罗氏电化学发光质控物包含项目一览表

罗氏电化学发光质控物包含项目一览表
罗氏电化学发光质控物包含项目一览表

PreciControl Universal/Cat. no.

HCG+

PreciControl Tumor Marker/.

HCG+ PreciControl Multi Marker/.

PreciControl Maternal Care/. 05341787-200

PreciControl Cardiac II/. 04917049-190

PreciControl Troponin/. 05095107-190

PreciControl TSH/.

PreciControl ThyroAB/. 05042666-191

PreciControl HE4/. 05950953-190

PreciControl Varia/. 05618860-190

Please note there are no barcodes available for PC Varia on cobas e 602.

PreciControl Anti-CCP-190

PreciControl Brahms PCT (control is within the kit)

PreciControl Anti-HAV/. 04855043-190

PreciControl Anti-HAV IgM/.

PreciControl Anti-HBc/.

PreciControl Anti-HBc IgM/.

PreciControl Anti-HBe/.

PreciControl HBeAg/.

PreciControl Anti-HBs/.

PreciControl HBsAg II /. 04687787-190

PreciControl Anti-HCV /. 03290379-190

PreciControl HIV /. 03599604-190

PreciControl CMV IgG/. 04784600-190

PreciControl CMV IgG Avidity/. 05942322-190

PreciControl CMV IgM/. 04784626-190

PreciControl HSV/. 05572207-190

PreciControl Rubella IgG/. 04618807-190

PreciControl Rubella IgM/. 04618840-190

PreciControl Toxo IgG/. 04618823-190

Analyt+/- Range [%]

PC Toxo IgG level 1/2

control code 024/025

Toxo IgG 50/30 PreciControl Toxo IgM/. 04618866-190

Analyt+/- Range [%]

PC Toxo IgM level 1/2

control code 026/027

Toxo IgM 100/30

For this document are the contents of the current Elecsys

Precicontrol package inserts and barcode cards / barcode transfer

sheets used.

Original datas are available in the corresponding Elecsys

Precicontrol package inserts and barcode cards / barcode transfer

sheets.

罗氏电化学发光免疫分析

罗氏电化学发光免疫分 析 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

罗氏电化学发光免疫分析 技术是罗氏公司开发的,但全自动机械制造却由日本的日立公司承担,所以仪器上还有Hitachi的标志。这个仪器让大家吃惊的一大原因就在于一直在实验室研究的电致化学发光居然已经真正地产业化了,其中我们一直无法解决的诸多问题(尤其是重现性)均已得到解答,看来罗氏的确花了不少心血开发这款仪器。 罗氏电化学发光免疫分析技术的性能特点——创新的技术,与众不同 一、最先进的检测原理 电化学发光免疫测定,是目前最先进的标记免疫测定技术,是继放射免疫、酶免疫、荧光免疫、化学发光免疫测定以后的新一代标记免疫测定技术,具有敏感、快速和稳定的特点,在固相标记免疫测定中技术上居领先地位。 电化学发光(ECL)是一种在电极表面由电化学引发的特异性化学发光反应,实际上是电化学和化学发光两个过程的完美结合。电化学发光与普通化学发光的主要差异在于前者是电启动发光反应,循环及多次发光,后者是通过化合物混合启动发光反应,是单次瞬间发光。因此ECL反应易精确控制,重复性极好。 电化学发光免疫测定是电化学发光(ECL)和免疫测定相结合的产物,直接以[Ru(bpy)3]2+标记抗体,反应时标记物直接发光。且[Ru(bpy)3]2+在电极表面的反应过程可以周而复始进行,产生许多光子,使光信号得以增强。 二、专利的包被技术 链霉亲和素(streptoavidin,SA)和生物素(biotin,B)是具有很强的非共价相互作用的一对化合物,特异性强且结合紧密。一分子SA可与四分子B 相结合,增大了抗体结合量,达到放大效果。在ECL的试剂中,SA通过特殊的蛋白结合物均匀牢固地包被在磁性微粒上,形成通用的能与B结合的固相载体,另一试剂为活化的B衍生物化合的抗原或抗体。两种试剂混合时,抗原或抗体即包被在磁性微粒上。

电化学发光检测项目和临床应用

电化学发光(Elecsys)检测项目及其临床应用 一、甲状腺功能 甲腺原氨酸(T3, triiodothyronine) T3是甲状腺激素对各种靶器官作用的主要激素。T3(3、5、3’-三碘酪氨酸)主要在甲状腺以外,尤其是在肝脏由T4经酶解脱碘生成。因此,血清T3浓度反映出甲状腺对周边组织的功能甚于反映甲状腺分泌状态。T4转变成T3的减少会导致T3浓度的下降。见于药物的影响,如丙醇、糖皮质类固醇、胺碘酮等以及严重的非甲状腺疾病(N TI),称为“T3低下综合征”。与T4一样,99%以上的T3与运输蛋白质结合,但T3的亲和力要低10倍左右。T3测定可用于T3-甲亢的诊断,早期甲亢的查明和假性甲状腺毒症的诊断。 检测范围:0.300─10.00nmol/l或O.195-6.51ng/ml 正常参考值:1.3-3.1nmol/l或0.8-2.0ng/ml 甲状腺素(T4, thyroxine) T4是甲状腺分泌的主要产物,也是构成下丘脑-垂体前叶-甲状腺调节系统完整性不可缺少的成份。对合成代谢有影响作用。T4由二分子的二碘酪氨酸(DIT)在甲状腺内偶联生成。T4与甲状腺球蛋白结合贮存在甲状腺滤泡的残腔中,在TSH的调节下分泌释放。血清中99%以上的T4以与其它蛋白质结合的形式存在。由于血清中运输蛋白质的浓度易受外源性和内源性作用的影响,因此,在检测血清T4浓度的过程中需考虑到结合蛋白质的状况。如果忽略这一点,结合蛋白质浓度的变化(如怀孕期、服用雌激素或者患肾病综合征等),会导致反映甲状腺代谢状况检测的错误结果。T4测定可用于甲亢、原发性和继发性甲状腺功能减退的诊断以及TSH抑制治疗的监测。 检测范围:5.40─320.0nmol/l或O.420-24.86μg/dl 正常参考值: I. 66-181nmol/l或5.1-14.1μg/dl(标本取自德国和日本) II. 59-154nmol/l或4.6-12.0μg/dl, FT4指数57-147nmol/l或4.4-11.4ug/dl (标本取至美国) 游离T3(FT3- free triiodothyronine) 三碘甲腺原氨酸(T3)是血清中的甲状腺激素之一,起调节代谢作用。测定该激素的含量对鉴别诊断甲状腺功能是否正常、亢进或低下有重要意义。绝大多数的T3与其转运蛋白质(TBG、前白蛋白、白蛋白)结合,fT3是T3的生理活性形式。fT3测定的优点是不受其结合蛋白质浓度和结合特性变化的影响。因此不需另加测定结合参数(T -uptake,TBG)。 检测范围:0.400─50.00pmol/l或O.260-32.55pg/ml 正常参考值:2.8-7.1pmol/l或1.8-4.6pg/ml 游离T4(FT4- free thyroxine)

