冰蓄冷空调原理

冰蓄冷空调原理
冰蓄冷空调原理

冰蓄冷空调原理 Revised by Jack on December 14,2020

冰蓄冷空调原理

冰蓄冷空调技术是指在用电低谷时用电制冰并暂时蓄存在蓄冰装置中, 在需要时( 用电高峰) 把。由此可以实现对电网的“移峰填谷”, 有利于降低发电装机容量, 维持电网的安全高效运行。

一、蓄冰空调系统组成部分

(1)制冷主机。

①作用:制冷主机(双工况机组)负责对载冷剂(乙二醇)降温,输出冷源。

②工作原理:制冷剂经过压缩机变成液态,在蒸发器气化吸热把冷量传递到盘管系统。

(2)蓄冷设备。

①作用:蓄冷设备(蓄冰罐、槽)主要功能是储存冷源并阻隔与外界冷热交换。

②工作原理:蓄冰罐、槽外壁采用保温隔热材料层,隔绝与外界冷热交换,保持

罐、槽内的温度

(3)用户风机盘管系统。

①作用:把冷源送到需要制冷房间。

②工作原理:水经过换热板吸收冷量,经过冷冻泵输送到需要制冷的房间。

③④⑤⑥二、蓄冰空调系统工作原理

(1)制冷机组(双工况机组)运行,将载冷剂(20%浓度的乙二醇液)流经主机降温,再输送至蓄冰罐对蓄冰罐中的水降温,降温一般降至-3℃左右,于此同时蓄冰罐的另一侧管道把乙二醇输送出,经过冷冻泵回流主机中,就这样低温的乙二醇对蓄冰罐的水进行循环降温。

(2)另一方面,经过主机降温的乙二醇液流经融冰式换热板,向风机盘管输送冷量,进入换热板前℃,通过换热板后载冷剂温度上升到℃,载冷剂通过冷冻泵回流制冷机组。

三、夜间蓄冰

夜间,用户风机盘管系统停止运行,前段只运行工况机组,打开V3、V1节流阀,关闭V2、V4、V5节流阀,让-3~℃低温20%浓度的乙二醇溶液被主机运送到蓄冰罐,在蓄冰罐中吸收热量,然后通过冷冻泵回流工况机组,一直循环,让蓄冰罐中的水冰化90%以上,白天高峰负荷时,储冰罐中0℃的水被输送到融冰板式换热器,换热后的高温水回流到储冰罐,被洒在冰上直接进行融冰,只要罐中有冰就可以一直保持出水温度在℃左右,为融冰板式换热器的另一侧提供5-7℃的冷冰用于供冷

gGuLoKI1721m

冰蓄冷自动控制系统设备及功能说明

第三章机房自动控制系统 一、冰蓄冷自动控制系统综述 工程的自控系统由上位机远程控制系统、PLC现场控制系统、电动阀、传感检测器件、系统配电柜、系统软件等部分组成。系统结构图如下所示:

PLC控制软件为主的控制程序,该程序为美国西门子公司与CRYOGEL公司联合开发,已经在美国的多个工程中和台湾杰美利(GEMINI)得到应用,直接输入后调整。上位机控制软件也可带采用CRYOGEL/(GEMINI)公司软件包的WinCC操作系统。 上位机远程控制设置先进的集中控制台,采用工控机配置打印机进行远程监控和打印,现场控制机采用PLC可编程控制器控制,进行系统控制、参数设置、数据显示,确保实现系统的参数化,实现系统的智能化运行。 本系统中的核心控制部分与机电执行装置采用国际著名品牌(西门子、江森、霍尼韦尔)的产品。 蓄能系统控制具体功能如下: ⑴控制系统通过对主机、蓄热锅炉、蓄冰装置、板式换热器、泵、冷却塔、系统管路调节阀进行控制,调整蓄冷系统各应用工况的运行模式,在最经济的情况下给末端提供稳定的供水温度。 ⑵根据季节和机组运行情况,自控系统具备所有工况的转换功能。 ⑶控制、监测范围: a、制冷主机、泵、冷却塔启停、状态、故障报警; b、总供/回水管温度显示与控制; c、蓄冰装置及蓄热水箱进出口温度、显示与控制; d、蓄冰量、余冰量、乙二醇流量、瞬时释冷速度、蓄冷速度等标准规定参数的 显示; e、电动阀开关、调节显示; f、备用水泵选择功能; g、各时段用电量及电费自动记录; h、空调冷负荷以及室外温湿度监测; i、可选的功能(包括楼宇智能化系统接口及接口转换程序)。 ⑷控制系统对一重要的参数进行长时间记录保存,并将空调的实际运行日负荷通过报表或曲线图的方式记录,可以查询到某一段时间内的历史数据值,供使用者进行了解、分

冰蓄冷技术(DOC)

1.技术原理 冰蓄冷空调技术是利用夜间电网谷电运转制冷主机制冷,并以冰的形式储存,在白天用电高峰时将冰融化提供空调用冷,从而避免中央空调争用高峰电力的一项调节负荷、节约能源的技术。 (1)削峰填谷、平衡电力负荷。 (2)改善发电机组效率、减少环境污染。 (3)减小机组装机容量、节省空调用户的电力花费。 (4)改善制冷机组运行效率。 (5)蓄冷空调系统特别适合用于负荷比较集中、变化较大的场合加体育馆、影剧院、音乐厅等。 (6)应用蓄冷空调技术,可扩大空调区域使用面积。 (7)适合于应急设备所处的环境,

计算机房、军事设施、电话机房和易燃易爆物品仓库等。 2.冰蓄冷空调系统组成 冰蓄冷空调系统包括:空调主机、冷水泵、冷却水泵、冷却塔、蓄冷水泵、释冷水泵、换热器、储冰槽等。相对于常规空调系统,冰蓄冷系统增加了储冰槽、换热器等装置 3..工艺流程 冰球式(也称封装式)冰蓄冷工艺流程:在制冰时,通常要求制冷主机蒸发器出口温度为零下5摄氏度,因此冰球外循环的介质通常采用乙二醇溶液,乙二醇溶液在冰球外流动,在制冰循环中,从制冷主机出来的低温乙二醇溶液流过冰球表面,使冰球内的水结冰;在融冰供冷时,乙二醇溶液流过冰球表面,通过换热器与流往空调末端的冷冻水热交换,被

冷却后的冷冻水流向各个房间,通过风机盘管供冷,因此,空调末端的形式可以与常规中央空调相同。 冰盘管冰蓄冷工艺流程: 、 4.适用范围: 商场、饭店、写字楼、体育馆、展览馆、影剧院、宾馆、居民小区等场所;制药、食品加工、啤酒工业、奶制品工业等;需要对现有单班、两班空调系统扩大供冷量的场所,可以不增加主机,改造成冰蓄冷系统。5.冰蓄冷空调系统的适用条件 执行峰谷电价,且差价较大的地区。(峰谷电价比至少要达到4:1,否则无经济性可言)

