层状类钙钛矿多铁性材料研究进展

层状类钙钛矿多铁性材料研究进展
层状类钙钛矿多铁性材料研究进展

第45卷第12期2017年12月

硅酸盐学报Vol. 45,No. 12

December,2017 JOURNAL OF THE CHINESE CERAMIC SOCIETY

https://www.360docs.net/doc/8512355100.html, DOI:10.14062/j.issn.0454-5648.2017.12.01

层状类钙钛矿多铁性材料研究进展

张大龙,陈志伟,黄伟川,李晓光

(中国科学技术大学物理系,合肥 230026)

摘要:多铁性材料的自旋、电荷、轨道、晶格等多重有序存在着复杂的相互作用,且对磁场、电场、光场、应变和温度等多种外界环境敏感,从而表现出一些新奇的物理现象,使其在存储器、传感器、微波等领域中有重要的应用价值。随着对单相多铁材料研究的深入,人们已从简单钙钛矿结构的多铁性研究转向复杂的层状类钙钛矿体系,其丰富而复杂的结构给人们提供了更广泛的设计和调控空间。介绍并分析了如Double-Perovskite(DP)、Ruddlesden-Popper(RP)、Aurivillius(AU)以及A n B n O3n+2系列等层状类钙钛矿多铁性特征的研究进展。人们已发现Bi2FeCrO6等DP体系、(1–x)(Ca y Sr1–y)1.15Tb1.85Fe2O7–x Ca3Ti2O7等RP体系、Bi4NdTi3Fe1–x Co x O15–Bi3NdTi2Fe1–x Co x O12–δ等AU体系以及La6(Ti0.67Fe0.33)6O20层状材料等,均具有室温或近室温多铁性。最后提出了当前面临的问题和对未来的展望。

关键词:多铁性;Double-Perovskite;Ruddlesden-Popper;Aurivillius

中图分类号:TQ174.1+3 文献标志码:A 文章编号:0454–5648(2017)12–1707–14

网络出版时间:2017–11–01 14:32:30 网络出版地址:https://www.360docs.net/doc/8512355100.html,/kcms/detail/11.2310.TQ.20171101.1432.001.html

Development of Multiferroic Layered-Perovskite-like Oxides

ZHANG Dalong, CHEN Zhiwei, HUANG Weichuan, LI Xiaoguang

(Department of Physics, University of Science and Technology of China, Hefei 230026, China)

Abstract: Single phase multiferroic materials with the coexistence of spin, charge, orbit, and lattice orderings have some physical phenomena, which are sensitive to several external stimulations like magnetic field, electric field, optical field, strain and temperature. These materials can be thus used in the field of storage, sensors, microwave, etc. For room-temperature multiferroics, people pay attention to more complex systems, such as layered-perovskite-like systems, which may provide broader space for designing and controlling new multifunctional materials and devices. This review represented recent development on the multiferroic properties of Double-Perovskite (DP), Ruddlesden-Popper(RP), Aurivillius(AU) and A n B n O3n+2 series compounds, respectively. All these layered systems, such as DP phases Bi2FeCrO6, RP phases (1–x)(Ca y Sr1–y)1.15Tb1.85Fe2O7–x Ca3Ti2O7, AU phases Bi4NdTi3Fe1–x Co x O15–Bi3NdTi2Fe1–x Co x O12–δ and La6(Ti0.67Fe0.33)6O20, show the coexistence of ferroelectricity and ferromagnetism above or near room temperature. Finally, we put forward the current issues we are facing and the outlooks of the future.

Keywords: multiferroic properties; Double-Perovskite; Ruddlesden-Popper; Aurivillius

多铁性材料是指兼具铁电、铁磁、铁弹或者铁涡等初级铁序中的2种及以上的材料体系,有丰富的物理性质和巨大的应用潜力,引起国际上的广泛关注。驱动多铁性研究的动力有2方面:从基础研究的角度,多铁材料集成了自旋、电荷、轨道、晶格等多重有序结构,对磁场、电场、光场、应力和温度等多种外界环境响应明显,这种复杂的、交叉的研究对象正是固体物理发展到凝聚态物理的产物之一[1–2];从应用的角度,多铁材料能实现多重物理量之间的交叉调控,将为现代电子学在后摩尔时代的发展提供材料基础[3–5]。

单相多铁性材料主要分为第I类和第II类多铁

收稿日期:2017–06–19。修订日期:2017–07–07。

基金项目:国家自然科学基金(51332007、21521001、51622209);国家重点研发计划(2016YFA0300103、2015CB921201)资助。

第一作者:张大龙(1988—),男,博士。

通信作者:李晓光(1961—),男,博士,教授。Received date:2017–06–19. Revised date: 2017–07–07.

First author: ZHANG Dalong (1988–), male, Ph.D.

E-mail: zdl37@https://www.360docs.net/doc/8512355100.html,

Correspondent author: LI Xiaoguang (1961–), male, Ph.D., Professor. E–mail: lixg@https://www.360docs.net/doc/8512355100.html,

