图的基本存储方法及拓扑排序

图的基本存储方法及拓扑排序
图的基本存储方法及拓扑排序

实验四

图的基本存储方法及拓扑排序

班级:10级数学班姓名:裴志威学号:201008101127

实验目的:

(1)熟练掌握图的基本存储方法;

(2)熟练掌握图的深度优先和广度优先搜索方法;

(3)掌握AOV网和拓扑排序算法;

(4)掌握AOE网和关键路径。

实验内容:

拓扑排序。

任意给定一个有向图,设计一个算法,对它进行拓扑排序。拓扑排序算法思想:a.在有向图中任选一个没有前趋的顶点输出;b.从图中删除该顶点和所有以它为尾的弧;c.重复上述a、b,直到全部顶点都已输出,此时,顶点输出序列即为一个拓朴有序序列;或者直到图中没有无前趋的顶点为止,此情形表明有向图中存在环。

源程序代码:

#include

#include

#define MAXV 10 // 最大顶点个数

typedef struct

{

int edges[MAXV][MAXV]; // 邻接矩阵的边数组

int n; // 顶点数

}MGraph;

typedef struct ANode

{

int adjvex; // 该弧的终点位置

struct ANode * nextarc; // 指向下一条弧的指针

}ArcNode;

typedef struct

{

int no; // 顶点信息

int count; // 顶点入度

ArcNode * firstarc; // 指向第一条弧

}VNode, AdjList[MAXV];

typedef struct

{

AdjList adjlist; // 邻接表

int n; // 图的顶点数

}ALGraph;

void MatTolist(MGraph g, ALGraph * &G)

{

int i, j, n=g.n;

ArcNode * p;

G = (ALGraph *)malloc(sizeof(ALGraph));

for (i=0; i

G->adjlist[i].firstarc = NULL;

for (i=0; i

for (j=n-1; j>=0; j--)

if (g.edges[i][j]!=0)

{

p=(ArcNode *)malloc(sizeof(ArcNode));

p->adjvex = j;

p->nextarc = G->adjlist[i].firstarc;

G->adjlist[i].firstarc = p;

}

G->n=n;

}

void TopSort(ALGraph * G)

{

int i,j,flag=0,a[MAXV];

int St[MAXV], top = -1; // 栈St的指针为top

ArcNode * p;

for (i=0; in; i++) // 入度置初值为0

G->adjlist[i].count = 0;

for (i=0; in; i++) // 求所有顶点的入度

{

p=G->adjlist[i].firstarc;

while (p!=NULL)

{

G->adjlist[p->adjvex].count++;

p=p->nextarc;

}

}

for (i=0; in; i++)

if (G->adjlist[i].count==0) // 入度为0的顶点进栈

{

top++; St[top] = i;

}

while (top>-1) // 栈不为空时循环

{

i = St[top]; top--; // 出栈

a[flag++]=i; // 输出顶点

p=G->adjlist[i].firstarc; // 找第一个相邻顶点

while (p!=NULL)

{

j = p->adjvex;

G->adjlist[j].count--;

if (G->adjlist[j].count==0)

{

top++; St[top] = j; // 入度为0的相邻顶点进栈}

p = p->nextarc; // 找下一个相邻顶点

}

}

if (flagn)

printf("该图存在回路,不存在拓扑序列!\n");

else

{

printf("该图的一个拓扑序列为:");

for(i=0; i

printf("%d", a[i]);

printf("\n");

}

}

void main()

{

int i, j;

MGraph g;

ALGraph * G;

G=(ALGraph *)malloc(sizeof(ALGraph));

printf("请输入图的顶点数:");

scanf("%d", &g.n);

printf("请输入图的邻接矩阵:\n");

for(i=0; i

for(j=0; j

scanf("%d", &g.edges[i][j]);

MatTolist(g, G);

TopSort(G);

}

若图存在回路,则不存在拓扑序列。

实验总结:

无向图的生成树就是从图的边集中选择一些边,使得这些边构成一个连通无环图,也就是树。如果给每一条边加一个权,所有生成树中权和最小的生成树称为最小生成树。

实验中由給定连通图算法实现最小支撑树,后来变化了要求,如果一开始給出的是不连通图,程序无法实现, 但程序是基于连通来写的,最后使用k=LocateVex(G,u),在图不连通的情况下,会输出:此图不连通,无最小支撑树。

电力系统网络拓扑结构识别

学院 毕业设计(论文)题目:电力系统网络拓扑结构识别 学生姓名:学号: 学部(系):机械与电气工程学部 专业年级:电气工程及其自动化 指导教师:职称或学位:教授

目录 摘要 (3) ABSTRACT (4) 一绪论 (6) 1.1课题背景及意义 (6) 1.2研究现状 (6) 1.3本论文研究的主要工作 (7) 二电力系统网络拓扑结构 (7) 2.1电网拓扑模型 (7) 2.2拓扑模型的表达 (9) 2.3广义乘法与广义加法 (10) 2.4拓扑的传递性质 (11) 三矩阵方法在电力系统网络拓扑的应用 (13) 3.1网络拓扑的基本概念 (13) 3.1.1规定 (13) 3.1.2定义 (14) 3.1.3连通域的分离 (14) 3.2电网元件的等值方法 (15) 3.2.1厂站级两络拓扑 (15) 3.2.2元件级网络拓扑 (16) 3.3矩阵方法与传统方法的比较 (16) 四基于关联矩阵的网络拓扑结构识别方法研究 (17) 4.1关联矩阵 (17) 4.1.1算法 (17) 4.1.2定义 (17) 4.1.3算法基础 (18)

