傅立叶红外光谱仪测试样品的方法及注意事项-红外压片模具

傅立叶红外光谱仪测试样品的方法及注意事项-红外压片模具
傅立叶红外光谱仪测试样品的方法及注意事项-红外压片模具

傅立叶红外光谱仪测试样品的方法及注意事项

要获得一张高质量红外光谱图,除了仪器本身的因素外,还必须有合适的样品制备方法。

一、红外光谱法对试样的要求

红外光谱的试样可以是液体、固体或气体,一般应要求:

1. 试样应该是单一组份的纯物质,纯度应>98%或符合商业规格,才便于与纯物质的标准光谱进行对照。多组份试样应在测定前尽量预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱相互重叠,难于判断。

2. 试样中不应含有游离水。水本身有红外吸收,会严重干扰样品谱,而且会侵蚀吸收池的盐窗。

3. 试样的浓度和测试厚度应选择适当,以使光谱图中的大多数吸收峰的透射比处于10%~80%范围内。

二、制样的方法

1. 气体样品

气态样品可在玻璃气槽内进行测定,它的两端粘有红外透光的NaCl或KBr窗片。先将气槽抽真空,再将试样注入。

2. 液体和溶液试样

(1)液体池法

沸点较低,挥发性较大的试样,可注入封闭液体池中,液层厚度一般为0.01~1mm。

(2)液膜法

沸点较高的试样,直接滴在两片盐片之间,形成液膜。对于一些吸收很强的液体,当用调整厚度的方法仍然得不到满意的谱图时,可用适当的溶剂配成稀溶液进行测定。一些固体也可以溶液的形式进行测定。常用的红外光谱溶剂应在所测光谱区内本身没有强烈的吸收,不侵蚀盐窗,对试样没有强烈的溶剂化效应等。

3. 固体试样

(1)压片法

将1~2mg试样与200mg纯KBr研细均匀,置于模具中,用(5~10)′107Pa压力在油压机上压成透明薄片,即可用于测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。

(2)石蜡糊法

将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调成糊状,夹在盐片中测定。

(3)薄膜法

主要用于高分子化合物的测定。可将它们直接加热熔融后涂制或压制成膜。也可将试样溶解在低沸点的易挥发溶剂中,涂在盐片上,待溶剂挥发后成膜测定。当样品量特别少或样品面积特别小时,采用光束聚光器,并配有微量液体池、微量固体池和微量气体池,采用全反射系统或用带有卤化碱透镜的反射系统进行测量。

仪器操作

1. 样品准备(固体样品)

取样品约0.5mg在红外灯下充分研磨,再加入干燥KBr粉末约50mg,继续研磨至混合均匀。

2. 模具准备

将干燥器中保存的简易模具取出,确认模具洁净。若其表面不洁净,可用棉花沾少许无水乙醇轻轻擦拭(绝对不可用力,以免模具表面被划伤),然后在红外灯下干燥。

3. 制片方法

将试样与纯KBr混合粉末置于模具中,用(5~10)′107Pa压力在油压机上压成透明薄片,即可用于测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。

样品测试过程中的注意事项

1. 测试样品一定要干燥,干燥不充分的样品可以在红外灯下烘烤1小时左右。样品研磨要充分,否则会损伤模具。

2. 所有用具应保持干燥、清洁;使用前可以用脱脂棉蘸酒精小心擦拭。

3. 压片过程应在红外灯照射下进行。

4. 操作过程中应保持模具表面干燥、清洁;防止药品腐蚀模具(KBr对模具表面腐蚀很严重)

5. 易吸水和潮解的样品不宜用压片法。

6. KBr在粉末状态下极易吸水、潮解,应放在干燥器中保存,定期在干燥箱中110℃或在真空烘箱中恒温干燥2小时。

傅立叶转换红外光谱仪FT-IR

傅立叶转换红外光谱仪(FT-IR) 一、红外光谱的基本原理:当一束红外光照射物质时,被照射物质的分子将吸收一部分相应的光能,转变为分子的振动和转动能量,使分子固有的振动和转动能级跃迁到较高的能级,光谱上即出现吸收谱带。通常以波长(μm)或波数(cm-1)为横坐标,吸光度(A)或百分透过率(T%)为纵坐标,将这种吸收情况以吸收曲线的形式记录下来,得到该物质的红外吸收光谱,简称红外光谱。 二、红外光谱在结构解析中的作用: 1.利用基团特征频率确定分子中的官能团,区分化合物的类别。 2.提供未知物的精细结构,确定化合物是否相同。 三、红外光谱仪的主要附件: 1.衰减全反射 (ATR) 附件:ATR附件主要用于固体、凝胶、橡胶等材料表面的研究。测量表面厚度需在1μm以上,也可用于溶液分析(蛋白水溶液)。2.漫反射附件:漫反射附件主要用于测量颗粒表面,或不平整的表面,适用于表面厚度约在10μm左右的材料。 3.固定角度镜面反射附件:镜面反射附件主要借助反射吸收分析坚硬平整表面的涂层,也可以测量光亮的样品表面,适用于表面厚度>10μm。 4.万能采样器:适用于各种液体、固体等样品。 5.变温红外附件:测定不同温度下样品的红外光谱。 四、红外光谱仪操作规程和注意事项 红外光谱仪由专人负责维护,所有操作人员均应经过培训方可使用。具体操作规

