高中数学-含绝对值的不等式的解法教案

高中数学-含绝对值的不等式的解法教案
高中数学-含绝对值的不等式的解法教案

1 /

2 一.课题:含绝对值的不等式的解法

二.教学目标:掌握一些简单的含绝对值的不等式的解法.

三.教学重点:解含绝对值不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)

不等式(组),难点是含绝对值不等式与其它内容的综合问题及求解过程中,集合间

的交、并等各种运算.

四.教学过程:

(一)主要知识:

1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离

2.当0c >时,||ax b c ax b c +>?+>或ax b c +<-,||ax b c c ax b c +?∈,||ax b c x φ+

(二)主要方法:

1.解含绝对值的不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式(组)进行求解;

2.去掉绝对值的主要方法有:

(1)公式法:|| (0)x a a a x a <>?-<<,|| (0)x a a x a >>?>或x a <-.

(2)定义法:零点分段法;

(3)平方法:不等式两边都是非负时,两边同时平方.

(三)例题分析:

例1.解下列不等式:

(1)4|23|7x <-≤;(2)|2||1|x x -<+;(3)|21||2|4x x ++->.

解:(1)原不等式可化为4237x <-≤或7234x -≤-<-,∴原不等式解集为17[2,)(,5]22--U .

(2)原不等式可化为22(2)(1)x x -<+,即12x >,∴原不等式解集为1[,)2+∞. (3)当12x ≤-

时,原不等式可化为2124x x --+->,∴1x <-,此时1x <-; 当122

x -<<时,原不等式可化为2124x x ++->,∴1x >,此时12x <<; 当2x ≥时,原不等式可化为2124x x ++->,∴53

x >,此时2x ≥. 综上可得:原不等式的解集为(,1)(1,)-∞-+∞U .

例2.(1)对任意实数x ,|1||2|x x a ++->恒成立,则a 的取值范围是(,3)-∞;

(2)对任意实数x ,|1||3|x x a --+<恒成立,则a 的取值范围是(4,)+∞.

解:(1)可由绝对值的几何意义或|1||2|y x x =++-的图象或者绝对值不等式的性质|1||2||1||2||12|3x x x x x x ++-=++-≥++-=得|1||2|3x x ++-≥,∴3a <;

(2)与(1)同理可得|1||3|4x x --+≤,∴4a >.

例3.(《高考A 计划》考点3“智能训练第13题”)设0,0a b >>,解关于x 的不等式:|2|ax bx -≥.

解:原不等式可化为2ax bx -≥或2ax bx -≤-,即()2a b x -≥①或2()2a b x x a b

+≤?≤

+②,

2 / 2 当0a b >>时,由①得2x a b ≥-,∴此时,原不等式解为:2x a b ≥-或2x a b

≤+; 当0a b =>时,由①得x φ∈,∴此时,原不等式解为:2x a b

≤+; 当0a b <<时,由①得2x a b ≤-,∴此时,原不等式解为:2x a b

≤+. 综上可得,当0a b >>时,原不等式解集为22(,][,)a b a b

-∞+∞+-U , 当0a b <≤时,原不等式解集为2(,]a b

-∞+. 例4.已知{||23|}A x x a =-<,{|||10}B x x =≤,且A B ?≠,求实数a 的取值范围. 解:当0a ≤时,A φ=,此时满足题意;

当0a >时,33|23|22

a a x a x -+-

a a a -?≥-???≤?+?≤??, 综上可得,a 的取值范围为(,17]-∞.

例5.(《高考A 计划》考点3“智能训练第15题”)在一条公路上,每隔100km 有个仓库(如下图),共有5个仓库.一号仓库存有10t 货物,二号仓库存20t ,五号仓库存40t ,其余两个仓库是空的.现在想把所有的货物放在一个仓库里,如果每吨货物运输1km 需要0.5元运输费,那么最少要多少运费才行?

解:以一号仓库为原点建立坐标轴,

则五个点坐标分别为12345:0,:100,:200,:300,:400A A A A A ,

设货物集中于点:B x ,则所花的运费5||10|100|20|200|y x x x =+-+-,

当0100x ≤≤时,259000y x =-+,此时,当100x =时,min 6500y =;

当100400x <<时,57000y x =-+,此时,50006500y <<;

当400x ≥时,359000y x =-,此时,当400x =时,min 5000y =.

综上可得,当400x =时,min 5000y =,即将货物都运到五号仓库时,花费最少,为5000元.

