基于变阶次分段曲线拟合的MTPA控制

基于变阶次分段曲线拟合的MTPA控制
基于变阶次分段曲线拟合的MTPA控制

样条曲线的使用方法完整版

样条曲线的使用方法 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

创建高级曲线 曲线作为构建三维模型的基础,在三维建模过程中有着不可替代的作用,尤其是在创建高级曲面时,使用基本曲线构造远远达不到设计要求,不能构建出高质量、高难度的三维模型,此时就要利用UG NX中提供的高级曲线来作为建模基础,具体包括样条曲线、双曲线、抛物线、螺旋线等。 样条曲线是指通过多项式曲线和所设定的点来拟台曲线,其形状由这些点来控制。样条曲线采用的是近似的创建方法,很好地满足了设计的需求,是一种用途广泛的曲线。它不仅能够创建自由曲线和曲面,而且还能精确表达圆锥曲面在内的各种几何体的统表达式。在UG NX中,样条曲线包括般样条曲线和艺术样条曲线两种类型。 1.创建一般样条曲线 一般样条曲线是建立自由形状曲面(或片体)的基础。它拟合逼真、彤状控制方便,能够满足很人一部分产品设计的要求。一般样条曲线主要用来创建高级曲面,广泛应用于汽车、航空以及船舶等制造业。在“曲线”工具栏中单击“样条”按钮~,打开“样条”对话框,如图5-30所示。在该对话框中提供了以下4种生成一般样条曲线的方式。 ■根据极点 该选项是利用极点建立样条曲线,即用选定点建立的控制多边形来控制样条的形状,建立的样条只通过两个端点,不通过中问的控制点。 选择“根据极点”选项,在打开的对话框中选择生成曲线的类型为“多段”,并在“曲线阶次”文本框中输入曲线的阶次,然后根据“点”对话框在绘图区指定点使其生成样条曲线,最后单击“确定”按钮,生成的样条曲线如图5-31所示。

样条插值和曲线拟合

第三章 样条插值和曲线拟合 1.x y = 有如下的函数表 8。 解 先作差商表 4 167 1210 13 9 3 42015 11008 16012 4 60 13 1611 1 10 0-?- -- 故:8.2)48(5 1 2)8(1=-+=p 819047619.2) 98)(48(210 1 )48(512)8(2=----+=p 844444.2)98)(48)(18(3 4201) 48)(18(601 )18(311)8(3=---?+----+=p 6222.2)1(4781008 1478601) 18(86 1 )08(10)8(4=-???-??+---?+=p 已知 828427.28=,因此选定 )8(,16,9,42321p x x x ===最接近8。 利用Neville 方法得: xi 8-xi f(xi) 2.8284271 8 0 8 1 7 1 -1.33333333 3.3333333 2.4 4 4 2 2.866666667 2.6222222 2.8 2.8444444 9 -1 3 2.819047619 2.8571429 16 -8 4 f(8)= 2.828427125 xi 8-xi f(xi) 8 0 8 1 7 1 -1 1/3 3 1/3 2 2/5 4 4 2 2 13/15 2 28/45 2 4/5 2 38/45 9 -1 3 2 86/105 2 6/7 16 -8 4 已知 828427.28=,故选定)8(,16,9,42321 p x x x ====2.819047619最接近8.

一种分段曲线拟合方法研究

一种分段曲线拟合方法研究 摘要:分段曲线拟合是一种常用的数据处理方法,但在分段点处往往不能满足连续与光滑.针对这一问题,本文给出了一种能使分段点处连续的方法.该方法首先利用分段曲线拟合对数据进行处理;然后在相邻两段曲线采用两点三次Hermite插值的方法,构造一条连结两条分段曲线的插值曲线,从而使分段点处满足一阶连续.最后通过几个实例表明该方法简单、实用、效果较好. 关键词:分段曲线拟合Hermite插值分段点连续 Study on A Method of Sub-Curve Fitting Abstract:Sub-curve fitting is a commonly used processing method of data, but at sub-points it often does not meet the continuation and smooth, in allusion to to solve this problem, this paper presents a way for making sub-point method continuous. Firstly, this method of sub-curve fitting deals with the data; and then uses the way of t wo points’ cubic Hermite interpolation in the adjacent, structures a interpolation curve that links the two sub-curves, so the sub-point meets first-order continuation; lastly, gives several examples shows that this method is simple, practical and effective. Key words:sub-curve fitting Hermite interpolation sub-point continuous