程如下: 1.打开主机电源,主机进行自检(约1分钟),打开PC机,进入windows操作系统。 2.由开始菜单中Thermo Nicolet或桌面Omnic快捷方式进入Omnic红外光谱仪测试操作窗口,在实验Experiment选项中选择样品测试方式。 3.绘制试样的红外光谱图整个过程包括(1)设定收集参数;(2)收集背景;(3)收集样品图;(4)对所得试样谱图进行基线校正,标峰等处理;(5)标准谱库检索;(6)打印谱图。对一些已知化合物进行标准谱库检索。 4.收集样品图完成后,即可从样品室中取出样品架。并用浸有无水乙醇的脱脂棉将用过的研钵、镊子、刮刀、压模等清洗干净,置于红外干燥灯下烘干,以备制下一个试样。 5.关机:退出Omnic操作系统,关闭计算机,关闭主机电源。 使用红外光谱仪注意事项: 1.严格按照操作规程进行操作。遇到故障及时与管理人员联系。 2.保持操作台和仪器的卫生,以免污染试剂。 3.有害、有毒等样品测试完毕后,要进行适当的处理。 4.测试完毕后要如实登记。

傅立叶变换红外光谱仪的基本原理

傅立叶变换红外光谱仪的 基本原理及其应用 红外光谱仪是鉴别物质和分析物质结构的有效手段,其中傅立叶变换红外光谱仪(FT-IR)是七十年代发展起来的第三代红外光谱仪的典型代表。它是根据光的相干性原理设计的,是一种干涉型光谱仪,具有优良的特性,完善的功能,并且应用范围极其广泛,同样也有着广泛的发展前景。本文就傅立叶变换红外光谱仪的基本原理作扼要的介绍,总结了傅立叶变换红外光谱法的主要特点,综述了其在各个方面的应用,并对傅立叶变换红外光谱仪的发展方向提出了一些基本观点。 关键词:傅立叶变换红外光谱仪;基本原理;应用;发展

目录 摘要............................. 错误!未定义书签。ABSTRACT ......................... 错误!未定义书签。 1 傅里叶红外光谱仪的发展历史 (1) 2 基本原理 (3) 2.1光学系统及工作原理 (4) 2.2傅立叶变换红外光谱测定 (5) 2.3傅立叶变换红外光谱仪的主要特点 (6) 3 样品处理 (6) 3.1气体样品 (6) 3.2液体和溶液样品 (6) 3.3固体样品 (6) 4 傅立叶变换红外光谱仪的应用 (7) 4.1在临床医学和药学方面的应用⑷ (7) 4.2在化学、化工方面的应用 (8) 4.3在环境分析中的应用 (9) 4.4在半导体和超导材料等方面的应用⑼ (9) 5 全文总结 (9) 参考文献 (10)

1 傅立叶红外光谱仪的发展历史 到目前为止红外光谱仪已发展了三代。第一代是最早使用的棱镜式色散型红外光谱仪, 用棱镜作为分光元件,分辨率较低,对温度、湿度敏感, 对环境要求苛刻。60年代出现了第二代光栅型色散式红外光谱仪, 由于采用先进的光栅刻制和复制技术, 提高了仪器的分辨率, 拓宽了测量波段, 降低了环境要求。70年代发展起来的干涉型红外光谱仪, 是红外光谱仪的第三代的典型代表(见图1), 具有宽的测量范围、高测量精度、极高的分辨率以及极快的测量速度。傅立叶变换红外光谱仪是干涉型红外光谱仪器的代表, 具有优良的特性, 完善的功能。 图1 傅立叶变换红外光谱仪实物图 近年来各国厂家对其光源、干涉仪、检测器及数据处理等各系统进行了大量的研究和改进, 使之日趋完善。由于计算机技术和自动化技术在仪器中的广泛使用, 使得红外光谱仪的调整、控制、测试及结果的分析大部分由计算机完成, 如显微红外光谱中的图像技术。各公司的显微红外光谱仪均能对样品的某一区域进行面扫描, 得到该区域的化学成分的分布图, 如Continuum (Nicolet) 、EquinoxTM55 (Bruker) 、Spectrum2000 ( Perkin El2mer)和Stingray lmaging (Bio-Rad)等显微镜都有此功能。 随着仪器精密度的提高, 红外光谱仪在分辨率和扫描速度等方面达到了很高的指标。如BrukerIFSl20H最佳分辨率为010008cm- 1, Bomen公司的DA系列可达010026cm- 1。而扫描速度Bruker可达117张谱图/ s, 利用步进扫描技术可达250皮纳秒的时间分辨率。Nicolet8700扫描速度为105 次/ s,步进扫描时间分辨率为10ns。现有的傅立叶变换红外光谱仪已不仅限于中红外(MIR) 的使用, 分束器的使用可将光谱范围可覆盖紫外到远红外的区段。如Bruker为50000~4cm- 1, Bomen为50000~5cm- 1, Nicolet为25000~20cm- 1。这些很高的技术指标、标志材料、光路设计、加工技术和软件都达到了很高的水平[1]。 但是,通常的透射红外光谱,即使是傅里叶变换透射红外光谱,都存在如下不足: ①固体压片或液膜法制样麻烦,光程很难控制一致,给测量结果带来误差。另外,无论是添加红外惰性物质或是压制自支撑片,都会给粉末状态的样品造成形态变化或表面污染,使其在一定