(四)巩固练习:

1.|

|11x x x x >++的解集是(1,0)-;|23|3x x ->的解集是3(,)5

-∞; 2.不等式||1||||

a b a b +≥-成立的充要条件是||||a b >; 3.若关于x 的不等式|4||3|x x a -++<的解集不是空集,则a ∈(7,)+∞; 4.不等式22|2log |2|log |x x x x -<+成立,则x ∈(1,)+∞ .

五.课后作业:《高考A 计划》考点3,智能训练4,5,6,8,12,14.

中职数学含绝对值的不等式教案

含绝对值的不等式教案 一、条件分析 1.学情分析 本课是开学第一课,学生对上学期的知识已经比较陌生,而本课的内容要以上学期的不等式内容为基础,是不等式内容的提升,所以本课先复习上学期的内容,让学生顺利过渡到新知识中来。 2.教材分析 本节教材首先分别讨论含有绝对值的等式的三种情况,从而推导出含有绝对值的不等式的公式,然后例题加以巩固。由于我校学生基础薄弱,对于理论性的知识掌握不牢固,所以我们在教授的时候从简单的具体的例子推导含有绝对值的不等式的公式,由浅入深,层层递进,符合学生的认知。 二、三维目标 知识与技能目标 } A层: 1.理解绝对值的概念; 2.了解绝对值不等式的解法; 3.会解含有绝对值的不等式; 4.通过数轴解不等式培养学生的数形结合的数学思想; 5.通过研究含有绝对值不等式,培养分类讨论的思想方法,培养抽象概括能力和辩证思维能力. B层: 1.理解绝对值的概念; ? 2.了解绝对值不等式的解法; 3.会解含有绝对值的不等式; 4.通过数轴解不等式培养学生的数形结合的数学思想. C层:

1.理解绝对值的概念; 2.了解绝对值不等式的解法; 3.会解含有绝对值的不等式. 过程与方法目标 ( 复习法、讲授法、练习法、自讲法 情感态度与价值观目标 激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时培养辩证思维能力。 三、教学重点 含有绝对值不等式的解法 四、教学难点 将含有绝对值的不等式等价转化为不含绝对值的不等式 五、主要参考资料: ( 中等职业教育课程教材数学基础模块(上)、学生学习指导用书、教学参考书。 六、教学进程: 1.复习导入 绝对值的含义 在数轴上,一个数到原点的距离叫做该数的绝对值.如:5指在数轴上表示数5的点与原点的距离,这个距离是5,所以5的绝对值是5,-5的绝对值是5。 正数的绝对值是它本身。负数的绝对值是它的相反数。0的绝对值还是0。 2.讲授新课 (1)求下列各数的绝对值 ¥ 3、- 4、1 2、1- 2

含绝对值的不等式解法练习题及答案

含绝对值的不等式解法练习题及答案 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

例1 不等式|8-3x|>0的解集是 [ ]答选C. 例2 绝对值大于2且不大于5的最小整数是 [ ] A.3 B.2 C.-2 D.-5 分析列出不等式. 解根据题意得2<|x|≤5. 从而-5≤x<-2或2<x≤5,其中最小整数为-5, 答选D. 例3不等式4<|1-3x|≤7的解集为________. 分析利用所学知识对不等式实施同解变形. 解原不等式可化为4<|3x-1|≤7,即4<3x-1≤7或-7例4已知集合A={x|2<|6-2x|<5,x∈N},求A. 分析转化为解绝对值不等式. 解∵2<|6-2x|<5可化为 2<|2x-6|<5 因为x∈N,所以A={0,1,5}. 说明:注意元素的限制条件.

例5 实数a,b满足ab<0,那么 [ ] A.|a-b|<|a|+|b| B.|a+b|>|a-b| C.|a+b|<|a-b| D.|a-b|<||a|+|b|| 分析根据符号法则及绝对值的意义. 解∵a、b异号, ∴ |a+b|<|a-b|. 答选C. 例6 设不等式|x-a|<b的解集为{x|-1<x<2},则a,b 的值为 [ ] A.a=1,b=3 B.a=-1,b=3 C.a=-1,b=-3 分析解不等式后比较区间的端点. 解由题意知,b>0,原不等式的解集为{x|a-b<x<a+b},由于解集又为{x|-1<x<2}所以比较可得. 答选D. 说明:本题实际上是利用端点的位置关系构造新不等式组.例7 解关于x的不等式|2x-1|<2m-1(m∈R)