浅谈冰蓄冷空调与常规中央空调的优缺点

浅谈冰蓄冷空调与常规中央空调的优缺点 发表时间:2016-08-18T10:15:48.877Z 来源:《低碳地产》2015年第2期作者:韩广玉 [导读] 冰蓄冷中央空调系统是在常规中央空调系统的基础上多加一套蓄冰装置。 深圳机械院建筑设计有限公司广东深圳 518000 本人前段时间做了一个小型的冰蓄冷项目,通过这个项目认真学习了一下蓄冰系统,在此跟各位浅谈一下蓄冰空调与常规空调优缺点对比,以及本人累积的些许设计经验,希望能对初次做蓄冰项目的设计同行带来一些帮助。 现简单分析一下冰蓄冷中央空调系统、常规空调系统的特点。 1)冰蓄冷中央空调系统特点 冰蓄冷中央空调系统是在常规中央空调系统的基础上多加一套蓄冰装置,利用夜间低谷用电时段开启制冷机组,将蓄冰装置中的水制成冰,白天在空调用电高峰时段利用融冰取冷满足部分空调负荷,宏观上起到调峰移谷,微观上在提高室内空调品质的同时大大降低用户运行费用的作用。 该技术在二十世纪30年代起源于美国,在70年代能源危机中得到发达国家的大力发展。从美国、日本、韩国、台湾等较发达的国家和地区的发展情况来看,冰蓄冷已经成为中央空调的发展方向。比如,韩国明令超过2000㎡建筑,必须采用冰蓄冷或煤气空调,日本超过5000㎡的建筑物,就在设计时考虑采用冰蓄冷空调系统。很多国家都采取了奖励措施来推广这种技术,比如韩国转移1KW高峰电力,一次性奖励2000美元,美国一次性奖励500美元,等等。 中国在近年加大对蓄能技术的推广力度,国家计委和经贸委2001年底特地下达《节约用电管理办法》,要求各单位推广蓄能技术,并逐步加大峰谷电差价。一些建筑采用蓄能技术后直接给用户带去了收益,节约了运行成本。2001年10月举办APEC会议的10万㎡的上海科技城、广州大学城500万㎡等大型建筑采用的就是冰蓄冷空调系统。 冰蓄冷空调从其原理和实践中可以看出它有如下特点 优点: ①减少冷水机组容量(降低主机一次性投资),总用电负荷少,减少变压器配电容量与配电设施费。 ②冷主机制冷效率高(COP大于5.3),同时利用峰谷荷电价差,大大减少空调年运行费,可节约运行费用35%以上。 ③减少建筑的配电容量,节约变配电的投资,节约约30%(空调的配电投资);免双线路的高可靠性费用,节约投资。 ④使用灵活,部分区域使用空调可由融冰提供,不用开主机,节能效果明显。 ⑤可以为较小的负荷(如只使用个别办公室)融冰定量供冷,而无需开主机。 ⑥在过渡季节,可以融冰定量供冷,而无需开主机,不会出现大马拉小车的状况,运行更合理,费用节约明显。 ⑦具有应急功能,提高空调系统的可靠性。在拉闸限电时更能显示其优势:只要具备带动水泵的电力(如发电机发电、限电减电力供电)就能够融冰供冷,不会出现空调不能使用的状况。 ⑧制冷温度低而稳定,空调效果佳,提高大楼的舒适性和品位。 ⑨有低温冷源制冷速度快,上班前启动时间短。上班前启动时间越长,则空调无效运行越多,无谓的浪费越大。 ⑩作为驱动能源,清洁、环保、稳定、简单可靠,且峰谷电差价在不久的将来势必更优惠(周边省份在去年均已大幅优惠,国外的峰谷差更大)。 对于大型多建筑区域供冷,可以低温供水,降低送水能耗、减少管网投资;同时与每一建筑一个供冷站的形式比可以节约投资、减少管理费用、减少机房面积。 可以为末端提供低温冷冻水,降低末端的投资;加强除湿能力,大幅提高空调舒适性;如果采用低温送风系统,更是可以节约末端的风机能耗、提高空调品质、减少风管的尺寸和投资。 空调系统智能化程度高,可以实现系统的全自动运行,而且具备与大楼的BAS接口,是目前世界上最先进的空调系统。 不足之处: ①如果主机和蓄冰装置等设备均布置于冷冻机房内,蓄冰装置需要占用一定的空间。 ②机房设备投资比常规水冷电制冷和溴化锂机组系统稍高。 ③冰蓄冷只能夏天供冷,需要供热系统。(可以采用热网换热采暖,热网容量远低于溴化锂机组所需,只有50%左右容量)2)常规电制冷中央空调系统特点 是目前使用较多的空调形式,经过一个多世纪的发展,制冷主机的形式多种多样,具有制冷效率高等的优点,它有如下特点:优点: ①系统简单,占地比其他形式的稍小。

冰蓄冷中央空调技术原理及经济性分析

冰蓄冷中央空调技术原理及经济性分析 江苏安厦工程项目管理有限公司□卢义生 摘要:由于冰蓄冷中央空调系统具有节能环保等诸多优点,近几年在我国得到了迅速发展。以滁州第一人民医院为例,通过冰蓄冷中央空调系统与常规中央空调系统的经济性分析对比,可以看出冰蓄冷中央空调系统在实际应用中的优势。 关键词:冰蓄冷空调系统常规空调系统经济性分析 国外利用机械制冷机的蓄能空调最早出现在二十世纪三十年代,但随着机械制造业的进步,蓄能技术的发展很快停滞下来。直到二十世纪八十年代初期,蓄能空调在美国、日本等发达国家再次得到研究推广。到九十年代中后期,美国、日本、欧洲等国家和我国台湾地区的蓄能空调系统已得到广泛的应用,并取得了良好的经济效益。我国于九十年代中期正式引入冰蓄冷空调系统,近年来国家及地方电力部门相继制定了峰谷电价政策及优惠措施以促进冰蓄冷空调的发展。2000年,国家电力公司国电财[2000]114号文件明确要求加大峰谷电价推广力度,为此,全国多个省市纷纷出台了分时电价政策,一般低谷电价只相当于高峰电价的1/2甚至1/5,而且有取消电力增容费、电贴费等不同程度的优惠,在政策上支持冰蓄冷空调的发展。近两年来,随着我国节能减排政策的不断推广,冰蓄冷空调技术得到了迅猛发展。中国建筑设计研究院机电专业设计研究院总工程师、北京制冷学会常务理事宋孝春表示:“冰蓄冷空调系统是人类在面对能源危机时优化资源配置、保护生态环境的一项技术革新,能产生良好的社会效应和经济效益……。我国冰蓄冷空调市场已走向成熟,全国范围内,近两年的工程几乎等于前十年的总和。未来一段时间内,这个数字仍以几何级数字向上递增……” 1冰蓄冷技术介绍 1.1冰蓄冷系统原理 冰蓄冷中央空调是在夜间利用制冷主机制冰,将冷量以冰的形式蓄存起来,然后在白天根据空调负荷要求释放这些冷量,这样在电力低谷段蓄冰,在用电高峰时期就可以少开甚至不开主机。这样就可以将电网高峰时间的空调用电量转移至电网低谷时使用,从而利用峰谷电价政策,达到为用户节约电费的目的。 在一般大楼中,空调系统用电量占总耗电量的35%~65%,而制冷主机的电耗在空调系统耗电量中又占65%~75%。在常规空调设计中,冷水主机及辅助设备容量均按尖峰负荷来选配,这不仅使空调系统的电力容量增大,而且使得主机等空调设备在大部分情况下都处于低效率的部分负荷状态运行,设备利用率也低,投资效益低。

