烧结法制多孔玻璃陶瓷的微观结构和性能研究

第11卷第2期2008年4月

建筑材料学报

Jr)uRN人I。()FIjUlI。DINGMATERl人I.S

文章编号:1007--9629(2008)02--0235一06V01.11.NO.2

Apr..2008

烧结法制多孑L玻璃陶瓷的微观结构和性能研究

王立久1,杨梅1’2

(1.大连理工大学土木水利学院。辽宁大连116023;2.辽东学院人事处,辽宁丹东118001)

摘要:以伟晶石为原料,采用粉末烧结法制备了Si()2一A12()。一Ca()_Zn()-R2()系统多孔玻

璃陶瓷.运用热重/差热分析(TGA/sDTA)、X射线衍射(XRD)、扫描电镜(SEM)等技术

对多孔玻璃陶瓷的性能、微观结构和组织进行了研究.结果表明:多孔玻璃陶瓷的主晶相

为副硅灰石(单斜晶系)。副晶相为钙长石(三斜晶系);硬脂酸在100---490℃的范围内分

解并挥发,使玻璃陶瓷体中形成了丰富的微米级闭合孔和少数的微米级半通孔,这些孔均

匀分布在玻璃陶瓷体中.多孔玻璃陶瓷的密度约为2.3g/cm3,孔隙率约为19%,维氏硬

度随基础玻璃化学组成中Si():与Ca()比值(质量比)的增大而增大.

关键词:伟晶石;多孔玻璃陶瓷;副硅灰石;粉末烧结法

中图分类号:TQl71.73+3文献标识码:A

ResearchontheMicrostructureandPropertiesofPorous

Glass—CeramicsusingPowder-SinteringMethod

WANGLi-jiul.YANGMeil?2

(1.SchoolofCivilandHydraulicEngineering.DalianUniversityofTechnology。Dalian116023,China;

2.PersonnelDepartment,EasternLiaoningUniversity,Dandong118001,China)

Abstract:BasedontheSi02一A12(X—Ca()-Zn()-R20system,pegmatitewasusedasarawmaterialtoproduceanewtypeporousglass—ceramicsbyapowder—sinteringmethod.Theproperties,mi—crostructuresandtexturesoftheporousglass——ceramicshavebeeninvestigatedbythermogravime??tricanalysis/diffenentialthermalanalysis(TGA/SDTA),X—raydiffraction(XRD),scanningelec-tronmicroscopy(SEM)methodseta1.Someconclusionscanbegotten:parawollastonite(cli—norhombicsystem)isfoundasthemaincrystalphaseandtheanorthite(anorthicsystem)isob—servedastheparacrystallinephaseinthisnewglass—ceramicsmaterial.Alotofmicrondimensionclosedporesandseveralsemi—?openporesareuniformlyformedanddistributesintheglass-ceram—-icsmatrixbecauseofthedecompositionofstearicacidat100~490℃.Thebulkdensityofthesampleisabout2.3g/cm3,theporosityisabout19%,andtheVickers-hardnessincreasesalongwiththegrowthofSi02-to-CaOratio(bymass)oftherawmaterials.

Keywords:pegmatite;porousglass-ceramics;parawollastonite;powder-sinteringmethod

多孔玻璃陶瓷(多孔微晶玻璃)是由非晶态无机材料经过热处理而得到的含有封闭孔或连通孔微晶结构的新型材料,其性能取决于微孔和晶相、玻璃相的化学组成以及它们的结构、分布和所占

收稿日期:2007一05—29,修订日期:2007一07—18

基金项目:“十一五”国家科技支撑计划重点项目资助(2006BAJ05B07);2006年辽宁省自然科学基金资助项目(20062147)作者简介。王立久(1945一)。男.吉林长春人。大连理工大学教授,博士生导师.主要从事无机非金属材料研究.

 万方数据

万方数据

陶瓷的分类及性能

陶瓷材料的力学性能 陶瓷材料 陶瓷、金属、高分子材料并列为当代三大固体材料之间的主要区别在于化学键不同。 金属:金属键高分子:共价键(主价键)范德瓦尔键(次价键) 陶瓷:离子键和共价键。普通陶瓷,天然粘土为原料,混料成形,烧结而成。 工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。 工程陶瓷的性能:耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。 硬度高,弹性模量高,塑性韧性差,强度可靠性差。 常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。 一、陶瓷材料的结构和显微组织 1、结构特点 陶瓷材料通常是金属与非金属元素组成的化合物;以离子键和共价键为主要结合键。 可以通过改变晶体结构的晶型变化改变其性能。 如“六方氮化硼为松散的绝缘材料;立方结构是超硬材料” 2、显微组织 晶体相,玻璃相,气相 晶界、夹杂 (种类、数量、尺寸、形态、分布、影响材料的力学性能。 (可通过热处理改善材料的力学性能) 陶瓷的分类 玻璃 — 工业玻璃 (光学,电工,仪表,实验室用);建筑玻璃;日用玻璃 陶瓷 —普通陶瓷日用,建筑卫生,电器(绝缘) ,化工,多孔 ……特种陶瓷 -电容器,压电,磁性,电光,高温 …… 金属陶瓷 -- 结构陶瓷,工具(硬质合金) ,耐热,电工 …… 玻璃陶瓷 — 耐热耐蚀微晶玻璃,光子玻璃陶瓷,无线电透明微晶玻璃,熔渣玻璃陶瓷 … 2. 陶瓷的生产 (1)原料制备(拣选,破碎,磨细,混合)普通陶瓷(粘土,石英,长石等天然材料)特种

陶瓷(人工的化学或化工原料 --- 各种化合物如氧、碳、氮、硼化合物) (2) 坯料的成形 (可塑成形,注浆成形,压制成形) (3)烧成或烧结 3. 陶瓷的性能 (1)硬度 是各类材料中最高的。 (高聚物<20HV,淬火钢500-800HV,陶瓷1000-5000HV) (2)刚度是各类材料中最高的(塑料1380MN/m2,钢MN/m2) (3)强度理论强度很高(E/10--E/5);由于晶界的存在,实际强度比理论值低的多。 2 (E/1000--E/100)。耐压(抗压强度高),抗弯(抗弯强度高),不耐拉(抗拉强度很低比抗压强度低一个数量级)较高的高温强度。 (4)塑性:在室温几乎没有塑性。 (5) 韧性差,脆性大。是陶瓷的最大缺点。 (6) 热膨胀性低。导热性差,多为较好的绝热材料(λ=10-2~10-5w/m﹒K) (7)热稳定性 — 抗热振性(在不同温度范围波动时的寿命)急冷到水中不破裂所能承受的最高温度。陶瓷的抗热振性很低(比金属低的多,日用陶瓷 220 ℃) (8)化学稳定性 :耐高温,耐火,不可燃烧,抗蚀(抗液体金属、酸、碱、盐) (9) 导电性 — 大多数是良好的绝缘体,同时也有不少半导体( NiO , Fe3O4 等) (10) 其它: 不可燃烧,高耐热,不老化,温度急变抗力低。 普通陶瓷