4.2拓扑识别 (19) 4.3主接线拓扑辨识原理 (20) 4.4算法的简化与加速 (24) 4.5流程图 (25) 4.5.1算法流程图 (25) 4.5.2节点编号的优化 (26) 4.5.3消去中间节点和开关支路 (26) 4.5.4算法的实现 (27) 4.6分布式拓扑辨识法 (27) 4.7举例和扩展 (28) 五全文总结 (29) 参考文献 (30) 致 (31) 摘要 电力系统拓扑分析是电力能量流(生产、传输、使用)流动过程中,对用于转换、保护、控制这一过程的元件(在电力系统分析中认为阻抗近似为0的元件)状态的分析,目的是形成便于电网分析与计算的模型,它界于EMS底层和高层之间。就调度自动化而言,底层信息(如SCADA)是拓扑分析的基础,高层应用(如状态估计、安全调度等[1])是拓扑分析的目的。可见,电力系统在实时运行中,这些元件的状态变化决定了运行方式的变化。如何依据厂站实时信息,快速、准确地跟踪这些变化,是实现电力系统调度自动化过程中基础而关键的工作[2]。拓扑分析在电力系统调度自动化中如此重要的地位,至少应该作到如下几点。 (1)拓扑分析的正确性:对任何情形下的运行方式,由元件状态的状况,针对各种电气接线关系,如单、双母线接线及旁路母线、3/2接线、角型接线等,均能

拓扑排序

拓扑排序 摘要 拓扑排序是求解网络问题所需的主要算法。管理技术如计划评审技术和关键路径法都应用这一算法。通常,软件开发、施工过程、生产流程、程序流程等都可作为一个工程。一个工程可分成若干子工程,子工程常称为活动。活动的执行常常伴随着某些先决条件,一些活动必须先于另一活动被完成。利用有向图可以把这种领先关系清楚地表示出来。而有向图的存储可以用邻接表和逆邻接表做存储结构来实现。最后用拓扑排序表示出来就可以了。拓扑排序有两种,一种是无前趋的顶点优先算法,一种是无后继的顶点优先算法,后一种的排序也就是逆拓扑排序。 关键词:拓扑排序;逆拓扑排序;有向图;邻接表;逆邻接表

THE OPERATOR ORDERING PROBLEM IN QUANTUM HAMITONIAN FOR SOME CONSTRAINT SYSTEMS ABSTRACT Topological sort is the main method to solve network problems. Management techniques such as PERT and critical path method is the application of this algorithm. Typically, software development, the construction process, production processes, procedures, processes, etc. can be used as a project. A project can be divided into several sub-projects, often referred to as sub-project activities. The implementation of activities often associated with certain preconditions, some of the activities must be completed before another activity. Use has lead to the relationship of this figure can be expressed clearly. While storage can be used to map the inverse adjacency list and adjacency table to do storage structures. Finally, topological sort that out on it. Topological sort, there are two, one is the predecessor of the vertex without first algorithm, a successor of the vertex is no priority algorithm, the latter sort is the inverse topological sort. Key words:topological sort; inverse topological; have to figure; adjlink; inverse adjlink

数据结构拓扑排序实验报告

拓扑排序 [基本要求] 用邻接表建立一个有向图的存储结构。利用拓扑排序算法输出该图的拓扑排序序列。 [编程思路] 首先图的创建,采用邻接表建立,逆向插入到单链表中,特别注意有向是不需要对称插入结点,且要把输入的字符在顶点数组中定位(LocateVex(Graph G,char *name),以便后来的遍历操作,几乎和图的创建一样,图的顶点定义时加入int indegree,关键在于indegree 的计算,而最好的就是在创建的时候就算出入度,(没有采用书上的indegree【】数组的方法,那样会增加一个indegree算法,而是在创建的时候假如一句计数的代码(G.vertices[j].indegree)++;)最后调用拓扑排序的算法,得出拓扑序列。 [程序代码] 头文件: #define MAX_VERTEX_NUM 30 #define STACKSIZE 30 #define STACKINCREMENT 10 #define OK 1 #define ERROR 0 #define INFEASIBLE -1 #define OVERFLOW -2 #define TRUE 1 #define FALSE 0 typedef int Status; typedef int InfoType; typedef int Status; typedef int SElemType; /* 定义弧的结构*/ typedef struct ArcNode{ int adjvex; /*该边所指向的顶点的位置*/ struct ArcNode *nextarc; /*指向下一条边的指针*/ InfoType info; /*该弧相关信息的指针*/