冰蓄冷中央空调系统

冰蓄冷中央空调系统 摘要:本文在分析了目前为解决峰谷用电量差应运而生的冰蓄冷中央空调系统,对其原理,分类,优缺点,效益等方面做了简要介绍;并在此基础上,说明了评价冰蓄冷系统的一系列指标,如冰蓄冷系统的蒸发温度,制冷率与融冰率,热损失,安全性与可靠性等;此外,介绍了国外的冰蓄冷系统的技术发展趋势及特点,另外,对于国内冰蓄冷系统发展面临的问题也做了总结以及一些可行的建议。 关键词:冰蓄冷;移峰填谷;蓄能 Ice-Thermal-Storage Center Air Conditioning System Abstract: This paper analyses the ice-thermal-storage center air conditioning system for solving the problem of the peak and valley of electricity and introduces the the principle, advantages and disadvantages, classification, benefits and so on. Furthermore, the paper also explains a series of index that evaluate the ice-thermal-storage center air conditioning system, such as the evaporation temperature, the refrigeration rate and thaw rate, the heat loss, the security and reliability and so on. In addition, it shows the technology trends and characteristics of the ice-thermal-storage center air conditioning system abroad and puts forward some suggestions of how to do in our country when we popularize the ice-thermal-storage center air conditioning system. Key words:The ice storage technology,; Peak load shaving; Energy storage 引言 众所周知,夏季用电紧张,时常导致拉闸限电的事情发生。到了夏季,随着空调用电的加大,让城市电力系统峰谷差急剧放大,电网负荷明显加大。中科院广州能源研究所博士冯自平称“电力紧张有很大一部分是由峰谷差造成的,峰谷差造成浪费几乎是‘天文数字’。”,在我国电力结构中,空调是造成电力负荷峰谷差的主要因素之一。 综合全天的电量供应,其实电力紧张只出现在用电高峰时段,用电低谷期发电能力富裕的电量却往往因得不到有效利用而被白白消耗掉,造成巨大的能源浪费。特别在夏季高温期间,电力供需矛盾突出,重点是空调负荷呈现出“爆发性”增长,这种增长与气温密切相关。夏天电力出现缺口的时段主要集中在上午9时至11时、下午1时至3时和晚上6时30分至8时30分,夜间及凌晨为用电低谷期。在用电高峰期,由于负荷增加较大,与低谷形成峰谷差。据有关报道,去年广东空调的负荷绝对值就已超过1000万千瓦,而空调开启带来的负荷占总用电负荷已经达到35%以上。空调用电不仅增加了高峰负荷,而且加大了电网的峰谷差。 我国的电力工业发展很快,96年发电装机容量已达到世界第2位,到97年底全国发电装机容量达2.5亿千瓦,2004年装机容量达到4.4亿千瓦,预计2005年要突破5亿千瓦,仅比美国装机容量少3亿千瓦左右。但是,尽管如此,我国的电力供应仍日益紧缺,尤其是

冰蓄冷技术

冰蓄冷技术 目录 技术发展史 一,产品原理 二,适用范围 三,使用效益 四,突出特点 五,高灵桶式蓄冰系统优点突出 在没有实行集中供热前,冬天时家家户户烧火取暖,这种原始的用能方式既浪费能源,又污染环境。北方实行热力站集中供热方式后,在节约能源的同时也保护了环境。南方地区冬天烧火取暖的时间很短或基本不烧火取暖,但夏天却要用空调降温。目前,不管是南方和北方的住宅、宾馆、酒店、商店、办公楼等几乎所有的建筑物,都安装了分体式空调或中央空调,特别在南方地区尤其是在海南,一年四季使用空调降温的时间都很长,空调降温需要消耗大量的能源。 区域供冷站的供冷方式与北方冬季时的集中供热方式十分类似。这种供冷方式实际上就是以区域冷站作为冷源和能量中心,通过区域空调管网向周边建筑提供调温用的冷水,满足会议厅、展厅、酒店、大学、医院、商场、写字楼、住宅楼等不同用户的用冷需求,而且,还可以利用制冷时产生的热量,向建筑物供应热水。很明显,与集中供热一样,集中供冷方式将会大大提高能源的利用率。 实际应用证明,区域供冷的能源效远低于预期,输送能耗增加,不同于区域供热,输送泵的功耗转化为热添加到传输介质中,但对于供冷,对输冷介质的传热是一种副作用。广州一个集中个供冷失败的案例能很好的说明问题。 冰蓄冷在制冷过程中同样也需要能源,这种供冷方式实现能源的节约与电厂发电、电网供电和供冷的集中方式有密切的联系。 技术发展史 这项技术是上世纪初在美国研制并开始应用,但开始并不普及。直到八十年代世界性的能源危机,冰蓄冷的节能优势才被世人所瞩目,而得到广泛的推广使用。日本能源贫乏,冰蓄冷的市场颇好。目前该项技术已经成为很多发达国家解决电网供电压力不平衡的重要强制手段。 我国从九十年代开始引进国外冰蓄冷技术,全国现有几百家单位在使用,而目前拥有核心自主知识产权冰蓄冷技术的只有高灵能源科技有限公司,其自主研发的ICEBANK蓄冰技术系统打破了国外技术垄断,是唯一达到国际先进水平的冰蓄冷民族品牌。其最早实施的再运营项目浙江绍兴大通商城使用冰蓄冷技术后,每年能为用户节省空调运行费用117.7万元,节约费用比率为36.6%,为国家电 1