FTIR(傅里叶红外光谱简介)

1、简介: 傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 2、基本原理 光源发出的光被分束器(类似半透半反镜)分为两束,一束经透射到达动镜,另一束经反射到达定镜。两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,最终得到透过率或吸光度随波数或波长的红外吸收光谱图。 3、主要特点 ①信噪比高 傅里叶变换红外光谱仪所用的光学元件少,没有光栅或棱镜分光器,降低了光的损耗,而且通过干涉进一步增加了光的信号,因此到达检测器的辐射强度大,信噪比高。 ②重现性好 傅里叶变换红外光谱仪采用的傅里叶变换对光的信号进行处理,避免了电机驱动光栅分光时带来的误差,所以重现性比较好。 ③扫描速度快 傅里叶变换红外光谱仪是按照全波段进行数据采集的,得到的光谱是对多次数据采集求平均后的结果,而且完成一次完整的数据采集只需要一至数秒,而色散型仪器则需要在任一瞬间只测试很窄的频率范围,一次完整的数据采集需要十分钟至二十分钟。 4、技术参数 光谱范围:4000--400cm-1 7800--350cm-1(中红外) 125000--350cm-1(近、中红外) 最高分辨率:2.0cm-1 / 1.0cm-1 / 0.5cm-1 信噪比:15000:1(P-P) / 30000:1(P-P) / 40000:1(P-P)

傅里叶红外光谱仪测试原理及常用制样方法

傅里叶红外光谱仪测试原理及常用制样方法 傅里叶变换红外光谱仪由迈克耳逊干涉仪和数据处理系统组合而成,它的工作原理就是迈克耳逊干涉仪的原理。 迈克耳逊干涉仪的光路如图所示,图中已调到M2与M1垂直。∑是面光源(由被单色光或白光照亮的一块毛玻璃充当),面上每一点都向各个方向射出光线,又称扩展光源,图中只画出由S点射出光线中的一条来说明光路。这条光线进入分束板G1后,在半透膜上被分成两条光线,反射光线①和透射光线②,分别射向M1和M2又被反射回来。反射后,光线①再次进入G1并穿出,光线②再次穿过补偿板G2并被G1上的半透膜反射,最后两条光线平行射向探测器的透镜E,会聚于焦平面上的一点,探测器也可以是观测者的眼睛。由于光线①和光线②是用分振幅法获得的相干光,故可产生干涉。光路中加补偿板G2的作用是使分束后的光线①和光线②都以相等的光程分别通过G1、G2两次,补偿了只有G1而产生的附加光程差。M2′是M2被G1上半透膜反射所成的虚象,在观测者看来好象M2位于M2′的位置并与M1平行,在它们之间形成了一个空气薄膜。移动M1即可改变空气膜的厚度,当M1接近M2′时厚度减小,直至二者重合时厚度为零,继续同向移动,M1还可穿越M2′的另一测形成空气膜。最后通过观测干涉条纹的分布情况就可以获得我们所要的信息。 如果是傅里叶变换红外光谱仪,那还要加上对干涉信息的数据处理系统而最终获得我们的数据图表。 二.紫外;-;可见分光光度计定量分析法的依据是什么? 比耳(Beer)确定了吸光度与溶液浓度及液层厚度之间的关系,建立了光吸收的基本定律。 ○1. 朗伯定律 当溶液浓度一定时,入射光强度与透射光强度之比的对数,即透光率倒数的对数与液层厚度成正比。人们定义:溶液对单色光的吸收程度为吸光度。公式表示为A=Lg (I0/It) ○2.比耳定律 当一束单色光通过液层厚度一定的均匀溶液时,溶液中的吸光物质的浓度增大dC,则透