罗氏电化学发光仪器ESOP

罗氏电化学发光仪器E170S O P 仪器简介: E170 是罗氏诊断公司出品的全自动电化学发光免疫分析仪,是全自动,随机进样的免疫分析系统,可以对许多种检测项目进行体外的定量或者定性的分析。该分析仪应用的是电化学发光技术(ECL)。每个E模块系统每小时的标本处理量为170个试验(最多可以将4个E模块连接)。只有在试验室条件下,经过培训的操作者方可操作E模块系统。 系统特色 ?可以24小时待机使用 ?标本条码扫描功能 ?试剂条码扫描功能 ?单个E模块的每小时处理能力为170个试验 ?自动保养功能 ?自动复查功能 ?自动发出定标信息 ?自动标本稀释功能 ?系统辅助的操作流程 ?一个E模块具有25个温控的试剂通道 ?1个模块可以安放672个反应杯 ?1个模块可以安放672个加样头 ?双向数据传输接口 运行条件: 水质要求 ◆无菌(< 10 cfu/ml),去离子水 ◆ 1.5 M?电阻值(最大1.0 Ms/cm) ◆15-25 磅/英寸2 (0.5~3.5 kg/cm2 或49~343 kpa) ◆耗水量:每E170模块消耗18升/小时 环境条件 ◆无灰尘的、良好通风的环境 ◆无直接日照 ◆地面水平(角度:<1/200?o) ◆地面足够坚硬能够承受仪器的重量(详细情况请见本章中的系统特点) ◆温度:18~32摄氏度 ◆当系统启动时,温度的改变应该小于2度/小时 ◆屋内湿度:45%~85%

◆电源电压没有明显的波动 ◆在附近没有会产生电磁波的仪器 ◆有接地的三相电源 E170由三个类型的硬件单元组成:控制单元、核心单元以及检测单元。 控制单元介绍 包括: ?触摸屏幕的电脑 ?键盘 ?打印机 ?仪器管理电脑终端 核心单元介绍 核心单元将所有的标本从入口端经过E170仪器到出口端或者复查缓冲区。下面所列位核心单元的组成部分。 ?加样端 ?标本架转运通道 ?复查缓冲带 ?出口端 ?中心控制区 ?电源开关(在进样端的左侧面上) 检测单元介绍 分立式、随机进样的每小时170试验的免疫检测系统。下面所列为E170模块的组成部分: ◆试剂区位于分析模块的左边部分,它包含以下部分: 1.一个试剂盘,温度控制在20?3℃; 有25个试剂通道 2.一个用来将试剂以及磁珠从试剂盘中加入的试剂针,将之加到孵育器的反应杯中 3.一个条码扫描器,用来阅读试剂盒上的二维条码 4.一个用于试剂盒盖的开关的机械装置,以避免试剂的挥发 5.一个用于混匀磁珠的搅拌器.当磁珠被加入之前或额外的混匀步骤中,搅拌棒用来搅拌磁 珠 6.两个用来清洗探针以及搅拌器的冲洗站 7.一个探针清洗站,它含有两瓶探针洗液用来清洗探针的内部 ◆测量区位于分析模块的中部,它含有以下几个部分: 1.一个孵育器,含有54个孵育位,用来进行免疫反应 孵育池有54个孵育位置,位于仪器的中心部分,当标本和试剂加入到反应杯中后,该孵育池的温度维持在37℃±0.3℃. 当一个反应在准备测定时,该孵育盘需旋转,将反应杯转至需要的位置,在此处,适宜的单位将执行相应的功能. 2.一个用来将标本从标本容器中加入到反应杯中的标本探针

化学发光免疫分析技术原理简介

化学发光免疫分析技术原理简介 20 世纪60 年代即有人利用化学发光法测定水样中细菌含量和菌尿症患者尿液检查。1977 年Halman 等将化学发光系统与抗原抗体反应系统相结合,创建了化学发光免疫分析法,保留了化学发光的高度灵敏性,又克服了它特异性不足的缺陷。近年来对技术与仪器的不断改进,使此技术已成为一种特异,灵敏,准确的自动化的免疫学检测方法。1996 年推出的电化学发光免疫技术,在反应原理上又具有一些新的特点。这两种技术目前已在国内一些大型医院实验室用于常规免疫学检验。 一、化学发光免疫分析法 化学发光免疫分析法( chemiluminescence immunoassay , CLlA) 是把免疫反应与发光反应结合起来的一种定量分析技术,既具有发光检测的高度灵敏性,又具有免疫分析法的高度特异性。在CLIA中,主要有两个部分,即免疫反应系统和化学发光系统。免疫反应系统与放射免疫测定中的抗原抗体反应系统相同化学发光系统则是利用某些化合物如鲁米诺( luminol) 、异鲁米诺(isolu-minol) 、金刚烷( AMPPD) 及吖啶酯( AE) 等经氧化剂氧化或催化剂催化后成为激发态产物,当其回到基态时就会将剩余能量转变为光子,随后利用发光信号测量仪器测量光量子的产额。将发光物质直接标记于抗原(称为化学发光免疫分析)或抗体上(称为免疫化学发光分析) ,经氧化剂或催化剂的激发后,即可快速稳定的发光,其产生的光量子的强度与所测抗原的浓度可成比例。亦可将氧化剂(如碱性磷酸酶等)或催化剂标记于抗原或 抗体上,当抗原抗体反应结束后分离多余的标记物,再与发光底物反应,其产生的光量子的强度也与待测抗原的浓度成比例。发光免疫分析的灵敏度高于包括RIA 在内的传统检测方法,检测范围宽,测试时间短,仅需30 - 60min 即可。试