冰蓄冷空调原理

冰蓄冷空调原理 冰蓄冷空调技术是指在用电低谷时用电制冰并暂时蓄存在蓄冰装置中, 在需要时( 用电高峰) 把。由此可以实现对电网的“移峰填谷”, 有利于降低发电装机容量, 维持电网的安全高效运行。 一、蓄冰空调系统组成部分 (1)制冷主机。 ①作用:制冷主机(双工况机组)负责对载冷剂(乙二醇)降温,输出冷源。 ②工作原理:制冷剂经过压缩机变成液态,在蒸发器气化吸热把冷量传递到盘管系统。(2)蓄冷设备。 ①作用:蓄冷设备(蓄冰罐、槽)主要功能是储存冷源并阻隔与外界冷热交换。 ②工作原理:蓄冰罐、槽外壁采用保温隔热材料层,隔绝与外界冷热交换,保持罐、 槽内的温度 (3)用户风机盘管系统。 ①作用:把冷源送到需要制冷房间。 ②工作原理:水经过换热板吸收冷量,经过冷冻泵输送到需要制冷的房间。 ③④⑤⑥二、蓄冰空调系统工作原理 (1)制冷机组(双工况机组)运行,将载冷剂(20%浓度的乙二醇液)流经主机降温,再输送至蓄冰罐对蓄冰罐中的水降温,降温一般降至-3℃左右,于此同时蓄冰罐的另一侧管道把乙二醇输送出,经过冷冻泵回流主机中,就这样低温的乙二醇对蓄冰罐的水进行循环降温。 (2)另一方面,经过主机降温的乙二醇液流经融冰式换热板,向风机盘管输送冷量,进入换热板前3.5℃,通过换热板后载冷剂温度上升到10.5℃,载冷剂通过冷冻泵回流制冷机组。

三、夜间蓄冰 夜间,用户风机盘管系统停止运行,前段只运行工况机组,打开V3、V1节流阀,关闭V2、V4、V5节流阀,让-3~-3.5℃低温20%浓度的乙二醇溶液被主机运送到蓄冰罐,在蓄冰罐中吸收热量,然后通过冷冻泵回流工况机组,一直循环,让蓄冰罐中的水冰化90%以上,白天高峰负荷时,储冰罐中0℃的水被输送到融冰板式换热器,换热后的高温水回流到储冰罐,被洒在冰上直接进行融冰,只要罐中有冰就可以一直保持出水温度在3.5℃左右,为融冰板式换热器的另一侧提供5-7℃的冷冰用于供冷

冰蓄冷空调故障处理案例

冰蓄冷空调故障处理案例1.盘管系统制冰时主机如卸载如何处理? 答:盘管系统制冰时主机如卸载,系统肯定有问题,可以检查:①主机出口温度是否设定为-6.3℃左右②阀门动作是否正常③主机本身有没有问题④流量是否平 衡(可以通过调节阀门来调节管道阻力) 2.冰蓄冷系统的乙二醇浓度一般是多少? 答:乙二醇浓度一般在1.028-1.035之间(25-30%之间,此为20℃环境温度下测),太浓时(1.056)热效降低10%,太稀时冰点上升,制冰时会导致主机冻坏。开 主机前必须测乙二醇浓度(可用量程为1.0-1.1的浓度计,可拿水校一下)。制 冰时一台主机启动,另外的主机停止时,把停机的主机阀门关掉,以免主机冻 坏。制冰时,板换二次侧的冷冻水泵要定时开启,以免结冰。 3.制冰时,拐点出现在什么温度? 答:拐点出 现在什么温度 每一个系统均 不一样,要看主 机出口温度、冰 槽进口温度,一 个典型的曲线 如右。 4.乙二醇泵变频有什么讲究? 答:主机单供冷、主机制冰、联合供冷工况下乙二醇泵是定流量的,流量值为设计流量;单融冰供冷工况乙二醇泵是变流量的。乙二醇泵采用变频控制,但控制依据在不同运行工况下有所不同:在主机开启工作的状态下,乙二醇泵变频的依据就是满

足经过主机的流量基本稳定,由于乙二醇泵是按照联合供冷工况选型的,因此在联合供冷工况下,乙二醇泵工频运行。而在主机单供冷和主机制冰时,如果仍然以工频运行,则乙二醇泵必然出现超流量现象(由于旁通了蓄冰盘管或板式换热器),严重时可能导致乙二醇泵过载损坏。因此为保证乙二醇泵及系统稳定并且节能运行,在这两种工况时则将乙二醇泵分别设定在某一固定频率(该频率在调试时得出),使乙二醇泵流量稳定在设计流量。也就是在主机单供冷、主机制冰、联合供冷工况下乙二醇泵是定流量的,流量值为设计流量。系统在联合供冷主机优先工况下,板换乙二醇进口侧温度不控制,乙二醇泵定流量运行,通过调节蓄冰盘管直通与旁通电动阀直接控制末端供水温度。 5.软化水处理原理一般是怎样的? 答:一般有四个步骤:反洗→吸盐→正洗→正常注水。反洗的作用是冲掉水中的泥沙,吸盐的作用是用Na离子置换Ca、Mg离子。是否是软化水可用专用试剂化验(用来测硬度):红色表示有硬度,蓝色表示为合格的软水。 6.乙二醇定压装置补的是水吗? 答:乙二醇定压装置补的是25%的乙二醇溶液,不是水。 7.分集水器压差设定值如何确定? 答:压差设定值要根据实际的末端情况来设定,具体调试时,把末端全部打开,运行水泵,读此时压差,一般取此时的压差为设定值。 8.定压装置电节点压力计如何设定? 答:电节点压力计的范围一般设置在低压0.5bar高压1.5bar设定点上。 9.乙二醇溶液在管道中是如何灌注的? 答:可从乙二醇补液箱灌注。充填可分为初次充填与补充充填。初次充填时将水及乙烯乙二醇按重量比例加入蓄冰槽,并加适量防腐蚀抑制剂和杀菌灭藻剂。初次充填后,开启乙泵循环24小时,检测其浓度,如未到达规定浓度则需根据检测浓度及缺少量进行补充充填,填充完毕后再进行循环(不小于4小时),系统内溶液完全混合充分,然后在检测其浓度,如未达到继续调整,直至达到规定浓度; 10.传感器信号采集不到怎么办? 答:检查采集模块有没有供电,模块的跳线设置是否正确,外部接线是否正确。11.KEYSTONE阀门一般如何调试设置?

冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用 1、冰蓄冷空调系统原理及主要特点 冰蓄冷空调技术就是在夜间低电价时段(同时也是空调负荷很低的时间)采用电制冷机组制冷,将水在专门的蓄冰槽冻结成冰以蓄存冷量;在白天的高电价时段(同时也是空调负荷高峰时间)停开制冷机组,直接将蓄冰槽的冷能释放出来,满足空调用冷的需要。因为制冰、融冰转换损失的能量很小,而夜间制冷因气温较低可使效率更高,完全可以弥补蓄冰的冷能损失。 冰蓄冷空调系统具有以下主要特点: (1)利用低谷段电力,具有平衡峰谷用电负荷,缓解电力供应紧; (2)冰水主机的容量减少,节省增容费用; (3)总用电设施容量减少,可减少基本电费支出; (4)利用低谷段电价的优惠可减少运行电费; (5)冰水温可低至1~4℃,减少空调设备风管的费用; (6)冷却水泵、冷冻水泵、冷却塔容量减少; (7)电力高压侧及低压侧设备容量减少; (8)室相对湿度低,冷却速度快,舒适性好; (9)制冷设备经常在设计工作点上平衡运行,效率高,机器损耗小; (10)充分利用24h有效时间,减少了能量的间歇耗损;

(11)充分利用夜间气温变化,提高机组产冷量; (12)投资费用与常规空调相当,经济效益佳。 冰蓄冷空调技术在我国的应用将成为不可逆转的趋势。当然它也有一些缺点,如增加蓄冷池、水泵的输送能耗及增加蓄冷池等设备的冷量损失等。 2系统的组成及制冰方式分类 2.1系统组成 冰蓄冷空调系统一般由制冷机组、蓄冷设备(或蓄水池)、辅助设备及设备之间的连接、调节控制装置等组成。冰蓄冷空调系统设计种类多种多样,无论采用哪种形式,其最终的目的是为建筑物提供一个舒适的环境。另外,系统还应达到能源最佳使用效率,节省运转电费,为用户提供一个安全可靠的冰蓄冷空调系统。 2.2制冰方式分类 根据制冰方式的不同,冰蓄冷可以分为静态制冰、动态制冰两大类。此外还有一些特殊的制冰结冰,冰本身始终处于相对静止状态,这一类制冰方式包括冰盘管式、封装式等多种具体形式。动态制冰方式在制冰过程中有冰晶、冰浆生成,且处于运动状态。每一种制冰具体形式都有其自身的特点和适用的场合。 3运行策略与自动控制 3.1运行策略

冰蓄冷介绍

1、蓄冷空调原理 蓄冷中央空调系统是一种通过蓄能来节约空调系统运行费用的技术,其基本工作原理是:建筑物空调时间所需冷量的部分或全部在非空调时间利用蓄冷介质的显热或其相变过程的潜热迁移等特性,将能量以低温状态蓄存起来,然后根据空调负荷要求释放这些冷量,这样在用电高峰时期就可以少开甚至不开主机。当空调使用时间与非空调时间和电网高峰和低谷同步时,就可以将电网高峰时间的空调用电量转移至电网低谷时使用。 在一般工程中,空调系统用电量占总耗电量的35%--65%,而制冷主机的电耗在空调系统中又占65%--75%。在常规空调设计中,冷冰主机及辅助设备容量均按尖峰负荷来选配,这不仅使空调系统的电力容量增大,而且使得主机等空调设备在绝大部分情况下均处于低效率的部分负荷状态运行,显得很不经济。 蓄冷中央空调从系统构成上来说只是在常规空调系统的基础上增加了一套蓄冷装置,其它各部分在结构上与常规空调相同,它在使用范围方面也与常规空调基本一致。 2、蓄冷中央空调的意义 随着社会的发展,中央空调在大中城市的普及率日渐增高。据统计,空调高峰时用电量达到城市用电负荷的25%-30%,加大了电网的峰谷用电差。蓄冷中央空调之所以得到各国政府和工程技术界的重视,正因为它对电网有卓越的移峰填谷功能,是电力需求侧最有效的电能蓄存方法,蓄冷对于用户还有以下的一些突出优点: 1)空调的出水温度低、制冷效果好,低温送风系统节省投资和能耗。 2)空调环境相对湿度较低,空调品质提高,有利于防止中央空调综合症。 3)利用峰谷荷电价差,平衡电网负荷。减少空调年运行费。 4)减少冷水机组容量,降低一次性投资。 5)在主机出现故障或断电的情况下,蓄冷系统相当于应急冷源,系统可靠性高。6)当建筑物功能变化或面积增加引起冷负荷增加时,只要增加蓄冷装置的蓄冷量, 即可满足大楼新增冷量需要。 3、蓄冷发展史 第一代:冰球蓄冷第二代:冰盘管蓄冷第三代:动态冰蓄冷―――――――――――――――――――――――――――――――― 在没有实行集中供热前,冬天时家家户户烧火取暖,这种原始的用能方式既浪费能源,又污染环境。北方实行热力站集中供热方式后,在节约能源的同时也保护了环境。南方地区冬天烧火取暖的时间很短或基本不烧火取暖,但夏天却要用空调降温。目前,不管是南方和北方

冰蓄冷空调的原理

冰蓄冷空调的原理及应用说明 阅读: 6146发布时间: 2009年 07月 14日 1. 冰蓄冷空调系统的原理 冰蓄冷空调系统的原理即是:选择电力离峰时段(电费较低)啓动压缩机运转,冷却冰水制冰,将压缩机的冷却能量,以冰的形态(潜热)储存起来,等到白天尖峰电力时段(电费较高)需使用空调(冰水),而又不适宜运转冷气机组的时间,即可让夜间所储存的冰溶化,吸收空调冰水的热量,达到冰水冷却的效果,如此即可将白天尖峰时段的冷气用电需量,转移至夜间离峰时段。 冰蓄冷空调系统流程图

2. 冰蓄冷空调应用说明 冰蓄冷空调系统于美、日等国己发展使用30年以上,即使在台湾也已发展25年之久,其对于电力电网的波峰谷平衡调整,及投资设置者的电费回收效益,已是明显且成熟的技术。 基于空调系统的耗电,约占商业大楼用电的40%~50%,且集中于夏天,对于尖峰电力的需求造成很大的负担,因此发展冰蓄冷空调系统,除了符合国家政策需求外,其另具有下述