iCAN9傅立叶红外光谱仪产品介绍

iCAN 9傅立叶红外光谱仪产品介绍 一、仪器简介 iCAN 9傅立叶红外光谱仪是天津市能谱科技有限公司引进国外先进技术,精心自主研发的一款高性价比的傅立叶红外变换光谱仪,可广泛用于医药、化工、食品、石化、珠宝、高分子、半导体、材料科学等行业,仪器扩展功能强,可以连接各种常规透射,漫反射、ATR衰减全反射、非接触式外反射等附件,无论是用于高校、研究单位、还是用于工业领域的QA/QC 应用分析,iCAN 9将会是您完美的选择。 iCAN 9傅立叶红外光谱仪产品特点 1、智能的人机交互设计,无论您是否接触过傅立叶红外软件,都能迅速熟练操作; 2、配备智能湿度自动提醒装置,减轻了操作人员对仪器维护的工作量,电子湿度数字直观显示功能,将自动提醒用户更换干燥剂,解决红外使用过程中最大的隐患; 3、干涉仪:最新的磁悬浮平面镜电磁驱动,具有三维激光控制、数字化连续自动调整和DSP 控制功能,自动优化系统能量,无需人工调整。 4、分束器:进口KBr基片镀锗 5、接收器:进口带有防潮膜高性能DLATGS检测器,仪器可自动识别,自动参数设置,对针定位,方便拆装。优于24位500KHz高精度A/D转换器,确保光谱数据快速精确采集 6、数据传输接口:标准USB2.0 高速双向通讯 7、支持系统:Windows XP、Windows Vista、Windows 7、Windows 8 8、系统符合FDA、认证标准,具有访问控制,权限分配、审计追踪,电子签名等功能,满足GMP/GLP要求。 9、仪器自带自检程序可对仪器的各项指标随时进行自检,具有硬件实时在线诊断; 10、软件功能更强大:具有自我诊断功能保证了仪器状态和测试参数正确;强大的数据处理分析软件,轻松处理标峰、峰面积积分、基线校准等操作;红外软件:中文版32位处理软件。包括:红外控制、谱图处理、数据转换、多组分定量等操作软件;H2O/CO2自动补偿软件,自检软件;宏程序软件; 11、硬件实时在线诊断:硬件实时在线诊断:连续在线监控所有光学部件(激光、光源、检测器、分束器);保证仪器始终处于最佳工作状态,软件H2O/CO2自动补偿软件,自动除去空气中水和二氧化碳; 12、光学台整体密封干燥设计,提高了光的传输效率,且防潮效果极佳。可适应各种操作环境,并降低空气吸收带来的影响; 13、仪器配置可再生干燥系统及湿度数字指示器,可降低用户的维护成本及强度。 14、仪器带有分析软件和可装配标准透射附件,如液体池或KBr压片的制样附件。样品仓可

傅立叶变换红外光谱仪操作指导—nicolet6700型

傅立叶变换红外光谱仪操作指导—nicolet6700型 一、 仪器简介 1、型号名称:Nicolet 6700 高级傅里叶变换红外光谱仪 美国 2、适用范围:本方法适用于液体、固体、气体、金属材料表面镀膜等样品。它可以检测样品的分子结构特征,还可对混合物中各组份进行定量分析,本仪器的测量范围为4000~400 cm -1。 3、方法原理:红外光谱是根据物质吸收辐射能量后引起分子振动的能级跃迁,记录跃迁过程而获得该分子的红外吸收光谱。 二、 基本操作 (一)试样制备方法 1、固体样品 (1)压片法:取1~2mg 的样品在玛瑙研钵中研磨成细粉末与干燥的溴化钾(A. R.级)粉末(约100mg ,粒度200目)混合均匀,装入模具内,在压片机上压制成片测试。 玛瑙研钵 压片模具 (2)糊状法:在玛瑙研钵中,将干燥的样品研磨成细粉末。然后滴入1~2滴液体石蜡混研成糊状,涂于KBr 或BaF 2晶片上测试。 (3)溶液法:把样品溶解在适当的溶液中,注入液体池内测试。所选择的溶剂应不腐蚀池窗,在分析波数范围内没有吸收,并对溶质不产生溶剂效应。一般使用0.1mm 的液体池,溶液浓度在10%左右为宜。 a :镜片; b :液体池部件(不含镜片); c: 装配图; d :使用方法 a b c d

2、液体样品 (1)液膜法:油状或粘稠液体,直接涂于KBr晶片上测试。流动性大,沸点低(≤100℃)的液体,可夹在两块KBr晶片之间或直接注入厚度适当的液体池内测试(液体池的安装见说明书)。对极性样品的清洗剂一般用CHCl3,非极性样品清洗剂一般用CCl4。 样品池BaF2镜片KBr镜片(杜绝含水样品)(2)水溶液样品:可用有机溶剂萃取水中的有机物,然后将溶剂挥发干,所留下的液体涂于KBr晶片上测试。 应特别注意含水的样品坚决不能直接接触KBr或NaCl窗片液体池内测试。 3、塑料、高聚物样品 (1)溶液涂膜:把样品溶于适当的溶剂中,然后把溶液一滴一滴的滴加在KBr晶片上,待溶剂挥发后把留在晶片上的液膜进行测试。 (2)溶液制膜:把样品溶于适当的溶剂中,制成稀溶液,然后倒在玻璃片上待溶剂挥发后,形成一薄膜(厚度最好在0.01~0.05mm),用刀片剥离。薄膜不易剥离时,可连同玻璃片一起浸在蒸馏水中,待水把薄膜湿润后便可剥离。这种方法溶剂不易除去,可把制好的薄膜放置1~2天后再进行测试。或用低沸点的溶剂萃取掉残留的溶剂,这种溶剂不能溶解高聚物,但能和原溶剂混溶。 4、磁性膜材料直接固定在磁性膜材料的样品架上测定。 磁性样品架 5、其它样品 对于一些特殊样品,如:金属表面镀膜,无机涂料板的漫反射率和反射率的测试等,则要采用特殊附件,如:A TR,DR,SR等附件。 (二)测量操作