多铁性磁电材料应用于存储技术的研究现状

硅酸盐学报 硅 酸 盐 学 报 · 1792 · 2011年 多铁性磁电材料应用于存储技术的研究现状 施 科,何泓材,王 宁 (电子科技大学微电子与固体电子学院,电子薄膜与集成器件国家重点实验室,成都 610054) 摘 要:多铁性磁电材料同时具有铁电性、铁磁性和磁电效应等多种性能,它为新功能存储器件的设计提供了可能性。主要综述了多铁性磁电单相和复合材料在存储技术领域的应用研究,包括基于多铁性磁电材料设计的“电写磁读”多铁性磁电存储器、多态存储器以及基于多铁性磁电材料设计双稳态储存器件的新原理和新思路;介绍了多铁性磁电材料在存储读头技术方面的应用;并将基于多铁性磁电材料的存储器与其他几种存储器作了简单比较;最后就多铁性磁电材料的存储技术发展面临的挑战进行了总结和归纳。 关键词:多铁性磁电材料;存储器;读头;铁电性;铁磁性 中图分类号:TB34;TP333 文献标志码:A 文章编号:0454–5648(2011)11–1792–08 网络出版时间:2011–10–25 10:49:06 DOI :CNKI:11-2310/TQ.20111025.1049.014 网络出版地址:https://www.360docs.net/doc/8512355100.html,/kcms/detail/11.2310.TQ.20111025.1049.014.html Recent Progress in Application of Multiferroic Magnetoelectric Materials on Storage Technology SHI Ke ,HE Hongcai ,WANG Ning (State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China ) Abstract: Since multiferroic magnetoelectric (ME) material has ferroelectric, ferromagnetic and magnetoelectric properties, it is pos-sible to use this material for the design of storage device. Recent development on the application of single-phase or composite ME material on storage technology was reviewed. The areas were magnetoelectric random access memories (MERAM) with electric writing and magnetic read, magnetoelectric multiple-state storages, other new storages with novel working principles and ME read heads. In addition, the storage devices based on ME materials were compared with other different storage devices, and the challenges with the storage technology were summarized. Key words: multiferroic magnetoelectric material; storage device; read head; ferroelectricity; ferromagnetism 在器件微型化、功能需求多样化的现代生活和生产中,多功能智能材料成为人们关注的焦点,多 铁性磁电材料[1–4]是其中的典型代表。 这种材料不仅兼具铁电性和铁磁性,而且还具有铁电性/铁磁性之间的耦合性能,如通过外加电场能够改变材料的磁极化[5]或磁阻[6],施加磁场产生电极化的磁电效应[7],磁场下介电常数发生变化的磁介电效应[8]等,可大大开拓材料应用范围。不仅在传统的传感器[9]、存储器[10–11]、微波器件[12–13]等器件领域可以得到应用,还可以利用其同时具备铁电、铁磁、磁电等多 种性质于一体,进一步增加微电子器件设计的自由度,设计出对电、磁、力都响应的集成器件。如今,多铁性磁电材料已成为智能材料与器件方向的研究热点,正受到越来越多研究者的关注[14–17]。 随着信息技术的高速发展,要求存储技术提供速度更快,容量更大,功耗更低,体积更小,寿命更长,可靠性更高的存储器[18]。传统的半导体工艺技术已经逐渐逼近物理极限,难以大幅度提高存储器的性能。要想有突破性的进展,就必须另辟蹊径,寻找新材料或新的原理和方法。多铁性磁电材料同 收稿日期:2011–05–10。 修改稿收到日期:2011–06–28。 基金项目:国家自然科学基金(51002020);中央高校基本科研业务费专 项资金(ZYGX2009J033)资助项目。 第一作者:施 科(1987—),男,硕士研究生。 通信作者:何泓材(1980—),男,博士,副教授。 Received date: 2011–05–10. Approved date: 2011–06–28. First author: SHI Ke (1987–), male, graduate student for master degree. E-mail: she.ki@https://www.360docs.net/doc/8512355100.html, Correspondent author: HE Hongcai (1980–), male, Ph.D., associate pro-fessor. E-mail: hehc@https://www.360docs.net/doc/8512355100.html, 第39卷第11期 2011年11月 硅 酸 盐 学 报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 39,No. 11 November ,2011

多铁性物理-东南大学

多铁性:物理、材料及器件专题 编者按作为凝聚态物理与材料物理的前沿分支之一,多铁性研究脱胎于磁电耦合的研究.固体中磁电耦合的概念最初由居里先生提出,至今已有一百多年.在漫长的历史长河中,磁电耦合领域的研究曾经在冷战时期短暂热闹过一阵,但随后是漫长的冷寂期.日内瓦大学的老先生Hans Schmid在磁电耦合领域坐了半辈子冷板凳,在1994年提出了多铁体(multiferroics)这个概念.九年之后,该领域研究才真正引起广泛关注.2003年以BiFeO3薄膜的大铁电极化和TbMnO3单晶的磁控电这两大突破作为里程碑,该领域快速蹿红,吸引了大量研究者的瞩目.在接下来的几年中,研究者在该领域迅速取得了若干重要突破性成果.2007年底美国《科学》杂志遴选了七个下一年度重点关注领域(Areas to Watch),多铁体荣幸入选,并且这是凝聚态物理/材料物理方向唯一入围者. 但出乎意料,2008年铁基超导的异军突起与拓扑绝缘体的系列突破迅速抢占了凝聚态物理/材料物理大舞台的主角位置,掩盖了多铁体的光彩.因此最近十年来多铁领域的研究变得相对平淡.但即使在这样的平淡岁月中,仍然有一群研究者一直在这个领域坚持耕耘,默默地将该领域一步步向前推进.实际上,这个领域在过去十年的发展并不孤独,而是逐渐和物理的各分支(包括理论物理、凝聚态物理、材料物理、光物理、器件物理等)交叉融合.因此当前的多铁领域研究已经涵盖了从基础物理理论,到具体材料体系,再到器件应用等多个方面. 受《物理学报》责任编缉古丽亚的委托,我邀请了国内若干活跃在该领域前沿的中青年专家撰稿,合成这样一期以短篇综述为主的专辑,较为全面和深入地介绍该领域已取得的部分成果以及最新进展.从研究内容上,可大致分为两类:一是,探索多铁性材料和揭示其物理规律;二是,探索多铁性异质结、器件和应用.第一类研究的综述包括(以下排名按投稿先后): 1)Ruddlesden-Popper结构杂化铁电体(浙江大学刘小强、陈湘明等);2)低维铁电材料(南京理工大学阚二军等);3)激发态电荷输运有机多铁体(南京理工大学袁国亮等);4)异常双钙钛矿多铁氧化物(中山大学李满荣等);5)四倍体钙钛矿多铁氧化物(中国科学院物理研究所龙有文等);6)非常规铁电钙钛矿氧化物(上海大学任伟等);7)铋层状多铁氧化物单晶薄膜(中国科学技术大学翟晓芳、陆亚林等).第二类研究的综述包括:1)多铁性磁电异质结及器件(清华大学赵永刚等;西安交通大学胡忠强、刘明等;南京理工大学汪尧进等);2)压电单晶磁电复合薄膜(中国科学院上海硅酸盐研究所郑仁奎等);3)铁电光伏效应(苏州大学蔡田怡、雎胜);4)钙钛矿薄膜的多铁性与氧空位调控(南京航空航天大学杨浩等);5)微纳尺度电场驱动磁翻转(华南师范大学高兴森等).除了短篇综述外,还有三篇研究论文,在此就不细述.希望这个专题能够为国内多铁性及相关领域研究的学术交流做一些贡献. (客座编辑东南大学物理学院董帅)