有向图拓扑排序算法的实现

数据结构课程设计 设计说明书 有向图拓扑排序算法的实现 学生姓名 学号 班级 成绩 指导教师魏佳 计算机科学与技术系 2010年2月22日

数据结构课程设计评阅书 注:指导教师成绩60%,答辩成绩40%,总成绩合成后按五级制记入。

课程设计任务书 2010—2011学年第二学期 专业:信息管理与信息系统学号:姓名: 课程设计名称:数据结构课程设计 设计题目:有向图拓扑排序算法的实现 完成期限:自2011 年 2 月22 日至2011 年 3 月 4 日共 2 周 设计内容: 用C/C++编写一个程序实现有向图的建立和排序。要求建立有向图的存储结构,从键盘输入一个有向图,程序能够自动进行拓扑排序。 设计要求: 1)问题分析和任务定义:根据设计题目的要求,充分地分析和理解问题,明确问题要求做什么?(而不是怎么做?)限制条件是什么?确定问题的输入数据集合。 2)逻辑设计:对问题描述中涉及的操作对象定义相应的数据类型,并按照以数据结构为中心的原则划分模块,定义主程序模块和各抽象数据类型。逻辑设计的结果应写出每个抽象数据类型的定义(包括数据结构的描述和每个基本操作的功能说明),各个主要模块的算法,并画出模块之间的调用关系图; 3)详细设计:定义相应的存储结构并写出各函数的伪码算法。在这个过程中,要综合考虑系统功能,使得系统结构清晰、合理、简单和易于调试,抽象数据类型的实现尽可能做到数据封装,基本操作的规格说明尽可能明确具体。详细设计的结果是对数据结构和基本操作做出进一步的求精,写出数据存储结构的类型定义,写出函数形式的算法框架; 4)程序编码:把详细设计的结果进一步求精为程序设计语言程序。同时加入一些注解和断言,使程序中逻辑概念清楚; 5)程序调试与测试:采用自底向上,分模块进行,即先调试低层函数。能够熟练掌握调试工具的各种功能,设计测试数据确定疑点,通过修改程序来证实它或绕过它。调试正确后,认真整理源程序及其注释,形成格式和风格良好的源程序清单和结果; 6)结果分析:程序运行结果包括正确的输入及其输出结果和含有错误的输入及其输出结果。算法的时间、空间复杂性分析; 7)编写课程设计报告; 以上要求中前三个阶段的任务完成后,先将设计说明数的草稿交指导老师面审,审查合格后方可进入后续阶段的工作。设计工作结束后,经指导老师验收合格后将设计说明书打印装订,并进行答辩。 指导教师(签字):教研室主任(签字): 批准日期:2011年2月21 日

推荐几款好用的网络拓扑图软件

推荐几款好用的网络拓扑图软件 导语: 网络拓扑图是指由网络节点设备和通信介质构成的网络结构图。不管是局域网还是广域网,拓扑绘图的选择也要考虑到很多要素。下面将会给大家介绍一款比较好用的网络拓扑图绘制软件。 免费获取网络拓扑图软件:https://www.360docs.net/doc/844571897.html,/network/ 一款好用的网络拓扑图软件 亿图图示是一款适合新手的入门级拓扑图绘制软件,软件界面简单,包含丰富的图表符号,中文界面,以及各类图表模板。软件智能排版布局,拖曳式操作,极易上手。与MS Visio等兼容,方便绘制各种网络拓扑图、电子电路图,系统图,工业控制图,布线图等,并且与他人分享您的文件。软件支持图文混排和所见即所得的图形打印,并且能一键导出PDF, Word, Visio, PNG, SVG 等17种格式。目前软件有Mac, Windows和Linux三个版本,满足各种系统需要。

亿图图示绘制“思科网络图”的特点 1.专业的教程:亿图图示的软件为用户制作了使用教程的pdf以及视频。 2.可导出多种格式:导出的文件Html,PDF,SVG,Microsoft Word, PowerPoint, Excel等多种格式。 3.支持多系统:支持Windows,Mac 和 Linux的电脑系统,版本同步更新。 4.软件特色:智能排版布局,拖曳式操作,兼容Office。 5.云存储技术:可以保存在云端,不用担心重要的数据图表丢失。 6.丰富的图形符号库助你轻松设计思科网络图

如何绘制一个网络拓扑图呢? 步骤一:打开绘制网络拓扑图的新页面 双击打开网络拓扑图制作软件 点击‘可用模板’下标题类别里的‘网络图’。 双击打开一个绘制网络拓扑图的新页面,进入编辑状态。 步骤二:从库里拖放添加 从界面左边的符号库里拖动网络符号到画布。

图的最短路径、拓扑排序和关键路径

数据结构课程辅导 ---图的最短路径、拓扑排序和关键路径 一、最短路径 由图的概念可知,在一个图中,若从一顶点到另一顶点存在着一条路径(这里只讨论无回路的简单路径),则称该路径长度为该路径上所经过的边的数目,它也等于该路径上的顶点数减1。由于从一顶点到另一顶点可能存在着多条路径,每条路径上所经过的边数可能不同,即路径长度不同,我们把路径长度最短(即经过的边数最少)的那条路径叫做最短路径,其路径长度叫做最短路径长度或最短距离。 上面所述的图的最短路径问题只是对无权图而言的,若图是带权图,则把从一个顶点i到图中其余任一个顶点j的一条路径上所经过边的权值之和定义为该路径的带权路径长度,从vi到vj可能不止一条路径,我们把 带权路径长度最短(即其值最小)的那条路径也称作最短路径,其权值也称作最短路径长度或最短距离。 例如,在图3-1中,从v0到v4共有三条路径:{0,4},{0,1,3,4}和 {0,1,2,4},其带权路径长度分别为30,23和38,可知最短路径为{0,1,3,4},最短距离为23。 图3-1 带权图和对应的邻接矩阵 实际上,这两类最短路径问题可合并为一类,这只要把无权图上的每条边标上数值为1的权就归属于有权图了,所以在以后的讨论中,若不特别指明,均认为是求带权图的最短路径问题。 求图的最短路径问题用途很广。例如,若用一个图表示城市之间的运输网,图的顶点代表城市,图上的边表示两端点对应城市之间存在着运输线,边上的权表示该运输线上的运输时间或单位重量的运费,考虑到两城市间的海拔高度不同,流水方向不同等因素,将造成来回运输时间或运费的不同,所以这种图通常是一个