陶瓷材料显微结构与性能

1陶瓷烧结过程中影响气孔形成的因素有哪些? (1)煅烧温度过低、时间过低 (2)煅烧是时原料中的水碳酸盐、硫酸盐的分解或有机物的氧化 (3) 煅烧时炉内气氛的扩散 (4) 煅烧时温度过高,升温过快或窑内 气氛不合适等。 夏炎2.影响陶瓷显微结构的因素有哪些? 参考答案:(1) 原料组成、粒度、配比、混料工艺等 (2) 成型方式、成型条件、制品形状等 (3)干燥制度(干燥方式、温度制度、气氛条件、压力条件等) (4) 烧成制度(烧成方式、窑炉结构、温度制度、气氛条件、压力条 件等) 3. 提高陶瓷材料强度及减轻其脆性有哪些途径? 参考答案:a.制造微晶、高密度、高纯度的陶瓷。例如,采用热等静压烧结制成 的Si 3N 4 气孔率极低,其强度接近理论值。 b.在陶瓷表面引入压应力可提高材料的强度。钢化玻璃是成功应用这 一方法的典型例子。 c.消除表面缺陷,可有效地提高材料的实际强度。 d.复合强化。采用碳纤维、SiC纤维制成陶瓷/陶瓷复合材料,可有 效地改善材料的强韧性。 e.ZrO 2与增韧。ZrO 2 对陶瓷的强韧化的贡献有四种机理(相变增韧、微裂纹增韧、 裂纹偏转增韧、表面残余应力增韧)罗念 4.影响氧化锆相变增韧的因素是什么?简单叙述氮化硅陶瓷具有的性能及常用的烧结方法。 ①晶粒大小。当晶粒尺寸大于临界尺寸易于相变。若晶粒尺寸太小,相变也就难以进行。 ②添加剂及其含量使用不同的添加剂, t-ZrO2的可转变最佳晶粒大小、范围也不同。 ③晶粒取向。晶粒取向的不同而影响相变导致增韧的机制。 氮化硅陶瓷具有高强度、高硬度、耐磨、耐化学溶液和熔体的腐蚀、高电绝缘体、低热膨胀和优良抗热冲击、抗机械冲击等性能。烧结方法:反应烧结氮化硅、无压烧结氮化硅、重烧结氮化硅、气氛加压氮化硅和热压烧结氮化硅。——李成5.气孔对功能陶瓷性能的影响及降低功能陶瓷中的气孔量的措施? 气孔均可使磁感应强度、弹性模量、抗折强度、磁导率、电击穿强度下降,对畴运动造成钉扎作用,影响了铁电铁磁性。另外,少量气孔亦会严重降低透光性。添加物的引入不仅可阻止二次重结晶,亦可以使气孔由晶界排出。为了降低功能陶瓷中的气孔量,可采用通氧烧结,成型时增大粒子流动性提高生坯密度,研究玻璃相对主晶相的润湿等措施。韦珍海6.瓷轴基本上是一层玻璃体,但从显微结构的角度来看,它可以分成几大类釉层并举例说明其中一种的釉层特点? 参考答案:釉层可为三大类:玻璃釉、析晶釉(或称结晶轴)和分相釉.以玻璃釉为例,玻璃釉一般是无色透明的,由硅酸盐玻璃所组成。釉层除了多少有些釉

铁电陶瓷材料的应用以及生产工艺之七

铁电陶瓷材料的应用以及生产工艺之七 铁电陶瓷材料,是指具有铁电效应的一类功能性陶瓷材料,它是热释电材料的一个分支。 可用于大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,可以制作介质放大器和相移器等。利用其热释电性,可制作红外探测器等。也用于制造光阀、光调制器、激光防护镜和热电探测器等。 广泛应用于航天、军工、新能源产品。 这里介绍,主要是参考它的加工工艺,比如为固体电解质的加工提供一定的参考。另一方面是顺便了解一下这特种陶瓷的用途。 室温研磨法固相反应制备铁电陶瓷粉末: ――机械合金化制备的铁电体:锆钛酸铅 锆钛酸铅(Pb(ZrxTi1-X)O,或PZT)是PT和锆酸铅(PbZrO3或PZ)的 固溶体,具有杰出的铁电、压电、热电和光电性能,广泛应用于传感器、声纳、微动台、旋转式激励器和热电传感器中。 有专家研究了用具有碳化钨筒和球的行星高能球磨机对(PbO、ZrO2和TiO2)混合物球磨不同时间后PZT相的形成情况。球磨4h没有形成PZT,但PbO衍射峰大大变宽并弱化,球磨15和24h后,PZT成为主要相。球磨过程中,相变会导致不同程度的体积膨胀。研究表明,延长球磨时间,体积膨胀程度减小,意味着未反应的氧化物数量减少。球磨24 h的混合物反应完全,故几乎没有观察到体积膨胀。 有专家通过行星球磨机对PbO、ZrO2、TiO2氧化物强化粉碎(高的 球磨速度和大的球料比)5—480min后发现,球磨lh便得到PZT相及少量未反应的ZrO2,球磨2h时后相组成相同,未反应的ZrO2量达到最少。对球磨粉末做比表面积测试后发现,球磨30min后其比表面积达到最大,并促进了初始氧化物间的反应,以致球磨1h后几乎得到纯PZT相,

玻璃物理化学性能计算

玻璃物理化学性能计算 一、玻璃的粘度计算 ...1.粘度和温度的关系 ...2.玻璃组成对温度的作用 ...3.粘度参考算点及在生产中的应用 ...4.粘度的计 二、玻璃的机械性能和表面性质 ...1.玻璃表面张力的物理与工艺意义 ...2.玻璃表面张力与组成及温度的关系 ...3.玻璃的表面性质 ...4.玻璃的密度计算 三、玻璃的热学性质和化学稳定性 ...(一)玻璃的热学性能 ...(二)玻璃的化学稳定性 ...(三)玻璃的光学性质 一、玻璃粘度和温度的关系 粘度是玻璃的重要性质之一。它贯穿着玻璃生产整个阶段,从熔制、澄清、均化、成型、加工、直到退火都与粘度密切相关。在成型和退火方面年度起着控制性的作用。在高速成型机的生产中,粘度必须控制在一定的范围内,而成型机的速度决定与粘度随温度的递增速度。此外玻璃的析晶和一些机械性能也与粘度有关。 所有实用硅酸盐玻璃,其粘度随温度的变化规律都属于同一类型,只是粘度随温度变化的速度以及对应某给定温度的有所不同。在10怕.秒(或者更低)至约1011怕.秒的粘度范围内,玻璃的粘度由玻璃化学成分所决定的,而在从约1011怕.秒(1015泊,或者更高)的范围内,粘度又是时间的函数。