罗氏电化学发光仪器E170 SOP

罗氏电化学发光仪器E170 SOP 仪器简介: E170 是罗氏诊断公司出品的全自动电化学发光免疫分析仪,是全自动,随机进样的免疫分析系统,可以对许多种检测项目进行体外的定量或者定性的分析。该分析仪应用的是电化学发光技术(ECL)。每个E模块系统每小时的标本处理量为170个试验(最多可以将4个E模块连接)。只有在试验室条件下,经过培训的操作者方可操作E模块系统。 系统特色 ?可以24小时待机使用 ?标本条码扫描功能 ?试剂条码扫描功能 ?单个E模块的每小时处理能力为170个试验 ?自动保养功能 ?自动复查功能 ?自动发出定标信息 ?自动标本稀释功能 ?系统辅助的操作流程 ?一个E模块具有25个温控的试剂通道 ?1个模块可以安放672个反应杯 ?1个模块可以安放672个加样头 ?双向数据传输接口 运行条件: 水质要求 ◆无菌(< 10 cfu/ml),去离子水 ◆ 1.5 M?电阻值(最大1.0 Ms/cm)

◆15-25 磅/英寸2 (0.5~3.5 kg/cm2 或49~343 kpa) ◆耗水量:每E170模块消耗18升/小时 环境条件 ◆无灰尘的、良好通风的环境 ◆无直接日照 ◆地面水平(角度:<1/200 o) ◆地面足够坚硬能够承受仪器的重量(详细情况请见本章中的系统特点) ◆温度:18~32摄氏度 ◆当系统启动时,温度的改变应该小于2度/小时 ◆屋内湿度:45%~85% ◆电源电压没有明显的波动 ◆在附近没有会产生电磁波的仪器 ◆有接地的三相电源 E170由三个类型的硬件单元组成:控制单元、核心单元以及检测单元。 控制单元介绍 包括: ?触摸屏幕的电脑 ?键盘 ?打印机 ?仪器管理电脑终端

电化学发光原理介绍

、概念 电化学发光免疫测定Electrochemiluminescence immunoassay,ECLI。 ECLI 是继放射免疫、酶免疫、荧光免疫、化学发光免疫测定以后的新一代标记免疫测定技术。电化学发光法源于电化学法和化学发光法,而ECLI 是电化学发光ECL和免疫测定相结合的产物,是一种在电极表面由电化学引发的特异性化学发光反应,包括了电化学和化学发光二个过程。 ECL 不仅可以应用于所有的免疫测定,而且还可用于DNA/RNA探针检测。 二、反应底物 ECL 反应底物有两种: ·三氯联吡啶钌[Rubpy3]2+络合物: 钌Ruthenium, Ru,原子序数44,原子量101.07。元素名来自拉丁文,原意是"俄罗斯"。1827年俄国化学家奥赞在铂矿中发现钌;1844年俄国化学家克劳斯肯定它是一种新元素。钌在地壳中的含量约为十亿分之一,是铂系元素中含量最少的一个。钌常与其它铂系元素一起分散于冲积矿床和砂积矿床中。钌有7种天然稳定同位素:钌96、98、99、100、101、102、104。 钌为银白色金属,熔点2310℃,沸点3900℃,密度12.37×103/m3。 钌的化学性质不活泼,在空气和潮湿环境中稳定;不溶于酸和王水,溶于熔融的强碱、碳酸盐、氰化物等;加热到900℃,时能与氧反应;加热时能与氟、氯、溴反应;钌有形成配位化合物的强烈倾向,还有良好的催化性能。 钌是铂和钯的有效硬化剂;金属钛中加入0.1%的钌就可大大提高耐腐蚀性;钌钼合金是一种超导体;含钌的催化剂多用于石油化工。 ·三丙胺Tripropylamine,TPA: 结构式: 点击浏览/下载该文件 三、电化学发光反应原理 电化学反应过程:在工作电极上阳极加一定的电压能量作用下,二价的三氯联吡啶钌 [Rubpy3]2+ 释放电子发生氧化反应而成为三价的三氯联吡啶 钌 [Rubpy3]3+,同时,电极表面的TPA也释放电子发生氧化反应而成为阳离子自由基 TPA+ ,并迅速自发脱去一个质子而形成三丙胺自由基 TPA·,这样,在反应体系中就存在具有强氧化性的三价的三氯联吡啶钌 [Rubpy3]3+ 和具有强还原性的三丙胺自由基 TPA·。 化学发光过程:具有强氧化性的三价的三氯联吡啶钌 [Rubpy3]3+ 和具有强还原性的三丙胺自由基 TPA·发生氧化还原反应,结果使三价的三氯联吡啶

罗氏电化学发光免疫分析(精)