多铁性材料的自旋起源

多铁性材料的自旋起源 多铁材料由磁有序和铁电有序共同组成的,据信是在固体材料系统通过一个微小的能量消耗来完成磁与电的交叉控制的关键。例如巨磁电效应在凝聚态物理中在很长一段时间内引起了大家强烈的兴趣,希望得到一个新兴自旋相关连电子的方程。 在这里我们以磁性材料中实现多铁性和自旋驱动铁的电性开始,以上已经通过精确地试验和理论被证实。根据假设的机制,很多多铁性材料被开发与探索,最新的研究实现了巨磁电效应的控制,我们纵观多铁材料的各种基本机制的观点和基本的磁电特性。 多铁材料科学的一个最新的方向是动力学磁电效应,换句话说就是固体中动力学和电和磁偶极子快速交叉控制。我们着重讨论多铁性畴壁的动力学有助于增大磁电响应,其可通过介电谱来显示。另外的相关问题是活跃的电偶极子的磁共振,叫做电磁振子。最后我们总结多铁材料从在固体中宽泛的新型电磁学何处可能对将来能量不耗散的电子的应用。 第一章多铁性材料 1.1什么是多铁性材料

在固体中,电场(E )诱导出电极化强度(P )并且磁场(H )诱导出磁化强度(M )。E 与H 的运动关系可以由麦克斯韦方程描述,这使得P 和M 之间有了非常重要的联系,那就是P 与M 的耦合是通过晶格间的电子来传递的;换句话来说,电子的自旋、轨道和电荷的自由度在固体中是相关连的。P-M 耦合,若存在于材料中的话可促使磁电效应,其可定义为同时控制磁与电;转变M 通过用E 与之相反P 的改变通过用H 。一个世纪以前通过对Cr 2O 3的研究,固体中的磁电效应在理论[1]推测上和实验[2]上被证实。这个现象被通过用一个线性交差响应磁电系数α来描述。例如从对称分析的观点有u uv v P E α=和u vu u M E α=。与最 近新观测的多铁性材料相比以前观测磁电效应非常小,虽然如此,关于多铁性样品的自旋微观起源的基本的组成已经被涉及在首次发现的磁电材料中。例如一个存在相互作用的自旋与一个极化的化学晶格或存在相互作用的非共线的自旋在轨道耦合相互作用下耦合。自此,巨磁电效应开始被广泛研究。特别是在用E 高效的控制方面是一个需求函数在最小的能量耗散的二代电子自旋领域,因为能量损失产生H 或者用高电流来控制磁畴可以克服用电场的缺点[3-5]。 图1 多铁性材料中通过电磁场使P-M 交叉控制 多铁性材料这个术语被杜撰出代表材料是因为其有两个或更多铁性有序,如目前的铁电性与铁磁性。在一般的条件下,我们叫那些同时拥有铁电有序和磁有序的材料为多铁性材料。用更直接了当的方式来增强磁电耦合已经超出上述的线性响应所以要把目标集中在多铁性材料上。在多铁性材料中同时存在的P 与M 有非常弱的与之相关的H 与E 响应,如图1所示,经由场的诱导畴壁的运动引 起了滞后。当M 与P 共同耦合就会更强叫巨磁电效应。也就是H 控制P 同时E 控制M 成为可能。M-P 共同耦合不仅仅在准静态磁电耦合中非常重要,在动态磁电耦合中也是如此,它的时间尺度的范围能从千兆赫兹到紫外光的频率。所以

【CN110028965A】一种全无机铋钠钙钛矿材料的合成方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910296776.5 (22)申请日 2019.04.14 (71)申请人 天津大学 地址 300072 天津市南开区卫津路92号 (72)发明人 赵广久 王朝  (74)专利代理机构 天津市北洋有限责任专利代 理事务所 12201 代理人 李素兰 (51)Int.Cl. C09K 11/74(2006.01) B82Y 20/00(2011.01) B82Y 40/00(2011.01) (54)发明名称一种全无机铋钠钙钛矿材料的合成方法(57)摘要本发明公开了一种全无机铋钠钙钛矿材料的合成方法,采用DMF作为溶解氯化铯、氯化钠和氯化铋反应物的溶剂,得到前驱体溶液;采用异丙醇为反溶剂;将所述前驱体溶液加入反溶剂后,离心后取上清液获得化学式为Cs 2NaBiCl 6且为立方晶型的量子点材料。本发明首次合成出Cs 2NaBiCl 6钙钛矿量子点,通过选自地壳中丰度较高、且毒性小的元素,并采用工艺较为简单,实验环境要求较低的LARP法的原理,将前驱体溶液注到可以互溶的反溶剂中,前驱体物质析出晶体。本发明合成中采用的材料资源丰富,成本低廉,可进行大规模生产,所得的量子点发光材料具有的钙钛矿结构及其可调的发光范围,使其成 为具有发展潜力的低成本的量子点发光材料。权利要求书1页 说明书2页 附图1页CN 110028965 A 2019.07.19 C N 110028965 A