红外光谱检测原理

红外光谱测试作为一种比较成熟的测试手段,对于材料的定性检测具有重要的作用,应用在许多领域。但是很多人对于红外光谱的检测原理并不是很清楚,下面,我们将进行一些基本原理的介绍。 在了解红外光谱的检测原理之前我们先来看一下什么是光谱分析。 光谱分析是一种根据物质的光谱来鉴别物质及确定它的化学组成,结构或者相对含量的方法。按照分析原理,光谱技术主要分为吸收光谱,发射光谱和散射光谱三种;按照被测位置的形态来分类,光谱技术主要有原子光谱和分子光谱两种。红外光谱属于分子光谱,有红外发射和红外吸收光谱两种,常用的一般为红外吸收光谱。 接下来是红外吸收光谱的基本原理。 分子运动有平动,转动,振动和电子运动四种,其中后三种为量子运动。分子从较低的能级E1,吸收一个能量为hv的光子,可以跃迁到较高的能级E2,整个运动过程满足能量守恒定律E2-E1=hv。能级之间相差越小,分子所吸收的光的频率越低,波长越长。 红外吸收光谱是由分子振动和转动跃迁所引起的, 组成化学键

或官能团的原子处于不断振动(或转动)的状态,其振动频率与红外光的振动频率相当。所以,用红外光照射分子时,分子中的化学键或官能团可发生振动吸收,不同的化学键或官能团吸收频率不同,在红外光谱上将处于不同位置,从而可获得分子中含有何种化学键或官能团的信息。 红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。 分子的转动能级差比较小,所吸收的光频率低,波长很长,所以分子的纯转动能谱出现在远红外区(25~300 μm)。振动能级差比转动能级差要大很多,分子振动能级跃迁所吸收的光频率要高一些,分子的纯振动能谱一般出现在中红外区(2.5~25 μm)。(注:分子的电子能级跃迁所吸收的光在可见以及紫外区,属于紫外可见吸收光谱的范畴) 值得注意的是,只有当振动时,分子的偶极矩发生变化时,该振动才具有红外活性(注:如果振动时,分子的极化率发生变化,则该振动具有拉曼活性)。

傅里叶变换红外光谱仪

傅里叶红外光谱仪(FTIR) (仅供参考) 一.实验目的: 1.了解FTIR的工作原理以及仪器的操作。 2.通过对多孔硅的测试,初步学会分析方法。 二.实验原理: 1.傅里叶红外光谱仪的工作原理: FTIR光谱仪由3部分组成:红外光学台(光学系统)、计算机和打印机。而红外光学台是红外光谱仪的最主要部分。 红外光学台由红外光源、光阑、干涉仪、样品室、检测器以及各种红外反射镜、氦氖激光器、控制电路和电源组成。下图所示为红外光学台基本光路图。 傅里叶变换红外光谱是将迈克尔逊干涉仪动镜扫描时采集的数据点进行傅立叶变换得到的。动镜在移动过程中,在一定的长度范围内,在大小有限,距离相等的位置采集数据,由这些数据点组成干涉图,然后对它进行傅立叶变换,得到一定范围内的红外光谱图。每一个数据点由两个数组成,对应于X轴和Y轴。对应同一个数据点,X值和Y值决定于光谱图的表示方式。因此,在采集数据之前,需要设定光谱的横纵坐标单位。 红外光谱图的横坐标单位有两种表示法:波数和波长。通常以波数为单位。而对于纵坐标,对于采用透射法测定样品的透射光谱,光谱图的纵坐标只有两种表示方法,即透射率T 和吸光度A。透射率T是由红外光透过样品的光强I和红外光透过背景(通常是空光路)的光强I0的比值,通常采用百分数(%)表示。吸光度A是透射率T倒数的对数。 透射率光谱图虽然能直观地看出样品对红外光的吸收情况,但是透射率光谱的透射率与样品的质量不成正比关系,即透射率光谱不能用于红外光谱的定量分析。而吸光度光谱的吸光度值A在一定范围内与样品的厚度和样品的浓度成正比关系,所以大都以吸光度表示红外光谱图。 本实验运用的仪器是Nicolet 380 智能傅立叶红外光谱仪。 2.傅里叶红外光谱仪的主要特点: ⑴具有很高的分辨能力,在整个光谱范围内分辨能力达到0.1cm-1。 ⑵具有极高的波数准确度,波数准确度可以达到0.01cm-1。 ⑶杂散光的影响度低,通常在全光谱范围杂散光影响低于0.3%。 ⑷扫描时间短,可以用于观测瞬时反应。 ⑸可以研究很宽的光谱范围。本实验仪器波数范围为400cm-1~4000cm-1。

Nicolet5700智能型傅立叶红外光谱仪

Nicolet 5700智能傅立叶红外光谱仪 使用说明书 注意事项: 1.测试前将KBr在玛瑙研钵中研细至颗粒直径达2μm以下(通常过200目 筛),放在干燥器中备用。 2.测试过程中保持仪器、桌面等环境的干净整洁。 3.不可在计算机上进行与实验无关的操作。 4.拷贝数据请使用CD或VCD,不能使用U盘以免感染病毒。 5.认真填写实验记录。 6.相关论文发表后,请送一份复印件给SKL实验室。 同济大学污染控制与资源化研究国家重点实验室(State Key Laboratory of Pollution Control and Resources Reuse, Tongji University)