三次样条插值在工程拟合中的应用

三次样条插值在工程拟合中的应用 摘要: 介绍了工程实验、勘测、设计中常见的列表函数之数值插值方法、程序实现及工程应用, 应用此法可方便地将任何列表函数计算到工程设计、施工所需要的精确程度, 给 出了各参数随主要参数变化而变化的光滑曲线, 并将其应用推广到一般情况. 关键词: 列表函数; 数值拟合; 三次样条插值; MA TLAB 程序设计与应用 在实际工程中, 广泛存在这样的问题: 根据设计要求和具体的工程条件, 在初始设计阶段会勘测得到若干组该工程的控制参数, 但这些参数之间彼此离散、不够密集, 利用它们来施工则不能满足施工的精度要求. 为了解决这一问题, 需要对已知的参数数据进行分析处理, 进行必要的插值、拟合, 以达到施工所需要的数据精度.本文以工程实例为基础, 对实际工程中插值方法的选取、插值的实现和插值曲线的拟合加以讨论, 提出能得到较合乎实际的插值方法, 给出一般工程人员就能实现的计算方法以及能得到光滑曲线的拟合方法. 1 工程应用实例 表1 所示的为某双曲拱坝体形原始参数[ 1 对于这一类工程列表参数有一个显著的特点:尽管不同工程的参数多寡不同, 但都是由n 行k 列的离散的列表数据给出, 虽然同一行代表某工程特定位置的几个参数(或高程参数, 或上游 半径参数?) , 但相邻两行由于位置距离太大, 两行各参数之间究竟存在什么数值关系, 对工 程设计、施工有何影响, 这是工程技术人员需要弄清楚的[ 2 ].以双曲拱坝为例, 它沿整个高程的变化是一个连续光滑的空间曲面. 从施工需要来看, 这些数据太稀疏, 难以满足设计、施工放样与钢筋配置等要求, 如果照此施工, 则有可能达不到工程精度、降低工程效率; 从计算机图形模拟来看, 要生成这个曲面仅由这一列表函数是得不到光滑曲面的, 是不可取的. 所以, 为使计算精确, 满足工程施工过程中任何断面位置、任意水平位置、任意高程位置所必需的施工数据与设计图纸, 保证工程施工的高品质,就要求作精确的数据处理.进一步分析可知, 在这 些参数表中, 各行的参数都随某一主要参数的变化而变化, 如上游半径参数随高程的变化而变化?, 它们的这种函数关系,在数值分析中有许多的方法可以求得. 但是哪种方法能更好、更合 乎实际地给出平滑曲线呢? 下面所选的插值方法能够较好地满足这一要求.

Bezier曲线和BSpline曲线拟合问题

. .. Bzeier曲线和BSpline曲线的插值拟合问题 目录 一、问题重述 (1) 二、Bezier曲线的插值和拟合 (1) 2.1 Bezier曲线的定义 (1) 2.2 Bezier曲线的性质 (2) 2.3 三次Bezier曲线的插值 (2) 2.3.1 工程应用中常用的三次Bezier插值的算法 (2) 2.3.2 改进的三次Bezier插值的算法 (3) 2.3.3 两种Bezier插值的算法比较 (4) 2.4 Bezier曲线的拟合 (4) 三、BSpline曲线的插值和拟合 (4) 3.1 BSpline曲线的定义 (4) 3.2 B样条性质 (5) 3.3 均匀B样条 (5) 3.4 三次B样条插值算法 (6) 3.4 结合实际情况的三次样条插值算法改进 (7) 3.5 两种BSpline插值的比较 (8) 四、Bezier曲线与BSpline曲线的区别和联系 (8) 五、上述算法在实际血管提取中的应用 (9)