(通信企业管理)通信系统拓扑图查看精编

(通信企业管理)通信系统拓扑图查看

通信系统拓扑图查见 一、项目知识预备 1.拓扑图的基本概念 拓扑图是由网络节点设备和通信介质构成的网络结构图。于选择拓扑结构时,主要考虑的因素有:安装的相对难易程度、重新配置的难易程度、维护的相对难易程度、通信介质发生故障时,受到影响的设备的情况.以下是关联术语的基本概念。 (1).节点 节点就是网络单元。网络单元是网络系统中的各种数据处理设备、数据通信控制设备和数据终端设备。 节点分为:转节点,它的作用是支持网络的连接,它通过通信线路转接和传递信息; 访问节点,它是信息交换的源点和目标。 (2).链路 链路是俩个节点间的连线。链路分“物理链路”和“逻辑链路”俩种,前者是指实际存于的通信连线,后者是指于逻辑上起作用的网络通路。链路容量是指每个链路于单位时间内可接纳的最大信息量。 (3).通路 通路是从发出信息的节点到接收信息的节点之间的壹串节点和链路。也就是说,它是壹系列穿越通信网络而建立起的节点到节点的链路. 2.拓扑图的作用 拓扑图的作用于于反应网络中各实体间的结构关系。网络拓扑设计地好坏对整个网络的性能和经济性有重大影响。 3.通信系统的基本结构和分层方式 基本结构有以下六种结构方式: (1).星型结构 星型结构的优点是结构简单、建网容易、控制相对简单。其缺点是属集中控制,主节点负载过重,可靠性低,通信线路利用率低。壹个星型拓扑能够隐于另壹个星型拓扑里而形成壹个树型或层次型网络拓扑结构。相对其他网络拓扑来说安装比较困难,比其他网络拓扑使用的电缆要多。容易进行重新配置,只需移去、增加或改变集线器某个端口的连接,就可进行网络重新配置。由于星型网络上的所有数据均要通过中心设备,且于中心设备汇集,星型拓扑维护起来比较容易。受故障影响的设备少,能够较好地处理。 (2).总线结构 总线结构是比较普遍采用的壹种方式,它将所有的入网计算机均接入到壹条通信线上,为防止信号反射,壹般于总线俩端连有终结器匹配线路阻抗,总线结构的优点是信道利用率较高,结构简单,价格相对便宜。缺点是同壹时刻只能有俩个网络节点相互通信,网络延伸距离有限,网络容纳节点数有限。于总线上只要有壹个点出现连接问题,会影响整个网络的正常运行。目前于局域网中多采用此种结构。总线拓扑网络通常把短电缆(分支电缆)用电缆接头连接到壹条长电缆(主干)上去。总线拓扑网络通常是用

拓扑排序课程设计报告

拓扑排序 一问题描述 本次课程设计题目是:编写函数实现图的拓扑排序 二概要设计 1.算法中用到的所有各种数据类型的定义 在该程序中用邻接表作为图的存储结构。首先,定义表结点和头结点的结构类型,然后定义图的结构类型。创建图用邻接表存储的函数,其中根据要求输入图的顶点和边数,并根据要求设定每条边的起始位置,构建邻接表依次将顶点插入到邻接表中。 拓扑排序的函数在该函数中首先要对各顶点求入度,其中要用到求入度的函数,为了避免重复检测入度为零的顶点,设置一个辅助栈,因此要定义顺序栈类型,以及栈的函数:入栈,出栈,判断栈是否为空。 2.各程序模块之间的层次调用关系 第一部分,void CreatGraph(ALGraph *G)函数构建图,用邻接表存储。这个函数没有调用函数。 第二部分,void TopologicalSort(ALGraph *G)输出拓扑排序函数,这个函数首先调用FindInDegree(G,indegree)对各顶点求入度indegree[0……vernum-1];然后设置了一个辅助栈,调用InitStack(&S)初始化栈,在调用Push(&S,i)入度为0者进栈,while(!StackEmpty(&S))栈不为空时,调用Pop(&sS,&n)输出栈中顶点并将以该顶点为起点的边删除,入度indegree[k]--,当输出某一入度为0的顶点时,便将它从栈中删除。 第三部分,主函数,先后调用void CreatGraph(ALGraph *G)函数构建图、void TopologicalSort(ALGraph *G)函数输出拓扑排序实现整个程序。 3.设计的主程序流程