权 利 要 求 书1/1页CN 110028965 A 1.一种全无机铋钠钙钛矿材料的合成方法,其特征是,采用N,N-二甲基甲酰胺作为溶解氯化铯、氯化钠和氯化铋反应物的溶剂,得到前驱体溶液;采用异丙醇为反溶剂;将所述前驱体溶液加入反溶剂后,离心后取上清液获得化学式为Cs2NaBiCl6且为立方晶型的量子点材料,该Cs2NaBiCl6量子点的激子峰为354nm。 2.根据权利要求1所述全无机铋钠钙钛矿材料的合成方法,具体步骤如下: 步骤1:用去离子水,丙酮,异丙醇,去离子水依次清洗两个玻璃瓶A和玻璃瓶B各十分钟,再用氮气枪吹干,备用; 步骤2:将适量的氯化铯、氯化钠和氯化铋倒入玻璃瓶A中,然后,再向玻璃瓶A加入适量的N,N-二甲基甲酰胺作为溶解氯化铯、氯化钠和氯化铋反应物的溶剂,所得为前驱体溶液,前驱体溶液中,氯化铯、氯化钠和氯化铋的摩尔比例为2:1:1; 步骤3:将适量的异丙醇加到玻璃瓶B中,然后加入步骤2制得的前驱体溶液,所加入的前驱体溶液与异丙醇的体积比为1:100,充分搅拌反应,离心后取上清液,得到的无色胶体溶液即为化学式为Cs2NaBiCl6的全无机铋钠钙钛矿材料。 2

钙钛矿量子点的光物理性质表征

钙钛矿量子点的光物理性质表征 引言 半导体量子点展现了一系列引人注目的特性,包括:高光致发光量子效率,溶液加工性和高度可逆的带隙。这些特性使得量子点成为用于光电器件如发光二极管和半导体激光器领域发射体的理想对象,在光电二极管和太阳能电池领域,它也可以很好地作为光吸收体。另外,它们的光发射特性也使他们成为一类比较有潜力的荧光探针,用于生物荧光成像,取代传统的有机小分子探针。 由于量子限域,量子点最关键的吸引力在于其在带隙上极好的可控性。对于大多数半导体,原子的数量非常多,原子轨道的大量重叠产生了连续的密集的分子旋转,构成了导带和价带。然而,如果半导体的尺寸减小至纳米尺度,原子旋转轨道重叠,导带和价带变得不连续,被形成的独立能级取代,更重要的是,导带和价带之间带隙变得更宽,这就是著名的量子限域(图1)。纳米粒子小到其带隙受量子限域的影响被称为量子点,在合成中通过精确地控制量子点的尺寸,量子点的发射和吸收波长可以被很好地改变,这对于光电领域的应用是非常理想的。 图1:量子点由于量子限域其粒径对于带隙和光致发光发射波长的影响 量子点中占据传统主导地位的是硫属化物,如碲化镉和硒化镉。目前,基于杂化钙钛矿量子点半导体吸引了更多的注意力。杂化钙钛矿由于其低成本、在光伏电池中作为高效吸收体已经在科学界获得了广泛的关注。溶剂加工性、带隙可调和高PLQY 是的钙钛矿太阳能电池取得了成功,也让它有潜力成为新一类量子点材料。进一步研

究需要改进钙钛矿量子点的特性,这些材料的主要技术表征是光致发光和吸收。在此应用文章中,完整的光物理特性,包含吸收光谱、光致发光光谱,光致发光寿命和量子钙钛矿量子点的量子产率使用全能型的FS5荧光光谱仪表征得到。 图2:FS5荧光光谱仪带有TCSPC电子部分和脉冲激光器。FS5可以被配置为测试如量子点等材料的吸收光 谱、发射光谱、寿命和量子效率 材料和方法 钙钛矿量子点从PlasmaChemGmbH公司购买。每种量子点溶于环己烷和水制备成溶液,为了避免光谱和PLQY测试时发生再吸收效应,控制样品在其带隙边缘的吸光度小于0.1OD。溶液置于10 mm光程石英池,测试的FS5配置了PMT-900探测器和TCSPC电子部分。对于吸收光谱测试、光致发光发射光谱和光致发光寿命,样品池使用SC-05液体样品组进行放置。量子效率测试使用SC-30积分球组件进行测试。 结果与讨论 两种杂化钙钛矿量子点-PQD-A和PQD-B的光物理特性使用FS5荧光光谱仪进行测试。FS5包含了吸收检测器作为标准配置,可以在一台仪器上实现光致发光和吸收光谱的测试。PQD-A的吸收和发射光谱如图3a。发射中心在450 nm,发射峰非常窄,半峰宽只有14 nm。他可以看见发射发生在量子点的带隙边缘,发射峰与吸收陡峭的下滑相符,指示了带隙边缘。PQD-B的吸收和发射光谱显示了类似的特性,有一个很窄的发射峰,中心在514 nm的量子点带隙边缘。然而,PQD-B和PQD-A的吸收行为是有显著区别的。PQD-A的在带隙边缘快速降至0对于半导体来说是意料之中的。与此相反的,PQD-B的吸收在带隙边缘没有完全到0,沿着带隙边缘吸光度有一个很长的指数衰减。这个平缓的衰减被认为是Urbach拖尾,来自于在带隙边缘由于缺陷和捕获位点产生更高的能量失调。吸收光谱因此可以看出PQD-B比PQD-A有更高的能量失调。对于显示的应用来说,以色度坐标来描述它的发射相比峰位置是更有用的。FS5

多铁性材料BiFeO3的制备及其掺杂改性的研究(可编辑)