一、问题重述 在图像中任意点两个点,软件能自动提取出以这两点为端点的一段血管,要求提取到的血管必须经过客户所点的两点作为提取血管的两个端点。 在OnGetEdge()的函数里,首先通过自动增长获取血管两条边缘的采样点数据,接下来的问题就是要拟合这些采样点,生成两条比较光滑的血管边缘曲线。得到的拟合(插值)曲线有以下4点要求: 1、精确插入客户所点的起始点终点,作为曲线的两个端点; 2、拟合的曲线具有较好的光滑性 3、具有较高的拟合精度和较快的拟合速度 4、要求拟合曲线点八连通 上述的实际问题转化为有序离散点的插值拟合问题。所谓插值拟合,就是通过诸如采样、实验等方法获得若干离散的数据,根据这些数据,得到一个连续的函数(也就是曲线)或者更加密集的离散方程与已知数据相吻合。这个过程叫做拟合。插值是曲线必须通过已知点的拟合。常用的插值方法有拉格朗日插值、牛顿插值、埃尔米特插值、样条函数插值等。 其中,样条插值可以使用低阶多项式样条实现较小的插值误差,这样就避免了使用高阶多项式所出现的龙格现象,所以样条插值得到了流行。三次B 样条插值不仅运行速度较快,而且因为其分段连续带来的特有的卓越的性能,有效提高了血管边缘的平滑程度,锯齿状的现象大大减少。本文接下来将主要介绍Bezier 曲线和B 样条的插值拟合。 二、Bezier 曲线的插值和拟合 2.1 Bezier 曲线的定义 【定义1】n 次Bezier 曲线是由n+1个控制点和以Bernstein 多项式为基底共同生成的参数曲线,其数学表达式为:,其中, 0()(),[0,1]n n i i i B t d b t t ==∈∑为控制点,为Bernstein 基。 (0,...,)i d i n =()(1),0,...,n n i i i n b t t t i n i -??=-= ???Fig.1是一条三次的Bezier 曲线,有四个控制点。工程应用上常使用二次或三次Bezier 曲线做采样点的插值拟合以及制图设计。

三次样条拟合范例

1设计目的、要求 对龙格函数2 2511 )(x x f += 在区间[-1,1]上取10=n 的等距节点,分别作多项式插值、三次样条插值和三次曲线拟合,画出)(x f 及各逼近函数的图形,比较各结果。 2设计原理 (1) 多项式插值:利用拉格朗日多项式插值的方法,其主要原理是拉格朗日多项 式,即: 01,,...,n x x x 表示待插值函数的1n +个节点, 0()()n n j k k j j k L x y l x y ===∑,其中0,1,...,j n =; 011011()...()()...() ()()...()...()...() k k n k k k k k k k n x x x x x x x x l x x x x x x x x x -+-+----= ---- (2) 三次样条插值:三次样条插值有三种方法,在本例中,我们选择第一边界条 件下的样条插值,即两端一阶导数已知的插值方法: 00'()'S x f = '()'n n S x f = (3)三次曲线拟合:本题中采用最小二乘法的三次多项式拟合。最小二乘拟合是 利用已知的数据得出一条直线或者曲线,使之在坐标系上与已知数据之间的距离的平方和最小。在本题中,n= 10,故有11个点,以这11个点的x 和 y 值为已知数据,进行三次多项式拟合,设该多项式为 23432xi i i i p a a x a x ax =+++,该拟合曲线只需2[]xi i p y -∑的值最小即可。 3采用软件、设备 计算机、matlab 软件

4设计内容 1、多项式插值: 在区间[] -上取10 1,1 n的等距节点,带入拉格朗日插值多项式中,求出各个节点的插值, = 并利用matlab软件建立m函数,画出其图形。 在matlab中建立一个lagrange.m文件,里面代码如下: %lagrange 函数 function y=lagrange(x0,y0,x) n=length(x0);m=length(x); for i=1:m z=x(i); s=0.0; for k=1:n p=1.0; for j=1:n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); end end s=p*y0(k)+s; end y(i)=s; end 建立一个polynomial.m文件,用于多项式插值的实现,代码如下: %lagrange插值 x=[-1:0.2:1]; y=1./(1+25*x.^2); x0=[-1:0.02:1]; y0=lagrange(x,y,x0); y1=1./(1+25*x0.^2); plot(x0,y0,'--r') %插值曲线 hold on %原曲线 plot(x0,y1,'-b') 运行duoxiangshi.m文件,得到如下图形:

matlab实现插值法和曲线拟合电子教案

m a t l a b实现插值法和 曲线拟合

插值法和曲线拟合 电子科技大学 摘要:理解拉格朗日多项式插值、分段线性插值、牛顿前插,曲线拟合,用matlab编程求解函数,用插值法和分段线性插值求解同一函数,比较插值余项;用牛顿前插公式计算函数,计算函数值;对于曲线拟 合,用不同曲线拟合数据。 关键字:拉格朗日插值多项式;分段线性插值;牛顿前插;曲线拟合 引言: 在数学物理方程中,当给定数据是不同散点时,无法确定函数表达式,求解函数就需要很大的计算量,我们有多种方法对给定的表格函数进行求解,我们这里,利用插值法和曲线拟合对函数进行求解,进一步了解函数性质,两种方法各有利弊,适合我们进行不同的散点函数求解。 正文: 一、插值法和分段线性插值 1拉格朗日多项式原理 对某个多项式函数,已知有给定的k + 1个取值点: 其中对应着自变量的位置,而对应着函数在这个位置的取值。 假设任意两个不同的x j都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为: 其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为: [3] 拉格朗日基本多项式的特点是在上取值为1,在其它的点 上取值为0。 2分段线性插值原理 给定区间[a,b], 将其分割成a=x 0

曲线拟合的数值计算方法实验

曲线拟合的数值计算方法实验 【摘要】实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。曲线直线化是曲线拟合的重要手段之一。对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按最小二乘法原理求出变换后变量的直线方程,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为曲线方程,实现对资料的曲线拟合。常用的曲线拟合有最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束。 关键词曲线拟合、最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束 一、实验目的 1.掌握曲线拟合方式及其常用函数指数函数、幂函数、对数函数的拟合。 2.掌握最小二乘法、线性插值、三次样条插值、端点约束等。 3.掌握实现曲线拟合的编程技巧。 二、实验原理 1.曲线拟合 曲线拟合是平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近离散数据的一种方法。在科学实验或社会活动中,通过 实验或观测得到量x与y的一组数据对(X i ,Y i )(i=1,2,...m),其中各X i 是彼此不同的。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x,c)来反映量x与y之间的依赖关系,即在一定意义下“最佳”地逼近或 拟合已知数据。f(x,c)常称作拟合模型,式中c=(c 1,c 2 ,…c n )是一些待定参 数。当c在f中线性出现时,称为线性模型,否则称为非线性模型。有许多衡量拟合优度的标准,最常用的一种做法是选择参数c使得拟合模型与实际观测值在

三次样条差值拟合车门曲线

数学实验(三次样条)

数学实验(三次样条插值) 实验1: 某汽车制造商用三次样条插值设计车门的曲线,其中一段的数据如下: i x 0 1 2 3 4 5 6 7 8 9 10 i y 0.0 0.79 1.53 2.19 2.71 3.03 3.27 2.89 3.06 3.19 3.29 i y 0.8 0.2 用三次样条插值求)(10x S ,用软件绘制)(10x S 的图像,即车门的曲线。 1、计算)(10x S : 程序: // splineaaaa.cpp : 定义控制台应用程序的入口点。 //**三次样条差值** //***第一步,利用差商,代替导数,求差商; //***第二步,利用追赶法求解三对角方程组,得到M[i]; //***第三步,将求得值带入三次样条函数,求得S(x); #include #include #include #define N 10 double x[N + 1], fx[N + 1], h[N ], H[N ], f[N ], a[N + 1], b[N + 1], c[N + 1], M[N + 1], beta[N + 1], y[N + 1],s[N ];//定义变量数组; double tiaojian1, tiaojian2; //边界条件; //求插商; void chashang() { int i; for (i = 0; i <= N - 1; i++) h[i] = x[i + 1] - x[i]; for (i = 0; i <= N - 1; i++) f[i] = (fx[i + 1] - fx[i]) / (x[i + 1] - x[i]); for (i = 1; i <= N - 1; i++) { a[i] = h[i - 1] / (h[i - 1] + h[i]); b[i] = h[i] / (h[i - 1] + h[i]); c[i] = 3 * (a[i] * f[i - 1] + b[i] * f[i]); }

基于多项式插值与三次样条插值曲线拟合的比较

2015级《数值分析》课外课堂大作业 论文题目:基于多项式插值与三次样条插值曲线拟合的比较姓名:XXX 学号:XXXXXXXXXXX 学院:XXXXXXXXXXXXXXX 专业方向: XXXXXXXXXXXXXXX 联系方式:(QQ号) (手机号) 导师姓名: 完成人(亲笔)签字 二0一五年十二月