这些现象可由图来说明: Na 2O---CaO---SiO 2 玻璃的弹性、粘度与温度的关系 上图的三个区。在A区温度较高。玻璃表现为典型的粘度液体,他的弹性性质近于消失。在这一温度去中粘度仅决定于玻璃的组成和温度。当温度近于B 区时,粘度随温度下降而迅速增大,弹性模量也迅速增大。在这一温度区的粘度去决定于组成和温度外,还与时间有关。当温度进入C区,温度继续下降,弹性模量继续增大,粘滞留东变得非常小。在这一温度区,玻璃的粘度和其它性质又决定于组成和温度而与时间无关。图中所市的粘度和弹性随温度的变化现象,可以从玻璃的热历史说明。

压电陶瓷材料及应用

压电陶瓷材料及应用 一、概述 1.1电介质 电介质材料的研究与发展成为一个工业领域和学科领域,是在20世纪随着电气工业的发展而形成的。国际上电介质学科是在20世纪20年代至30年代形成的,具有标志性的事件是:电气及电子工程师学会(IEEE)在1920年开始召开国际绝缘介质会议,以后又建立了相应的分会(IEEE Dielectric and Electrical Insulation Society)。美国MIT建立了以Hippel教授为首的绝缘研究室。苏联列宁格勒工学院建立了电气绝缘与电缆技术专业,莫斯科工学院建立了电介质与半导体专业。特别是德国德拜教授在20世纪30年代由于研究了电介质的极化和损耗特性与其分子结构关系获得了诺贝尔奖,奠定了电介质物理学科的基础。随着电器和电子工程的发展,形成了研究电介质极化、损耗、电导、击穿为中心内容的电介质物理学科。 我国电介质领域的发展是在1952年第一个五年计划制定和实行以来,电力工业和相应的电工制造业得到迅速发展,这些校、院、所、首先在我国开展了有关电介质特性的研究和人才的培养,并开出了“电介质物理”、“电介质化学”等关键专业课程,西安交大于上海交大、哈尔滨工大等院校一道为我国培养了数千名绝缘电介质专业人才,促进了我国工程电介质的发展。80年代初中国电工技术学会又建立了工程电介质专业委员会。 近年来,随着电子技术、空间技术、激光技术、计算机技术等新技术的兴起以及基础理论和测试技术的发展,人们创造各种性能的功能陶瓷介质。主要有: (1)、电子功能陶瓷如高温高压绝缘陶瓷、高导热绝缘陶瓷、低热膨胀陶瓷、半导体陶瓷、超导陶瓷、导电陶瓷等。 (2)、化学功能陶瓷如各种传感器、化学泵等。 (3)、电光陶瓷和光学陶瓷如铁电、压电、热电陶瓷、透光陶瓷、光色陶瓷、玻璃光纤等。(电介质物理——邓宏)

《材料结构与性能》习题..

《材料结构与性能》习题 第一章 1、一25cm长的圆杆,直径2.5mm,承受的轴向拉力4500N。如直径拉细成2.4mm,问: 1)设拉伸变形后,圆杆的体积维持不变,求拉伸后的长度; 2)在此拉力下的真应力和真应变; 3)在此拉力下的名义应力和名义应变。 比较以上计算结果并讨论之。 2、举一晶系,存在S14。 3、求图1.27所示一均一材料试样上的A点处的应力场和应变场。 4、一陶瓷含体积百分比为95%的Al2O3(E=380GPa)和5%的玻璃相(E=84GPa),计算上限及下限弹性模量。如该陶瓷含有5%的气孔,估算其上限及下限弹性模量。 5、画两个曲线图,分别表示出应力弛豫与时间的关系和应变弛豫和时间的关系。并注出:t=0,t=∞以及t=τε(或τσ)时的纵坐标。

6、一Al2O3晶体圆柱(图1.28),直径3mm,受轴向拉力F ,如临界抗剪强度τc=130MPa,求沿图中所示之一固定滑移系统时,所需之必要的拉力值。同 时计算在滑移面上的法向应力。 第二章 1、求融熔石英的结合强度,设估计的表面能为1.75J/m2;Si-O的平衡原子

间距为1.6×10-8cm;弹性模量值从60到75GPa。 2、融熔石英玻璃的性能参数为:E=73GPa;γ=1.56J/m2;理论强度。如材料中存在最大长度为的内裂,且此内裂垂直于作用力的方向,计算由此而导致的强度折减系数。 3、证明材料断裂韧性的单边切口、三点弯曲梁法的计算公式: 与 是一回事。 4、一陶瓷三点弯曲试件,在受拉面上于跨度中间有一竖向切口如图2.41所示。如果E=380GPa,μ=0.24,求KⅠc值,设极限载荷达50㎏。计算此材料的断裂表面能。 5、一钢板受有长向拉应力350 MPa,如在材料中有一垂直于拉应力方向的中心穿透缺陷,长8mm(=2c)。此钢材的屈服强度为1400MPa,计算塑性区尺寸r0及其与裂缝半长c的比值。讨论用此试件来求KⅠc值的可能性。

各种玻璃特性详细介绍

各种玻璃特性详细介绍玻璃的制造已有五千年的历史,一般认为最早的制造者是古代的埃及人。我国在东周时代已能制造玻璃,玻璃组成中都含有氧化铅和氧化钡,与其他国家的古代玻璃有明显的区别。我国历史上有把玻璃称为琉璃、颇黎、假水晶料器、硝子等名称。 玻璃具有一系列非常可贵的特性:透明、坚硬、良好的化学稳定性;可通过化学组成的调整,大幅度调节玻璃的物理和化学性能,以适应各种不同的使用要求;可以用吹、压、拉、铸、槽沉、离心浇注等多种成形方法,制成各种形状的空心和实心制品;可以通过焊接和粉末烧结等加工方制成形状复杂、尺寸严格的器件。而且,制造玻璃的原料丰富,价格低廉。因此,作为结构材料和功能材料,玻璃在建材、轻工、交通、医药、化工、电子、航天、原子能等领域获得了极其广泛的应用。 B270/K9 K9玻璃是用K9料制成的玻璃制品,用于光学镀膜等领域 K9料属于光学玻璃,由于它晶莹剔透,所以衍生了很多以K9料为加工对象的工厂,他们加工出来的产品,在市面上称为水晶玻璃制品。 K9的组成如下: SiO2=69.13%B2O3=10.75%BaO=3.07%Na2O=10.40%K2O=6.29%As2O3=0.36% 它的光学常数为:折射率=1.51630色散=0.00806阿贝数=64.06。 石英玻璃 石英玻璃以其优良的理化性能,被大量广泛用于半导体技术,新型电光源,彩电荧光粉生产,化工过程,超高电压收尘、远红外辐射加热设备、航空航天技术、某些武器及光学仪器的光学系统、原子能技术、浮法玻璃及元碱玻璃窖的耐火材料,特种玻璃用坩埚,仪器玻璃成型部料碗,紫外线杀菌灯,各种有色金属的生产等诸多领域。石英玻璃SiO2含量大于99.5%,热膨胀系数低,耐高温,化学稳定性好,透紫外光和红外光,熔制温度高、粘度大,成型较难。多用于半导体、电光源、光导通信、激光等技术和光学仪器中。 石英玻璃在整个波长有特别好的透光性,在红外区(特殊的红外玻璃除外),光谱透射范围比普通玻璃大。在可见光区透过率达93%。在紫外光谱区,特别是在短波,紫外光谱区透过率比其他玻璃好的多。石英玻璃他的光学性能在很大程度上取决于它的化学性能。哪怕是0.001%的杂质就明显地影响产品质量。过度金属杂质会改变波长方向移动,羟基的存在会吸收2.73μm光带。国产光学石英玻璃有三个牌号:JGS1紫外光学石英玻璃,应用波段185-2000nm,用合成石制造,Sicl4为原料,JGS2紫外光学石英玻璃,应用波段220-2500nm,用水晶做