Nicolet 5700智能傅立叶红外光谱仪 使用方法 一、仪器原理及主要用途 当分子受到红外光的辐射,产生振动能级的跃迁,在振动时伴有偶极矩改变者就吸收红外光子,形成红外吸收光谱。红外光谱属于分子光谱,是确定分子组成和结构的有力工具。根据未知物红外光谱中吸收峰的强度、位置和形状,可以确定该未知物分子中包含有哪些基团,从而推断该未知物的结构。傅立叶变换红外光谱法具有灵敏度高、波数准确、重复性好的优点,应用范围非常广泛,只要是能够吸收红外光的物质理论上都会得到一张相应的红外光谱图。红外吸收光谱法面向的学科有:化学、化工、高分子、材料、环境科学、生物、医学、药学、农学、地质、食品、生命科学等;主要用途为: 1.固体或不含水的液体物质的结构定性分析,部分物质(有较强特征吸收峰)的定量分析。如无机物、有机物、塑料、橡胶等。 2.表面和界面研究; 3.反应动力学和催化机理研究; 4.高聚物分子取向研究; 5.矿物油的测定 二、技术指标 1. 干涉仪:数字化干涉仪,动态调整达130,000次/秒; 2. 信噪比:50000:1(峰峰值,1分钟扫描); 峰-峰噪声: 优于8.68×10-6Abs(1分钟扫描); RMS 噪声: 优于1.95×10-6Abs(1分钟扫描); ASTM 线性: 优于0.07%T。 3.光谱范围:7800-50cm-1(EverGlo TM长寿命空冷可控能量中/远红外

红外光谱测试法

红外光谱测试法 红外光谱 (Infrared Spectroscopy, IR) 的研究始于 20 世纪初,自1940 年红外光谱仪问世,红外光谱在有机化学研究中广泛应用。新技术(如发射光谱、光声光谱、色红联用等)出现,使红外光谱技术得到发展。 原理 当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。将分子吸收红外光的情况用仪器记录下来,就得到红外光谱图。红外光谱图通常用波长(λ)或波数 (σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。 当外界电磁波照射分子时,如照射的电磁波的能量与分子的两能级差相等,该频率的电磁波就被该分子吸收,从而引起分子对应能级的跃迁,宏观表现为透射光强度变小。电磁波能量与分子两能级差相等为物质产生红外吸收光谱必须满足条件之一,这决定了吸收峰出现的位置。 红外吸收光谱产生的第二个条件是红外光与分子之间有偶尔作用,为了满足这个条件,分子振动时其偶极矩必须发生变化。这实际上保证了红外光的能量能传递给分子,这种能量的传递是通过分子振动偶极矩的变化来实现的。并非所有的振动都会产生红外吸收,只有偶极矩发生变化的振动才能引起可观测的红外吸收,这种振动称为红外活性振动;偶极矩等于零的分子振动不能产生红外吸收,称为红外非活性振动。 应用 红外光谱对样品的适用性相当广泛,固态、液态或气态样品都能应用,无机、有机、高分子化合物都可检测。此外,红外光谱还具有测试迅速,操作方便,重复性好,灵敏度高,试样用量少,仪器结构简单等特点,因此,它已成为现代结构化学和分析化学最常用和不可缺少的工具。红外光谱在高聚物的构型、构象、力学性质的研究以及物理、天文、气象、遥感、生物、医学等领域也有广泛的应用。 红外吸收峰的位置与强度反映了分子结构上的特点,可以用来鉴别未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与化学基团的含量有关,可用于进行定量分析和纯度鉴定。另外,在化学反应的机理研究上,红外光谱也发挥了一定的作用。但其应用最广的还是未知化合物的结构鉴定。 红外光谱不但可以用来研究分子的结构和化学键,如力常数的测定和分子对称性的判据,而且还可以作为表征和鉴别化学物种的方法。例如气态水分子是非线性的三原子分子,它的v1=3652厘米、v3=3756厘米、v2=1596厘米而在液态水分子的红外光谱中,由于水分子间的氢键作用,使v1和v3的伸缩振动谱带叠

傅立叶变换红外光谱仪.