拓扑排序算法

图的拓扑排序操作 一、实验内容 题目:实现下图的拓扑排序。 5 二、目的与要求 (一)目的 1、了解拓扑排序的方法及其在工程建设中的实际意义。 2、掌握拓扑排序的算法,了解拓扑排序的有向图的数据结构。 (二)要求 用C语言编写程序,实现图的拓扑排序操作。 三、设计思想 首先对有向图,我们采取邻接表作为数据结构。且将表头指针改为头结点,其数据域存放该结点的入度,入度设为零的结点即没有前趋。 在建立邻接表输入之前,表头向量的每个结点的初始状态为数据域VEX(入度)为零,指针域NXET为空,每输入一条弧< J, K > 建立链表的一个结点,同时令k 的入度加1,因此在输入结束时,表头的两个域分别表示顶点的入度和指向链表的第一个结点指针。 在拓扑排序的过程之中,输入入度为零(即没有前趋)的顶点,同时将该顶点的直接后继的入度减1。 (1)、查邻接表中入度为零的顶点,并进栈。 (2)、当栈为空时,进行拓扑排序。 (a)、退栈,输出栈顶元素V。 (b)、在邻接表中查找Vj的直接后继Vk,将Vk的入度减一,并令入度减至零的顶点进栈。 (3)、若栈空时输出的顶点数不是N个则说明有向回路,否则拓扑排序结束。为建立存放入度为零的顶点的栈,不需要另分配存储单元,即可借入入度为零的数据域。一方面,入度为零的顶点序号即为表头结点的序号,另一方面,借用入度为零的数据域存放带链栈的指针域(下一个入度的顶点号)。

四、具体算法设计 #include #include #include #include #include using namespace std; #define MAX 9999 stackmystack; int indegree[MAX]; struct node { int adjvex; node* next; }adj[MAX]; int Create(node adj[],int n,int m)//邻接表建表函数,n代表定点数,m代表边数{ int i; node *p; for(i=0;i<=n-1;i++) { adj[i].adjvex=i; adj[i].next=NULL; } for(i=0;i<=m-1;i++) { cout<<"请输入第"<>u>>v; p=new node; p->adjvex=v; p->next=adj[u].next; adj[u].next=p; } return 1; } void print(int n)//邻接表打印函数 { int i; node *p; for(i=0;i<=n-1;i++) { p=&adj[i]; while(p!=NULL) { cout<adjvex<<' '; p=p->next; } cout<

拓扑排序课程设计报告

沈阳航空航天大学 课程设计报告 课程设计名称:数据结构课程设计 课程设计题目:拓扑排序算法 院(系):计算机学院 专业:计算机科学与技术(嵌入式系统方向) 班级:14010105班 学号:2011040101221 姓名:王芃然 指导教师:丁一军

目录 1 课程设计介绍 (1) 1.1课程设计内容 (1) 1.2课程设计要求 (1) 2 课程设计原理 (2) 2.1课设题目粗略分析 (2) 2.2原理图介绍 (2) 2.2.1 功能模块图 (2) 2.2.2 流程图分析 (3) 3 数据结构分析 (7) 3.1存储结构 (7) 3.2算法描述 (7) 4 调试与分析 (12) 4.1调试过程 (12) 4.2程序执行过程 (12) 参考文献 (14) 附录(关键部分程序清单) (15)

1 课程设计介绍 1.1 课程设计内容 由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。若在图一的有向图上人为的加一个表示V2<=V3的弧(“<=”表示V2领先于V3)则图一表示的亦为全序且这个全序称为拓扑有序,而由偏序定义得到拓扑有序的操作便是拓扑排序。在AOV网中为了更好地完成工程,必须满足活动之间先后关系,需要将各活动排一个先后次序即为拓扑排序。编写算法建立有向无环图,主要功能如下: 1.能够求解该有向无环图的拓扑排序并输出出来; 2.拓扑排序应该能处理出现环的情况; 3.顶点信息要有几种情况可以选择。 1.2 课程设计要求 1.输出拓扑排序数据外,还要输出邻接表数据; 2.参考相应的资料,独立完成课程设计任务; 3.交规范课程设计报告和软件代码。

拓扑排序(算法与数据结构课程设计)

拓扑排序 一、问题描述 在AOV网中为了更好地完成工程,必须满足活动之间先后关系,需要将各活动排一个先后次序即为拓扑排序。拓扑排序可以应用于教学计划的安排,根据课程之间的依赖关系,制定课程安排计划。按照用户输入的课程数,课程间的先后关系数目以及课程间两两间的先后关系,程序执行后会给出符合拓扑排序的课程安排计划。 二、基本要求 1、选择合适的存储结构,建立有向无环图,并输出该图; 2、实现拓扑排序算法; 3、运用拓扑排序实现对教学计划安排的检验。 三、算法思想 1、采用邻接表存储结构实现有向图;有向图需通过顶点数、弧数、顶点以及弧等信息建立。 2、拓扑排序算法void TopologicalSort(ALGraph G) 中,先输出入度为零的顶点,而后输出新的入度为零的顶点,此操作可利用栈或队列实现。考虑到教学计划安排的实际情况,一般先学基础课(入度为零),再学专业课(入度不为零),与队列先进先出的特点相符,故采用队列实现。 3、拓扑排序算法void TopologicalSort(ALGraph G),大体思想为: 1)遍历有向图各顶点的入度,将所有入度为零的顶点入队列; 2)队列非空时,输出一个顶点,并对输出的顶点数计数; 3)该顶点的所有邻接点入度减一,若减一后入度为零则入队列; 4)重复2)、3),直到队列为空,若输出的顶点数与图的顶点数相等则该图可拓扑排序,否则图中有环。 4、要对教学计划安排进行检验,因此编写了检测用户输入的课程序列是否是拓扑序列的算法void TopSortCheck(ALGraph G),大体思想为: 1)用户输入待检测的课程序列,将其存入数组; 2)检查课程序列下一个元素是否是图中的顶点(课程),是则执行3),否则输出“课程XX不存在”并跳出; 3)判断该顶点的入度是否为零,是则执行4),否则输出“入度不为零”并跳出; 4)该顶点的所有邻接点入度减一; 5)重复2)、3)、4)直到课程序列中所有元素均被遍历,则该序列是拓扑序列,否则不是拓扑序列。