铁电材料的特性及应用综述

铁电材料的特性及应用综述 孙敬芝 (河北联合大学材料科学与工程学院河北唐山 063009)摘要:铁电材料具有良好的铁电性、压电性、热释电以及性光学等特性以及原理,铁电材料是具有驱动和传感2 种功能的机敏材料, 可以块材、膜材(薄膜和厚膜) 和复合材料等多种形式应用, 在微电子机械和智能材料与结构系统中具有广阔的潜在应用市场。 关键词:铁电材料;铁电性;应用前景 C haracteristics and Application of Ferroelectric material Sun Jingzhi ( Materials Science and Engineering college, Hebei United University Tangshan 063009,China ) Abstract:Ferroelectric material has good iron electrical, piezoelectric , pyroelectric and nonlinear optical properties, such as a driver and sensing two function piezoelectric materials, can block material, membrane materials (film and thick film) and the compound Material of a variety of forms such as application, in microelectromechanical and intelligent materials and structures in the system with vast potential application market. Keywords: ferroelect ric materials Iron electrical development trend 0前言 晶体按几何外形的有限对称图象, 可以分为32 种点群, 其中有10 种点群: 1, 2, m , mm 2, 4,4mm , 3, 3m , 6, 6mm , 它们都有自发极化。从对称性分析它们的晶体结构都具有所谓的极轴, 即利用对称操作不能实现与晶体的其它晶向重合的轴向, 极轴二端具有不同的物理性能。从物理性质上看, 它们不但具有自发极化, 而且其电偶极矩在外电场作用下可以改变方向。在介电强度允许条件下, 能够形成电滞回线。晶体这种性能称为铁电性, 具有铁电性的材料称为铁电材料。1920 年法国人V alasek 发现了罗息盐(酒石酸钾钠 ) 的特异介电性, 导致“铁电性”概念的出现(也有人认为概念出现更早)。现在各种铁电材料十分丰富,

高分子材料微观结构

高分子材料是以高分子化合物为主要组分的材料。高分子化合物是分子量很大的化合物,每个分子可含几千、几万甚至几十万个原子。 在元素周期表中只有ⅢA、ⅣA、ⅤA、ⅥA中部分非金属、亚金属元素(如N、C、B、O、P、S、Si、Se等)才能形成高分子链。由于高聚物中常见的C、H、O、N等元素均为轻元素,所以高分子材料具有密度小的特点 (1)高分子链的几何形态 1)线型分子链由许多链节组成的长链,通常是卷曲成线团状。这类结构高聚物的特点是弹性、塑性好,硬度低,是热塑性材料的典型结构。 2)支化型分子链在主链上带有支链。这类结构高聚物的性能和加工都接近线型分子链高聚物。 3)体型分子链分子链之间由许多链节相互横向交联。具有这类结构的高聚物硬度高、脆性大、无弹性和塑性,是热固性材料的典型结构。 (2)高分子链的构象及柔顺性 由于单链内旋转所产生的大分子链的空间形象称为大分子链的构象。由于构象变化获得不同卷曲程度的特性。这种能拉伸、回缩的性能称为分子链的柔性,这是聚合物具有弹性的原因。 (3)高聚物的聚集态结构 高分子化合物的聚集态结构是指高聚物内部高分子链之间的几何排列或堆砌结构,也称超分子结构。依分子在空间排列的规整

性可将高聚物分为结晶型、部分结晶型和无定型(非晶态)三类。 在实际生产中大多数聚合物都是部分晶态或完全非晶态。晶态结构在高分子化合物中所占的质量分数或体积分数称为结晶度。结晶度越高,分子间作用力越强,因此高分子化合物的强度、硬度、刚度和熔点越高,耐热性和化学稳定性也越好;而与键运动有关的性能,如弹性、伸长率、冲击韧性则降低。 陶瓷亦称无机非金属材料,是指用天然硅酸盐(粘土、长石、石英等)或人工合成化合物(、氧化物、碳化物、硅化物等)为原料,经粉碎、配置、成型和高温烧制而成的无机非金属材料。陶瓷的基本相结构主要有:晶相、玻璃相、气相等。 晶体相是陶瓷的主要组成相:主要有硅酸盐、氧化物和非氧化物等。它们的结构、数量、形态和分布,决定陶瓷的主要性能和应用。 玻璃相是一种非晶态物质。其作用:①粘连晶体相,填充晶体相间空隙,提高材料致密度;②降低烧成温度,加快烧结;③阻止晶体转变,抑制其长大;④获得透光性等玻璃特性;⑤不能成为陶瓷的主导相:对陶瓷的机械强度、介电性能、耐热耐火性等不利。 气相是陶瓷内部残留的孔洞;成因复杂,影响因素多。陶瓷根据气孔率分致密陶瓷、无开孔陶瓷和多孔陶瓷。气孔对陶瓷的性能不利(多孔陶瓷除外)。普通陶瓷气孔率5%~10%,特种陶瓷气孔率5%以下,金属陶瓷气孔率低于0.5%。 工程材料的性能 金属材料的物理性能主要有密度、熔点、导热导电性、热膨胀性

多孔陶瓷的结构及性能

多孔陶瓷的结构性能及应用 摘要:本文综合论述多孔陶瓷的结构、组成、性能并围绕其在能源与环保领域的应用展开介绍,体现其作为一种绿色环保材料的重要意义和应用价值。 关键词:多孔陶瓷;结构;组成;性能;应用;能源;绿色 前言: 当今世界,工农业的发展导致了能源的大量消耗和环境的恶化,解决能源和环境问题已刻不容缓。人们越来越关注可持续发展的问题,世界各国都对这一问题予以充分重视,并将其作为重要内容列入国家发展计划。煤炭、石油和天然气等大量不可再生能源的消耗使得人们不得不考虑如何节能以及如何寻找新的替代能源?而由于污染带来的各种生态环境破坏,对自然的和谐发展和人类健康带来了空前的挑战。因此,在二十一世纪,着眼于解决能源与环境问题的高新技术将得到广泛关注,并将对自然和社会的良性发展起到重要作用。 正文: 一、什么是多孔体陶瓷 多孔陶瓷是一种含有气孔的固体材料,一般来说,气孔在多孔陶瓷体中所占的体积分数在20%到95%之间。根据气孔的类型,可以分为开气孔和闭气孔两种,前者的气孔都是相互贯通的并与外界环境相连,而后者则是封闭在陶瓷体内的孤立气孔,在不同的场合中它们分别有不同的用途。