多铁性材料BiFeO3的制备及其掺杂改性的研究(可编辑)多铁性材料BiFeO3的制备及其掺杂改性的研究 单位代码: 10293密级: 硕士学位论文论文题目 : 多铁性材料 BiFeO 的制备及其掺杂 改性研究 3 1010030913 学号王希望姓名李兴鳌导师光学 学科专业光电子功能材料、性质和器件 研究方向理学硕士 申请学位类别 2013.02.26 论文提交日期I multiferroic properties of co-substituted BiFeO 3 nanoparticlesThesis Submitted to Nanjing University of Posts and Telecommunications for the Degree ofMaster of Master of Science By Xiwang Wang Supervisor: Prof. Xing’ao LiFebruary 2013II南京邮电大学学位论文 原创性声明 本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得 的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得南京邮电大学或其它教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的

任何贡献均已在论文中作了明确的说明并表示了谢意。本人学位论文及涉及相关资料若有不实,愿意承担一切相关的法律责任。 研究生签名:_____________ 日期:____________南京邮电大学学位论文使用授权声明 本人授权南京邮电大学可以保留并向国家有关部门或机构送交论文的复印件和电子文 档;允许论文被查阅和借阅;可以将学位论文的全部或部分内容编入有关数据库进行检索; 可以采用影印、缩印或扫描等复制手段保存、汇编本学位论文。本文电子文档的内容和纸质 论文的内容相一致。论文的公布(包括刊登)授权南京邮电大学研究生院办理。 涉密学位论文在解密后适用本授权书。 研究生签名:____________ 导师签名:____________ 日期:_____________III 摘要 BiFeO 是一种非常有应用前景的钙钛矿型多铁性功能材料,由于本身存在很多缺陷限制 3 了现实中的应用,其中最大的问题就是材料本身的多铁性能太弱, 距离应用的要求差距还很 大。如何提高 BiFeO 材料的多铁性能成为目前亟待解决的问题。本文期望通过掺杂方法以期 3 得到高性能的 BiFeO 材料。 3

钙钛矿量子点的原位制备与集成应用研究

钟海政,教授、博导,2003年本科毕业于吉林大学,2008年在中科院化学所获得博士学位,2008-2010年在加拿大多伦多大学从事博士后研究,2010年加入北京理工大学材料学院纳米光子学实验室,2013年破格晋升为教授,2014年入选北京市科技新星计划,2017年获得国家基金委优秀青年基金项目的资助,2019年受邀担任《Journal of Physical Chemistry Letters 》副主编。目前主要从事量子点及其应用技术研究,在铜铟硫和钙钛矿量子点材料及其照明显示应用方面形成特色和国际影响。发表学术论文100余篇,单篇最高引用超过700次,9篇入选ESI 高被引论文,申请中国发明专利30余项,申请PCT 专利3项,在国内外学术会议上做邀请报告30余次;所发明的钙钛矿量子点光学膜技术进入中试和样机阶段,通过产学研合作,2018年在国际消费电子产品展(CES 2018)和国际显示技术展(SID 2018)上全球率先展出了搭 载钙钛矿量子点的电视样机。。 化工资源有效利用国家重点实验室 生物医用材料北京实验室钙钛矿量子点的原位制备 与集成应用研究个人简介:报告人:钟海政(优青,北京理工大学)时间:2019-5-5(周日)4:00 PM-5:30PM 地点:化新楼B 座211 会议室 量子点具有光谱可调、溶液加工等特点,是备受关注的新一代光学材料,已经在照明显示、生物标记、太阳能电池、激光等领域展现出应用前景。近年来,钙钛矿量子点的出现,为发展量子点集成应用技术提供了机遇。针对光电集成应用需求,我们发明了钙钛矿量子点的原位制备技术,利用钙钛矿材料的溶液加工特性,通过引入聚合物或者有机分子配体控制结晶过程,在聚合物基质中直接制备出量子点,或者在ITO 基片上控制形核和生长过程直接制备量子点电致发光薄膜,为发展量子点集成应用提供了性能更加优异的材料和简便的集成技术。报告摘要:

量子点发光二极管的研究进展

环境工程 2018·11 67 Chenmical Intermediate 当代化工研究 技术应用与研究量子点发光二极管的研究进展 *陈政丞 (宁波诺丁汉大学附属中学 浙江 315100) 摘要:量子点发光技术是近日崛起的一项研究热点,该技术在显示方面的应用价值受到大家的普遍关注,以量子点发光技术为基础的显 示器已经出现。量子点发光技术可为显示屏提供更加饱满的色泽,能够提高显示屏的颜色分辨率,有望取代当前主流的OLED技术开创显示 科技新阶段。目前研究者对于量子点发光材料做了大量研究,主要分为以下三类:二元非氧化物半导体量子点,钙钛矿结构量子点和碳量子点。本文对上述三类量子点发光材料做了详细的介绍,并对其未来的发展提出展望。关键词:量子点;发光二极管;二元非氧化物;钙钛矿;碳点 中图分类号:T 文献标识码:A Research Progress of Quantum Dot Light Emitting Diodes Chen Zhengcheng (Affiliated Middle School of the University of Nottingham Ningbo, Zhejiang, 315100) Abstract :Quantum dot light emitting technology is a research hotspot that has emerged recently. The application value of this technology in display has attracted widespread attention. Displays based on quantum dot light emitting technology have appeared. Quantum dot light emitting technology can provide more full color for the display screen, can improve the color resolution of the display screen, and is expected to replace the current mainstream OLED technology to start a new stage of display technology. At present, researchers have done a lot of research on quantum dot luminescent materials, which are mainly divided into the following three categories: binary non-oxide semiconductor quantum dots, perovskite quantum dots and carbon quantum dots. In this paper, the above three types of quantum dot luminescent materials are introduced in detail, and their future development is prospected. Key words :quantum dots ;light emitting diodes ;binary non - oxides ;perovskites ;carbon dots 1.引言 量子点发光材料是一类尺寸约为几纳米的可发光半导体材料的总称,其最大特点是可调控材料的尺寸和组分而使光色和光强相应发生连续变化。量子点发光二极管(QLED)即是以上述材料为核心而构成的一类发光二极管。QLED比目前广泛使用的LCD和OLED拥有范围更广的色域,并在相同光强下较后两者能耗更低,因此在显示方面有独特的应用价值。目前,市场上已经出现基于QLED技术的相关显示设备,因而具有潜在的极高的商业价值。QLED按照层叠次序和出光方向等不同标准分类有不同种类的结构,但其基础部分结构相同,主要如下:依次为电子传输层(ETL)、量子点发光层(QDs-EML)、沉积空穴传输层(HTL)。QLED的发光机理为通电后在电场驱动下,电子和空穴分别由电子传输层和空穴传输层注入,两者在量子点发光层结合形成激子,以释放光子的形式辐射能量。该材料因其具有光谱缺陷少、光谱连续可调等其他发光材料不具有的优点,现已经成为国际发光材料研究热点,有关技术难题正在被研究者们逐一突破。 2.研究内容 目前,研究者已开发出多种量子点发光材料,根据材料的组成和结构可以分为如下三类:二元非氧化物半导体量子点,钙钛矿结构量子点和碳量子点。下面分别对这三类量子材料分做详细的介绍。 (1)二元非氧化物半导体量子点 二元非氧化物半导体是一类常见的半导体材料,主要有CdSe、InP、ZnS等。相较氧化物材料而言,二元非氧化物半导体材料不易导致量子点淬灭,有更好的光稳定性和电流密度,以及更高的能量利用效率。Wang等采用微流体法制备了CdSe/ZnS胶体量子点,该材料在较低电压下即可激发出黄 光,而且亮度较高。Biadala等将毒性较低的InP材料所释放的较暗的激子与更明亮的激子混合,以后者引导前者释放光子,达到了降低毒性并且维持了亮度的效果,实现了电致发光和环境保护方面的双重突破。 (2)钙钛矿结构量子点 钙钛矿结构量子点是指其晶胞内化学结构式为AMX 3的一类量子点发光材料。该材料具有光吸收能力强,体积缺陷密度低,色纯度高和光谱调控简单等特性。目前,研究较为成熟的主要是有机-无机杂化钙钛矿结构、CH 3NH 3PbX 3和CsPbX 3等种类的钙钛矿结构材料。Ruan等通过高温抽气后迅速淬灭的方法分别制备了绿光CsPb(Br 0.8/I 0.2)3、黄光CsPb(Br 0.57/I 0.43)3、红光CsPb(Br 0.45/I 0.55)3等钙钛矿量子点材料,同时他还通过无水合成法制备了钙钛矿量子点荧光粉,该材料在连续工作下发光光谱依然保持稳定,具有极强的光谱稳定性。Li等在氮气气氛保护下采用油浴法制备了CsPbCl 3量子点材料,该材料具有优异的发光性能,而且具有色彩调节丰富和热稳定性好的优点。Song等制备了能够发射蓝光、绿光和黄光的全无机CsPbX 3钙钛矿量子点材料,该材料体系具有连续可调的发光性能,而且具有较高的亮度和量子效率。 (3)碳量子点 碳量子点一般简称为碳点,该材料主要是由sp 2杂化碳,以及氢、氧、氮元素组成的量子点。该材料的最大特点是无毒,并且较其他材料具有更高的光稳定性,具有发光范围连续可调、价格低廉、生物相容性好等特点,在光致发光和太阳能电池方面具有独特的应用价值。Liu等通过一步水热法合成了碳酸盐/碳点混合材料,该材料在光致发光中展现出发光光谱较宽,光谱缺陷较小和色纯度较高的特点。Cao等使用加热离心法制备了碳量子点水溶液,该材料