罗氏电化学发光免疫分析 技术是罗氏公司开发的,但全自动机械制造却由日本的日立公司承担,所以仪器上还有Hitachi的标志。这个仪器让大家吃惊的一大原因就在于一直在实验室研究的电致化学发光居然已经真正地产业化了,其中我们一直无法解决的诸多问题(尤其是重现性均已得到解答,看来罗氏的确花了不少心血开发这款仪器。 罗氏电化学发光免疫分析技术的性能特点——创新的技术,与众不同 一、最先进的检测原理 电化学发光免疫测定,是目前最先进的标记免疫测定技术,是继放射免疫、酶免疫、荧光免疫、化学发光免疫测定以后的新一代标记免疫测定技术,具有敏感、快速和稳定的特点,在固相标记免疫测定中技术上居领先地位。 电化学发光(ECL是一种在电极表面由电化学引发的特异性化学发光反应,实际上是电化学和化学发光两个过程的完美结合。电化学发光与普通化学发光的主要差异在于前者是电启动发光反应,循环及多次发光,后者是通过化合物混合启动发光反应,是单次瞬间发光。因此ECL反应易精确控制,重复性极好。 电化学发光免疫测定是电化学发光(ECL和免疫测定相结合的产物,直接以[Ru(bpy3]2+标记抗体,反应时标记物直接发光。且[Ru(bpy3]2+在电极表面的反应过程可以周而复始进行,产生许多光子,使光信号得以增强。 二、专利的包被技术 链霉亲和素(streptoavidin,SA和生物素(biotin,B是具有很强的非共价相互作用的一对化合物,特异性强且结合紧密。一分子SA可与四分子B 相结合,增大了抗体结合量,达到放大效果。在ECL的试剂中,SA通过特殊的蛋白结合物均匀牢固地包被在磁性微粒上,形成通用的能与B结合的固相载体,另一试剂为活化的B衍生物化合的抗原或抗体。两种试剂混合时,抗原或抗体即包被在磁性微粒上。 三、独特的载体

罗氏电化学发光免疫分析仪项目推荐稀释比例

Elecsys? Dilution Recommendations Autodilution possible for bold mentioned dilution ratios ? Dilution not necessary due to the broad measuring range or not possible e.g. can not be diluted because of changing in the concentration of the binding proteins alters this equilibrium. @ The autoantibodies are heterogeneous and this gives rise to non-linear dilution phenomena. * Please check the package insert. STAT for Elecsys 2010, cobas e 411, cobas e 601 (SW version 04-03 onwards) and cobas e 602 # Diluent Universal can be used to dilute the samples. ? Auto-dilution is not possible as assay uses a three-step method. ∞ Use Elecsys? Diluent Universal for automatic sample predilution. ? Autodilution not possible.

电化学发光的基本原理

电化学发光的基本原理 电化学发光免疫测定(ECLI)是一种在电极表面由电化学引发 的特异性发光反应,包括电化学和化学发光两个部分。分析中应用 的标记物为电化学发光的底物三联吡啶钌或其衍生N-羟基琥珀酰胺(NHS)酯,可通过化学反应与抗体或不同化学结构抗原分子结合,制成标记的抗体或抗原。ECLL的测定模式与ELISA相似。 基本原理:发光底物二价的三联吡啶钉及反应参与物三丙胺在 电极表面失去电子而被氧化。氧化的三丙胺失去一个H+而成为强还原剂,将氧化型的三价钌还原为激发态的二价钌,随即释放光子而 恢复为基态的发光底物。医学教育网搜|集整理这一过程在电极表面 周而复始地进行,不断地发出光子而常保持底物浓度的恒定。 电化学发光是化学发光方法与电化学方法相互结合的产物,是 指通过电化学方法来产生一些特殊的物质,然后这些电生的物质之 间或电生物质与其它物质之间进一步反应而产生的一种发光现象。 电化学发光保留了化学发光方法所具有的灵敏度高、线性范围宽、观察方便和仪器简单等优点;同物时具有许多化学发光方法无 法比拟的优点,如重现性好、试剂稳定、控制容易和一些试剂可以 重复使用等优点,广泛地应用于生物、医学、药学、临床、环境、 食品、免疫和核酸杂交分析和工业分析等领域。在21世纪中必将继 续为解决人类面临的各种重大问题发挥更加显著的作用。因此有必 要对电化学发光在分析中的应用有更加全面的了解。

电化学发光的应用 1、电极表面活性分布的表征 利用电化学发光成像法可以很好地观察电极表面电化学发光强度的分布情况,而电化学发光强度对电极表面的活性具有很大的依赖性,因此利用电化学发光成像法可以直观地反映电极表面活性分布。 该方法是由Engstrom等于1987年提出的,他们观察到在新抛光的玻碳电极上电化学发光强度分布十分均匀,而在环氧树脂浸渍过的网状玻碳电极上,电化学发光强度的分布不均匀,通过与其它方法相对照,发现电化学发光强度分布能够很好地反映出电极表面活性分布,并且具有微米级的空间分辨能力。在此基础上,他们把电化学发光成像法用于研究碳糊电极表面活性点的分布,观察到碳糊电极表面存在。着活性区域和非活性区域,对于了解碳糊电极的电化学行为具有一定的意义。 由于电化学发光成像法具有直观和简单等优点,许多科学工作者先后将该方法用于表征化学修饰电极表面的活性分布。如Hopper 等用该方法研究了电极表面的电荷对电子转移性质的影响;Pantano 等用该方法研究了电极表面羧基的分布对电子转移性质的影响;ShuItz等用该方法研究了聚合物在电极上的附着情况。从上面的文献可以看出,电化学发光成像法对于了解电极表面的活性分布及其与电极性能之间的关系,进而制备出具有特定功能的电极具有较好的参考价值。

罗氏电化学发光质控物包含项目一览表

PreciControl Universal/Cat. no. HCG+

PreciControl Tumor Marker/. HCG+ PreciControl Multi Marker/.

PreciControl Maternal Care/. 05341787-200 PreciControl Cardiac II/. 04917049-190 PreciControl Troponin/. 05095107-190 PreciControl TSH/. PreciControl ThyroAB/. 05042666-191

PreciControl HE4/. 05950953-190 PreciControl Varia/. 05618860-190 Please note there are no barcodes available for PC Varia on cobas e 602. PreciControl Anti-CCP-190 PreciControl Brahms PCT (control is within the kit)

PreciControl Anti-HAV/. 04855043-190 PreciControl Anti-HAV IgM/. PreciControl Anti-HBc/. PreciControl Anti-HBc IgM/.