根据应用的目的不同,多孔陶瓷材料的组成也不同,具体包括氧化铝、堇青石、莫来石、海泡石、碳化硅、氧化锆、羟基磷灰石等等。为了获得一定形状和结构的多孔陶瓷材料,制备工艺过程起到了决定作用。目前,主要的几种多孔陶瓷制备工艺包括发泡工艺、挤出成型工艺以及有机泡沫浸渍工艺,这三种工艺制得的多孔制品分别被形象地称为泡沫多孔陶瓷、蜂窝多孔陶瓷和网眼多孔陶瓷。 由于其本身具有的独特性能,多孔陶瓷已经在我们的日常生活和现代工业生产中得到广泛的应用,包括分离与过滤、催化剂及其载体、生物反应器、燃料电池材料、气体传感器、隔热材料、热交换器、生物医学材料等等。能源和环境问题是社会健康和谐发展的永恒主题,多孔陶瓷在这些领域的广泛应用将产生不可估量的经济和社会效益。 二、多孔陶瓷的结构及其性能 多孔陶瓷材料由于其独特的多孔结构而具有热导率低、体积密度小、比表面积高,以及具有独特物理和化学性能的表面结构等优点,加之陶瓷材料本身特有的耐高温、化学稳定性好、强度高等特点,使多孔陶瓷在能源和环境领域有广泛的应用,具体体现在以下各个方面:1.消声器。在城市生活中,噪音是一种重要的污染。走在城市的街道上,可以听到来自于汽车排气管、飞机飞行以及空调压缩机工作等造成的各种让人心烦的噪声,而这一切其实都可以通过应用多孔陶瓷得以缓解,甚至消除。多孔陶瓷具有丰富的孔隙,当声波传播到多孔陶瓷上时,在网状的孔隙内引起空气的振动,进而通过空气与多

常用建筑玻璃的分类和特性

常用建筑玻璃的分类和特性 1、普通平板玻璃 (1)平板玻璃定义与生产工艺 在玻璃行业,通常把普通的无色透明玻璃称为白玻。这种玻璃是平板玻璃生产企业最大宗产品,也是玻璃深加工企业用得最多的原料。用途:直接使用白玻的仅为低档的办公楼、商铺和住宅等。普通平板玻璃按其制造工艺可分为垂直引上法玻璃、平拉法玻璃二种。垂直引上法生产工艺是将熔融的玻璃液垂直向上拉引制造平板玻璃的工艺过程;平拉法是通过水平拉制玻璃液的手段生产平板玻璃的方法。平拉法工艺的原料制备和熔化与垂直引上法工艺相同,只是成形和退火工艺不同,平拉法与垂直引上法相比,其优点是玻璃质量好,生产周期短,拉制速度快,生产效率高,但其主要缺点是玻璃表面容易出现麻点。 (2)平板玻璃的特性与应用 平板玻璃主要用于生产厚度在5mm以下的薄玻璃,其平整度与厚薄差指标都相对较差。其用途包括:用于普通民用建筑的门窗玻璃;经喷砂、雕磨、腐蚀等方法后,可做成屏风、黑板、隔断堵等;质量好的,也可用作某些深加工玻璃产品的原片玻璃(即原材料玻璃)。 2、浮法玻璃 (1)浮法玻璃定义与生产工艺 利用浮法工艺生产出的平板玻璃称之为浮法玻璃。浮法工艺过程为:熔融的玻璃液从熔窑连续地流入有保护气氛保护的熔融金属锡槽中,由于玻璃液与锡液的密度不同,玻璃液漂浮在锡液的表面上,由于重力和

液体表面张力的共同作用,玻璃液在锡液表面上自由展平,从而成为表面平整、厚度均匀的玻璃液带,通过外力拉引作用,向锡槽的后部移动。在移动过程中,经过来自炉顶上方的火焰抛光、拉薄、冷却、硬化后引上过渡辊台。辊子转动把玻璃带送进退火窑,即功能过降温、退火、切裁,形成平板玻璃产品。 (2)浮法玻璃特性与应用 浮法玻璃的厚度均匀性好,纯净透明。经过锡面的光滑作用和火焰抛光作用,玻璃表面平滑整齐,平面度好,具有极好的光学性能。浮法玻璃的装饰特性是透明、明亮、纯净,室内光线明亮,视野广阔,可应用于普通建筑门、窗,是建筑天然采光的首选材料,极富应用于一切建筑,在建筑玻璃中用量最大,也是玻璃深加工行业中的重要原片。特别是超白浮法玻璃,其透明和纯净性更是无以复加。 3、安全玻璃 (1)安全玻璃定义与种类 2003年12月4日,国家发改委、国家建筑部、国家质检总局、国家工商管理总局联合颁发了《建筑安全玻璃管理规定》(2004年1月1日起实施)。本规定所称安全玻璃,是指符合现行国家标准的钢化玻璃、夹层玻璃及由钢化玻璃或夹层玻璃组合加工而成的其他玻璃制品,如安全中空玻璃等。单片半钢化玻璃(热增强玻璃)、单片夹丝玻璃不属于安全玻璃。 (2)安全玻璃使用部位要求 根据《建筑安全玻璃管理规定》现场查建筑物,建筑物需要以玻璃作为建筑材料的下列部位必须使用安全玻璃:

谈陶瓷显微组织与材料性能之间的关系

谈陶瓷显微组织与材料性能之间的关系 陶瓷材料的物理性能在很大程度上取决于其显微结构,在某些情况下甚至是决定性的,掌握它们之间的内在关系可以有针对性地优化制备工艺,从而提高陶瓷的物理性能。 陶瓷是多晶多相的材料,其显微组织包括:多晶相的种类,晶粒的大小、形态、取向和分布,位错、晶界的状况,玻璃相的形态和分布,气孔的形态、大小、数量和分布,各种杂质、缺陷、裂纹存在的开式、大小、数量和分布,畴结构的状态和分布等。在显微镜下研究陶瓷材料的显微组织,找出其物相组成、组织、性能之间的联系和规律是发展新型陶瓷材料的基础。 陶瓷材料主要组成相为晶体相、玻璃相和气相。研究陶瓷显微组织与性能之间的关系,就是要研究晶体相、玻璃相和气相分别对材料性能的影响。研究这个问题有着重要的意义,主要有以下几点: (1)当我们了解了陶瓷显微组织与材料性能之间的关系后,我们就可以通过研究陶瓷的显微组织结构而对材料的性能做出评价。 (2)通过对陶瓷的结构缺陷的检测分析,从显微组织上找出其缺陷原因,我们可以提出改善或防止结构缺陷的措施。 (3)通过材料的显微组织研究,从材料物理化学的基本原理出发,为新材料的设计或材料改性提供依据或参考。 (4)研究工艺条件对显微组织的影响,通过优化生产工艺,提高材料的性能。 一、晶体相对材料性能的影响 晶相是由原子、离子、分子在空间有规律排列成的结晶相。晶相是决定陶瓷材料性能呢个的主导物相。由于陶瓷是多晶材料,故晶相又可分为主晶相、次晶相、析出相和夹杂相。此时主晶相就成为主导陶瓷性能的主导晶相。主晶相是材料的主要组成部分,材料的性能主要取决于主晶的性质。次晶相是材料的次要组成部分。例如Si3N4材料中的颗粒状的六方结构的相β-Si3N4为主晶相;针状的菱方结构的α-Si3N4为次晶相,含量较少。析出相,由粘土、长石、石英烧成的陶瓷的析出相大多数是莫来石,一次析出的莫来石为颗粒状,二次析出的莫来石为针状,可提高陶瓷材料的强度。夹杂相:不同材料夹杂相不同。夹杂相量很少,其存在都会使材料的性能降低。另外,晶相中还存在晶界和晶粒内部的细微结构。晶界上由于原子排列紊乱,成为一种晶体的面缺陷。晶界的数量、厚度、应力分布以及晶界上夹杂物的析出情况对材料的性能都会产生很大影响。晶粒内部的微观结构包括滑移、孪晶、裂纹、位错、气孔、电畴、磁畴等。 1.1.主晶相对材料性能的影响 氧化铝陶瓷具有强度高、耐高温、电性能和耐化学侵蚀性优良的性能,就是因为其主晶相刚玉(α-Al2O3)是一种结构紧密、离子键强度很大的晶体。 75氧化铝瓷是氧化铝的一种,含有75%的α-Al2O3,是一种电真空陶瓷。其显微组织如图1-1所示,大部分为白色的氧化铝晶体,晶间三角处为暗黑色的玻璃相,圆形的黑洞为气孔,其中形态规则的为晶粒剥落坑。

材料的结构与性能特点

第一章材料的结构与性能 固体材料的性能主要取决于其化学成分、组织结构及加工工艺过程。所谓结构就是指物质内部原子在空间的分布及排列规律。 材料的相互作用 组成物质的质点(原子、分子或离子)间的相互作用力称为结合键。主要有共价键、离子键、金属键、分子键。 离子键 形成:正、负离子靠静电引力结合在一起而形成的结合键称为离子键。 特性:离子键没有方向性,无饱和性。NaCl晶体结构如图所示。 性能特点:离子晶体的硬度高、热膨胀系数小,但脆性大,具有很好的绝缘性。典型的离子晶体是无色透明的。 共价键 形成:元素周期表中的ⅣA、ⅤA、ⅥA族大多数元素或电负性不大的原子相互结合时,原子间不产生电子的转移,以共价电子形成稳

定的电子满壳层的方式实现结合。这种由共用电子对产生的结合键称为共价键。氧化硅中硅氧原子间共价键,其结构如图所示。 性能特点:共价键结合力很大,所以共价晶体的强度、硬度高、脆性大,熔点、沸点高,挥发度低。 金属键 形成:由金属正离子与电子气之间相互作用而结合的方式称为金属键。如图所示。 性能特点: 1)良好的导电性及导热性; 2)正的电阻温度系数; 3)良好的强度及塑性; 4)特有的金属光泽。 分子键 形成:一个分子的正电荷部位与另一分子的负电荷部位间以微弱静电引力相引而结合在一起称为范德华键(或分子键)。 特性:分子晶体因其结合键能很低,所以其熔点很低,硬度也低。但其绝缘性良好。 材料的结合键类型不同,则其性能不同。常见结合键的特性见表1-1。

晶体材料的原子排列 所谓晶体是指原子在其内部沿三维空间呈周期性重复排列的一类物质。晶体的主要特点是:①结构有序;②物理性质表现为各向异性;③有固定的熔点;④在一定条件下有规则的几何外形。 理想的晶体结构 1.晶体的基本概念 (1) 晶格与晶胞

陶瓷材料的分类及发展前景

陶瓷材料的分类及发展前景 学校: 太原理工大学 学院: 材料科学与工程 专业:无机0801 姓名:孙佩

摘要: 根据陶瓷材料的不同特性及用途对其进行了较为准确的分类,并对各类陶瓷的应用进行了概述。通过对各类陶瓷特性及应用领域的总结,对陶瓷材料未来的发展作出了新的展望,揭示了陶瓷材料的应用方向及发展趋势。 引言 陶瓷材料在人类生活和现代化建设中是不可缺少的一种材料。它是继金属材料,非金属材料之后人们所关注的无机非金属材料中最重要的材料之一。它兼有金属材料和高分子材料的共同优点,在不断改性的过程中,已经使它的易碎性有了很大的改善。陶瓷材料以其优异的性能在材料领域独树一帜,受到人们的高度重视,在未来的社会发展中将发挥非常重要的作用。陶瓷材料按其性能及用途可分为两大类:结构陶瓷和功能陶瓷。现代先进陶瓷的性能稳定、高强度、高硬度、耐高温、耐腐蚀、耐酸耐碱、耐磨损、抗氧化以及良好的光学性能、声学性能、电磁性能、敏感性等性能远优于金属材料和高分子材料;而且,先进陶瓷是根据所要求的产品性能,经过严格的成分和生产工艺制造出来的高性能材料,因此可用于高温和腐蚀介质的环境当中,是现代材料科学发展最活跃的领域之一。在此,笔者将对先进陶瓷的种类及应用领域做详细的介绍。 1.结构陶瓷 陶瓷材料优异的特性在于高强度、高硬度、高的弹性模量、耐高温、耐磨损、耐腐蚀、抗氧化、抗震性、高导热性能、低膨胀系数、