绝对值不等式教学设计

含有绝对值的不等式 教学目标 (1)掌握绝对值不等式的基本性质,在学会一般不等式的证明的基础上,学会含有绝对值符号的不等式的证明方法; (2)通过含有绝对值符号的不等式的证明,进一步巩固不等式的证明中的由因导果、执要溯因等数学思想方法; (3)通过证明方法的探求,培养学生勤于思考,全面思考方法; (4)通过含有绝对值符号的不等式的证明,可培养学生辩证思维的方法和能力,以及严谨的治学精神。 教学建议 一、知识结构 二、重点、难点分析 ①本节重点是性质定理及推论的证明.一个定理、公式的运用固然重要,但更重要的是要充分挖掘吸收定理公式推导过程中所蕴含的数学思想与方法,通过证明过程的探求,使学生理清思考脉络,培养学生勤于动脑、勇于探索的精神. ②教学难点一是性质定理的推导与运用;一是证明含有绝对值的不等式的方法选择.在推导定理中进行的恒等变换与不等变换,相对学生的思维水平是有一定难度的;证明含有绝对值的不等式的方法不外是比较法、分析法、综合法以及简单的放缩变换,根据要证明的不等式选择适当的证明方法是无疑学生学习上的难点. 三、教学建议

(1)本节内容分为两课时,第一课时为含有绝对值的不等式性质定理的证明及简单运用,第二课时为含有绝对值的不等式的证明举例. (2)课前复习应充分.建议复习:当时 ; ; 以及绝对值的性质: ,为证明例1做准备. (3)可先不给出含有绝对值的不等式性质定理,提出问题让学生研究:是否等于? 大小关系如何?是否等于?等等.提示学生用一些数代入计算、比较,以便归纳猜想一般结论. (4)不等式的证明方法较多,也应放手让学生去探讨. (5)用向量加减法的三角形法则记忆不等式及推论. (6)本节教学既要突出教师的主导作用,又要强调学生的主体作用,课上尽量让全体学生参与讨论,由基础较差的学生提出猜想,由基础较好的学生帮助证明,培养学生的团结协作的团队精神. 教学设计示例 含有绝对值的不等式 教学目标 理解及其两个推论,并能应用它证明简单含有绝对值不等式的证明问题。 教学重点难点

高考含绝对值不等式的解法

高考中常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当0>a 时, a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2、当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3、当0a x f )(使)(x f y =成立的x 的解集. 例1 (2008年四川高考文科卷)不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解: 因为 22<-x x ,

所以 222<-<-x x . 即 ?????<-->+-0 20222x x x x , 解得: ? ??<<-∈21x R x , 所以 )2,1(-∈x ,故选A. 类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 (2004年高考全国卷)不等式311<+

含绝对值的不等式-公开课教案

含绝对值的不等式 教学目标 1.认知目标 (1)掌握|x|a(a>0)型的绝对值不等式的解法; (2)理解掌握绝对值的意义和利用数轴表示含绝对值的不等式的解集 2.能力目标 (1)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力; (2)通过将含绝对值的不等式同解变形为不含绝对值的不等式,培养学生化归的思想和转化的能力; (3)采用分析与综合的方法,培养学生逻辑思维能力; (4)通过学生练习和老师点拨,培养学生的运算能力 3.情感目标 培养学生的学习兴趣和端正的学习态度,让学生理解学习数学的重要性 4.德育教育 我们为什么而读书 教学重点:|x|a(a>0)型的不等式的解法; 教学难点:利用绝对值的意义分析、解决问题.

教学过程设计 教师活动学生活动设计意图 一、导入新课 【提问】正数的绝对值什么?负数的绝对值是什么?零的绝对值是什么?举例说明? 口答 a (a>0) |a|= 0 (a=0) -a (a<0) 绝对值的概念是解|x|>a与 |x|0)型绝对值不等 式的基础,为解这种类型的 绝对值不等式做好铺垫. 二、新课 【导入】2的绝对值等于几?-2的绝对值等于几?绝对值等于2的数有哪些?在数轴上表示出来. 【讲述】求绝对值等于2的数可以用方程|x|=2来表示,这样的方程叫做绝对值方程.显然,它有两个解一个是2,另一个是-2. 【绝对值的意义】在数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值. 【提问】如何解绝对值方程. 【设问】 1 解绝对值不等式|x|<2,并用数轴表示它的解集。 2 解绝对值不等式|x|>2,并用数轴表示它的解集。 【讲述】根据绝对值的意义,由右面的数轴可以看出,不等式|x|<2的解集就是表示数轴上到原点的距离小于2的点的集合;不等式|x|>2的解集就是表示数轴上到原点的距离大于2的点的集合。【巩固旧知识】 1.数轴的含义和几何意义 学生口答 归纳:数轴是一条规定了 原点、方向和单位长度的直 线。原点、方向和单位长度称 为数轴的三要素。 【笔答并点拨】 注意观察数轴上所表示的 集合,理解和区分两种情况 根据绝对值的意义自然引出 绝对值方程|x|=a(a>0)的 解法. 由浅入深,循序渐进,在 |x|=a(a>0)型绝对值方程 的基础上引出|x|0)型 绝对值方程的解法. 针对解|x|>a(a>0)绝对值不 等式学生常出现的情况,运 用数轴质疑、解惑. 落实会正确解出|x|0) 与|x|>a(a>0)绝对值不等式 的教学目标.