的商业效益优点: 2.1.转移尖峰时间耗电量 压缩机利用夜间或离峰时间,转移白天(尖峰时间)耗电量。具有平衡电力负载功能,符合国家削峰填谷的用电政策。 2.2.节约基本电费及外线补偿费(增容费) 利用非空调设备的契约电力容量(照明、电梯等),在离峰电力时段移转给储冰系统使用,如此可降低契约电力容量,节约基本电费。另因电力设备使用时段措开,因此可将受电设备容量降低,包括:无熔丝开关、电磁开关、管线、变压器等设备,及施工费用均可减少(各种设备电力、设备容量、设备费用、电力申请费用、基本电费和施工费用等,全部降低约20%)。 2.3.节约流动电费 透过使用二段式和三段式时间电价,享受波峰谷电费差价措施。 2.4.提升机组运转效率 传统空调系统,冰水主机容量选定都是以尖峰负荷为依据,但是实际上尖峰负荷全年不超过60天,主机绝大多数时间是在部份负荷下运转,在春天和秋天时,负荷更可能低至50%以下,采用储冰空调系统,主机满载运转至储冰完成,机组完全在100%容量下运转,避免卸载运转时的效率损失(传统机组当容量卸载至50%时,其耗电量仍高达75%)。 2.5.具扩充能力 不增加设备的情况下,在空调使用时段时,只要机组辅助运转,即可立即增加空调能力。 2.6.低温的冰水供应 可提供1℃到5℃冰水,供冷藏、低温除湿及制程冷却系统使用。同时在相同室温条件

冰蓄冷空调培训内容

技术培训内容确认函 为了满足业主对冰蓄冷中央空调机房操作、维护管理人员的需要,我公司提供全面、完善的人员培训,培训人员能熟练操作设备,了解设备结构、工作原理,并能排除一切常见故障。 实际操作培训内容包括: 1、本工程的流程、系统与设备配置情况。 2、不同运行模式切换时的实现方式以及实际操作维护注意事项。 3、本工程自控系统设备特点、功能、以及操作维护注意事项。 4、其他水泵、冷却塔、换热器等设备的特点以及操作维护。 维护保养注意事项 冰蓄冷制冷空调系统设备及其控制系统在运行质保期结束后。为了今后整个设备能安全顺利地使用下去,我们向贵公司提供一个关于设备保养的计划与范围,以便能早做安排。 (一)冷冻机 冰蓄冷机房配置有水冷冷冻机组_3(其中常规制冷主机1台,双工况主机2台)_台,每年对机组保养内容如下: A、每月预防性检查

1、检查冷水机组的蒸发器压力。 2、检查冷凝器的压力。 3、检查供油压力。 4、检查集油槽上的两个视镜中的油位。 5、检查停机油箱温度。 6、检查机组运行时油箱温度。 7、将所有数据收集后进行分析机组运行状态。 B、月常规保养 1、压缩机马达 a、检测及收紧所有之马达电源端子 b、检测马达线圈温度传感器欧姆值 c、马达线组之绝缘阻抗测试 2、马达启动控制箱 a、收紧所有之电源端子 b、对马达启动箱除垢 3、润滑系统 a、检查油槽油位是否正常 b、收紧油泵马达电源端子 c、检查及除垢处理 4、控制及保护电路 a、检查及调整导叶马达 b、润滑所有导叶之连杆及传动部分 5、冷凝器及蒸发器 a、检查水及冷媒之温差 6、一般系统检查 a、检测冷媒系统是否有漏

冰蓄冷自动控制系统设备及功能说明

技术标 主要设备的选用及技术描述与响应说明 第二章机房自动控制系统 一、冰蓄冷自动控制系统综述 件、系统配电柜、系统软件等部分组成。系统结构图如下所示: 小央空调蓄能系统原理图 工程的自控系统由上位机远程控制系统、PLC现场控制系统、电动阀、传感检测器 肝2網通讯

PLC控制软件为主的控制程序,该程序为美国西门子公司与CRYOGEL公司联合开发,已经在美国的多个工程中和台湾杰美利(GEMINI)得到应用,直接输入后调整。上位机控制软件也可带采用CRYOGEL/ (GEMINI )公司软件包的WinCC操作系统。 上位机远程控制设置先进的集中控制台,采用工控机配置打印机进行远程监控和打印,现场控制机采用PLC可编程控制器控制,进行系统控制、参数设置、数据显示,确保实现系统的参数化,实现系统的智能化运行。 本系统中的核心控制部分与机电执行装置采用国际著名品牌(西门子、江森、霍尼韦尔)的产品。 蓄能系统控制具体功能如下: ⑴控制系统通过对主机、蓄热锅炉、蓄冰装置、板式换热器、泵、冷却塔、系统管路调节阀进行控制,调整蓄冷系统各应用工况的运行模式,在最经济的情况下给末端提供稳定的供水温度。 ⑵根据季节和机组运行情况,自控系统具备所有工况的转换功能。 ⑶控制、监测范围: a制冷主机、泵、冷却塔启停、状态、故障报警; b、总供/回水管温度显示与控制; c、蓄冰装置及蓄热水箱进出口温度、显示与控制; d、蓄冰量、余冰量、乙二醇流量、瞬时释冷速度、蓄冷速度等标准规定参数的显示; e电动阀开关、调节显示; f、备用水泵选择功能; g、各时段用电量及电费自动记录; h、空调冷负荷以及室外温湿度监测; i、可选的功能(包括楼宇智能化系统接口及接口转换程序)。 ⑷控制系统对一重要的参数进行长时间记录保存,并将空调的实际运行日负荷通过报表 或曲线图的方式记录,可以查询到某一段时间内的历史数据值,供使用者进行了解、分 析,而且所有的监测数据可进行打印。

冰蓄冷的优缺点介绍

冰蓄冷空调的原理和优缺点介绍 一、冰蓄冷的技术原理: 冰蓄冷中央空调是指在夜间低谷电力段开启制冷主机,将建筑物所需的空调部分或全部制备好,并以冰的形式储存于蓄冷装置中,在电力高峰时段将冰融化提供空调用冷,由于充分应用了夜间低谷电力,由此使中央空调的运行费用(在有夜间低谷电力费用的地区)降低。在有夜间低谷电力费用的地区,冰蓄冷中央空调不仅为用户节约大量的运行费用,而且对电网具有卓越的移峰填谷功能,提高电网运行的经济性。国家发改委在《节能中长期专项规划》中,将应用电力蓄冷、蓄热作为节能降耗的十大措施之一。 二、冰蓄冷技术与普通空调相比所具有的优势: 1、优化空调系统:原中央空调系统设计属于耗能型中央空调系统设计,通过冰蓄冷系统的设计可将原系统进行优化,使空调运行过程更趋于合理。 2、降低运行电费:充分利用电价优惠政策,在夜间低电谷电价时段制冷,在高峰电价时段放冷使用,能够做到部分移峰,从而降低空调运行电费。 3、节省空调运行电量:a、由于充冷过程在夜间进行,夜间气温相比白天较低,制制冷单耗下降。B、由于充冷时制冷机满负荷地高效运行,避免了正常供冷时难以避免的“小马拉大车”的现象。 4、增加了空调系统的运行的灵活性:b、然停电时,不需开主机,