傅立叶变换红外光谱仪 宝石在红外光的照射下,引起晶格(分子)、络阴离子团和配位基的振动能级发生跃迁,并吸收相应的红外光而产生的光谱称为红外光谱。19 世纪初,人们通过实验证实了红外光的存在。20 世纪初,人们进一步系统地了解了不同官能团具有不同红外吸收频率这一事实。1950 年以后出现了自动记录式红外分光光度计。随着计算机科学的进步,1970年以后出现了傅立叶变换红外光谱仪。近年来,红外测定技术如反射红外、显微红外、光声光谱以及色谱一红外联用等得到不断发展和完善,红外光谱法在宝石鉴定与研究领域得到了广泛的应用。 一、基本原理 能量在 4000—400cm-1 的红外光不足以使样品产生分子电子能级的跃迁,而只是振动能级与转动能级的跃迁。由于每个振动能级的变化都伴随许多转动能级的变化,因此红外光谱属一种带状光谱。分子在振动和转动过程中,当分子振动伴随偶极矩改变时,分子内电荷分布变化会产生交变电场,当其频率与入射辐射电磁波频率相等时才会产生红外吸收。 红外光谱产生的条件:①辐射应具有能满足物质产生振动跃迁所需的能量;②辐射与物质间有相互偶合作用。例对称分子没有偶极矩,辐射不能引起共振,无红外活性,如N2、O2、Cl 等。而非对称分子有偶极矩,具红外活性。 (一)多原子分子的振动 多原子分子由于原子数目增多,组成分子的键或基团和空间结构不同,其分子真实振动光谱比双原子分子要复杂,但在一定条件下作为很好的近似,分子一切可能的任意复杂的振动方式都可以看成是有限数量的且相互独立的和比较简单的振动方式的叠加,这些相对简单的振动称为简正振动。 (二)简正振动的基本形式 一般将简正振动形式分成两类:伸缩振动和弯曲振动(变形振动)。 1. 伸缩振动 多原子分子由于原子数目增多,组成分子的键或基团和空间结构不同,其分子真实振动光谱比双原子分子要复杂,但在一定条件下作为很好的近似,分子一切可能的任意复杂的振动方式都可以看成是有限数量的且相互独立的和比较简单的振动方式的叠加,这些相对简单的振动称为简正振动。 指原子间的距离沿键轴方向发生周期性变化,而键角不变的振动称为伸缩振动,通常分为对称伸缩振动和不对称伸缩振动。对同一基团,不对称伸缩振动的频率要稍高于对称伸缩振动,而官能团的伸缩振动一般出现在高波数区。 2.弯曲振动(又称变形振动) 指具有一个共有原子的两个化学键键角的变化,或与某一 原子团内各原子间的相互运动无关的、原子团整体相对于分子 内其他部分的运动。多表现为键角发生周期变化而键长不变。 变形振动又分为面内变形和面外变形振动。面内变形振动又分 为剪式和平面摇摆振动。面外变形振动又分为非平面摇摆和扭 曲振动。 (三)红外光区的划分 红外光谱位于可见光和微波区之间,即波长约为0.78~1000μm 范围内的电磁波,通常将 整个红外光区分为以下三个部分: 1.远红外光区 波长范围为25—1000μm,波数范围为400~10cm-1。该区的红外吸收谱带主要是由气体分子中的纯转动

红外光谱检测技术

以后改动策划类的文档可以用批注简单、明了 中药材红外光谱鉴别技术操作规程 一、红外光谱分析原理 分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱。红外吸收光谱也是一种分子吸收光谱。当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱(产生红外光谱的基本条是:要有偶矩的变化)。 1 红外光区的划分 红外光谱在可见光区和微波光区之间,波长范围约为 0.75 - 1000μm,根据仪器技术和应用不同,习惯上又将红外光区分为三个区:近红外光区(0.75 -2.5μm ),中红外光区(2.5- 25μm ),远红外光区(25-1000μm )。 1.1 近红外光区(0.75- 2.5μm ) 近红外光区的吸收带主要是由低能电子跃迁、含氢原子团(如O—H、N—H、C—H)伸缩振动的倍频吸收等产生的。该区的光谱可用来研究稀土和其它过渡金属离子的化合物,并适用于水、醇、某些高分子化合物以及含氢原子团化合物的定量分析。 1.2 中红外光区( 2.5-25μm ) 绝大多数有机化合物和无机离子的基频吸收带出现在该光区。由于基频振动是红外光谱中吸收最强的振动,所以该区最适于进行红外光谱的定性和定量分析。同时,由于中红外光谱仪最为成熟、简单,而且目前已积累了该区大量的数

据资料,因此它是应用极为广泛的光谱区。通常,中红外光谱法又简称为红外光谱法。 1.3 远红外光区(25-1000μm ) 该区的吸收带主要是由气体分子中的纯转动跃迁振动-转动跃迁、液体和固体中重原子的伸缩振动、某些变角振动、骨架振动以及晶体中的晶格振动所引起的。由于低频骨架振动能很灵敏地反映出结构变化,所以对异构体的研究特别方便。此外,还能用于金属有机化合物(包括络合物)、氢键、吸附现象的研究。但由于该光区能量弱,除非其它波长区间内没有合适的分析谱带,一般不在此范围内进行分析。 曲线或T-λ红外吸收光谱一般用T-1(单位为μm ),或波数(单位为cm-1)。λ波数曲线表示。纵坐标为百分透射比T%,因而吸收峰向下,向上则为谷;横坐标是波长 中红外区的波数范围是4000-400 cm-1 。 二、红外光谱法的特点 紫外、可见吸收光谱常用于研究不饱和有机物,特别是具有共轭体系的有机化合物,而红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没有偶极矩变化的振动在拉曼光谱中出现)。因此,除了单原子和同核分子如Ne、He、O2、H2等之外,几乎所有的有机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及在分子量上只有微小差异的化合物外,凡是具有结构不同的两个化合物,一定不会有相同的红外光谱。通常红外吸收带的波长位置与吸收谱带的强度,反映了分子结构上的特点,可以用来鉴定未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与分子组成或化学基团的含量有关,可用以进行定量分析和纯度鉴定。由于红外光谱分析特征性强,气体、液体、固体样品都可测定,并具有用量少,分析速度快,不破坏样品的特点。因此,红外光

傅立叶变换红外光谱仪的基本原理及其应用

J I A N G X I N O R M A L U N I V E R S I T Y 2009届本科生毕业论文 课题名称:傅立叶变换红外光谱仪的基本原 理及其应用 Basic principles and application of Fourier transform infrared spectrometer 姓名高立峰 学院理电学院 专业物理学(师范) 学号 06 完成时间 声明