C++实现图的拓扑排序

#include #include #include usingnamespace std; constint MAX=100; struct ArcNode { int adjVNode; //节点编号 ArcNode *nextArcNode; // 指向邻接到同一节点的其他节点 ArcNode(){nextArcNode=NULL;} }; struct VNode { int num; //节点编号 ArcNode *firstArcNode; //指向该节点邻接的节点 VNode(){firstArcNode=NULL;} }; struct Graph { int vexnum; //图点数 int arcnum; //图边数 VNode vertices[MAX]; //图的邻接表,指针数组 }; bool topSort(Graph G, int *indegree,int *TopNum) { int count=0; stack Q; for(int i=0;inextArcNode)

{ indegree[p->adjVNode]--; if(indegree[p->adjVNode]==0) Q.push(p->adjVNode); } } if(count!=G.vexnum) returnfalse; returntrue; } int main() { Graph G; ifstream fin("in.txt"); cout<<"输入节点数和边数: "; cin >> G.vexnum >> G.arcnum; //G.vertices=new VNode[G.vexnum]; for(int i=0;i> u >> v; cin >> u >> v; p=new ArcNode(); p->adjVNode=v-1; p->nextArcNode=G.vertices[u-1].firstArcNode; G.vertices[u-1].firstArcNode=p; indegree[v-1]++; //cout << endl; } int *TopNum=newint[G.vexnum]; if(topSort(G,indegree,TopNum)) {

数据结构-拓扑排序

14信计2015-2016(一) 数据结构课程设计 设计题目拓扑排序 设计时间2016.1.11——2016.1.15 学生姓名冯佳君 学生学号20140401105 所在班级14信计1 指导教师刘风华 徐州工程学院数学与物理科学学院 一、需求分析

1.问题描述 本次课程设计题目是:用邻接表构造图然后进行拓扑排序,输出拓扑排序序列。 拓扑排序的基本思想为: 1)从有向图中选一个无前驱的顶点输出; 2)将此顶点和以它为起点的弧删除; 3) 重复1)、 2)直到不存在无前驱的顶点; 4) 若此时输出的顶点数小于有向图中的顶点数,则说明有向图中存在回路,否则输出的顶点的顺序即为一个拓扑序列。 2.拓扑排序有向图拓朴排序算法的基本步骤如下: 1)从图中选择一个入度为0的顶点,输出该顶点; 2)从图中删除该顶点及其相关联的弧,调整被删弧的弧头结点的入度(入度-1); 3)重复执行1)、2)直到所有顶点均被输出,拓朴排序完成或者图中再也没有入度为0的顶点(此种情况说明原有向图含有环)。 3.基本要求 (1)输入的形式和输入值的范围; 首先是输入要排序的顶点数和弧数,都为整型,中间用分隔符隔开;再输入各顶点的值,为正型,中间用分隔符隔开;然后输入各条弧的两个顶点值,先输入弧头,再输入弧尾,中间用分隔符隔开,输入的值只能是开始输入的顶点值否则系统会提示输入的值的顶点值不正确,请重新输入,只要继续输入正确的值就行。 (2)输出的形式; 首先输出建立的邻接表,然后是最终各顶点的出度数,再是拓扑排序的序列,并且每输出一个顶点,就会输出一次各顶点的入度数。 (3) 程序所能达到的功能; 因为该程序是求拓扑排序,所以算法的功能就是要输出拓扑排序的序列,在一个有向图中,若用顶点表示活动,有向边就表示活动间先后顺序,那么输出的拓扑序列就表示各顶点间的关系为反映出各点的存储结构,以邻接表存储并输出各顶点的入度。 二、概要设计

【数据结构算法】实验9 图的拓扑排序问题(附源代码)

浙江大学城市学院实验报告 课程名称数据结构与算法 实验项目名称实验九图的拓扑排序问题 实验成绩指导老师(签名)日期 一.实验目的和要求 1.掌握拓扑排序概念。 2.理解并能实现拓扑排序算法(采用邻接表表示图)。 二. 实验内容 1、编写用邻接表表示有向无权图时图的基本操作的实现函数,具体包括: ①初始化用邻接表表示的有向无权图void InitAdjoin(adjlist G); ②建立用邻接表表示的有向无权图void CreateAdjoin (adjlist G, int n) (即 通过输入图的每条边建立图的邻接表); ③输出用邻接表表示的有向无权图void PrintAdjoin (adjlist G, int n) (即输 出图的每条边)。 把邻接表的结构定义及这些基本操作实现函数存放在头文件Graph3.h中。 2、编写拓扑排序算法void Toposort( adjlist G, int n) (输入为图的邻接 表,输出为相应的拓扑序列)。 3、编写测试程序(即主函数),首先建立并输出有向无权图,然后进行拓 扑排序。 要求:把拓扑排序函数Toposort以及主函数存放在主文件test9_3.cpp中。 测试数据如下: 4、填写实验报告,实验报告文件取名为report9.doc。 5、上传实验报告文件report9.doc与源程序文件test9_3.cpp及Graph3.h 到Ftp服务器上自己的文件夹下。