只需开供冷泵,因此,使用备用电源仍可维持空调供冷。b、应紧张,供电部门对正常中央空调要限电使用,但在全国各地,蓄冷中央空调往往得到额外支持,不在限制范围。c、行方式灵活,空调可按原有系统单独运行,也可与增加蓄冷系统结合运行。 三、冰蓄冷技术与普通空调相比所具有的缺点: 1、通常在不计电力增容费的前提下,其一次性投资比常规空调大。 2、蓄冷装置要占用一定的建筑空间,而且增加了蓄冷设备费用。 3、制冷蓄冰时制冷主机的制冷效率要比在空调工况下低,其空调系统的制冷性能系数(COP)要下降。 4、与普通空调系统相比需增加水管和风管的保温费用。 5、设计与调试相对比较复杂,效能的完全发挥受环境影响较大。 6、节能不节电,安装完后,还得看能否批到优惠电价。 四、冰蓄冷中央空调系统运行方式: 在冰蓄冷中央空调系统中存在冷机和蓄冰装置两个冷源,根据两个冷源之间的关系,冰蓄冷空调的运行方式可归纳为两类:融冰优先和冷机优先。 1、融冰优先的运行策略就是在供冷时优先使用蓄冰装置,只有当 负荷大于蓄冰装置的融冰能力时才投入冷机使用。融冰优先的宗旨是确保低谷电时段蓄的冷量能被充分利用。优点:融冰优先的运行策略能有效的降低冷机的装机容量,并且即使对融冰速率较低的蓄冰系统也能最大限度地利用其蓄冰量。缺点:在三段供电地区,融冰优先的运行策略不能将谷电蓄的冷量集中

水蓄冷与冰蓄冷的比较

八、水蓄冷与冰蓄冷的比较

一. 水蓄冷与冰蓄冷比较 将水蓄冷与冰蓄冷进行比较,这二种蓄冷方式的最大不同就是水蓄冷是利用水的温度变化(显热变化)进行蓄冷,而冰蓄冷利用水的相态变化(相变所需的潜热)进行蓄冷。因此,冰、水蓄冷系统在下列方面发生了变化。 (1)蓄冷系统制冷机的容量 为0.6~ 从冰蓄冷简介中知道:冰蓄冷制冷机组蓄冷工况下的制冷能力系数C f 0.65(制冰温度为-6℃时),其制冷能力比制冷机组在空调工况低了0.4~0.35,也就是说冰蓄冷在希望利用蓄冷系统减少制冷机组容量的愿望很难实现。而水蓄冷就不存在这一问题。 (2)蓄冷装置的蓄冷密度 从冰蓄冷与水蓄冷的简介中知道:冰蓄冷槽的蓄冷密度为(40~50kW /m3),蓄冷水池的蓄冷密度为(7~11.6kW /m3)。冰蓄冷槽的蓄冷密度是蓄冷水池蓄冷密度的5倍左右。 这里要说明一下,就是关于水蓄冷与冰蓄冷的占地问题。通常在人们的心目中,一说起水蓄冷,就有水池容积大,要占用大块地方。其实这是一种错觉。产生这一错觉的原因是:以为冰蓄冷利用的是水的潜热,而物态变化的热潜热是比较大的(往往人们对凝固热不太熟悉,又经常与汽化热来衡量),认为蓄冰槽内冰的容积比例可为1,因此,远远夸大了蓄冰槽蓄冷密度。而实际上蓄冰槽的蓄冷密度仅是蓄冷水池蓄冷密度的5倍左右,以目前使用最多的冰盘管为例,冰蓄冷槽需要安装在室内,并要求有一定的安装距离。我们曾对某一冰蓄冷系统与水蓄冷系统进行比较,如果将蓄冰槽安装的场地全部空间改为蓄冷水池,再加上该建筑物的消防水池,二者的蓄冷能力近乎相当。 (3)蓄冷装置的兼容性 水蓄冷系统的蓄冷水池冬季可作为蓄热水池使用,这一点对于热泵运行的制冷系统是特别有用的。而冰蓄冷系统蓄冰槽则没有此功能。 (4)蓄冷系统的建设投资 冰蓄冷与水蓄冷相比,一般来说,水蓄冷系统基本建设投资不高于常规空调系统,而冰蓄冷系统基本建设投资比常规空调系统高出20%以上。 冰蓄冷的缺点:冰蓄冷的用电量高于常规空调20%左右,水蓄冷则可节省制冷用电10%左右。水蓄冷储槽可实施夏季蓄冷,冬季蓄热,做到蓄冷、蓄热

冰蓄冷空调原理

冰蓄冷空调原理 Revised by Jack on December 14,2020

冰蓄冷空调原理 冰蓄冷空调技术是指在用电低谷时用电制冰并暂时蓄存在蓄冰装置中, 在需要时( 用电高峰) 把。由此可以实现对电网的“移峰填谷”, 有利于降低发电装机容量, 维持电网的安全高效运行。 一、蓄冰空调系统组成部分 (1)制冷主机。 ①作用:制冷主机(双工况机组)负责对载冷剂(乙二醇)降温,输出冷源。 ②工作原理:制冷剂经过压缩机变成液态,在蒸发器气化吸热把冷量传递到盘管系统。 (2)蓄冷设备。 ①作用:蓄冷设备(蓄冰罐、槽)主要功能是储存冷源并阻隔与外界冷热交换。 ②工作原理:蓄冰罐、槽外壁采用保温隔热材料层,隔绝与外界冷热交换,保持 罐、槽内的温度 (3)用户风机盘管系统。 ①作用:把冷源送到需要制冷房间。 ②工作原理:水经过换热板吸收冷量,经过冷冻泵输送到需要制冷的房间。 ③④⑤⑥二、蓄冰空调系统工作原理 (1)制冷机组(双工况机组)运行,将载冷剂(20%浓度的乙二醇液)流经主机降温,再输送至蓄冰罐对蓄冰罐中的水降温,降温一般降至-3℃左右,于此同时蓄冰罐的另一侧管道把乙二醇输送出,经过冷冻泵回流主机中,就这样低温的乙二醇对蓄冰罐的水进行循环降温。 (2)另一方面,经过主机降温的乙二醇液流经融冰式换热板,向风机盘管输送冷量,进入换热板前℃,通过换热板后载冷剂温度上升到℃,载冷剂通过冷冻泵回流制冷机组。 三、夜间蓄冰

夜间,用户风机盘管系统停止运行,前段只运行工况机组,打开V3、V1节流阀,关闭V2、V4、V5节流阀,让-3~℃低温20%浓度的乙二醇溶液被主机运送到蓄冰罐,在蓄冰罐中吸收热量,然后通过冷冻泵回流工况机组,一直循环,让蓄冰罐中的水冰化90%以上,白天高峰负荷时,储冰罐中0℃的水被输送到融冰板式换热器,换热后的高温水回流到储冰罐,被洒在冰上直接进行融冰,只要罐中有冰就可以一直保持出水温度在℃左右,为融冰板式换热器的另一侧提供5-7℃的冷冰用于供冷 gGuLoKI1721m

