示器与上方素线上布点采样,指示器示值中最大值与最小值之差即为素线对轴线的平行度误差。 b. 测量圆度误差

在过上述测量最低点的横向截面内,用三点式测量装置测量轮廓的圆度误差。 ② 叠加评定圆柱度误差

圆柱度误差为被测内表面最小直径处的圆度误差值以及素线对轴线的平行度误差值两者叠加而得。

三.

圆柱度误差评定

1. 最小区域法

⑴最小包容区域

由两同轴理想圆柱面包容实际圆柱面时,具有半径差为最小的两同轴圆面构成的区域.两圆柱面的径向距离即为半径差,为实际圆柱面的圆柱度误差值. ⑵圆柱度误差求解方法 ① 轮廓重叠法

测量时,将测量截面内的轮廓误差放大后描绘出的图像记录在一张记录纸上,同时,假设最小区域的两同轴援助包容面也投影在该平面上当符合内外相间四点接触时两包容圆的径向距离,即为被侧圆柱面的圆柱度误差值. ② 计算法

通常采用逐步逼近法,经多次计算后得以实现.过程繁琐,使用计算机计算.

2. 最小外接圆柱法

⑴最小外接圆柱

在实际被测圆柱面外,与其相接触且直径为最小的理想圆柱面.以实际圆柱面至最小外接圆柱的径向最大偏离量为圆柱度误差值. ⑵圆柱度误差求解方法 常用轮廓重叠法和计算法.

3. 最大内接圆柱法

⑴最大内接圆柱

在实际被测圆柱面内,与其相接触且直径为最大的理想圆柱面.以实际圆柱面至最大内接圆柱的径向最大偏离量为圆柱度误差值. ⑵圆柱度误差求解方法 常用轮廓重叠法和计算法.

4. 最小二乘圆柱法

⑴最小二乘圆柱

实际圆柱面上各点至一假象圆柱面的径向距离的平方和为最小,该假想圆柱面称为最小二乘圆柱。 ⑵圆柱度误差值求解

由最小二乘圆柱法评定的圆柱度误差值,示值被测的实际圆柱面至最小二乘圆柱轴线的最大距离与最小距离之差。 令轴线的坐标为(a,b ),则有

112m n

ij

j i a n m x ===?∑∑,112m n ij j i b n m y ===?∑∑ 式中,

ij

y

ij

x

为被测圆柱面上的采样点坐标

j 为测量截面序号

i 为每一测量截面内采样点序号

最小二乘圆柱的半径为

111n m

ij

j i R n m r ===?∑∑由各采样点至最小二乘圆柱的径向距离为

()

cos sin ji ji ji i i R R a b R R r θθ?=-=-+?+

ji

R ?中的最大值与最小值之差即为圆柱度误差。

球度

一.球度误差的评定方法和数学模型

1.评定方法

利用球度和圆度的相似性(即可认为球面是由无数圆心相同的圆包络所形成),定义球

度的评定方法: ①最小二乘法 ②最小外接球法 ③最大内接球法 ④最小区域法

各自球心的定义为:

最小二乘球心:对球面测量的空间半径偏差的平方和为最小的球心. 最小外接球心:可以包容球面的最小球的球心.

最大内接球心:可以同球表面内接的最大的球的球心.

最小区域球心:要求包容球面的两个同心球之间半径差为最小的球心.

2.评定方法的数学模型

① 最小二乘法

最小二乘球心坐标和半径的计算公式为:

114n m

ij

i j a mn x ===∑∑,

114n m

ij

i j b mn y ===∑∑,

114n m

ij

i j c mn z ===∑∑,

111n m

ij

i j R mn r ===∑∑

目标函数:

max

min

f ij

ij

R R =-

② 最小外接球法

目标函数:

mcs

f

=③ 最大内接球法 目标函数:

mis

f

=④ 最小区域法 目标函数:

mcs

mis

f f

f

=

-

二.球度误差的测量技术

球度测量使用的仪器通常是圆度仪,三坐标测量机等。

1.在圆度仪上测量

在圆度仪上对球面进行测量的测量原理是利用圆度仪测量球面在不同方位上的最大圆的圆度轨迹,进而通过这些在不同方位的画度来描述空间球面.并通过采样得出球体的测试数据进行计算,得出球度误差.

测量时,测头的旋转轴线和球体的旋转(分度)轴线之间的角度应为90。,

如下图所示.

为得到并确保圆度轨迹总在最大直径处,必须使用具有一定

曲率半径的测头.用已知角度对球体进行分度测量,这一过程多

次重复,直至所要求分度的次数.通过使用轨迹上点的坐标测量

数据计算得到球度误差,图3表示了该法测量球体的测量轨迹图.

2.在三坐标测量机上测量

①经纬法

经纬法是按经度和纬度线来进行测量的方法,测量的轨迹如

下图所示.纬度线测量从赤道圆开始,再向上、下分别测取n/2条

纬圆.共得n条纬线.测量时,将工件放回转台上,被测球面随工作

台一起转动,而测头不动,每隔一相同角度测取一点,共取m点,

即得各经线在该条纬线上的交点座标,将各纬线上对应的交点联

接起来,即得m条经线.

②扫描法

该法是用测头转动来进行扫描测量,测头为三维传感器,打印出测量数据结果.可建立三维空间直角座标系和球座标系。该法具有自动测量、自动控制测量力、采样均匀等特点。

表面粗糙度

一.基本概念

⑴表面粗糙度:加工表面所具有的较小间距和峰谷的微观几何形状特性称为表面粗糙度。

⑵取样长度l:指测量或评定表面粗糙度时所规定的一段长度。在一个取样长度范围内,一般应包含五个以上的轮廓峰和轮廓谷。

⑶评定长度ln:指为了合理且较全面地反映整个表面的表面粗糙度特性,而在测量和评定表面粗糙度时所必需的一段长度,如图所示。评定长度ln可以包括一个或几个取样长度,一般情况下取ln=5l

⑷基准线:评定表面粗糙度参数值时所取的基准。

⑸轮廓的最小二乘中线:是指具有理想直线形状并划分被测轮廓的基准线,在取样长度内使轮廓上各点到该基准线的距离(轮廓偏距)的平方之和为最小,即

⑹轮廓的算术平均中线:是指具有理想直线形状并在取样长度内与轮廓走向一致的基准线,该基准线将轮廓划分为上下两部分,且使上部分的面积之和等于下部分的面积之和,即

⑺轮廓算术平均偏差Ra :是指在取样长度l内被测轮廓上各点到基准线的距离yi的绝对值

的算术平均值。用公式表示为:

⑻微观不平度十点高度Rz:是指在取样长度l内,被测轮廓上五个最大轮廓峰高ypi的平均

值与五个最大轮廓谷深yvi的平均值之和。用公式表示为:

⑼轮廓最大高度Ry:是指在取样长度l内,被测轮廓的峰顶线与谷底线之间的距离。二.评定参数的选择

如无特殊要求,一般仅选用高度参数。推荐优先选用Ra值,因为Ra能充分反映零件表面轮廓的特征。以下情况例外:

⑴当表面过于粗糙(Ra>6.3μm)或过于光滑(Ra<0.025μm)时,可选用Rz,因为此范

围便于选择用于测量Rz的仪器测量。

⑵当零件材料较软时,不能选用Ra。因为Ra一般采用触针测量。

⑶当测量面积很小时,如顶尖、刀具的刃部、仪表的小元件的表面,可选用Ry值。三.表面粗糙度的测量方法

表面粗糙度的测量方法基本上可分为接触式测量和非接触式测量两类:在接触式测量中主要有比较法、印模法、触针法等;非接触测量方式中常用的有光切法、实时全息法、散斑法、像散测定法、光外差法、光学传感器法等。

⒈接触式测量

⑴比较法

将被测表面对照粗糙度样板,用手摸靠感觉来判断被加工表面的粗糙度,也可用肉眼或借助于放大镜、比较显微镜比较。比较法一般只用于粗糙度评定参数值较大的情况下,而且容易产生较大的误差。

⑵印模法

利用某些塑性材料作块状印模,贴合在被测表面上,取下后在印模上存有被测表面的轮廓形状,然后对印模的表面进行测量,得出原来零件的表面精糙度。对于某些大型零件的内表面不便使用仪器测量,可用印模法来间接测量,但这种方法的测量精度不高且过程繁琐。

⑶触针法

触针法又称针描法,它是将一个很尖的触针(半径可以做到微米量级的金刚石针尖)垂直安置在被测表面上作横向移动。触针将随着被测表面轮廓形状作垂直起伏运动。将这种微小位移通过电路转换成电信号并加以放大和运算处理,即可得到工作表面粗糙度参数值。

⒉非接触式测量

⑴光切法

将一束平行光以一定角度投射到被测表面上,光带与表面轮廓相交的曲线影像即反映了被测表面的微观几何形状。

⑵实时全息法

其原理如下图所示:

⑶散斑法

测量原理如左图:

有单模半导体激光器L。发出的光束经透镜发散,

由分光镜s分成两路,一路照射被测表面O,另一路通过

S射到平面反射镜M返回,作为参考光与被测表面返回

的散射光重新在S汇合发生干涉,采用CCD摄像机记

录干涉图样,并存储到计算机中。参考镜M与一个压电陶瓷(PzT)相连,PZT由计算机控制,能使参考镜M产生一个微小位移。由于相位差是与轮廓深度(即光程差)对应的,因此可根据位移确定各点的粗糙度。

⑷AFM 法

AFM的工作原理如左图所示:

当将一个对微弱力极其敏感的微悬臂一端

固定,另一端带有一微小探针(约10nm)接近被

测试样至纳米级距离范围时,根据量子力学理

论,在这个微小间隙内由于针尖尖端原子与样品

表面原子间产生极微弱的原子排斥力。由驱动控

制系统控制x、y、z三维压电陶瓷微位移工作台带动其上的被测样品逼近探针并使探针相对扫描被测样品。通过在扫描时控制该原子力的恒定,带有针尖的微悬臂在扫描被测样品时由于受针尖与样品表面原子间的作用力的作用而在垂直于样品表面的方向起伏运动。利用微悬臂弯曲检测系统可测得微悬臂对应于各扫描点位置的弯曲变化,从而可以获得样品表面形貌的三维信息,其高度方向和水平方向的分辨力可分别达到0.1nm和lnm。

测量气缸圆度圆柱度的方法及步骤

测量气缸圆度、圆柱度的方法及步骤 ①准备清洗干净的持修气缸体一台,与其内径相适应的外径千分尺、量缸表及清洁工具等。 ②将气缸孔内表面擦试洁净。 ③安装、校对量缸表。 ④用量缸表测量气缸孔第一道活塞环上止点处于平行于曲轴轴线方向的直径,记入检测记录。 ⑤在同一剖面内测量垂直于曲轴轴线方向的直径,记入检测记录。 ⑥上述两次测量值之差的一半即为该剖面的圆度误差。 ⑦用上述方法测量气缸孔第一道活塞环上止点至最后一道活塞环下止点行程的中部,将这一横剖面的圆度误差,记入检测记录。 ⑧用同样方法测量距气缸孔下端以上30mm左右处横剖面的圆度误差,记入检测记录。 ⑨三个圆度误差值中,最大值即为该气缸孔的圆度误差。 ⑩上述3个测量横剖面,6个测量值,其中最大值与最小值之差的一半,即为该气缸孔的圆柱度误差。 11上述方法只适用于待修或在用气缸套筒的一般检测。如要取精确测值,则应选多个横剖面、纵剖面测量,而且在对同一横剖面、纵剖面上进行多点测量,方能检测出圆度、圆柱度误差的值。 12气缸磨损圆柱度达到0.174~0.250mm或圆度己达到0.050~0.063mm(以其中磨损量最大一个气缸为准)送大修。

JT3101-81中规定:磨缸后,干式气缸套的气缸圆度误差应不大于0.005mm,圆柱度误差不大于0.0075mm湿式气缸套的气缸的圆柱度误差应不大于 0.0125mm. 13确定修理尺寸:气缸磨损超过允许限度或缸壁上有严重的刮伤、沟槽和麻点,均应采取修理尺寸法将气缸按修理尺寸搪削加大。 气缸修理尺寸的确定方法:先测量磨损最大的气缸最大磨损直径,加上加工余量(以直径计算一般为0.1~0.2mm),然后选取与此数值相适应的一级修理尺寸。 当策动机气缸圆度,圆柱度误差超过规定的标准时,如汽油机的圆度误差超过0.05mm 或者圆柱度误差超过 0.20mm 时,联合最大磨耗尺寸视情进行修理尺寸法镗缸或者更换缸套修理用量缸表测量气缸圆度误差,在同一横向截面内,在平行于曲轴轴线方向和垂直于曲轴轴线方向的两个方位进行测量,测得直径差之半即为该截面的圆度误差沿气缸轴线方向测上、中、下三个截面,如图3-40所示上面至关于活塞上止点第一道活塞环相对应的气缸处;中间取气缸中部;下面取活塞下止点时最下一道活塞环对应的气缸位置 测得的最大圆度误差即为该气缸的圆度误差测量气缸圆柱度误差凡是用量缸表在活塞行程内一股取上中下三处(如图3-41所示)气缸的各个方向测量,找出该缸磨耗的最大处气缸磨耗最大直径与活塞在下止点时活塞环运动地区范围以外,即距气缸套下部平面10MM范围内的气缸最小内径的差值的半壁,就是该气缸的圆柱度误差 图:测量气缸磨耗量 图:在活塞行程上、中、下三处测量气缸图:测量气缸磨耗量图:在活塞行程上、中、下三处测量气缸气缸磨耗的测量要领凡是用量缸表对气缸磨耗进行测量具体测量要领如下: 1 .把内径百分表装在表杆的上端,并使表盘朝向测量杆的勾当点,以便于观察,使表盘的短针有 1-2mm 的压缩量