质轻等特点,因而在很多场合逐渐取代昂贵的超高合金钢或被应用到金属材料所不可胜任的的场合,如发动机气缸套、轴瓦、密封圈、陶瓷切削刀具等。结构陶瓷可分为三大类:氧化物陶瓷、非氧化物陶瓷、陶瓷基复合材料。 1.1氧化物陶瓷 氧化物陶瓷主要包括氧化镁陶瓷、氧化铝陶瓷、氧化铍陶瓷、、氧化锆陶瓷、氧化锡陶瓷、二氧化硅陶瓷、莫来石陶瓷,氧化物陶瓷最突出的优点是不存在氧化问题。 氧化铝陶瓷,利用其机械强度较高,绝缘电阻较大的性能,可用作真空器件、装置瓷、厚膜和薄膜电路基板、可控硅和固体电路外壳、火花塞绝缘体等。利用其强度和硬度较大的性能,可用作磨料磨具、纺织瓷件、刀具等。 氧化镁陶瓷具有良好的电绝缘性,属于弱碱性物质,几乎不被碱性物质侵蚀,对碱性金属熔渣有较强的抗侵蚀能力。不少金属如铁、镍、铀、釷、钼、镁、铜、铂等都不与氧化镁作用。因此,氧化镁陶瓷可用作熔炼金属的坩埚,浇注金属的模子,高温热电偶的保护管,以及高温炉的炉衬材料等。氧化镁在空气中易吸潮水化生成Mg(OH)2,在制造过程中必须注意。为了减少吸潮,应适当提高煅烧温度,增大粒度,也可增加一些添加剂,如TiO2、Al2O3等。 氧化铍陶瓷具有与金属相似的良好的导热系数,约为209.34W/(m.k),可用来做散热器件;氧化铍陶瓷还具有良好的核性能,对中子减速能力强,可用作原子反应堆的减速剂和防辐射材料;另外,

铁电材料及其在存储器领域的应用

目录 摘要 (1) Abstract (1) 1 前言 (1) 2 压电材料 (2) 3 储能用铁电介质材料 (3) 3.1 BaTiO3基陶瓷 (3) 3.2 SrTiO3基陶瓷 (4) 3.3 TiO2陶瓷 (4) 3.4 PMN 基陶瓷以铌镁酸铅 (4) 4 有机铁电薄膜材料 (4) 5 铁电阻变材料 (5) 6 多铁性材料 (5) 7 铁电材料的应用 (5) 7.1 铁电存储器(MFSFET) (6) 7.2 铁电存储器的应用 (8) 8 结语 (9) 参考文献 (10)

铁电材料及其在存储器领域的应用 摘要:铁电材料的优秀电学性能孕育了它广阔的应用前景,其电子元件有着集成度高、能耗小、响应速度快等众多优点。而且目前研究者将铁电材料同其它技术相结合,使新诞生的集成铁电材料性能更为优秀。介绍了铁电材料的发展历史和当前的应用概况。 关键词:铁电材料;铁电性;存储器;应用 Application of ferroelectric materials and in the area of memory Abstract:Ferroelectric materials, one of the current research focuses with numbers of physical advantages such as high integration, low energy consumption and fast response, has broad application prospects in many aspects.Being combined with other physical technologies,the properties of ferroelectric materials can be significantly improved.Describes the historical development of ferroelectric materials and current applications. Keywords:ferroelectric materials;Iron electrical;memorizer ;development 1前言 铁电材料,是指具有铁电效应的一类材料,最早的铁电效应是在1920年由法国人Valasek在罗谢尔盐中发现的,这一发现揭开了研究铁电材料的序幕。在1935 年Busch发现了磷酸二氢钾KH2PO4——简称KDP,其相对介电常数高达30,远远高于当时的其它材料。1940年之后,以BaTiO3为代表的具有钙钛矿结构的铁电材料陆续被发现,这是铁电历史上里程碑式的时期。直至20世纪80年代,随着铁电唯象理论和软膜理论的逐渐完善,铁电晶体物理内涵的研究趋于稳定。20世纪80年代中期,薄膜制备技术的突破为制备高质量的铁电薄膜扫清了障碍,并且近年来随着对器件微型化、功能集成化、可靠性等要求的不断提高,传统的铁电块体由于尺寸限制已经不能满足微电子器件的要求。铁电器件在向薄膜尺寸量级过渡的同时又与半导体工艺结合,研究者们迎来了集成铁电体的时代。集成铁电体是凝聚态物理和固体电子学领域的热门课题之一。铁电材料有着

第七章 玻璃的结构与性能

第七章玻璃的结构与性能 一、填空题: 1、玻璃的结构特征为﹍短程有序﹍﹍和﹍长程无序﹍﹍。P178 2、玻璃包装材料主要是﹍钠钙玻璃﹍﹍,它具有很好的化学惰性和稳定性,有很高的抗 压强度。 3、固态物质的两种不同的结构状态是﹍晶体﹍﹍和﹍玻璃﹍﹍。 4、在石英玻璃和普通玻璃中,﹍﹍二氧化硅﹍又叫作网络形成体氧化物。 5、在玻璃加工工艺中,料性﹍长﹍(长、短)的玻璃粘度随温度变化慢,适合形 状复杂的玻璃器皿成型;料性﹍短﹍(长、短)的玻璃粘度随温度变化快,适 合制瓶机成型 6、玻璃与水和酸作用的实质是﹍玻璃中硅酸盐水解﹍。 7、玻璃化学稳定性常用的测试方法有﹍粉末法﹍﹍和﹍表面法﹍﹍。 8、当今玻璃包装材料的一个主要发展趋向是﹍开发生产高强度轻量玻璃容器﹍﹍。 二、选择题: 1、可以单独形成玻璃的形成体氧化物是( B ) A CaO B SiO2 C Na2O D AL2O3 2、氧化物玻璃的组成(形成,改变,中间)p178 A 形成体氧化物、改变体氧化物、网络外体氧化物 B 形成体氧化物、网络外体氧化物、中间体氧化物 C 改变体氧化物、网络外体氧化物、中间体氧化物 D 改变体氧化物、碱土金属氧化物、中间体氧化物 3、本身不能单独形成玻璃,但能改变玻璃的性质的氧化物不包括( C ) A Na2O B K2O C Li D ZnO

4、由SiO2、B2O3和AL2O3三种氧化物形成的玻璃,若SiO2>B2O3>AL2O3,则此玻璃称为( A ) A 铝硼硅酸盐玻璃 B 硼铝硅酸盐玻璃 C 硅硼铝酸盐玻璃 D 硅铝硼酸盐玻璃 三、名词解释题: 1、玻璃形成体氧化物—— 氧化物玻璃组成成分中可以单独形成玻璃的氧化物。 2、玻璃改变体氧化物—— 氧化物玻璃组成成分中不可以单独形成玻璃,但可以改变玻璃的性质的氧化物。3、玻璃中间体氧化物—— 介于玻璃形成体氧化物和玻璃改变体氧化物之间的氧化物,在一定条件下可以成为玻璃形成体的氧化物。 4、理论强度—— 理论强度是指玻璃不存在任何缺陷的理想情况下,能承受的最大负荷。由玻璃各组分之间的键强决定。 5、粘度—— 粘度是表征流体内摩擦力或者表示阻碍液体流动性质的物理量。 6、玻璃的料性—— 在玻璃加工工艺中,经常把粘度在10~105P a·s(102~106泊)范围内随温度变化的快慢叫做玻璃的料性。 四、问答题: 1、玻璃和晶态物质在结构和性质上的主要区别有哪些?(结构上的区别、比容随温 度变化的规律、粘度随温度变化的规律) 结构:晶体结构中的原子、离子或分子的空间排列是规则有序的,不论从几个原子间距的微观尺度,还是从长距离的宏观尺度来观察,晶体可以由构成它的最小结构单元(晶胞)重复周期性排列得到。玻璃的结构与晶体不同,虽然从几个原子间距的微观尺度来看,原子的排列也有规则,但从较长的距离观察时,原子排列没有可重复的周期性。 比容:晶体比容随温度的变化在熔点Tm处突然下降即出现了不连续性。在熔点以上,晶体以液态形式存在,在熔点一下为晶态。而玻璃没有确定的熔点,比容随温度连