水蓄冷空调

中央空调水蓄冷系统的原理图 一、水蓄冷系统的原理 1、空调谁蓄冷的构成和原理流程图 水蓄冷的主要组成部分:制冷机组、蓄冷水池(蓄冷罐)、板式换热器、供冷水泵、蓄冷水泵、放冷水泵、冷却塔和冷却水泵。与常规制冷系统相比,水蓄冷系统比常规系统多蓄冷水池(蓄冷罐)、板式换热器、蓄冷水泵和放冷水泵等设备。 2、大温差水蓄冷典型系统的原理 系统的基本组成如图所示(可以部分地下或者全地下结构)。空调投入运转时,阀K热、K冷开启,K旁关闭。供冷泵的启停及其出口阀开度由楼宇的需冷量而定,冷水机和充冷泵的开停则由电价的时段划分而定,二者互不干扰。 2.1、充冷工况:电力低价时段,冷水机满载运转,其输出水量G1大於楼宇所需的冷冻水量

G2,余量G3=G1-G2自贮柜“冷端”输入经均流布水环槽注入贮柜底部。柜内冷冻水与回水的交界面上升,升达上布水环槽上缘,充冷过程终结。 2.2、放冷工况:楼宇所需冷冻水量G2大於冷水机出水量G1时,G3=G1-G2<0,自贮柜底部输出的冷冻水经供冷泵馈至楼宇,在换热升温后经K热返回贮柜上布水环槽。贮柜内,冷冻水与回水的界面下降。 3、水蓄冷空调的适用场合 水蓄冷空调由于在夜间需要开动制冷机组进行蓄冷,因此它最适合在夜间没有供冷要求或仅需部分供冷的场所。适合采用水蓄冷技术的具体场合与冰蓄冷空调相同。 与冰蓄冷技术相比,水蓄冷技术显著节省了投资总额,而且不但适用于新建项目,也适合应用于改造项目。对原有系统在无需进行任何改动的情况下,只需在原系统中添加水蓄冷设备所需的管路即可,对原有系统没有任何影响。 4、如何选择水蓄冷或冰蓄冷方式改造? 随着现代工业的发展和人民生活水平的提高。中央空调的应用越来越广泛,其耗电量也越来越大,一些大中城市中央用电量已占其高峰用电量的20%以上,使得电力系统峰谷负荷差加大,电网负荷率下降,电网不得不实行拉闸限电,严重制约着工农业生产,对人们正常的生活带来不少影响。解决该问题的有效办法之一是应用于蓄冷技术,将空调用电从白天高峰期转移到夜间低谷期,均衡城市电网负荷,达到多峰填谷的目的,蓄冷技术的原理,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并以冰的形式储存起来,在白天用电高峰时将冰融化提供空调服务,从而避免中央空调争用高峰电力,最常用的蓄冷方式主要有两大类:冰蓄冷和水蓄冷。 4.1、冰蓄冷 顾名思义蓄冷介质以冰为主,不同的制冰方式,构成不同的蓄冷系统。蓄冷系统的思想通常有两种,完全蓄冷与部分蓄冷。因为部分蓄冷方式可以削减空调制冷系统高峰耗电量,而且初投资夜间比较低所以目前采用较多,在确定部分负荷蓄冷系统的装置容量时,一般有两种情况, 4.1.1、空调系统夜间不运行,仅白天运行,或者夜间运行的空调负荷较小,在这种情况下, 选择制冷机的最佳平衡计算公式应为: Qc=Q/(N1+C f*N2) Qs= N2* C f *Qc, 式中 Q:以空调工况为基点时的制冷机制冷量(kw), Qs:蓄冰槽容量(KWH); N1:白天制冷主机在空调工况下的运行小时数,由于白天制冷机不一空均为满载运行,计算时该值可取(0.8-1.0)N. N2:夜间制冷主机在蓄冷工况下的运行小时数。 Cf:冷水机组系数,即冷水机组蓄冰工况制冷能力与空调工况制冷能力的比值,一

冰蓄冷空调工作原理分析

冰蓄冷空调工作原理分析-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

冰蓄冷空调原理 冰蓄冷空调技术是指在用电低谷时用电制冰并暂时蓄存在蓄冰装置中, 在需要时( 用电高峰) 把。由此可以实现对电网的“移峰填谷”, 有利于降低发电装机容量, 维持电网的安全高效运行。 一、蓄冰空调系统组成部分 (1)制冷主机。 ①作用:制冷主机(双工况机组)负责对载冷剂(乙二醇)降温,输出冷源。 ②工作原理:制冷剂经过压缩机变成液态,在蒸发器气化吸热把冷量传递到盘管系统。(2)蓄冷设备。 ①作用:蓄冷设备(蓄冰罐、槽)主要功能是储存冷源并阻隔与外界冷热交换。 ②工作原理:蓄冰罐、槽外壁采用保温隔热材料层,隔绝与外界冷热交换,保持罐、槽 内的温度 (3)用户风机盘管系统。 ①作用:把冷源送到需要制冷房间。 ②工作原理:水经过换热板吸收冷量,经过冷冻泵输送到需要制冷的房间。 ③④⑤⑥二、蓄冰空调系统工作原理 (1)制冷机组(双工况机组)运行,将载冷剂(20%浓度的乙二醇液)流经主机降温,再 输送至蓄冰罐对蓄冰罐中的水降温,降温一般降至-3℃左右,于此同时蓄冰罐的另一

侧管道把乙二醇输送出,经过冷冻泵回流主机中,就这样低温的乙二醇对蓄冰罐的水进行循环降温。 (2)另一方面,经过主机降温的乙二醇液流经融冰式换热板,向风机盘管输送冷量,进入换热板前3.5℃,通过换热板后载冷剂温度上升到10.5℃,载冷剂通过冷冻泵回流制冷机组。 三、夜间蓄冰 夜间,用户风机盘管系统停止运行,前段只运行工况机组,打开V3、V1节流阀,关闭V2、V4、V5节流阀,让-3~-3.5℃低温20%浓度的乙二醇溶液被主机运送到蓄冰罐,在蓄冰罐中吸收热量,然后通过冷冻泵回流工况机组,一直循环,让蓄冰罐中的水冰化90%以上,白天高峰负荷时,储冰罐中0℃的水被输送到融冰板式换热器,换热后的高温水回流到储冰罐,被洒在冰上直接进行融冰,只要罐中有冰就可以一直保持出水温度在3.5℃左右,为融冰板式换热器的另一侧提供5-7℃的冷冰用于供冷

相关文档
最新文档