实验一 圆度与圆柱度误差测量

实验一圆度与圆柱度误差测量 一、实验目的 1.掌握圆度误差及圆柱度误差的测量方法; 2.学会对测量数据的处理,加深对基本概念的理解; 3.了解测量工具结构并熟悉它的使用方法。 二、圆度与圆柱度误差测量原理 1.圆度误差及测量、评定方法 圆度误差为包容同一横截面实际轮廓,且半径差为最小的两同心圆间的距离f,如图1.1所示。 圆度误差最小包容区域的判别方法是:由两同心圆包容 被测实际轮廓时,至少有4个实测点内、外相间地在两个圆 周上(即同心圆的内、外接点至少两次交替发生),如图1.1 所示。圆度误差最小区域的同心圆圆心,通常是和零件的测 量回转中心不一致。图中,O点是测量时的回转中心,O’ 测量点是圆度误差的评定中心。 测量圆度误差的方法,主要有:圆度仪测量,两点法测量圆 度误差,三点法测量圆度误差。这里只介绍两点法测量圆度 误差。 两点法测量圆度误差(检测方案代号:3—3) 用千分尺在垂 直于轴线的固定截面的直径方向进行测量,测量截面一周中直径最大差一半即为单个截面的圆度误差。如此测量若干个截面。取其最大的误差值作为该零件的圆度误差。 2.圆柱度误差 圆柱度误差是指包容实际表面且半径差为最小的两同轴圆柱面间的半径差f。圆柱度误差综合地反映了圆柱面轴线的直线度误差、圆度误差和圆柱面相对素线间的平行度误差。用它来综合评定圆柱面的形状误差是比较全面的,常用在精度要求比较高的圆柱面。 3.圆柱度误差的检测与评定方法 圆柱度误差的评定方法有:(1)用圆度仪测量,(2)用两点法测量。这里只介绍两点 法测量圆度误差。 ‘ 测量时,将被测件放在精确平板上,并紧靠直角座;在被测件回转一周过程中,测量一个横截面上的最大与最小读数差;如此测量若干个横截面,然后取整个测量过程中,所有读数中的最大与最小读数差的一半作为图1.3 两点法测量圆柱度误差

圆柱度误差测量方法讲解

圆柱度误差测量方法讲解

圆柱度 指在垂直于回转体轴线截面上,被测实际圆(柱)对其理想圆(柱)的变动量,以形成最小包容区域的两同心圆(柱)面的半径差计算。常用的近似测量方法有两点法、三点法、坐标测量法等。 1、两点法 按图1所示方法测出各给定横截面内零件回转一周过程指示表的最大示值与最小示值,并以所有各被测截面示值中的最大值与最小值的一半作为圆柱度误差值。 图1 2、三点法 按图2所示方法测出各给定横截面内零件回转一周过程指示表的最大示值与最小示值的一半作为圆柱度误差值。 图2

3、三坐标测量法 通常是在三坐标测量机上按要求测量被测零件各横截面轮廓各测点的坐标值, 再利用相应的计算机软件计算圆柱度误差值。 利用圆度仪测量圆柱度时, 将被测圆柱体工件沿垂直轴线分成数个等距截面放在回转台上, 回转台带动工件一起转动; 3个传感器安装在导轨支架上, 并可沿导轨做上下的间歇移动, 逐个测量等距截面, 获取含有混合误差的原始信号(测量原理图如图3所示)。测量传感器拾取的原始信号中不仅包含有被测工件的各个截面的圆度误差母线的直线度误差, 而且还含混入了导轨的直行运动误差及回转台的回转运动误差。将上述误差相分离, 并依据最小二乘圆心进行重构出实际圆柱面轮廓, 然后采用国标规定的误差评定方法得到被测圆柱面的圆柱度误差。 图3 三坐标测量机(Coordinate Measuring Machine, CMM) 是指在一个六面体的空间范围内,能够表现几何形状、长度及圆周分度等测量能力的仪器,又称为三坐标测量仪或三次元。 三坐标测量机能够在用测头所确定的三维空间(xyz空间)坐标系内, 由光学刻尺或激光干涉仪进行测量。通过测头和测量对象的接触, 由测头的坐标来获取对象的形状信息。 三坐标测量机通常由本体、侧头、各轴移动量的测量、显示装置、电子计算机及其外围设备、驱动控制部分以及软件等构成。

各种测量方法

各种测量方法 一、轴径 在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 二、孔径 单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。 三、长度、厚度 长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏心检查器检测偏心距值,用半径规检测圆弧角半径值,

用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。 四、表面粗糙度 借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜)测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025~6.3μm 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经验进行修正);用激光测微仪激光结合图谱法和激光光能法测量Ra0.01~0.32μm的表面粗糙度。 五、角度 1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多面棱体测量分度盘精密齿轮、涡轮等的分度误差。 2.直接测量:用角度仪、电子角度规测量角度量块、多面棱体、棱镜等具有反射面的工作角度;用光学分度头测量工件的圆周分度或;用样板、角尺、万能角度尺直接测量精度要求不高的角度零件。3.间接测量:常用的测量器具有正弦规、滚柱和钢球等,也可使用三坐标测量机。 4.小角度测量:测量器具有水平仪、自准直仪、激光小角度测量仪

实验二 轴类零件的圆度和圆柱度误差的测量

实验二轴类零件的圆度和圆柱度误差的测量 一、实验目的 1.掌握圆度误差及圆柱度误差的测量方法; 2.学会对测量数据的处理,加深对基本概念的理解; 3.了解测量工具结构并熟悉它的使用方法。 二、实验内容 利用XW-250-1型多功能形位误差分选仪测量圆度和圆柱度。 三、计量器具及测量原理 (一)计量器具 1、形位误差测量仪 仪器工作原理: 以顶尖支承定位被测零件,被测件回转时各测点位置可由仪器刻度盘读出;装在拖板上的传感器可由齿轮齿条机构带动,沿仪器侧导轨作平行于顶尖轴线的直线运动,其测头的轴向位 置可由仪器上的刻度尺读出。 2、电感测微仪 电感测微仪是一种能够测量微小尺寸变化的精

密测量仪器。 3、多功能便携式形位数据采集器 实现测量时数据的半自动采集。数据采集器接受电感测微仪模拟量输入并进行模数转换。 4、各部分的连接 (二)测量原理: 1.圆度误差及测量、评定方法 圆度误差为包容同一横截面实际轮廓,且半径差为最小的两同心 圆间的距离f,如图1.1所示。 测量方法采用半径法。 圆度误差最小包容区域的判别方法是:由两同心圆包容被测实际 轮廓时,至少有4个实测点内、外相间地在两个圆周上(即同心圆的内、 外接点至少两次交替发生),如图1.1所示。圆度误差最小区域的同心圆圆心,通常是和零件的测量回转中心不一致。图中,O点是测量时的回转中心,O’测量点是圆度误差的评定中心。 其评定方法有:最小二乘圆法和最小区域法。