三. 函数的功能说明及算法思路 包括每个函数的功能说明,及一些重要函数的算法实现思路 【结构说明】 const int MaxVertexNum =10; //图的最大顶点数 const int MaxEdgeNum =100; //边数的最大值 struct EdgeNode{ //链表边结点,表示弧 int adjvex; //存放与头结点顶点有关的另一个顶点在邻接表(数组)中的下标。 EdgeNode *next; //指向链表下一个结点 }; typedef struct VNode{ //邻接表,表示顶点 int data; // 顶点数据,顶点名称 EdgeNode *firstarc; // 指向边结点链表第一个结点 } adjlist[MaxVertexNum]; 【函数说明】 ①void InitAdjoin(adjlist G) 功能:初始化用邻接表表示的有向无权图 思路:将邻接表的所有顶点置为-1,边结点链表指针置为NULL ②void CreateAdjoin (adjlist &G, int n) 功能:建立用邻接表表示的有向无权图(即通过输入图的每条边建立图的邻接表)思路:按照输入的顶点信息,新建边结点链入邻接表中对应位置 ③void PrintAdjoin (adjlist G, int n) 功能:输出用邻接表表示的有向无权图(即输出图的每条边) 思路:按照一定的格式输出邻接表 ④void Toposort( adjlist G, int n) 功能:输入图的邻接表,输出相应的拓扑序列 思路:初始化数组d[ ],利用数组的空间建立入度为零的顶点栈并设置栈顶指针。当入度为零的顶点栈不空时,重复执行以下步骤:从顶点栈中退出一个顶点, 并输出之;将该顶点的出边邻接点入度减一,如果出边邻接点入度减至0,则该顶点入栈,更新栈顶指针。完成整个循环后,判断输出的顶点个数是否少于邻接表的顶点个数,如果少于则说明存在回路,打印输出信息。 四. 实验结果与分析 包括运行结果截图等 【测试数据】

拓扑排序算法计算代码依赖关系

我们平常所使用的主流编译器,都具有多源代码文件支持.例如把一些类定义在相应的文件中,要使用到这些类时,需要包含定义这个类的文件(如C++),或引用类所在的名字空间(如JAVA),或将这个文件作为单元引用(如Object Pascal) 当我们自己要实现一个支持多源代码文件的编译器时,需要在编译某个源代码文件之前,先编译这个源代码所引用到的文件.例如有一个源文件a.src,里面定义了一个类,内容如下: class List { public void Add(Object obj) { ... } } 然后有一个源文件b.src,里面用到了List类,内容如下: using "a.src" class Test { public static main(String argv[]) { List objs = new List; List.Add(10, 20); //有语法错误 } } 在编译b.src时,如果a.src文件未被预先编译,编译器将无法识别List类,也无法判断List类是否具有成员函数Add,以及对Add的调用参数列表是否正确等.这时就需要先分析b.src引用了哪些文件,这些文件又引用到了其它哪些文件,并优先编译处于引用列表顶端的文件,并以此类推. 例如存在下面几个源代码文件A, B, C, D, E. 引用关系如下: A引用: B, C B引用: D, E C引用: B, E D引用: E E没引用其它文件,这里需要的编译顺序应该如下: E D B C A 另外,在文件引用关系中不能出现互相引用,这样会导至无法编译. 在了解了为什么要计算源代码依赖关系后,就可以开始实现具体的算法了,可以把这一步放在词法分析之后,语法分析之前来做. 因为词法分析之后,可以很容易的分析出一个源文件引用了哪些其它源文件,如果把这一步放在预处理中专门来做的话,同样需要做去注释,拆词等工作,产生了不必要的重复. 计算源代码依赖关系的算法比较简单,可以先把所有源代码文件看成一个个的顶点,一个顶点(源代码文件)如果引用了另一个顶点,就增加一条从当前顶点到被引用顶点的出边,当增加完所有顶点的出边后,正常情况下这些顶点就形成了一个有向无环图如下图:(如果出现了

图的基本存储方法及拓扑排序

实验四 图的基本存储方法及拓扑排序 班级:10级数学班姓名:裴志威学号:201008101127 实验目的: (1)熟练掌握图的基本存储方法; (2)熟练掌握图的深度优先和广度优先搜索方法; (3)掌握AOV网和拓扑排序算法; (4)掌握AOE网和关键路径。 实验内容: 拓扑排序。 任意给定一个有向图,设计一个算法,对它进行拓扑排序。拓扑排序算法思想:a.在有向图中任选一个没有前趋的顶点输出;b.从图中删除该顶点和所有以它为尾的弧;c.重复上述a、b,直到全部顶点都已输出,此时,顶点输出序列即为一个拓朴有序序列;或者直到图中没有无前趋的顶点为止,此情形表明有向图中存在环。 源程序代码: #include #include #define MAXV 10 // 最大顶点个数 typedef struct { int edges[MAXV][MAXV]; // 邻接矩阵的边数组 int n; // 顶点数 }MGraph; typedef struct ANode { int adjvex; // 该弧的终点位置 struct ANode * nextarc; // 指向下一条弧的指针 }ArcNode; typedef struct { int no; // 顶点信息 int count; // 顶点入度 ArcNode * firstarc; // 指向第一条弧 }VNode, AdjList[MAXV];