绝对值不等式的解法教学设计教学内容

绝对值不等式的解法 教学设计

《绝对值不等式的解法》教学设计 富源四中朱树平 课题:绝对值不等式的解法 科目数学教学对象学生课 时 1 提供者朱树平单位富源四中 一、教学目标 熟练掌握含一个或两个绝对值不等式的解法,会用函数的思想来解决不等式的相关问题.培养学生观察、分析、解决问题的能力 二、教学内容及模块整体分析 含一个或两个绝对值不等式的解法,零点分段法解绝对值不等式,函数思想的应用。 三、学情分析 学生基础差,少讲多练,以基础题为主。 四、教学策略选择与设计 讲练结合,多媒体展现。 五、教学重点及难点 熟练掌握含一个或两个绝对值不等式的解法,会用函数的思想来解决不等式的相关问题. 六、教学过程 教师活动学生活动设计意图 提问的方式总结前面学过的知识问题: 你能一眼看出下面两个不等式的解集吗? ⑴1 x< ⑵ 1 x> 让学生熟练 掌握 一般地,可得解集规律: 形如|x|a (a>0)的含绝对值的不等式的解集: 不等式|x|a的解集为 {x|x<-a或x>a } 课堂练习一: 试解下列不等式: 熟练地掌握 方法 (1)|32|7 x -≥ 仅供学习与交流,如有侵权请联系网站删除谢谢2

注:如果0 a≤,不等式的解集易得. 利用这个规律可以解一些含有绝对值的不等式. 解绝对值不等式的思路是转化为等价的不含绝对值符号的不等式(组),根据式子的特点可用下列解法公式进行转化:⑴()()() f x a a f x a f x a (0) >>?><- 或; ⑵()() (0) f x a a a f x a <>?-<<; ⑶()()() f x g x f x g x f x g x ()()() >?><- 或; ⑷()() ()()() f x g x g x f x g x ?> ???? 更熟练的掌 握一般情况 试解不等式 |x-1|+|x+2|≥5 利用|x-1|=0,|x+2|=0的零 点,将数轴分为三个区间, 然后在这三个区间上将原不 等式分别化为不含绝对值符 号的不等式求解.体现了分 类讨论的思想. {} 23 ≥≤ x x x- 或熟练掌握零点分段法在解不等式中的应用。 学习小结: 解绝对值不等式的基本思路是去绝对值符号转化为一般不等式来处理。 主要方法有: 1、同解变形法:运用解法公式直接转化; 2、分类讨论去绝对值符1、解不等式|2x-4|-|3x+9|<1 2、对任意实数x,若不等式|x+1|-|x-2|>k 恒成立,则k的取值范围是() ()3 A k<()3 B k<-()3 C k≤()3 D k- ≤ 3.不等式有解的条件是 2 (2)|3|4 x x -< (3)|32|1 x-> 43 x x a -+-< 仅供学习与交流,如有侵权请联系网站删除谢谢3

含绝对值的不等式解法·典型例题

含绝对值的不等式解法·典型例题 能力素质 例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 }...≠.? 83 分析∵->,∴-≠,即≠. |83x|083x 0x 83 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为-≤<-或<≤.3x 14x 2x 1{x|2x 1x }53835383 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-, 52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4???

解之得<<或<<.4x x 211212 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件. 例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=1232 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2 a b -=-+=,解之得=,=.???1232 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 112 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 12 x <m .