PreciControl Anti-HBe/. PreciControl HBeAg/. PreciControl Anti-HBs/. PreciControl HBsAg II /. 04687787-190

电化学发光免疫分析及其在临床检验中的应用分析

电化学发光免疫分析及其在临床检验中的应用分析 【摘要】目的:分析电化学发光免疫分析及其在临床检验中的应用效果。方法:选取广西柳州市柳钢集团公司医院2015年1月~2017年1月收入的70例肝硬化患者作为研究对象,分别利用生化免疫比浊法和电化学发光免疫分析法对甲胎蛋白进行检测和比较。结果:两种检测方法所得检测结果差异无统计学意义(P>005);两种检测方法批内及批间CV变异系数相比较,电化学发光免疫分析法较生化免疫比浊法更小但差异无统计学意义(P>005)。结论:电化学发光免疫分析操作简便、快捷,结果可靠且具备较好的重复性,值得在今后临床检验工作中推广使用。 【关键词】电化学发光免疫分析;肝硬化;甲胎蛋白【中图分类号】R969 【文献标志码】 B【文章编号】1005-0019(2018)06-256-01 随着人们保健意识的提高,前往医疗卫生机构接受诊疗的患者数量日渐增多,大批量样本快速检测成为临床检验面临的一个不可回避的现实问题。既往采用的生化免疫比浊法虽然能够满足临床大样本检测需求但检测结果无论是精密度还是准确性、重复性均相对较低,越发难以满足实际工作

需求。电化学发光免疫分析是继酶免疫测定法、放射免疫法、流注射析、时间分辨荧光免疫技术之后的一种全新酶免疫测定法,自身融合了电化学发光以及免疫测定技术的优势,整个检测工作更加简便、高效[1]。为探寻电化学发光免疫分析及其在临床检验中的应用效果,本次研究内容如下:1资料与方法 11一般资料选取广西柳州市柳钢集团公司医院2014年1月~2016年1月收入的70例肝硬化患者作为研究对象,其中男48例、女22例;年龄35岁~60岁,平均年龄(4879±131)岁;病程时间12年~5年,平均病程(231±028)年;症状表现:疲倦乏力41例、食欲不振29例;病症类型:小结节性肝硬化63例、大结节性肝硬化7例。纳入标准:(1)经临床诊断确诊为肝硬化者;(2)未合并其他肝脏疾病者。排除标准。 12方法于住院次日清晨分时抽取空腹静脉血5ml,采集部位均?橹獠烤猜觯?以3000转/min离心10min后采集血清并将其一分为二,一份采用电化学发光免疫分析测定,仪器设备为罗氏公司生产的Cobas E601全自动电化学发光免疫分析仪。另一份采用生化免疫比浊法进行测定,宁波美康生物科技有限公司生产甲胎蛋白(免疫比浊法)检测试剂盒。所有检测步骤均严格按照仪器或试剂盒内说明书要求进行。选取甲胎蛋白以及批内及批间CV变异系数作为观察指标,

罗氏电化学发光免疫分析总结

罗氏电化学发光免疫分析总结 罗氏电化学发光免疫分析总结 技术是罗氏公司开发的,但全自动机械制造却由日本的日立公司承担,所以仪器上还有Hitachi的标志。这个仪器让大家吃惊的一大原因就在于一直在实验室研究的电致化学发光居然已经真正地产业化了,其中我们一直无法解决的诸多问题(尤其是重现性)均已得到解答,看来罗氏的确花了不少心血开发这款仪器。 罗氏电化学发光免疫分析技术的性能特点——创新的技术,与众不同 一、最先进的检测原理 电化学发光免疫测定,是目前最先进的标记免疫测定技术,是继放射免疫、酶免疫、荧光免疫、化学发光免疫测定以后的新一代标记免疫测定技术,具有敏感、快速和稳定的特点,在固相标记免疫测定中技术上居领先地位。电化学发光(ECL)是一种在电极表面由电化学引发的特异性化学发光反应,实际上是电化学和化学发光两个过程的完美结合。电化学发光与普通化学发光的主要差异在于前者是电启动发光反应,循环及多次发光,后者是通过化合物混合启动发光反应,是单次瞬间发光。因此ECL反应易精确控制,重复性极好。 电化学发光免疫测定是电化学发光(ECL)和免疫测定相结合的产物,直接以[Ru(bpy)3]2+标记抗体,反应时标记物直接发光。且[Ru(bpy)3]2+在电极表面的反应过程可以周而复始进行,产生许多光子,使光信号得以增强。 二、专利的包被技术 链霉亲和素(streptoavidin,SA)和生物素(biotin,B)是具有很强的非共价相互作用的'一对化合物,特异性强且结合紧密。一

分子SA可与四分子B相结合,增大了抗体结合量,达到放大效果。在ECL的试剂中,SA通过特殊的蛋白结合物均匀牢固地包被在磁性微粒上,形成通用的能与B结合的固相载体,另一试剂为活化的B 衍生物化合的抗原或抗体。两种试剂混合时,抗原或抗体即包被在磁性微粒上。 三、独特的载体 ECL中采用的固相载体是带有磁性的直径约2.8?m的聚苯乙烯微粒。其特点是反应面积极大,比板式扩大20-30倍,使反应在近乎液相中进行,反应速度大大加快,利用氧化铁的磁性,使用电磁场分离结合态和游离态,方便迅速,实现了精确的全自动化。 四、独到的磁分离技术 实现了结合相和游离相的完全自动化分离,且检测池在无电场时彻底清洗,避免了交叉污染。 五、超高的测定灵敏度和测定线性 发光信号检测的宽线性加上电化学发光独特的标记物本身(发光底物)循环发光和专利的链霉亲和素-生物素包被技术的信号放大作用,使电化学发光测定的检测下限可达10-12和10-18级,线性范围最大超越7个数量级,在待测抗原(抗体)极微量或达到病理期极限时,均能准确测定,避免了样本稀释重测定,既节约时间,又节省试剂。 六、稳定的试剂 电化学发光标记物三联吡啶钌在无电场和递电子体(三丙胺)存在的自然环境下非常稳定,保证了用它标记的抗体(抗原)试剂也非常稳定,2-8℃可稳定一年以上,批内和批间变异系数分别为<4%和<7%,在首日使用之后也可以稳定3个月。 七、简便创新的定标概念 每个测定项目的基本定标曲线已由罗氏公司完成,并已存入试剂的二维条形码,自动读入仪器,用户只需进行二点重定标即可。