最小平方中心法,也叫最小二乘圆中心法(LSC):最小二乘圆是穿过被测截面轮廓的理想圆,从被测实际轮廓上各点至该理想圆的径向距离的平方和应为最小值。以最小二乘圆中心为中心,做两个包容实际轮廓的同心圆,取二圆的半径差为圆度误差。此法适用于具有精密回转轴(或转台),其测量头可描绘出理想圆的检测仪器的评定,如圆度仪。评定对象适用于圆度、同心度等。 最小区域法(MZC):指包容圆柱面之间的区域,适用于具有精密回转轴(或转台),其测量头可描绘出理想圆的检测仪器,如圆柱度仪。评定对象适用于圆柱度、同轴度等。 2.圆柱度误差 圆柱度误差是指包容实际表面且半径差为最小的两同轴圆柱面间的半径差f。圆柱度误差综合地反映了圆柱面轴线的直线度误差、圆度误差和圆柱面相对素线间的平行度误差。用它来综合评定圆柱面的形状误差是比较全面的,常用在精度要求比较高的圆柱面。 测量方法采用半径法。 其评定方法有:最小二乘法和最小区域法。 四、实验步骤 1.采集器与有关设备的连接 2.开机、时间设定及复位 采集器开机后,无论处于何种工作状态需要复位时,按“复位”键即可,此时各位显示窗均显示“一”号。 3.测量仪器选定 按“仪器”键,在第二位显示窗上依次循环显示“A”、“B”、“C”、“D”字符,各字符表示所用的测量仪器,其含义为: A —电感测微仪(可用于测量圆度、圆柱度、圆跳动、全跳动)

圆柱度、圆度、圆跳动、全跳动区别

路漫漫其修远兮,吾将上下而求索- 百度文库 圆柱度公差是限制实际圆柱面相对于理想圆柱面的变动。它表示实际圆柱面必须位于半径公差给定的两个同轴圆柱面之间 径向全跳动是被测表面绕基准轴线连续回转时,在整个圆柱面上所允许的最大跳动量。它表示被测表面绕基准轴线连续回转时,同时百分表相对于圆柱面作轴向移动,在整个圆柱面上的径向跳动量不得大于给定公差值 疑问:假如说一个圆柱面,它的径向全跳动公差和圆柱度公差都是0.05 我是这么想的:既然圆柱度公差0.05表示实际圆柱面必须位于半径公差0.05的两个同轴圆柱面之间,那么它在整个圆柱面上的径向跳动量一定也不会大于0.05.这样的话圆柱度和径向全跳动还有什么区别? 简单地讲圆柱度就是单讲圆柱外表面的实际轮廓与理想轮廓的差异,就是假想用最大极限与最小两个极限两个圆柱来限定实际圆柱的轮廓范围,超出这个范围就不合格。指圆柱外形的要求。 跳动时一项综合性的误差项目,反映被测要素的形状和位置误差。 他们的区别是:全跳动公差带与圆柱度公差带相同,可以利用全跳动公差控制圆柱度误差。还能反映出端面、圆柱面对于基准轴的垂直、平行误差。 总的来讲,全跳动测量比圆柱度测量要全面,甚至可以包括他。 圆跳动和全跳动的差别: 跳动的分类:可分为圆跳动和全跳动. 圆跳动:是指被测实际表面绕基准轴线作无轴向移动的回转时,在指定方向上指示器测得的最大读数差. 全跳动:是指被测实际表面绕基准轴线无轴向移动的回转,同时指示器作平行或垂直于基准轴线的移动,在整个过程中指示器测得的最大读数差. ********圆度与圆跳动的区别,圆柱度与全跳动的区别 圆度是形状误差,只是表达一个表面形状.而跳动给这个形状规定了一个基准,即中心轴线.跳动小的一定圆,圆的跳动可能大.当偏离基准的时候圆的跳动也大.就这样. 圆柱度增加了一个轴向概念,成为一个空间问题. 圆度是任一正截面上半径差为某一数值的两个同心圆区域,它的实际尺寸不能走超出给定的尺寸公差范围,实效尺寸就是零件的最大实体尺寸,这就是通常所说的尺寸公差控制形状误差。而圆跳动是有基准轴线的,任一截面的圆表面位置在 11

形位公差之圆度误差测量方法介绍

形位公差之圆度误差测量方法介绍 摘要 在机械制造中,经常会加工轴、套筒等回转体类零件,这些零件需要配合起来使用,这就要求不仅满足尺 寸精度要求,同时还要满足形位精度要求。圆度属于形位公差中的一种,其测量方法主要有回转轴法、三 点法、两点法、投影法和坐标法以及利用数据采集仪连接百分表法等。 圆度 圆度是表示零件上圆的要素实际形状,与其中心保持等距的情况。即通常所说的圆整程度。 圆度公差 圆度是限制实际圆对理想圆变动量的一项指标,其公差带是以公差值t为半径差的两同心圆之间的区域。 圆度公差属于形状公差,圆度误差值不大于相应的公差值,则认为合格,下图为圆度公差标注图: 圆度误差的评定原则 圆度误差评定有4种主要方法。 ①最小区域法:以包容被测圆轮廓的半径差为最小的两同心圆的半径差作为圆度误差。 ②最小二乘圆法:以被测圆轮廓上相应各点至圆周距离的平方和为最小的圆的圆心为圆心,所作包容被测 圆轮廓的两同心圆的半径差即为圆度误差。 ③最小外接圆法:只适用于外圆。以包容被测圆轮廓且半径为最小的外接圆圆心为圆心,所作包容被测圆 轮廓的两同心圆半径差即为圆度误差。 ④最大内接圆法:只适用于内圆。以内接于被测圆轮廓且半径为最大的内接圆圆心为圆心,所作包容被测 圆轮廓两同心圆的半径差即为圆度误差. 圆度误差测量方法 圆度测量方法主要有回转轴法、三点法、两点法、投影法和坐标法、直接利用我们太友科技的数据采集仪 连接百分表法。 1、回转轴法 利用精密轴系中的轴回转一周所形成的圆轨迹(理想圆)与被测圆比较,两圆半径上的差值由电学式长度

传感器转换为电信号,经电路处理和电子计算机计算后由显示仪表指示出圆度误差,或由记录器记录出被测圆轮廓图形。回转轴法有传感器回转和工作台回转两种形式。前者适用于高精度圆度测量,后者常用于测量小型工件。按回转轴法设计的圆度测量工具称为圆度仪。 2、三点法 常将被测工件置于V形块中进行测量。测量时,使被测工件在V形块中回转一周,从测微仪(见比较仪)读出最大示值和最小示值,两示值差之半即为被测工件外圆的圆度误差。此法适用于测量具有奇数棱边形状误差的外圆或内圆,常用2α角为90°、120°或72°、108°的两块V形块分别测量。 3、两点法 常用千分尺、比较仪等测量,以被测圆某一截面上各直径间最大差值之半作为此截面的圆度误差。此法适于测量具有偶数棱边形状误差的外圆或内圆。 4、投影法 常在投影仪上测量,将被测圆的轮廓影像与绘制在投影屏上的两极限同心圆比较,从而得到被测件的圆度误差。此法适用于测量具有刃口形边缘的小型工件。 5、坐标法 一般在带有电子计算机的三坐标测量机上测量。按预先选择的直角坐标系统测量出被测圆上若干点的坐标值x、y,通过电子计算机按所选择的圆度误差评定方法计算出被测圆的圆度误差。 6、利用数据采集仪连接百分表法