最新绝对值不等式的解法教学设计

《绝对值不等式的解法》教学设计 富源四中朱树平 课题:绝对值不等式的解法 科目数学教学对象学生课 时 1 提供者朱树平单位富源四中 一、教学目标 熟练掌握含一个或两个绝对值不等式的解法,会用函数的思想来解决不等式的相关问题.培养学生观察、分析、解决问题的能力 二、教学内容及模块整体分析 含一个或两个绝对值不等式的解法,零点分段法解绝对值不等式,函数思想的应用。 三、学情分析 学生基础差,少讲多练,以基础题为主。 四、教学策略选择与设计 讲练结合,多媒体展现。 五、教学重点及难点 熟练掌握含一个或两个绝对值不等式的解法,会用函数的思想来解决不等式的相关问题. 六、教学过程 教师活动学生活动设计意图 提问的方式总结前面学过的知识问题: 你能一眼看出下面两个不等式的解集吗? ⑴1 x< ⑵ 1 x> 让学生熟练掌 握 一般地,可得解集规律: 形如|x|a (a>0)的含绝对值的不等式的解集: 不等式|x|a的解集为{x|x<-a或课堂练习一: 试解下列不等式: 熟练地掌握方 法 (1)|32|7 x -≥

x>a } 注:如果0 a≤,不等式的解集易得. 利用这个规律可以解一些含有绝对值的不等式. 解绝对值不等式的思路是转化为等价的不含绝对值符号的不等式(组),根据式子的特点可用下列解法公式进行转化:⑴()()() f x a a f x a f x a (0) >>?><- 或; ⑵()() (0) f x a a a f x a <>?-<<; ⑶()()() f x g x f x g x f x g x ()()() >?><- 或; ⑷()() ()()() f x g x g x f x g x ?> ???? 更熟练的掌握 一般情况 试解不等式 |x-1|+|x+2|≥5 利用|x-1|=0,|x+2|=0的零点, 将数轴分为三个区间,然后在这 三个区间上将原不等式分别化为 不含绝对值符号的不等式求 解.体现了分类讨论的思想. {} 23 ≥≤ x x x- 或熟练掌握零点分段法在解不等式中的应用。 2 (2)|3|4 x x -< (3)|32|1 x->

解绝对值不等式的解法

解绝对值不等式题型探讨 题型一 解不等式2|55|1x x -+<. [题型1]解不等式2|55|1x x -+<. [思路]利用|f(x)|0) -a-??求解。 [解题]原不等式等价于21551x x -<-+<, 即22551(1)551 (2)x x x x ?-+-?? 由(1)得:14x <<;由(2)得:2x <或3x >, 所以,原不等式的解集为{|12x x <<或34}x <<. [收获]1)一元一次不等式、一元二次不等式的解法是我们解不等式的基础,无论是解高次不等式、绝对值不等式还是解无理根式不等式,最终是通过代数变形后,转化为一元一次不等式、一元二次不等式组来求解。 2)本题也可用数形结合法来求解。在同一坐标系中画出函数2551y x x y =-+=与的 [变题1]解下列不等式:(1)|x +1|>2-x ;(2)|2x -2x -6|<3x [思路]利用|f(x)|g(x) f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。 解:(1)原不等式等价于x +1>2-x 或x +1<-(2-x ) 解得x >12或无解,所以原不等式的解集是{x |x >1 2 } (2)原不等式等价于-3x <2x -2x -6<3x 即22 2226360(3)(2)032(1)(6)0 16263560x x x x x x x x x x x x x x x x x ??-->-+->+-><->???????????+-<-<<--<--()g x 型不等式 这类不等式的简捷解法是等价命题法,即: ①|()f x |<()g x ?-()g x <()f x <()g x ②|()f x |>()g x ?()f x >()g x 或()f x <-()g x [请你试试4—1] ???