电化学发光检测项目及其临床应用

电化学发光检测项目及其临床应用 一、甲状腺功能 甲腺原氨酸(T3, triiodothyronine) T3是甲状腺激素对各种靶器官作用的主要激素。T3(3、5、3’-三碘酪氨酸)主要在甲状腺以外,尤其是在肝脏由T4经酶解脱碘生成。因此,血清T3浓度反映出甲状腺对周边组织的功能甚于反映甲状腺分泌状态。T4转变成T3的减少会导致T3浓度的下降。见于药物的影响,如丙醇、糖皮质类固醇、胺碘酮等以及严重的非甲状腺疾病(NT I),称为“T3低下综合征”。与T4一样,99%以上的T3与运输蛋白质结合,但T3的亲和力要低10倍左右。T3测定可用于T3-甲亢的诊断,早期甲亢的查明和假性甲状腺毒症的诊断。 甲状腺素(T4, thyroxine) T4是甲状腺分泌的主要产物,也是构成下丘脑-垂体前叶-甲状腺调节系统完整性不可缺少的成份。对合成代谢有影响作用。T4由二分子的二碘酪氨酸(DIT)在甲状腺内偶联生成。T4与甲状腺球蛋白结合贮存在甲状腺滤泡的残腔中,在TSH的调节下分泌释放。血清中99%以上的T4以与其它蛋白质结合的形式存在。由于血清中运输蛋白质的浓度易受外源性和内源性作用的影响,因此,在检测血清T4浓度的过程中需考虑到结合蛋白质的状况。如果忽略这一点,结合蛋白质浓度的变化(如怀孕期、服用雌激素或者患肾病综合征等),会导致反映甲状腺代谢状况检测的错误结果。T4测定可用于甲亢、原发性和继发性甲状腺功能减退的诊断以及TSH抑制治疗的监测。 游离T3(FT3- free triiodothyronine) 三碘甲腺原氨酸(T3)是血清中的甲状腺激素之一,起调节代谢作用。测定该激素的含量对鉴别诊断甲状腺功能是否正常、亢进或低下有重要意义。绝大多数的T3与其转运蛋白质(TBG、前白蛋白、白蛋白)结合,fT3是T3的生理活性形式。fT3测定的优点

直接化学发光与电化学发光之比较

直接化学发光与电化学发光之比较 自1982年人们就开始研究将电促化学发光标记物(ECL)用于各种免疫检查,但直到最近,随着罗氏公司力图将这一技术用于其新系列的仪器中,才重新引起人们对电化学发光的关注。 尽管电化学发光标记物同经典的化学发光标记物吖啶酯(AE)有很多相似的特性,但在技术细节方面并不相同,这使得电化学发光并不适合于现代自动免疫仪器。 本文详细探讨了电化学发光的技术特点以及该技术对仪器性能的局限性,并根据厂家所给的性能指标将电化学发光系统与采用AE技术的仪器进行了比较。尽管同老式的手工操作或与采用比色法、包被管和酶免法的半自动分析仪相比,罗氏公司的仪器在检测技术和操作特性上颇具吸引力,但实际上罗氏所面对的真正竞争对手并非这些过时的技术,而是象Bayer诊断产品公司出品的ACS:180SE这样的先进仪器。 背景与发展过程 早在19世纪20年代,人们就观察到电解过程中的发光现象,但在60年代以前,很少有人对此现象进行研究。从1982年开始,人们就一直在研究将可产生电促发光的三联吡啶衍生物应用于免疫实验中。1991年,IGEN公司(美国马里兰州洛克威尔公司)推出了采用这一技术的商品化仪器和试剂,1990年和1991年,IGEN公司分别与ESAI公司(日本)和罗氏公司签订协议,共同发展免疫检验项目,并授予它们ECL技术的使用权。 电化学发光“理论上”的优越性 ECL具有许多与AE相同的优点,但在理论上,ECL较之目前AE技术的最重要的优越性就是其具有更高的灵敏度,该论点是基于电化学标记物具有循环参与电化学反应的能力,每个标记物分子可多次产生光子。但在实际中,即使ECL所宣传的检测范围也一直没有超过AE的检测限,而且,采用ECL的免疫实验较之大量采用AE技术的商品化免疫项目并没有显示其具有更优越的灵敏度。 电化学发光的缺点 ECL有三个最主要的缺点: l 检测标记物时需要三个电极(一个金/铂激发电极,两个测定电极),3000美元/5000美元一个,需更换。 l 仪器采用的流动比色池,交叉污染为潜在问题。 l 对环境因素和其它非特异性反应过于敏感。 采用ECL技术的仪器需要三个电极,每个电极都会涉及到电极的稳定性、重复性、污染问题和额外的常规维护。另外,仪器所采用的流动式设计和电极本身都会造成严重的交叉污染问题。因此,这些仪器在每个测定间都需要进行化学清洗、化学调节和电极调节,这些清洗和调节过程使得每次测试都要产生大量的废液并严重限制了仪器的检测速度。 大量的固相物也易于与上次实验的残留试剂反应,这使得罗氏公司所推出的随机任选式仪器的试剂交叉污染问题更为严重。 最后,电化学反应的复杂性也使其容易受到更多因素的干扰,对于一些使用近似的稀土螯合物的免疫实验,干扰很可能来自金属离子的污染(样品管、加样头或实验用水),或是存在EDTA和其它作为抗凝剂或防腐剂的金属螯合物。另外,反应副产品的沉积也是一个潜在的干扰源。