圆度仪的使用方法【干货技巧】

圆度仪的使用方法 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 圆度仪(Roundness measuring instrument)是利用回转轴法测量圆度的长度测量工具。圆度仪是一种利用回转轴法测量工件圆度误差的测量工具。圆度仪分为传感器回转式和工作台回转式两种型式。测量时,被测件与精密轴系同心安装,精密轴系带着电感式长度传感器或工作台作精确的圆周运动。由仪器的传感器、放大器、滤波器、输出装置组成。若仪器配有计算机,则计算机也包括在此系统内。 那么,圆度仪的使用方法是是什么呢? 一、公共轴线法在被测元素和基准元素上测量多个横截面的圆,再将这些圆的圆心构造一条3D直线,作为公共轴线,每个圆的直径可以不一致,然后分别计算基准圆柱和被测圆柱对公共轴线的同轴度,取其最大值作为该零件的同轴度。这条公共轴线近似于一个模拟心轴,因此这种方法接近零件的实际装配过程。 二、直线度法在被测元素和基准元素上测量多个横截面的圆,然后选择这几个圆构造一条3D直线,同轴度近似为直线度的两倍。被收集的圆在测量时最好测量其整圆,如果是在一个扇形上测量,则测量软件计算出来的偏差可能很大。 三、求距法同轴度为被测元素和基准元素轴线间最大距离的两倍。即用关系计算出被

测元素和基准元素的最大距离后,将其乘以2即可。求距法在计算最大距离时要将其投影到一个平面上来计算,因此这个平面与用作基准的轴的垂直度要好。这种情况比较适合测量同心度。 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

圆度测量

圆度测量方法: 回转轴法、三点法、两点法、投影法和坐标法等方法。 (1)回转轴法: 利用精密轴系中的轴回转一周所形成的圆轨迹(理想圆)与被测圆比较,两圆半径上的差值由电学式长度传感器转换为电信号,经电路处理和电子计算机计算后由显示仪表指示出圆度误差,或由记录器记录出被测圆轮廓图形。回转轴法有传感器回转和工作台回转两种形式(图1)。前者适用于高精度圆度测量,后者常用于测量小型工件。按回转轴法设计的圆度测量工具称为圆度仪。 (2)三点法:常将被测工件置于V形块中进行测量(图2)。测量时,使被测工件在V形块中回转一周,从测微仪(见比较仪)读出最大示值和最小示值,两示值差之半即为被测工件外圆的圆度误差。此法适用于测量具有奇数棱边形状误差的外圆或内圆,常用2α角为90°、120°或72°、108°的两块V形块分别测量。 (3)两点法:常用千分尺、比较仪等测量,以被测圆某一截面上各直径间最大差值之半作为此截面的圆度误差。此法适于测量具有偶数棱边形状误差的外圆或内圆。 (4)投影法:常在投影仪上测量,常在投影仪上测量,将被测圆的轮廓影像与绘制在投影屏上的两极限同心圆(图3)比较,从而得到被测件的圆度误差。此法适用于测量具有刃口形边缘的小型工件。

(5)坐标法:一般在带有电子计算机的三坐标测量机上测量。按预先选择的直角坐标系统测量出被测圆上若干点的坐标值x、y,通过电子计算机按所选择的圆度误差评定方法计算出被测圆的圆度误差。 圆度误差评定就是将双绞线导线横截面的实际轮廓与理想圆比较的过程。 圆度误差评定方法: ①最小区域法:以包容被测圆轮廓的半径差为最小的两同心圆的半径差作为圆度误差。

机加工圆度测量

圆度测量 长度计量技术中对圆度误差的测量。圆度测量有回转轴法、三点法、两点法、投影法和坐标法等方法。 回转轴法 利用精密轴系中的轴回转一周所形成的圆轨迹<理想圆)与被测 圆比较,两圆半径上 b5E2RGbCAP 回转轴法 的差值由电学式长度传感器转换为电信号,经电路处理和电子计算 机计算后由显示仪表指示出圆度误差,或由记录器记录出被测圆轮 廓图形。回转轴法有传感器回转和工作台回转两种形式。前者适用 于高精度圆度测量,后者常用于测量小型工件。按回转轴法设计的 圆度测量工具称为圆度仪。如:缸体的缸孔圆度测量。p1EanqFDPw 三点法

常将被测工件置于V形块中进行测量。测量时,使被测工件在V 形块中回转一周,从测微仪<见比较仪)读出最大示值和最小示值,两示值差之半即为被测工件外圆的圆度误差。此法适用于测量具有奇数棱边形状误差的外圆 DXDiTa9E3d RTCrpUDGiT 三点法 或内圆,常用2α角为90°、120°或72°、108°的两块V形块分别测量。 两点法 常用千分尺、比较仪等测量,以被测圆某一截面上各直径间最大差值之半作为此截面的圆度误差。此法适于测量具有偶数棱边形状误差的外圆或内圆。如:曲轴主轴颈与连杆轴颈终检机的圆度adcle测量。5PCzVD7HxA 投影法 常在投影仪上测量,将被测圆的轮廓影像与绘制在投影屏上的两极限同心圆比较,从

jLBHrnAILg 投影法 而得到被测件的圆度误差。此法适用于测量具有刃口形边缘的小型工件。 坐标法 一般在带有电子计算机的三坐标测量机上测量。按预先选择的直角坐标系统测量出被测圆上若干点的坐标值x、y,通过电子计算机按所选择的圆度误差评定方法计算出被测圆的圆度误差。xHAQX74J0X 误差评定 圆度误差评定有4种主要方法。①最小区域法:以包容被测圆轮廓的半径差为最小的两同心圆的半径差作为圆度误差。②最小二乘圆法:以被测圆轮廓上相应各点至圆周距离的平方和为最小的圆的圆心为圆心,所作包容被测圆轮廓的两同心圆的半径差即为圆度误差。③最小外接圆法:只适用于外圆。以包容被测圆轮廓且半径为最小的外接圆圆心为圆心,所作包容被测圆轮廓的两同心圆半径差即为圆度误差。④最大内接圆法:只适用于内圆。以内接于被测

圆度,圆柱度及球度的测量及评价方法

圆度 一. 基本概念 1. 圆要素几何特征 中心:横向截面与回转表面的轴线相交的交点; 半径:圆要素上各点至该中心的距离。 圆要素是一封闭曲线,其向量半径R 与相位角θ具有函数关系,即:()R F θ= 按傅里叶级数展开后,有: () 001 cos m k k R k k a c θθ==++∑ 2. 圆度及圆度误差 圆度:回转表面的横向截面轮廓(圆要素)的形状精度; 圆度误差:表示实际圆要素精度的技术参数,即实际圆要素对理想圆的变动量。 3. 圆度误差评定原则 按形状误差评定原则,评定圆度误差时,应根据实际圆要素确定最小包容区域。圆度误差的最小包容区域与圆度公差带的形状一致,由两同心圆构成,当实际圆要素被两同心圆紧紧包容,即两同心圆的半径差为最小值时,即为最小包容区域。 4. 圆度检测原则 ① 与理想要素比较原则:理想要素由测量器具模拟体现理想圆。在实际圆要素上获 得的信息,通常是实际要素的半径变化量,根据获得的半径变化量再评定圆度误差。 ② 测量坐标值原则:对实际圆要素应用坐标测量系统对其采样点测取坐标值,由测 得的坐标值经过计算,求得圆度误差值。 ③ 测量特征参数原则:根据实际圆要素的具体特征,采用能反映实际要素几何特征 的手段进行测量,从而方便的获得圆度误差值。 二. 圆度测量方法 1. 半径测量法 半径测量法是确定被测圆要素半径变化量的方法,是根据“与理想要素比较原则”拟定的一种检测方案。 ① 仪器类型和工作原理(加备注解释) 下图分别为转轴式圆度仪和转台式圆度仪