氧化铝陶瓷

氧化铝陶瓷 氧化铝陶瓷(alumina ceramics)是一种以α- Al2O3为主晶的陶瓷材料。其Al2O3含量一般在75~99.99%之间。通常习惯以配料中Al2O3的含量来分类。Al2O3含量在75%左右的为“75瓷“,含量在85%左右的为“85瓷“,含量在95%左右的为“95瓷“,含量在99%左右的为“99瓷“。 工业Al2O3是由铝钒土(Al2O3·3H2O)和硬水铝石制备的,对于纯度要求不高的,一般通过化学方法来制备。电熔刚玉即是用上述原料加碳在电弧炉内于2000~2400C熔融制得,也称人造刚玉。 Al2O3有许多同质异晶体。根据研究报道过的变体有十多种,但主要有三种,即γ- Al2O3,β- Al2O3,α- Al2O3。Al2O3的晶体转化关系如下图,其结构不同,因此其性质也不同,在1300度以上的高温几乎完全转变为α- Al2O3。 γ- Al2O3,属尖晶石型(立方)结构,氧原子形呈立方密堆积,铝原子填充在间隙中。它的密度小。且高温下不稳定,机电性能差,在自然界中不存在。由于是松散结构,因此可利用它来制造多孔特殊用途材料。 β- Al2O3是一种Al2O3含量很高的多铝酸盐矿物。它的化学组成可以近似地用RO·6 Al2O3和R2O·11 Al2O3来表示(RO指碱土金属氧化物,R2O指碱金属氧化物),其结构由碱金属或碱土金属离子如[NaO]ˉ层和[Al11O12]+类型尖晶石单元交叠堆积而成,氧离

子排列成立方密堆积,Na+完全包含在垂直于C轴的松散堆积平面内,在这个平面内可以很快扩散,呈现离子型导电。 α- Al2O3,属三方晶系,单位晶胞是一个尖的菱面体,在自然办只存在α- Al2O3,如天然刚玉、红宝石、蓝宝石等矿物。α- Al2O3结构最紧密、活 性低、高温稳定。它是三种形态中最稳定的晶型,电学性质最好,具有优良的机电性能。 Al2O3中的化学键是离子键,离子键也称“电价键”,它是由金属原子失去外层电子形成正离子,非金属原子取得电子形成负离子,互相结合形成的。离子键是依靠正负离子间静电引力所产生的化学键,它没有方向性也没有饱和性。A Al2O3陶瓷属于氧化物晶体结构,氧化物结构的结合键以离子键为主,它的分子式通常以AmXn 表示。A(或者B)表示与氧结合的正离子,n为离子数,x表示氧离子,n表示它的数量。大多数氧化物中的氧离子半径大于正离子的半径。所以它们的结构是以大直径的氧离子密堆排列的骨架,组成六方或面心立方点阵,小直径的正离子嵌入骨架的间隙处。这种陶瓷材料具有高的硬度和熔点。 陶瓷体的相组成中,晶相相对含量波动范围很大,通常特种陶瓷中晶相体相对含量较高。晶相对陶瓷材料性质有很大的影响。表中列出了一般陶瓷到特种陶瓷中的刚玉相(α- Al2O3)含量的变化及表现出的性能差异。

铁电陶瓷材料的应用以及生产工艺之一

铁电陶瓷材料的应用以及生产工艺之一 铁电陶瓷材料,是指具有铁电效应的一类功能性陶瓷材料,它是热释电材料的一个分支。 可以制作大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,可以制作介质放大器和相移器等。利用其热释电性,可以制作红外探测器等。也可用于制造光阀、光调制器、激光防护镜和热电探测器等。广泛应用于航天、军工、新能源产品。 这里介绍的目的,主要是参考它的加工工艺,比如为固体电解质的加工提供参考。另一方面是顺便了解一下这特种陶瓷的用途。 一般性描述: 铁电陶瓷(ferroelectric ceramics)材料,是指具有铁电效应的一类材料,它是热释电材料的一个分支。铁电陶瓷的主要特性为:(1)在一定温度范围内存在自发极化,当高于某一居里温度时,自发极化消失,铁电相变为顺电相;(2)存在电畴;(3)发生极化状态改变时,其介电常数-温度特性发生显著变化,出现峰值,并服从Curie-Weiss定律;(4)极化强度随外加电场强度而变化,形成电滞回线;(5)介电常数随外加电场呈非线性变化;(6)在电场作用下产生电致伸缩或电致应变。其电性能:高的抗电压强度和介电常数。在一定温度范围内(-55~+85℃)介电常数变化率较小。介电常数或介质的电容量随交流电场或直流电场的变化率小。 铁电陶瓷拥有优良的电学性能,在一定温度范围内存在自发极化,当高于某一居里温度时,自发极化消失,铁电相变为顺电相;介电常数随外加电场呈非线性变化。利用铁电陶瓷的高介电常数可制作大容量的陶瓷电容器;利用其压电性可制作各种压电器件;利用其热

释电性可制作红外探测器;通过适当工艺制成的透明铁电陶瓷具有电控光特性,利用它可制作存贮,显示或开关用的电控光特性,其具有很高的应用前景。 铁电陶瓷的特性决定了它的用途。利用其高介电常数,可以制作大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,电容量可高达0.45μF/cm2。利用其介电常数随外电场呈非线性变化的特性,可以制作介质放大器和相移器等。利用其热释电性,可以制作红外探测器等。利用其压电性可制作各种压电器件。此外,还有一种透明铁电陶瓷,具有电光效应,可用于制造光阀、光调制器、激光防护镜和热电探测器等。 目前,全球铁电元件的年产值己达数百亿美元。铁电材料是一个比较庞大的家族,当前应用的最好的是陶瓷系列,其已广泛应用于军事和工业领域。但是由于铅的有毒性及此类铁电陶瓷材料居里温度低、耐疲劳性能差等原因,应用范围受到了限制。因此开发新一代铁电陶瓷材料己成为凝聚态物理、固体电子学领域最热门的研究课题之一。 细分的品种有⑴层状铁电陶瓷,⑵弛豫型铁电陶瓷,⑶含铅型铁电陶瓷,⑷无铅型铁电陶瓷,⑸反铁电陶瓷材料,⑹可能的新型铁电陶瓷材料。

相关文档
最新文档