电化学发光分析研究进展

电化学发光分析研究进展 电化学发光是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射。电化学发光与化学发光相同之处是二者的发光均由进行能量电子转移反应的组分所产生;而不同之处是电化学发光由电极上施加的电压所引发和控制,化学发光是由试剂的混合所引发和控制。根据电化学发光的发光强度进行分析的方法称为电化学发光分析法。该法不仅具有化学发光分析的灵敏度高、线性范围宽和仪器简单等优点,而且具有电化学分析控制性强、选择性好等优点。近年来,在新电化学发光试剂的合成和应用研究方面取得了比较大的发展,特别是电化学发光在免疫分析中的应用引起人们极大的研究兴趣。 福州大学,长春应用化学研究所,华东师范大学,陕西师范大学等单位在电化学发光分析新体系和新技术研究方面取得一系列的成果,受到国内外同行的关注。国内外对电化学发光分析法的研究均有评述。 本文拟侧重介绍ECL体系及其在临床分析研究中的应用,同时,对我们近年来在电化学发光分析方面的研究工作也作以简要介绍。 1电化学发光体系及其应用 ECL体系按发光试剂的种类可以分为以下两类:(1)金属配合物电化学发光体系; (2)有机化合物的电化学发光体系。 1.1无机化合物的电化学发光体系 无机化合物电化学发光体系中,最典型的电化学发光试剂是钌联吡啶配合物Ru(bpy)32+,该试剂在水溶液和有机溶剂中发光效率高,溶解度好;可进行可逆单电子转移反应,在电化学发光基础理论和分析应用研究中占有重要地位。已报道ECL金属配合物有Ru, Os, Cr, Cd, Pd, Pt, Re, Ir, Mo,Tb, Eu, Cu, Al等的金属配合物[1],其中Ru, Os,Re的金属配合物具有良好的ECL性质。合成高发光效率可标记的ECL金属配合物是电化学发光免疫分析和核酸分析中一个重要的研究方向。Blackburn[12]等合成了可标记的Ru(bpy)32+类物质,建立了地高辛和促甲状腺激素(TSH)等物质的电化学发光免疫分析方法。研究金属配合物与共反应物的ECL反应,不仅可以提高检测金属配合物的灵敏度,而且可以建立测定共反应物的ECL方法,拓宽电化学发光分析的应用范围。董绍俊等人利用金属EDTA螯合物与Ru(bpy)32+产生ECL,建立了测定金属离子的电化学发光分析法[13]。Richter 利用冠醚对金属离子的识别以及与(2, 2′-bipyridine)2Ru-4-(N-aza-18-crown-6-methyl-2,2′-bipyridine)-TPA的电化学发光反应,建立了测定Pb2+, Hg2+, Cu2+和K+的电化学发光分析法[14]。Bard等人利用Na+冠醚对钌联吡啶电化学发光的增强作用,建立了检测Na+离子的电化学发光分析法[15]。Martin等人利用钌联吡啶与辅酶NADH以及酶反应的产物的电化学发光建立了测定葡萄糖、乙醇、二氧化碳、胆固醇和葡萄糖-6-磷酸脱氢酶的电化学发光分析法[16]。我们基于罗丹明B对亚硫酸根在铂电极上弱电化学发光的增敏作用,建立了测定亚硫酸氢钠的能量转移电化学发光新方法,并用于药物VK3和白糖中亚硫酸氢钠的测定[17]。电化学发光分析法已用于测定罂粟,含氨基的生物碱,海洛因,利格鲁卡因,蔗糖,果糖,甘露糖,甘油,柠檬酸,酒石酸,三甲胺,氨基酸,脯氨酸,4-羟基脯氨酸等物质。

四类电化学发光新物质性质及生物分析应用研究

四类电化学发光新物质性质及生物分析应用研究合成和研究高发光效率的电化学发光(electrogenerated chemiluminescence,ECL)新物质是开发有机电致发光器件和建立电化学发光生物传感分析体系的基础,具有重要的科学意义和实际的应用价值。对新型电化学发光物质的光学、电化学和电化学发光基本性质的研究,在筛选性能优良的电化学发光新物质、认识和揭示这些物质的效能与结构关系的规律性以及指导功能化的电化学发光物质的设计与合成等方面均具有重要的作用。本学位论文“四类电化学发光新物质性质及生物分析应用研究”,以本学院合成的3个系列的新型有机发光物质(有机多环芳烃,PAHs)和自主设计合成的金属配合物(环金属铱配合物)为物质基础,研究了系列物质在有机溶剂中的基本光物理性质,电化学和电化学发光性质,揭示了这些物质性质与结构的关系,发现了一些新现象并得到了合理的解释。使用所研究的环金属铱配合物作为电化学发光嵌入剂,基于杂交链反应信号放大技术,建立了免标记的电化学发光传感方法,实现了对micro-RNA高灵敏的检测。 本学位论文的成果,为开发有机发光器件和建立电化学发光生物传感分析体系提供了一些有潜在应用价值的新物质,为设计高发光效率的电化学发光物质提供了一些参考性资料,对电化学发光物质的筛选、电致发光器件的设计以及电化学发光生物分析研究的发展起到了积极的推动作用。本论文研究工作是在国家自然科学基金“电化学发光生物传感器一些基础问题的研究”(No.21475082)、“微流控双极性电极电化学发光生物传感新方法研究”(No.21275095)的资助下完成的。本论文共由5章组成。第1章为引言。 引言中详细介绍了电化学发光的基本理论,光物理、电化学和电化学发光性质的研究方法,典型的电化学发光物质和基本应用以及本论文的研究目的和研究内容。在第2章中,研究了系列新型液晶材料,苯并恶唑类衍生物 (5B-H,5B-Me,5B-C1和5B-NO2)在乙腈:苯(v:v=1:1)溶剂中的光学、电化学和电化学发光性质。该系列衍生物在苯并恶唑环的5位上分别被-CH3,-C1和-NO2取代,联苯的4位具有不同长度的烷氧基链(CnH2n+1,n = 2-10)。通过对电化学实验数据的模拟和分子密度泛函理论(DFT)的计算,确定了该物质的电化学氧化还原反应机理。