基于多项式插值与三次样条插值曲线拟合的比较 摘要:在数值计算中经常要计算函数,当函数只在有限点集上给定函数值要包含改点集的区间上用公式给出函数的简单表达式,这就涉及在已知区间上用简单函数逼近已知复杂函数问题。本文为了解决这类问题就采用多项式插值与三次样条插值两种插值法并利用MATLAB数值分析软件进行编程,实现相应数据的曲线拟合以获得最佳曲线模型与相应数据的曲线拟合,选出最优的插值法以解决所给数据的曲线拟合问题。 关键词:函数;多项式插值;三次样条插值;曲线拟合;MATLAB Abstract:In numerical analysis ,the function value is often calculated .when the function is only given a function point set ,the simple expression of the function is given by the interval .which involves the use of a simple function to approximate the known complex function .in order to solve this problem ,we use polynomial interpolation and cubic spline interpolation tow kind of interpolation method and use MATLAB numerical analysis software to program ,to achieve the curve fitting of the corresponding date to obtain the best cure fitting ,and to choose the best interpolation method to solve the problem of curve fitting to the date. Keyword: Function ; Polynomial interpolation ; Cubic spline interpolation ; Fitting of a curve ; MATLAB

一种分段曲线拟合方法研究毕业论文

种分段曲线拟合方法研究 摘要:分段曲线拟合是一种常用的数据处理方法,但在分段点处往往不能满足连续与光滑.针 对这一问题,本文给出了一种能使分段点处连续的方法.该方法首先利用分段曲线拟合对数据进行处 理;然后在相邻两段曲线采用两点三次Hermite插值的方法,构造一条连结两条分段曲线的插值曲线, 从而使分段点处满足一阶连续.最后通过几个实例表明该方法简单、实用、效果较好. 关键词:分段曲线拟合Hermite 插值分段点连续 Study on A Method of Sub-Curve Fitting Abstract:Sub-curve fitting is a commonly used processing method of data, but at sub-points it often does not meet the continuation and smooth, in allusion to to solve this problem, this paper presents a way for making sub-point method continuous. Firstly, this method of sub-curve fitting deals with the data; and then uses the way of t wo points ' cubic Hermite interpolation in the adjacent, structures a interpolation curve that links the two sub-curves, so the sub-point meets first-order continuation; lastly, gives several examples shows that this method is simple, practical and effective. Key words: sub-curve fitting Hermite interpolation sub-point continuous

样条函数拟合

样条函数拟合方法 样条函数拟合是将复杂曲线分为多段,段内用3次多项式进行拟合,同时保证分段的左右短连续且一、二次可导,以保证连接处的光滑。 Public Function FitBySpline(ByVal X() As Single, ByVal Y() As Single, ByVal SectorIndexs() As Integer) As Array ‘按照X点生成拟合后Y坐标 'SectorIndex段索引,SectorIndexs段端所指的点索引 Dim Y1(UBound(X)) As Single, i As Integer, SectorIndex As Integer, XLK As Single, Conf As Array Conf = FitBySpline(X, Y, SectorIndexs) ‘拟合出曲线系数 For i = 0 To UBound(X) SectorIndex = SearchSectorIndex(SearchIndex(X(i), X), SectorIndexs) XLK = 2 * (X(i) - X(SectorIndexs(SectorIndex))) / (X(SectorIndexs(SectorIndex + 1)) - X(SectorIndexs(SectorIndex))) – 1 Y1(i) = Conf(7 * SectorIndex + 0) + Conf(7 * SectorIndex + 1) * XLK + Conf(7 * SectorIndex + 2) * (2 * XLK ^ 2 - 1) + Conf(7 * SectorIndex + 3) * (4 * XLK ^ 3 - 3 * XLK) Next Return Y1 End Function Private Function SearchSectorIndex(ByVal Index As Integer, ByVal SectorIndexs() As Integer) As Integer Dim i As Integer For i = 0 To UBound(SectorIndexs) - 1 If Index >= SectorIndexs(i) And Index <= SectorIndexs(i + 1) Then Return i End If If Index >= SectorIndexs(i) And SectorIndexs(i + 1) = 0 Then '环狀 Return i End If Next End Function Private Function SearchIndex(ByVal X1 As Single, ByVal X() As Single) As Integer Dim i As Integer For i = 0 To UBound(X) If X1 >= X(i) And X1 <= X(i + 1) Then Return i End If Next