汇总不等式与绝对值不等式教案.doc

第三十一讲 含绝对值的不等式 回归课本 1.绝对值不等式的性质:(a ∈R ) (1)|a |≥0(当且仅当a =0时取“=”); (2)|a |≥±a ; (3)-|a |≤a ≤|a |; (4)|a 2|=|a |2=a 2; (5)|ab |=|a ||b |,|a b |=|a ||b | . 2.两数和差的绝对值的性质: |a |-|b |≤|a ±b |≤|a |+|b |. 特别注意此式,它是和差的绝对值与绝对值的和差性质.应用此式求某些函数的最值时一定要注意等号成立的条件. |a +b |=|a |+|b |?ab ≥0; |a -b |=|a |+|b |?ab ≤0; |a |-|b |=|a +b |?(a +b )b ≤0; |a |-|b |=|a -b |?(a -b )b ≥0. 3.解含绝对值不等式的思路:化去绝对值符号,转化为不含绝对值的不等式.解法如下: (1)|f (x )|<a (a >0)?-a <f (x )<a ; (2)|f (x )|>a (a >0)?f (x )<-a 或f (x )>a ; (3)|f (x )|<g (x )?-g (x )<f (x )<g (x ); (4)|f (x )|>g (x )?f (x )<-g (x )或f (x )>g (x ); (5)|f (x )|<|g (x )|?[f (x )]2<[g (x )]2. (6)含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|x -a |+|x -b |>m 或|x -a |+|x -b |<m (m 为正常数)的不等式,利用实数绝对值的几何意义求解较简便. 考点陪练 1.设ab >0,下面四个不等式中,正确的是( ) ①|a +b |>|a |;②|a +b |<|b |;③|a +b |<|a -b |; ④|a +b |>|a |-|b |.

含绝对值不等式的解法(含答案)

含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与 c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{ } c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{}c b ax c x <+<-; 当0+的解集是{}R x x ∈ 不等式c bx a <+的解集是?; 例1 解不等式32<-x 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{} 51<<-x x 。(解略) (二)、定义法:即利用(0),0(0),(0).a a a a a a >??==??-++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。 解:原不等式等价于 2 x x +<0?x(x+2)<0?-2<x <0。

含绝对值不等式优秀教案

【课题】2.4含绝对值的不等式 【教学目标】 知识目标: (1) 理解含绝对值不等式x a <或x a >的解法; (2)了解ax b c +<或ax b c +>的解法. 能力目标:培养学生观察、分析、归纳、概括的能力,以及逻辑推理能力,考察学生思维的积极性和全面性,领悟分类讨论、化归和数形结合的数学思想方法,培养数学理解力,化归能力及运算能力,初步学会用数学思想指导数学思维。 情感目标:激发学生学习兴趣,鼓励学生大胆探索,向学生渗透“具体-抽象-具体”、“未知-已知-未知”的辩证唯物主义的认识论观点,使学生形成良好的个性品质和学习习惯。 【教学重点】 (1)不等式x a <或x a >的解法 . (2)利用变量替换解不等式ax b c +<或ax b c +>. 【教学难点】 利用变量替换解不等式ax b c +<或ax b c +>. 教学方法:主要采取启导式教学,通过对初中不等式知识及绝对值的含义和几何意义等相关知识的学习引入,在教师指导下由实例引出解绝对值不等式的实际意义,导出解决含绝对值不等式的解法这一研究主题。 【教学设计】 (1) 从数形结合的认识绝对值入手,有助于学生对知识的理解; (2) 观察图形得到不等式x a <或x a >的解集; (3) 运用变量替换,化繁为简,培养学生的思维能力; (4) 加强解题实践,讨论、探究,培养学生分析与解决问题的能力,培养团队精神. 【教学备品】 教学课件. 【课时安排】 1-2课时.(80分钟) 【安全教育:清点人数】

(2,)+∞(如图( 明确新知 (),a +∞.a (0a >)的解集.(2) (1)

绝对值方程与绝对值不等式教案

一、复习铺垫 1、绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即 ,0, ||0,0,,0.a a a a a a >??==??-

说明 若在x 的某个范围内求解方程时,若求出的未知数的值不属于此范围内,则这样的解不是方程的解,应舍去. 练1.解下列方程:|x+3|-|x -1|=x+1; 例2 解不等式:13x x -+->4. 解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①若1, 即24x -+>4,解得x <0, 又x <1, ∴x <0; ②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4, ∴不存在满足条件的x ; ③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又x ≥3,∴x >4. 综上所述,原不等式的解为 x <0,或x >4. 解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|PA |,即|PA |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|. 所以,不等式13x x -+->4的几何意 义即为 |PA |+|PB |>4. 由|AB |=2,可知 点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧. x <0,或x >4. 练2. |x+1|+|4-x |<6; 三、巩固练习 1.填空: (1)若5=x ,则x =_________;若4-=x ,则x =_________. (2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________. 2.选择题: 下列叙述正确的是( ) (A )若a b =,则a b = (B )若a b >,则a b > 1 3 A x 4 C x |x -1| |x -3| 图1.1-1

含绝对值的不等式解法练习题及答案

例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 } ...≠.?8 3 分析∵->,∴-≠,即≠. |83x|083x 0x 8 3 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 \ 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为 -≤<-或<≤. 3x 14x 2x 1{x|2x 1x }538 3 538 3 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. ' 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-,52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4??? 解之得<< 或<<.4x x 21121 2 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件.