层状类钙钛矿多铁性材料研究进展

第45卷第12期2017年12月 硅酸盐学报Vol. 45,No. 12 December,2017 JOURNAL OF THE CHINESE CERAMIC SOCIETY https://www.360docs.net/doc/8512355100.html, DOI:10.14062/j.issn.0454-5648.2017.12.01 层状类钙钛矿多铁性材料研究进展 张大龙,陈志伟,黄伟川,李晓光 (中国科学技术大学物理系,合肥 230026) 摘要:多铁性材料的自旋、电荷、轨道、晶格等多重有序存在着复杂的相互作用,且对磁场、电场、光场、应变和温度等多种外界环境敏感,从而表现出一些新奇的物理现象,使其在存储器、传感器、微波等领域中有重要的应用价值。随着对单相多铁材料研究的深入,人们已从简单钙钛矿结构的多铁性研究转向复杂的层状类钙钛矿体系,其丰富而复杂的结构给人们提供了更广泛的设计和调控空间。介绍并分析了如Double-Perovskite(DP)、Ruddlesden-Popper(RP)、Aurivillius(AU)以及A n B n O3n+2系列等层状类钙钛矿多铁性特征的研究进展。人们已发现Bi2FeCrO6等DP体系、(1–x)(Ca y Sr1–y)1.15Tb1.85Fe2O7–x Ca3Ti2O7等RP体系、Bi4NdTi3Fe1–x Co x O15–Bi3NdTi2Fe1–x Co x O12–δ等AU体系以及La6(Ti0.67Fe0.33)6O20层状材料等,均具有室温或近室温多铁性。最后提出了当前面临的问题和对未来的展望。 关键词:多铁性;Double-Perovskite;Ruddlesden-Popper;Aurivillius 中图分类号:TQ174.1+3 文献标志码:A 文章编号:0454–5648(2017)12–1707–14 网络出版时间:2017–11–01 14:32:30 网络出版地址:https://www.360docs.net/doc/8512355100.html,/kcms/detail/11.2310.TQ.20171101.1432.001.html Development of Multiferroic Layered-Perovskite-like Oxides ZHANG Dalong, CHEN Zhiwei, HUANG Weichuan, LI Xiaoguang (Department of Physics, University of Science and Technology of China, Hefei 230026, China) Abstract: Single phase multiferroic materials with the coexistence of spin, charge, orbit, and lattice orderings have some physical phenomena, which are sensitive to several external stimulations like magnetic field, electric field, optical field, strain and temperature. These materials can be thus used in the field of storage, sensors, microwave, etc. For room-temperature multiferroics, people pay attention to more complex systems, such as layered-perovskite-like systems, which may provide broader space for designing and controlling new multifunctional materials and devices. This review represented recent development on the multiferroic properties of Double-Perovskite (DP), Ruddlesden-Popper(RP), Aurivillius(AU) and A n B n O3n+2 series compounds, respectively. All these layered systems, such as DP phases Bi2FeCrO6, RP phases (1–x)(Ca y Sr1–y)1.15Tb1.85Fe2O7–x Ca3Ti2O7, AU phases Bi4NdTi3Fe1–x Co x O15–Bi3NdTi2Fe1–x Co x O12–δ and La6(Ti0.67Fe0.33)6O20, show the coexistence of ferroelectricity and ferromagnetism above or near room temperature. Finally, we put forward the current issues we are facing and the outlooks of the future. Keywords: multiferroic properties; Double-Perovskite; Ruddlesden-Popper; Aurivillius 多铁性材料是指兼具铁电、铁磁、铁弹或者铁涡等初级铁序中的2种及以上的材料体系,有丰富的物理性质和巨大的应用潜力,引起国际上的广泛关注。驱动多铁性研究的动力有2方面:从基础研究的角度,多铁材料集成了自旋、电荷、轨道、晶格等多重有序结构,对磁场、电场、光场、应力和温度等多种外界环境响应明显,这种复杂的、交叉的研究对象正是固体物理发展到凝聚态物理的产物之一[1–2];从应用的角度,多铁材料能实现多重物理量之间的交叉调控,将为现代电子学在后摩尔时代的发展提供材料基础[3–5]。 单相多铁性材料主要分为第I类和第II类多铁 收稿日期:2017–06–19。修订日期:2017–07–07。 基金项目:国家自然科学基金(51332007、21521001、51622209);国家重点研发计划(2016YFA0300103、2015CB921201)资助。 第一作者:张大龙(1988—),男,博士。 通信作者:李晓光(1961—),男,博士,教授。Received date:2017–06–19. Revised date: 2017–07–07. First author: ZHANG Dalong (1988–), male, Ph.D. E-mail: zdl37@https://www.360docs.net/doc/8512355100.html, Correspondent author: LI Xiaoguang (1961–), male, Ph.D., Professor. E–mail: lixg@https://www.360docs.net/doc/8512355100.html,

钙钛矿量子点的保护以及荧光传感应用

钙钛矿量子点的保护以及荧光传感应用 卤化铅钙钛矿是近年来兴起的半导体材料,由于其在光伏电池中的出色性能(光电转化效率超过20%)被研究者广泛关注。和传统的镉基量子点相比,钙钛矿纳米晶具有优秀的光学性质,例如高荧光量子产率(最高达100%),覆盖整个可见光区的可调发射光谱(从400-700 nm),相对低温的合成途径(从室温至150 ℃)等。 这些优越的特性使钙钛矿量子点在光电器件领域具有潜在的应用价值,例如太阳能电池/发光二极管/光泵浦激光/光检测器等。然而,钙钛矿量子点对湿度、氧气、极性和非质子溶剂以及热分解的不稳定性,影响了它们的进一步研究和分析方面的应用。 本论文共四章。第一章,文献综述。 主要介绍了钙钛矿量子点研究的发展过程,包括钙钛矿量子点的合成方法,光物理化学性质,稳定性的影响因素,现有的稳定方法,以及在光电和传感等方面的应用,并提出本论文的研究思路及其意义。第二章,利用研磨法制备有机无机杂化钙钛矿材料,探索其在湿度荧光传感的应用。 研究工作考察了其湿度传感的灵敏度和检测限,通过耦合红色荧光化合物,获得了一种比色型的荧光湿度传感器,达到了肉眼分辨湿度的效果,实验还考察了该传感器的稳定性。第三章,利用分子晶体苯甲酸作为包埋钙钛矿量子点的基质,不需要配体交换,进行量子点在苯甲酸晶体中的嵌入。 通过稳定性试验,考察晶体本身致密的结构对量子点的稳定性的影响。利用透射电子显微镜和激光共聚焦倒置荧光显微镜,观测量子点在苯甲酸晶体内部的分布。

通过荧光光谱和荧光寿命、荧光量子产率的测量,研究包埋量子点前后的光学性质特别是荧光性质的变化。实验利用这种复合晶体进行了暖白光LED的构建。 第四章,利用CsPbBr3NC量子点,通过固态阴阳离子的一步交换,获得了分散在KC1表面的CsPbC13-MnNC。利用KC1的多晶体软塑性成形的性质,通过压片成型,获得了具有橙红色荧光且发光可调的固态发光材料。 利用电感耦合等离子体质谱和荧光寿命的测量,证明了 Mn的掺杂。由于CsPbC13至Mn的能量转移效应,获得了强荧光的Mn发射,并用于光致发光的LED 颜色转换层。