电化学发光测定原理

电化学发光免疫测定 电化学发光免疫测定 电化学发光反应:电化学发光(electro-chemiluminescence,ECL)是一种在电极表面由电化学引发的特异性化学发光反应,实际上包括了电化学和化学发光两个过程。化学发光剂三联吡啶钌[Ru(bpy)3]2+(图1)和电子供体三丙胺(TPA)在阳电极表面同时各失去一个电子发生氧化反应(图2)。二价的[Ru(bpy)3]2+被氧化成三价,后者是一种强氧化剂。TPA 被氧化成阳离子自由基TPA+*(参见图2),后者很不稳定,自发地失去一个质子(H+),形成自由基TPA*,这是一种非常强的还原剂。这两个高反应基团在电极表面迅速反应,三价的[Ru(bpy)3]3+被还原形成激发态的二价 [Ru(bpy)3]2+*,能量来源于[Ru(bpy)3]3+和TPA*之间存在的高电化学电位差。TPA*自身被氧化成二丙胺和丙醛。接着激发态的 [Ru(bpy)3]2+*衰减成基态的[Ru(bpy)3]2+,同时发射一个波长620nm的光子。这一过程在电极表面周而复始地进行,产生许多光子,使光信号得以增强。 图1 三联吡啶钌NHS Ru2+* -H+光子 TPA* Ru3+ Ru2+ TPA+* TPA + -e -e + 图2 在电极表面的ECL反应 Ru2+: [ Ru(bpy)3] 2+基态 Ru3+: [Ru(bpy)3]3+氧化态 Ru2+*: [Ru(bpy)3]2+* 激发态 二、电化学发光免疫测定 以三联吡啶钌作为标记物,标记抗原或抗体,通过免疫反应及ECL反应,即可进行电化学发光免疫测定(ECLIA)。在实际应用中则尚有特定的仪器和试剂。瑞士罗氏公司(ROCHE)的Elecsys ECLIA系统,综合了各种先进技术,具有独特的优越性,已在医学检验中取得广泛应用。 Elecsys全自动分析仪分成两个部分:在试管内化学反应部分和在流动池内的ECL反应部分。 (一)试管内的化学反应 1、试剂的组成 在Elecsys试剂的制备中,包括电化学发光剂的标记和抗原或抗体的固相化,应用了多种先进技术,简述如下: (1)电化学发光剂的标记 [Ru(bpy)3]2+需经化学修饰形成活化的衍生物后才能与抗体或抗原形成结合物。有多种活性基团可与[Ru(bpy)3]2+分子中的砒啶基反应。在Elecsys试剂中采用的是N羟基琥珀酰胺酯(NHS)(图1)。该衍生物具有水溶性,可与抗体、蛋白质抗原、半抗原、激素、核酸等各种分子结合形成稳定的标记物。而且[Ru(bpy)3]2+NHS分子量很小,与免疫球蛋白结合的分子比超过20仍不会影响抗体的可溶性和免疫活性。 (2)固相载体 Elecsys中采用的固相载体是带有磁性的直径约2.8μm的聚苯乙烯微粒。其特点是表面积极大,吸附效率高;在液体中形成均匀的悬液,参与反应时类似液相,反应速度快。由于带有磁性,在游离标记物与结合标记物分离时,只需用磁铁吸引,方便迅速。 (3)链霉亲和素与生物素系统的应用

电化学发光简介

1.1 电化学发光简介 近年来,电化学发光(ECL)作为一种高灵敏度和高选择性的分析方法已引起人们极大的究兴趣。电化学发光是指通过电化学方法来产生一些特殊的物质,然后这些电生的物质之间或电生物质与其它物质之间进一步反应而产生的一种发光现象。它是化学发光方法与电化学方法相互结合的产物。它保留了化学发光方法所具有的灵敏度高、线性范围宽、观察方便和仪器简单等优点;同时具有许多化学发光方法无法比拟的优点,如重现性好、试剂稳定、控制容易和一些试剂可以重复使用等优点,从而引起人们的注意。目前,ECL技术已广泛应用于免疫分析、核酸杂交分析和其他生化物质的测定,不仅大大推动了生物化学和分子生物学的研究,而且带来了临床诊断的又一次技术革命。 1.1.2 电化学发光反应原理 电化学发光分析是通过电极对含有化学发光物质的某化学体系施加一定的电化学信号(包括电压和电流),一直产生某种新物质,该物质能与体系中存在的化学物质反应或自身进行分解反应,反应不但提供足够的能量,而且还能产生合适的发光体并接受该反应的释放能量,形成激发态发光体,不稳定的激发态返回基态时便发出与该发光体性质相一致的发射光,用光电倍增管等普通光学手段测量发光光谱或发光强度从而对物质进行痕量分析。如果按激发态分子或离子产生的历程,可将电化学发光分为四种类型。[7-8] 1.1. 2.1 通过单重激发态途径的电化学发光(S-Route) 一般是在电极上施加一定的电压,是分子R在电压作用下氧化或还原产生R+或R-,然后,R+和R-互相反应产生单重激发态,激发态回到基态时发光。用方程式表示如下: R → R+ + e R + e → R- R- + R+→ 2R* R*→ R +hv 大多数芳香族化合物的电化学发光是按此机理进行。 1.1. 2.2 通过三重激发态途径的电化学发光(T-Route) 一般是在电极上施加一定的电压,使分子R在电压作用下氧化或还原产生R+或R-,然后,R+或R-互相反应产生三重激发态,激发态回到基态时发光,用方程式表示如下:

相关文档
最新文档