圆度仪可运用测得信号的输出特性,将被测轮廓的半径变化量放大后同步自动记录下来,获得轮廓误差的放大图形,可按放大图形评定圆度误差。 ② 用圆度仪测量注意事项(加备注择项解释) 选择适当的侧头类型;静态测量力选择;测量平面和测量方向确定;频率响应选择;选择适当的放大倍率;正确安装被测件,径向偏心和轴向倾斜;主轴误差的影响 2. 坐标测量法 坐标测量法是根据测量坐标值原则提出的一种检测方案。将被测零件放置在设定的坐标系中,用相应的测量器具,测取被测零件横向截面轮廓上各点的坐标值,然后按要求,用相应的方法来评定圆度误差值。 ⑴极坐标测量法 在极坐标系中测量圆度,需要有精密回转轴系的分度装置,分度台或分度头。 测量前,按需要对被测轮廓拟定适量的采样点数。测量时,将被测零件安装到测量装置上,适当地调整安装位置,避免过大的径向偏心,用具有固定位置的指示器,对各采样点逐一进行采样,取得的示值反映了各采样点处的半径变化量R ?。被测横向截面轮廓的极坐标值为 () ,i i i M R θ?。这些极坐标值时评定圆度误差的原始数据,由原始数据, 可以在极坐标系中描述出经放大后的被测轮廓误差曲线。最后可由图解法或计算法求得圆度误差值。 ⑵直角坐标测量法 应用直角坐标测量装置 ( ) ,i i i y x M ,对被测轮廓上的采样点测取直角坐标。 各采样点至理想圆圆心的距离用下式求得 i R 1,2, ,.i n =

圆度与圆跳动、圆柱度与全跳动区别

圆柱度公差是限制实际圆柱面相对于理想圆柱面的变动。它表示实际圆柱面必须位于半径公差给定的两个同轴圆柱面之间。 径向全跳动是被测表面绕基准轴线连续回转时,在整个圆柱面上所允许的最大跳动量。它表示被测表面绕基准轴线连续回转时,同时百分表相对于圆柱面作轴向移动,在整个圆柱面上的径向跳动量不得大于给定公差值。 疑问:假如说一个圆柱面,它的径向全跳动公差和圆柱度公差都是0.05。 我是这么想的:既然圆柱度公差0.05表示实际圆柱面必须位于半径公差0.05的两个同轴圆柱面之间,那么它在整个圆柱面上的径向跳动量一定也不会大于0.05,这样的话圆柱度和径向全跳动还有什么区别? 简单地讲圆柱度就是单讲圆柱外表面的实际轮廓与理想轮廓的差异,就是假想用最大极限与最小两个极限两个圆柱来限定实际圆柱的轮廓范围,超出这个范围就不合格。指圆柱外形的要求。 跳动是一项综合性的误差项目,反映被测要素的形状和位置误差。 他们的区别是:全跳动公差带与圆柱度公差带相同,可以利用全跳动公差控制圆柱度误差。还能反映出端面、圆柱面对于基准轴的垂直、平行误差。 总的来讲,全跳动测量比圆柱度测量要全面,甚至可以包括他。 圆跳动和全跳动的差别: 跳动的分类:可分为圆跳动和全跳动。 圆跳动:是指被测实际表面绕基准轴线作无轴向移动的回转时,在指定方向上指示器测得的最大读数差。 全跳动:是指被测实际表面绕基准轴线无轴向移动的回转,同时指示器作平行或垂直于基准轴线的移动,在整个过程中指示器测得的最大读数差。 圆度与圆跳动的区别,圆柱度与全跳动的区别: 圆度是形状误差,只是表达一个表面形状。而跳动给这个形状规定了一个基准,即中心轴线,跳动小的一定圆,圆的跳动可能大。当偏离基准的时候圆的跳动也大,就这样。 圆柱度增加了一个轴向概念,成为一个空间问题。 圆度是任一正截面上半径差为某一数值的两个同心圆区域,它的实际尺寸不能走超出给定的尺寸公差范围,实效尺寸就是零件的最大实体尺寸,这就是通常所说的尺寸公差控制形状误差。而圆跳动是有基准轴线的,任一截面的圆表面位置在半径差为某一数值的两个同心圆里,且圆心在基准轴线上,而圆度的圆心是变化的。它的实效边界是零件最大实体尺寸加上跳动公差。 圆柱度是两个同心圆柱面,相当于圆度和直线度的组合。全跳动相当于在长度方向上所有圆跳动的组合。 在实际应用中往往采用相关原则中的最大实体原则来保证装配的互换性。

圆度测量方法

圆度测量 目录 定义 方法 1.回转轴法 2.三点法 3.两点法 4.投影法 5.坐标法 误差评定 定义 长度计量技术中对圆度误差的测量。圆度测量有回转轴法、三点法、两点法、投影法和坐标法等方法。 方法 回转轴法 利用精密轴系中的轴回转一周所形成的圆轨迹(理想圆)与被测圆比较,两圆半径上 回转轴法 的差值由电学式长度传感器转换为电信号,经电路处理和电子计算机计算后由显示仪表指示出圆度误差,或由记录器记录出被测圆轮廓图形。回转轴法有传感器回转和工作台回转两种形式。前者适用于高精度圆度测量,后者常用于测量小型工件。按回转轴法设计的圆度测量工具称为圆度仪。

三点法 常将被测工件置于V形块中进行测量。测量时,使被测工件在V形块中回转一周,从测微仪(见比较仪)读出最大示值和最小示值,两示值差之半即为被测工件外圆的圆度误差。此法适用于测量具有奇数棱边形状误差的外圆 三点法 或内圆,常用2α角为90°、120°或72°、108°的两块V形块分别测量。两点法 常用千分尺、比较仪等测量,以被测圆某一截面上各直径间最大差值之半作为此截面的圆度误差。此法适于测量具有偶数棱边形状误差的外圆或内圆。 投影法 常在投影仪上测量,将被测圆的轮廓影像与绘制在投影屏上的两极限同心圆比较,从

投影法 而得到被测件的圆度误差。此法适用于测量具有刃口形边缘的小型工件。 坐标法 一般在带有电子计算机的三坐标测量机上测量。按预先选择的直角坐标系统测量出被测圆上若干点的坐标值x、y,通过电子计算机按所选择的圆度误差评定方法计算出被测圆的圆度误差。 误差评定 圆度误差评定有4种主要方法。①最小区域法:以包容被测圆轮廓的半径差为最小 误差评定 的两同心圆的半径差作为圆度误差。②最小二乘圆法:以被测圆轮廓上相应各点至圆周距离的平方和为最小的圆的圆心为圆心,所作包容被测圆轮廓的两同心圆的半径差即为圆度误差。③最小外接圆法:只适用于外圆。以包容被测圆轮廓且半径为最小的外接圆圆心为圆心,所作包容被测圆轮廓的两同心圆半径差即为圆度误差。④最大内接圆法:只适用于内圆。以内接于被测圆轮廓且半径为最大的内接圆圆心为圆心,所作包容被测圆轮廓两同心圆的半径差即为圆度误差