typedef struct { AdjList adjlist; // 邻接表 int n; // 图的顶点数 }ALGraph; void MatTolist(MGraph g, ALGraph * &G) { int i, j, n=g.n; ArcNode * p; G = (ALGraph *)malloc(sizeof(ALGraph)); for (i=0; iadjlist[i].firstarc = NULL; for (i=0; i=0; j--) if (g.edges[i][j]!=0) { p=(ArcNode *)malloc(sizeof(ArcNode)); p->adjvex = j; p->nextarc = G->adjlist[i].firstarc; G->adjlist[i].firstarc = p; } G->n=n; } void TopSort(ALGraph * G) { int i,j,flag=0,a[MAXV]; int St[MAXV], top = -1; // 栈St的指针为top ArcNode * p; for (i=0; in; i++) // 入度置初值为0 G->adjlist[i].count = 0; for (i=0; in; i++) // 求所有顶点的入度 { p=G->adjlist[i].firstarc; while (p!=NULL) { G->adjlist[p->adjvex].count++; p=p->nextarc; } } for (i=0; in; i++) if (G->adjlist[i].count==0) // 入度为0的顶点进栈 {

常见的几种网络拓扑图绘制方法

常见的几种网络拓扑图绘制方法 导语: 常见的网络拓扑图绘制方法有哪些?其实网络图的画法主要是分为软件绘图和手工绘图。对于新手而言,更推荐使用电脑软件绘图,只需要安装一个思维导图软件,就可以利用模板或者软件工具进行绘图,具体的请往下阅读。 免费获取网络拓扑图软件:https://www.360docs.net/doc/844571897.html,/network/ 常见的几种网络拓扑图绘制方法? 亿图网络图绘制作软件是由亿图软件公司推出的一款专门用来绘制电脑网络图的软件。软件功能强大,容易上手,几乎包含所有网络图的绘制,例如基本网络图、网络拓扑图、Cisco网络图、机架图、网络通信图、3D网络图、AWS图等等,可以完美替代Visio。软件采用拖拽的绘图方式,界面简单明了,操作方便,用户即看机即会,无需花费多少时间学习。 为了更大程度方便专业人士的使用,软件不仅提供各种专业图库,还提供海

量模板,这点是其他软件无法比拟的。强大的定制功能使得用户不仅可以自定义图形的填充和线条颜色,也可以自行绘制图库里的形状。一键导出到PDF,Word, Visio, Png 等17种文件格式,无障碍与他人分享。新版本不仅实现了跨平台,而且还支持云存储,使得团队协作更加容易。亿图网络图绘制软件是您绘制网络图的不二选择。 亿图图示绘制“思科网络图”的特点 1.专业的教程:亿图图示的软件为用户制作了使用教程的pdf以及视 频。 2.可导出多种格式:导出的文件Html,PDF,SVG,Microsoft Word, PowerPoint,Excel等多种格式。 3.支持多系统:支持Windows,Mac 和Linux的电脑系统,版本同步 更新。 4.软件特色:智能排版布局,拖曳式操作,兼容Office。 5.云存储技术:可以保存在云端,不用担心重要的数据图表丢失。 6.丰富的图形符号库助你轻松设计思科网络图

各系统说明和拓扑图

目录 各系统说明及拓扑图 (2) 一、视频会议系统拓扑图 (3) 二、投影系统拓扑图 (5) 三、门禁系统拓扑图 (6) 四、LED大屏系统拓扑图及说明 (7) 五、网络监控系统拓扑图及优势说明 (8) 六、楼宇对讲系统拓扑图及说明 (10) 七、红外报警系统拓扑图及说明 (17) 八、停车场管理系统拓扑图及说明 (18) 九、虚拟现实实验室拓扑图 (19)

各系统说明及拓扑图 河南思凯蓝通信科技有限公司成立于2012年,注册资金500万元,是一家专业从事建筑智能化设计、系统集成、视讯及室内分布工程的高科技企业。已成为大型行业(政府及企业)信息化全面解决方案和产品的重要提供者,政府信息化建设的领航者。 公司秉承以人为本的企业理念,规范科学的管理和良好的经营机制使公司拥有了一些优秀管理人才和高级工程技术人才,现有员工三十人左右。为服务客户需求,公司特成立了技术支持和售后服务中心,专门负责系统分析、技术服务、工程设计与施工等。高素质、专业化的服务队伍加上严格的管理体系,使我们不仅能在技术上向用户提供全面的解决方案,而且更重要的是,我们能够向用户提供包括专家咨询、业务指导和售后服务的长期保证。 公司一直以来与业界著名厂商保持密切合作关系,积累了丰富的IT专业人员资源、丰富的上游厂商资源、充足的备品备件资源和全国各地服务资源,可以为用户提供及时、高效、专业的技术支持。

一、视频会议系统拓扑图 视频会议将音视频会议、通信与Internet技术相融合,视频会议系统拓扑图之间决定了视频会议系统的实用性,可拓展行以及安全灵活性。由于软/硬件视频会议架构之间的优劣势不同,企业视频会议系统组网结构以及与会者参与方式不同,思凯蓝在视频会议系统拓扑图构建上具备丰富的行业经验,长期服务于大型企业视频会议系统的构架设计与实现,列举部分行业常见网络视频会议系统拓扑图作为参考。 视频会议系统拓扑图1

相关文档
最新文档