例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| · B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 : B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=123 2 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2a b -=-+=,解之得=,=.?? ? 123 2 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 、 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 11 2 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 1 2 x <m . 综上所述得:当≤时原不等式解集为; 当>时,原不等式的解集为 m m 1 2 1 2 ? {x|1-m <x <m}. 说明:分类讨论时要预先确定分类的标准.

2021届高考数学复习教学案:绝对值不等式的解法 (1)

课题:1.4绝对值不等式的解法(2) 教学目的: (1)巩固c b ax <+与)0(>>+c c b ax 型不等式的解法,并能熟练地应用它解决问题;掌握分类讨论的方法解决含多个绝对值的不等式以及含参数的不等式; (2)培养数形结合的能力,分类讨论的思想,培养通过换元转化的思想方法,培养抽象思维的能力; (3)激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩 证思想 教学重点:分类讨论的方法解决含多个绝对值的不等式以及含参数的不等式 教学难点:如何正确分类与分段,简单的参数问题 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析:(略) 教学过程: 一、复习引入: a x <与)0(>>a a x 型不等式c b ax <+与)0(>>+ c c b ax 型不等式的解法与解集 不等式)0(>>a a x 的解集是{}a x a x x -<>或, 不等式)0(><+c c b ax 的解集为 {})0(|><+<-c c b ax c x ; 不等式)0(>>+c c b ax 的解集为 {})0(,|>>+-<+c c b ax c b ax x 或 二、讲解范例: 例1 解不等式 1≤ | 2x-1 | < 5. 分析:怎么转化?怎么去掉绝对值? 方法:原不等式等价于???≥-<-1 |12|5|12|x x ??? ???≥-->-<-112512512x x x ① 或 ?????-≤-->-<-112512512x x x ② 解①得:1≤x<3 ; 解②得:-2< x ≤0. ∴原不等式的解集为 {x | -2< x ≤0或1≤x<3} 方法2:原不等式等价于 1≤2x-1<5或 –5<2x-1≤ -1

解绝对值不等式的方法总结

解绝对值不等式题根探讨 题根四 解不等式2|55|1x x -+<. [题根4]解不等式2 |55|1x x -+<. [思路]利用|f(x)|0) ?-a-??求解。 [解题]原不等式等价于21551x x -<-+<, 即2 2 551(1)551 (2) x x x x ?-+-?? 由(1)得:14x <<;由(2)得:2x <或3x >,所以,原不等式的解集为{|12x x <<或34}x <<. [收获]1)一元一次不等式、一元二次不等式的解法是我们解不等式的基础,无论是解高次不等式、绝对值不等式还是解无理根式不等式,最终是通过代数变形后,转化为一元一次不等式、一元二次不等式组来求解。 2)本题也可用数形结合法来求解。在同一坐标系中画出函数2551y x x y =-+=与的的图象,解方程 2551x x -+=,再对照图形写出此不等式的解集。 第1变 右边的常数变代数式 [变题1]解下列不等式:(1)|x +1|>2-x ;(2)|2x -2x -6|<3x [思路]利用|f(x)|g(x) ?f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。 解:(1)原不等式等价于x +1>2-x 或x +1<-(2-x ) 解得x > 12或无解,所以原不等式的解集是{x |x >12 } (2)原不等式等价于-3x <2x -2x -6<3x 即22 2 226360(3)(2)032(1)(6)016263560x x x x x x x x x x x x x x x x x ??-->-+->+-><->???????????+-<-<<--<--()g x 型不等式 这类不等式的简捷解法是等价命题法,即: ①|()f x |<()g x ?-()g x <()f x <()g x ②|()f x |>()g x ?()f x >()g x 或()f x <-()g x

含绝对值不等式的解法(含答案)

含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2 x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是{} a x a x <<-; 当0的解集是{} R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{} c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{} c b ax c x <+<-; 当0+的解集是{} R x x ∈ 不等式c bx a <+的解集是?; 例1 解不等式32<-x 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{} 51<<-x x 。(解略)