圆柱度

1. 圆柱度 圆柱度是表示零件上圆柱面外形轮廓上的各点,对其轴线保持等距状况。 圆柱度是限制实际圆柱面对理想圆柱面变动量的一项指标。它的公差带是以公差值t为半径差的两个同轴圆柱面之间的区域。它控制了圆柱体横剖面和轴剖面内的各项形状公差,诸如圆度、轴线直线度,素线直线度等。使用时,一般标注了圆柱度就没有必要再标注圆度,直线度。如果一定要单独标注圆度、直线度,则其公差值必须小于圆柱度公差值,以表示设计上对径向或轴向形状公差提出进一步要求。 通常,圆柱度误差用圆度仪或配备计算机的三坐标测量装置检测,如果没有这些装置,最好不要使用圆柱度,此时可分别用圆度和圆柱面素线的平行度来代替使用。 用圆度和平行度来代替圆柱度时,应根据圆柱体的长径比确定圆度公差值与平行度公差值。 ?当圆柱体长度大于其直径时,素线平行度公差值必须相应大于其圆度公差值。?当圆柱体长度等于其直径时,素线平行度公差值与其圆度公差值也应相等。?当圆柱体长度小于其直径时,素线平行度公差值必须相应小于其圆度公差值。 2. 圆度 圆度是表示零件上圆的要素实际形状,与其中心保持等距的情况。即通常所说的圆整程度。 圆度是限制实际圆对理想圆变动量的一项指标,其公差带是以公差值t为半径差的两同心圆之间的区域。 线轮廓度是限制实际曲线对理想曲线变动量的一项指标,其公差带是包络一系列直径为公差t的圆的两包络线之间的区域,诸圆圆心应位于理想轮廓线上。从线轮廓度公差带可见,线轮廓度不仅要求它的轮廓形状正确,还有一定的尺寸要求,即它的理想形状与尺寸有关,类似于尺寸偏差。而圆度则不然,它只限制两同心圆的半径之差,至于两同心圆的直径大小没有要求,两同心圆的位置不确定。所以,标注了线轮廓度可以得到类似于采用包容原则的效果。 众所周知,包容原则应用于单一要素时能综合控制圆柱孔或轴的纵、横截面的各种形状误差,其中包括圆度误差。所以标注了线轮廓度就可以完全控制圆度误差,而不必标注圆度,即线轮廓度可以取代圆度使用。

实验2 圆度、圆柱度误差的测量

一、实验目的 1.掌握圆度、圆柱度误差的测量方法。 2.加深对圆度、圆柱度误差和公差概念的理解。 二、实验内容 用两点法和三点法组合测量轴的圆度和圆柱度误差。 三、计量器具 外径千分尺(测量范围0-25mm、分度值0.01mm)。 百分表(示值范围:0-3mm;分度值0.01mm)。 平板、磁力表座。 四、测量原理 两点法:常用千分尺、比较仪等测量,以被测圆柱某一截面上各直径间最大差值之半作为此截面的圆度误差。测量若干截面,取几个截面中最大的圆度误差值作为零件的圆度误差。取所有读数中最大值与最小值的差值之半作为零件的圆柱度误差。适宜测量轮廓圆具有偶数棱的圆度和圆柱度误差。 三点法:将被测工件放在V形块上,使其轴线垂直于测量截面,同时固定轴向位置,百分表接触轮廓圆的上面,将被测工件回转一周,取百分表读数的最大差值之半,作为该截面的圆度误差。测量若干截面,取其中最大的圆度误差作为该零件的圆度误差。取所有读数中最大与最小值的差值的一半作为零件的圆柱度误差。适宜找出具有奇数棱圆的圆度和圆柱度误差。 测量前,往往不知道被测零件是偶数棱还是奇数棱,不便确定采用两点法还是三点法,可靠的办法是用两点法和三点法各测一次,取三次所得误差中的最大值作为零件的圆度、圆柱度误差。 五、测量步骤 1、两点法 1)将被测零件放在平板上,用外径千分尺测量被测轴的同一截面内的轮廓圆一周上的六个位置(见图2-1(a))的直径并作好记录。取最大直径与最小直径之差的一半作为该截面的圆度误差。同样方法,测量五个不同截面的圆度误差。 2)取五个截面的圆度误差中最大值作为该被测轴的圆度误差。 取所有读数中最大值与最小值的差值的一半作为圆柱度误差。 2、三点法 1)将被测轴放置在90°的V形块上,平稳移动百分表座,使表的测头接触被测轴,并垂直于被测轴的轴线(如图2-1(b)),使表上指针处于刻度盘的示值范围内。 转动被测轴一周,记下百分表读数的最大值与最小值,最大值与最小值之差的一半作为该截面的圆度误差。

各种测量方法

各种测量方法

各种测量方法 一、轴径 在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 二、孔径 单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。 三、长度、厚度 长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度

镜等具有反射面的工作角度;用光学分度头测量工件的圆周分度或;用样板、角尺、万能角度尺直接测量精度要求不高的角度零件。3.间接测量:常用的测量器具有正弦规、滚柱和钢球等,也可使用三坐标测量机。 4.小角度测量:测量器具有水平仪、自准直仪、激光小角度测量仪等。 六、直线度 用平尺(或 刀口尺)测量间隙为0.5μm(0.5~3μm 为有色光,3μm 以上为白光)的直线度,间隙偏大时可用塞尺配合测量;用平板、平尺作测量基维,用百分表或千分表测量直线度误差;用直径0.1~0.2mm 钢丝拉紧,用V 型铁上垂直安装读数显微镜检查直线度;用水准仪、自准直仪、准直望远镜等光学仪器测量直线度误差;用方框水平仪加桥板测直线度;用光学平晶分段指示器检测精度高的直线度误差。

测量圆度误差的各种方法讲解

测量圆度误差的各种方法讲解

一、圆度 圆度是表示零件上圆的要素实际形状,与其中心保持等距的情况。即通常所说的圆整程度。圆度是限制实际圆对理想圆变动量的一项指标,其公差带是以公差值t为半径差的两同心圆之间的区域。 二、圆度误差的评定原则 圆度误差评定有4种主要方法。①最小区域法:以包容被测圆轮廓的半径差为最小的两同心圆的半径差作为圆度误差。②最小二乘圆法:以被测圆轮廓上相应各点至圆周距离的平方和为最小的圆的圆心为圆心,所作包容被测圆轮廓的两同心圆的半径差即为圆度误差。③最小外接圆法:只适用于外圆。以包容被测圆轮廓且半径为最小的外接圆圆心为圆心,所作包容被测圆轮廓的两同心圆半径差即为圆度误差。④最大内接圆法:只适用于内圆。以内接于被测圆轮廓且半径为最大的内接圆圆心为圆心,所作包容被测圆轮廓两同心圆的半径差即为圆度误差. 三、圆度测量方法 圆度测量方法主要有回转轴法、三点法、两点法、投影法和坐标法、直接利用太友科技数据采集仪连接百分表测量法等。 四、测量方法简介 1、回转轴法 利用精密轴系中的轴回转一周所形成的圆轨迹(理想圆)与被测圆比较,两圆半径上的差值由电学式长度传感器转换为电信号,经电路处理和电子计算机计算后由显示仪表指示出圆度误差,或由记录器记录出被测圆轮廓图形。回转轴法有传感器回转和工作台回转两种形式。前者适用于高精度圆度测量,后者常用于测量小型工件。按回转轴法设计的圆度测量工具称为圆度仪。