第三章 样条插值和曲线拟合

第三章样条插值与曲线拟合 学习目标:掌握分段线性插值、分段Hermite插值、样条插值 方法以及贝齐尔曲线拟合曲 线的方法。重点是分段线性 插值、分段Hermite插值、样 条插值。

1901年龙格(Runge )给出一个例子: ,定义在区间[-1,1]上,这是一个很光滑的函数,它的任意阶导数都存在,对它在[-1,1]上作等距节点插值时,插值多项式的情况见图1 §1 多项式插值的龙格现象 22511)(x x f +=

俄罗斯数学家伯恩斯坦(C.H.Bernstein )在1916年还给出如下定理。 定理1 函数 在[-1,1]上取n 个等距节点 ,构造n-1次插值多项式 ,当n 增大时,除了-1,0,1三点外,在[-1,1]中任何点处都不收敛于 。 x x f = )(1,11=-=n x x )(1 x P n -x 上述介绍的现象和定理告诉我们用高次插值多项式是不妥当的,从数值计算上来看也是这样,前一章介绍过的差分的误差传播会随阶数的提高越来越严重,因此,实践上作插值时一般只用一次、二次,最多用三次插值多项式。而提高插值精度的方法,可采用分段插值:

譬如在[a,b]上定义的连续函数 ,在[a,b]上取节点 构造一个分段一次多项式 ,即 在 上为 由一次插值的余项知在 上, )(x f b x x x x a n n =<<<<=-121 )(x L )(x L ],[1+i i x x i i i i i i i i x x x x x f x x x x x f --+--++++1111)()() )()(,,()()()(11++--=-=i i i i x x x x x x x f x L x f x R ],[1+i i x x 228 )(h M x R ≤

三次样条插值

3.6三次样条插值 一、教学目标及基本要求 通过对本节的学习,使学生掌握三次样条插值方法。 二、教学内容及学时分配 本章主要介绍线性方程求根的迭代法的加速方法。要求 1.了解数值分析的三次样条函数及有关概念。 2.正确理解三次样条差值的基本思想、数学原理、算法设计。 3.了解插值是数值逼近的重要方法之一,正确理解三次样条插值的基本思想、计算公式、算法设计、程序框图设计和源程序。 4.掌握三次样条差值原理和程序设计方法。 三、教学重点难点 1.教学重点:三次样条函数、三次样条插值。 2. 教学难点:三次样条插值。 四、教学中应注意的问题 多媒体课堂教学为主。适当提问,加深学生对概念的理解,迭代加速的算法实现。 五、教案正文 一 样条函数的概念 分段线性插值在节点处没有连续的一阶导函数,其光滑性较差。对于飞机的机翼的型线及船舶型往往要求有二阶光滑度(即在节点处要求二阶导函数连续)。 样条函数的概念来源于工程设计的实践。所谓“样条”(spline)是早期工程设计中的一种绘图工具,它是富有弹性的细长条。绘图时,用压铁迫使样条通过指定的型值点,并保证样条的光滑外形。在绕度不大的情况下,样条的曲线即为三次样条函数。 二 几何意义

三 构造三次样条函数的理论分析 如上图所示,通过已知的六个点,构造5个三次多项式函数分别是:红色、蓝色、黑色、紫色和绿色5根曲线。为确定一根曲线,就需要确定4个待定系数,所以总共需要4*5=20个待定系数。 另外,分析需要的约束条件。 每一根函数都要过已知的左右两个点,则有5*2=10个约束条件。 此外,每两个相邻曲线在相邻点处要求充分光滑,即在连接点处左右两个函数在该点具有1次和2次的导函数连续,图中有4个“中间点”,故又有4*2=8个约束条件。 若在整个图形的两端在加2个约束条件,整个3次样条函数就确定了。如: ①左右两端点上的1阶导函数已知; ②左右两端点上的2阶导函数已知,如()()00n S x S x ′′′′==(称为自然边界条件); ③若原来的函数f(x)是以xn-x0为周期的周期函数,则y0=yn,且()()000n S x S x ′′′′+=?。

相关文档
最新文档