(二)、定义法:即利用(0),0(0),(0).a a a a a a >?? ==??-++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。 解:原不等式等价于2 x x +<0?x(x+2)<0?-2<x <0。 (三)、平方法:解()()f x g x >型不等式。 例3、解不等式123x x ->-。 解:原不等式?22(1)(23)x x ->-?22(23)(1)0x x ---< ?(2x-3+x-1)(2x-3-x+1)<0?(3x-4)(x-2)<0 ? 4 23 x <<。 说明:求解中以平方后移项再用平方差公式分解因式为宜。 二、分类讨论法:即通过合理分类去绝对值后再求解。 例4 解不等式125x x -++<。 分析:由01=-x ,02=+x ,得1=x 和2=x 。2-和1把实数集合分成三个区间,即2-x ,按这三个区间可去绝对值,故可按这三个区间讨论。 解:当x <-2时,得2 (1)(2)5x x x <-??---+x 时,得1, (1)(2) 5.x x x >??-++

含绝对值的不等式解法教案

含绝对值的不等式解法 数学与信息学院06级11班彭春华200608121107 一.教学目标 (一)知识目标 (1)理解绝对值的意义; (2)掌握︱x︱>a和︱x︱<a两种基本的含绝对值的不等式的解法; (3)明确用代换的方式解形如︱a x+b︱>k和︱a x+b︱<k 的含绝对值的不等式(二)能力目标 (1)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力; (2)通过将含绝对值的不等式同解变化为不含绝对值的不等式,培养学生的划归思想和转化能力 (三)德育目标 (1)激发学生学习的内在动机; (2)养成良好的学习习惯 二.教学的重,难点及教学方法 (一)教学重点:简单的︱x︱>a和︱x︱<a 的两种基本的含绝对值的不等式的解法(二)教学难点:利用对绝对值意义的理解和分析,解决实际问题 (三)教学方法:独立探究,合作交流与教师引导相结合 三.教具准备 直尺、彩色粉笔 四.教学过程 (一)温故知新,引入课题(预计5分钟) 1.问题情景 师:上课之前,想请同学们帮老师一个忙。问题是这样的:按照商品质量规定,商店出售的标明500ɡ的袋装食盐,其实际数与所标数相差不能超过5ɡ,那么我要怎样才能知道食盐是符合标准要求的?你能用数学知识来解决这样一个实际问题吗?(在黑板上简单的书写题意) 2.学生根据已有的生活经验和数学知识独立探究,教师巡视,进行个别指导 3.合作讨论,交流探究结果(请一位同学将大家的探究认可的结果写在黑板上) 设食盐的实际重量为xɡ,则有 x-500≤5 500-x≤5 4.引导学生,和学生一起求解 师:这是一个一元一次不等式组,要怎样求解它?首先,请大家和我一起回忆一下不等式的基本性质。那就是已知a>b,则不等式两边同时加上一个数,不等式不变号 已知a>b,则不等式两边同时乘以一个大于零的数c,不等式不变号 已知a>b,则不等式两边同时乘以一个小于零的数c,不等式要变号

高一数学含绝对值不等式的解法练习题

含绝对值的不等式解法 一、选择题 1.已知a <-6,化简26a -得() +6 2.不等式|8-3x |≤0的解集是() A. C.{(1,-1)} D.? ?????38 3.绝对值大于2且不大于5的最小整数是() 4.设A ={x ||x -2|<3},B ={x ||x -1|≥1},则A ∩B 等于() A.{x |-1<x <5} B.{x |x ≤0或x ≥2} C.{x |-1<x ≤0} D.{x |-1<x ≤0或2≤x <5} 5.设集合}110 {-≤≤-∈=x Z x x A 且,}5 {≤∈=x Z x x B 且,则B A Y 中的元素个数是() 6.已知集合M ={R x x x y y ∈-+=,322},集合N ={y ︱32≤-y },则M ∩N () A.{4-≥y y }B.{51≤≤-y y }C.{14-≤≤-y y }D. 7.语句3≤x 或5>x 的否定是() 53<≥x x 或53≤>x x 或53<≥x x 且53≤>x x 且二、填空题 1.不等式|x +2|<3的解集是,不等式|2x -1|≥3的解集是. 2.不等式12 11<- x 的解集是_________________. 三、解答题 1.解不等式1.02122<--x x 2.解不等式x 2-2|x |-3>0 3.已知全集U =R ,A ={x |x 2-2x -8>0},B ={x ||x +3|<2},求: (1)A ∪B ,C u (A ∪B )(2)C u A ,C u B ,(C u A )∩(C u B ) 4.解不等式3≤|x -2|<97.解不等式|3x -4|>1+2x . 5.画出函数|21|x-||x y ++=的图象,并解不等式|x +1|+|x -2|<4.

相关文档
最新文档