2、三点法 常将被测工件置于V形块中进行测量。测量时,使被测工件在V形块中回转一周,从测微仪(见比较仪)读出最大示值和最小示值,两示值差之半即为被测工件外圆的圆度误差。此法适用于测量具有奇数棱边形状误差的外圆或内圆,常用2α角为90°、120°或72°、108°的两块V形块分别测量。 3、两点法 常用千分尺、比较仪等测量,以被测圆某一截面上各直径间最大差值 之半作为此截面的圆度误差。此法适于测量具有偶数棱边形状误差的外圆 或内圆。 4、投影法 常在投影仪上测量,将被测圆的轮廓影像与绘制在投影屏上的两极限 同心圆比较,从而得到被测件的圆度误差。此法适用于测量具有刃口形边缘的小 型工件。

测量气缸圆度、圆柱度的方法及步骤

①准备清洗干净的持修气缸体一台,与其内径相适应的外径千分尺、量缸表及清洁工具等。 ②将气缸孔内表面擦试洁净。 ③安装、校对量缸表。 ④用量缸表测量气缸孔第一道活塞环上止点处于平行于曲轴轴线方向的直径,记入检测记录。 ⑤在同一剖面内测量垂直于曲轴轴线方向的直径,记入检测记录。 ⑥上述两次测量值之差的一半即为该剖面的圆度误差。 ⑦用上述方法测量气缸孔第一道活塞环上止点至最后一道活塞环下止点行程的中部,将这一横剖面的圆度误差,记入检测记录。 ⑧用同样方法测量距气缸孔下端以上30mm左右处横剖面的圆度误差,记入检测记录。 ⑨三个圆度误差值中,最大值即为该气缸孔的圆度误差。 ⑩上述3个测量横剖面,6个测量值,其中最大值与最小值之差的一半,即为该气缸孔的圆柱度误差。 11上述方法只适用于待修或在用气缸套筒的一般检测。如要取精确测值,则应选多个横剖面、纵剖面测量,而且在对同一横剖面、纵剖面上进行多点测量,方能检测出圆度、圆柱度误差的值。 12气缸磨损圆柱度达到~或圆度己达到~(以其中磨损量最大一个气缸为准)送大修。 JT3101-81中规定:磨缸后,干式气缸套的气缸圆度误差应不大于,圆柱度误差不大于湿式气缸套的气缸的圆柱度误差应不大于.

13确定修理尺寸:气缸磨损超过允许限度或缸壁上有严重的刮伤、沟槽和麻点,均应采取修理尺寸法将气缸按修理尺寸搪削加大。 气缸修理尺寸的确定方法:先测量磨损最大的气缸最大磨损直径,加上加工余量(以直径计算一般为~),然后选取与此数值相适应的一级修理尺寸。 当策动机气缸圆度,圆柱度误差超过规定的标准时,如汽油机的圆度误差超过0.05mm 或者圆柱度误差超过 0.20mm 时,联合最大磨耗尺寸视情进行修理尺寸法镗缸或者更换缸套修理用量缸表测量气缸圆度误差,在同一横向截面内,在平行于曲轴轴线方向和垂直于曲轴轴线方向的两个方位进行测量,测得直径差之半即为该截面的圆度误差沿气缸轴线方向测上、中、下三个截面,如图3-40所示上面至关于活塞上止点第一道活塞环相对应的气缸处;中间取气缸中部;下面取活塞下止点时最下一道活塞环对应的气缸位置 测得的最大圆度误差即为该气缸的圆度误差测量气缸圆柱度误差凡是用量缸表在活塞行程内一股取上中下三处(如图3-41所示)气缸的各个方向测量,找出该缸磨耗的最大处气缸磨耗最大直径与活塞在下止点时活塞环运动地区范围以外,即距气缸套下部平面10MM范围内的气缸最小内径的差值的半壁,就是该气缸的圆柱度误差 图:测量气缸磨耗量 图:在活塞行程上、中、下三处测量气缸图:测量气缸磨耗量图:在活塞行程上、中、下三处测量气缸气缸磨耗的测量要领凡是用量缸表对气缸磨耗进行测量具体测量要领如下: 1 .把内径百分表装在表杆的上端,并使表盘朝向测量杆的勾当点,以便于观察,使表盘的短针有 1-2mm 的压缩量 2 .根据气缸的直径,选择合适的测量接杆,并将其固定在量缸表的下端接杆固定好后与勾当测杆的总长度应与被测气缸的尺寸相适应 3 .校正量缸表的尺寸,将千分尺校正到被测气缸的标准尺寸,再将量缸表校准到千分尺的尺寸,并使伸缩杆有 2mm 左右的压缩行程,旋转表盘,使表针对正零位 4 .将量缸表的测量杆伸入到气缸上部测量第一道活塞环在上止点位置时所对应的气缸壁,根据气缸的磨耗纪律分别测量平行、垂直方向二组数据的磨耗量 5 .将量缸表下移,用同样要领测量气缸中部和下部的磨耗气缸中部为上、下止点间的中间位置;气缸下部为距离气缸下边缘 10mm 左右处 6 .将所测得的各组数据分别填入下表中,并进行计算其圆度,圆柱度及最

圆度误差的检测方法

圆度误差的检测方法 圆度误差是指同一正截面内被测实际圆相对于理想圆的变动量,是以半径差来计量的。圆度误差的大小对精密机器和仪器的性能有重要影响,它是零件几何精度的重要指标,能否准确地测量和评定圆度误差值对保证和提高机械产品的质量至关重要。 目前,测量圆度误差时常使用的方法有:比较检验法,特征参数测量法和坐标测量法等。其中有些方法可简便快速地得到工件的圆度误差值;有些方法则只判断工件是否合格,而不需得到圆度值;随着对加工精度要求的不断提高,有时还须通过某些测量方法获得工件的精确轮廓图形,在评定圆度值的同时,进行工艺分析,以指导改进有关工艺。 1.1比较检验法 该方法是把被测圆轮廓直接与标准圆(如标准圆图形、标准半球、标准圆盘和钢珠等)进行比较,以检验被测工件是否合格。比较常用的方法有投影仪法和测微仪比较法等。 (1) 投影仪法 当工件较小且边缘较规整时,可用投影仪进行测量。测量时,把工件放在玻璃工作台上。由灯泡发出的照明光经准直透镜后平行照射到工件上;工件的截面圆轮廓经投影物镜和反射镜成像在投影屏上,该影像与事先绘制好的标准同心圆相比较(同心圆间距按工件的圆度公差带选取,并放大K倍—圆轮廓像的放大倍数)。当工件的截面圆轮廓像处于两同心圆之间时,表明被测件合格,如图1-1所示。(2)测微仪比较法

在测量大型工件的圆度误差时,可采用测微仪比较法。该方法以标准圆盘的外圆表面作为基准圆。测量时,将标准圆盘与被测圆轮廓和标准圆盘的外圆表面相接触。标准圆轮廓和基准圆相对回转轴线的变动量分别由二传感器测头测取,送入带有差 值的测微仪;测微仪可求出并显示变动量的差值;差值变化的最大值与最小值之差即为被测工件的圆度误差。

相关文档
最新文档