铁磁性材料

铁磁性材料 铁磁性物质属强磁性材料, 它在电工设备和科学研究中的 应用非常广泛,按它们的化学成 分和性能的不同,可以分为金属 磁性材料和非金属磁性材料(铁 氧体)两大族。 1 金属磁性材料 金属磁性材料是指由金属合 金或化合物制成的磁性材料,绝 大部分是以铁、镍或钴为基础,再加入其他元素经过高温熔炼、机械加工热处理而制成,这种磁性材料在高温、低频、大功率等条件下,有广泛的应用,但在高频范围,它的应用则受到限制。金属磁性材料还可分为硬磁、软磁和压磁材料等,实验表明,不同铁磁性物质的磁滞回线形状有很大差异,图示给出了三种不同铁磁材料的磁滞回线,其中,软磁性材料的面积最小;硬磁材料的矫顽力较大,剩磁也较大;而铁氧体材料的磁滞回线则近似于矩形,故亦称矩磁材料。 软磁材料的特点是相对磁导率r 和饱和磁感强度max B 一般都比较大,但矫顽力c H 比硬磁质小得多 ,磁滞回线所包围的面积很小,磁滞特性不显著如图(a),软磁材料在磁场中很容易被磁化,而由于它的矫顽力很小,所以也容易去磁,因此,软磁材料是很适宜于制造电磁铁、变压器、交流电动机、交流发电机等电器中的铁心的另一个原因。 硬磁材料又称永磁材料,它的特点是剩磁r B 和矫顽力c H 都比较大,磁滞回线所包围的面积也就大, 磁滞特性非常显著如图(b),所以把硬磁材料放在外磁场中充磁后,仍能保留较强的磁性,并且这种剩余磁性不易被消除,因此硬磁材料适宜于制造永磁体。在各种电表及其他一些电器设备中,常用永磁铁来获得稳定的磁场。1998年6月3日,由美国“发现者号”航天飞机携带的、美籍华裔物理学家丁肇中教授组织领导的阿尔法磁谱仪上所用的永磁体,就是由中国科学院电工研究所等单位研制的稀土材料钕铁硼永磁体,其磁感强度高达0. 14T ,该永磁体的直径为1. 2m ,高0. 8m ,而阿尔法磁谱仪是用来探测宇宙中反物质和暗物质的,这是人类第一次将大型永磁铁送入宇宙空间,对宇宙中的带电粒子进行直接观测,它极有可能给人类开拓一个全新的科学领域而带来一次新的科学突破。 压磁材料具有强的磁致伸缩性能,所谓磁致伸缩是指铁磁性物体的形状和体积在磁场变化时也会发生变化,特别是改变物体在磁场方向上的长度。当交变磁场作用在铁磁性物体上时,它随着磁场的增强,可以伸长,或者缩短,如钴钢是伸长,而镍则缩短,不过长度的变化是十分微小的,约为其原长的1/100000,磁致伸缩在技术上有重要的应用,如作为机电换能器用于钻孔、清洗,也可作为声电换能器用于探测海洋深度、鱼群等。 2 非金属磁性材料——铁氧体 铁氧体,又叫铁淦氧,是一族化合物的总称,它由三氧化二铁(Fe 2O 3)和其他二价的金属氧化物(如

磁致多铁性物理与新材料设计

磁致多铁性物理与新材料设计 董帅1,向红军2 基金项目:国家自然科学基金(51322206,11274060,11104038),国家重大科学研究计划(2011CB922101, 2012CB921400),教育部百篇优秀博士论文基金,上海市东方学者项目支持。高等学校博士学科点专项科研基金资助课题(20100092120032)。 作者简介:董帅(1982-),男,教授,主要研究关联电子物理与材料,包括多铁性氧化物、磁电耦合效应与器件;关联电子异质结、场效应器件. E-mail: sdong@https://www.360docs.net/doc/8512355100.html, (1. 东南大学物理系,南京,211189; 2. 复旦大学物理系,物质计算科学教育部重点实验室,应用表面物理国家重点实验室,上 5 海, 200433) 摘要:磁致多铁材料是多铁性材料大家族中的后起之秀,其特色在于其铁电性起源于特定的磁序,因此其铁电与磁性紧密关联,具有本征的强磁电耦合效应。目前对磁致多铁性的研究以基础物理为主。随着研究者对磁致多铁现象背后物理机制认识的不断深入,不断有新的磁10 致多铁材料被设计、预言、发现,其性能也在不断地提高中。本文将简要介绍磁致多铁材料所涉及的基本物理机制,并根据这些已知的规律,回顾一下近些年寻找和设计新的磁致多铁材料的经验。 关键词:磁致多铁;Dzyaloshinskii-Moriya 作用;交换收缩;磁序诱导铁电性统一极化模型;第一性原理计算 15 中图分类号:O469 Physics and Design of Magnetic Multiferroics Shuai Dong 1, Hongjun Xiang 2 (1. Department of Physics, Southeast University, Nanjing 211189, China; 20 2. Department of Physics and Key Laboratory of Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200433, China) Abstract: Magnetic multiferroics belong to an important branch of the multiferroics big family. Because the ferroelectric polarizations are directly induced by particular magnetic orders, magnetic multiferroics owns intrinsic strong magnetoelectric couplings. Current research interests 25 on magnetic multiferroics are mostly focused on their fundamental physics. Benefited from the research progress of physical mechanisms, more and more new magnetic multiferroic materials have been designed, predicted, and discovered, which push forward the magnetoelectric performances. In this colloquium, we will briefly introduce the physical mechanisms involved in magnetic multiferroics, as well as the experience to design and search for new magnetic 30 multiferroics. Key words: magnetic multiferroics; Dzyaloshinskii-Moriya interaction; exchange striction; Unified model of ferroelectricity induced by spin order; first-principles calculation 0 引言 35 从2003年BiFeO 3薄膜[1]和TbMnO 3单晶[2]揭开序幕开始,多铁性材料和物理的研究进 入了蓬勃发展时期,跻身成为关联电子大家庭中又一重要分支。但有别于其它著名分支,如高温超导是铜基、铁基化合物,庞磁电阻是锰基氧化物,多铁性材料覆盖范围非常广泛,无论是涉及的过渡金属离子(Ti 、V 、Cr 、Mn 、Fe 、Co 、Ni 、Cu 化合物都有多铁性材料),抑或涉及的晶格结构(钙钛矿结构、尖晶石结构、烧绿石结构等等),乃至丰富现象背后的 40 物理机制,都非常纷繁复杂,这既反映了关联电子体系的复杂性,又体现了物理规律的普适性[3,4,5,6,7]。

相关文档
最新文档