本人郑重声明: 所呈交的毕业设计(论文)是本人在指导教师指导下进行的研究工作及取得的研究成果。其中除加以标注和致谢的地方外,不包含其他人已经发表或撰写并以某种方式公开过的研究成果,也不包含为获得其他教育机构的学位或证书而作的材料。其他同志对本研究所做的任何贡献均已在文中作了明确的说明并表示谢意。 本毕业设计(论文)成果是本人在江西师范大学读书期间在指导教师指导下取得的,成果归江西师范大学所有。 特此声明。 声明人(毕业设计(论文)作者)学号:06 声明人(毕业设计(论文)作者)签名:

摘要 红外光谱仪是鉴别物质和分析物质结构的有效手段,其中傅立叶变换红外光谱仪(FT-IR)是七十年代发展起来的第三代红外光谱仪的典型代表。它是根据光的相干性原理设计的,是一种干涉型光谱仪,具有优良的特性,完善的功能,并且应用范围极其广泛,同样也有着广泛的发展前景。本文就傅立叶变换红外光谱仪的基本原理作扼要的介绍,总结了傅立叶变换红外光谱法的主要特点,综述了其在各个方面的应用,并对傅立叶变换红外光谱仪的发展方向提出了一些基本观点。 关键词:傅立叶变换红外光谱仪;基本原理;应用;发展

傅里叶变换红外光谱仪详细清单及参数

傅里叶变换红外光谱仪详细清单及参数要求 一、设备名称:傅里叶变换红外光谱仪 二、设备数量:1台 三、技术要求: 1、整机 计算机控制的傅里叶变换红外光谱仪,密封干燥光学平台,具有大气背景自动扣除功能。 2、主要指标 分辨率优于0.5 cm-1 光谱范围7500-350cm-1 信噪比40,000:1(峰、峰值, 1min.,DTGS检测器,KBr 分束器) 波数精度优于0.01 cm-1 透光率精度优于0.05%T 3、干涉仪 气密闭结构, 内装自动除湿装置 4、光路系统 光源种类低温(1000K)、高效、空气冷却 分束器KBr(标准)、即插即用式设计 减振装置光学台与底盘隔离,防震性能好 仪器密封干燥光学台、样品室、检测器室有独立干燥密封 检测器快速恢复宽范围DTGS 5、数据处理系统 计算机知名品牌(推荐品牌:联想、DELL、惠普等),至少奔

腾IV 2.8GHz,256M内存,硬盘80GB,17”液晶显示器, CD-RW可擦写光驱,鼠标,键盘,USB2.0通讯接口 打印机激光彩色打印机(推荐品牌:惠普等) 操作系统WINDOWS XP 软件FTIR 软件,通过标准认证 操作软件:数据收集、处理、谱图解释、问题提示及处理 谱图处理软件:分峰软件、漫反射图谱校正软件、CO2及水去除技术 数据库:红外光谱图谱库 软件升级问题免费升级 6、联机功能 可与GC、LC、TGA、显微镜、Raman联用 7、附件 (1)红外光谱制样工具包:国产全套,包括 溴化钾窗片(有孔及无孔)、液体池溴化钾窗片、可拆卸液体池、液体池垫片等;溴化钾粉、荧光剂、石蜡糊等;液体注射器、刮铲及样品勺、玛瑙研钵及研杵、样品架等;压片机、压片夹具、压片模具等。 (2)微电脑除湿干燥箱,80升,2台 8、产品质量质量认证ISO9001 9、工作环境 电源: 220V 10%, 50HZ A.C 室温: 在4-35℃可正常工作 湿度: 90%可正常工作

傅里叶红外光谱仪操作规程.pdf

傅里叶红外光谱仪操作规程 1.开机前准备 开机前检查实验室电源、温度和湿度等环境条件,当电压稳定,室温在15~25℃、湿度≤60%才能开机。 2.开机 首先打开仪器的外置电源,稳定半小时,使得仪器能量达到最佳状态。开启电脑,并打开仪器操作平台OMNIC软件,运行Diagnostic菜单,检查仪器稳定性。 3.制样 根据样品特性以及状态,制定相应的制样方法并制样。固体粉末样品用KBr 压片法制成透明的薄片;液体样品用液膜法、涂膜法或直接注入液体池内进行测定;(液膜法是在可拆液体池两片窗片之间,滴上1-2滴液体试样,使之形成一薄的液膜;涂膜法是用刮刀取适量的试样均匀涂于KBr窗片上,然后将另一块窗片盖上,稍加压力,来回推移,使之形成一层均匀无气泡的液膜;沸点较低,挥发性较大的液体试样,可直接注入封闭的红外玻璃或石英液体池中,液层厚度一般为0.01~1mm)。 4.扫描和输出红外光谱图 将制好的KBr薄片轻轻放在锁氏样品架内,插入样品池并拉紧盖子,在软件设置好的模式和参数下测试红外光谱图。先扫描空光路背景信号(或不放样品时的KBr薄片,有4个扣除空气背景的方法可供选择),再扫描样品信号,经傅里叶变换得到样品红外光谱图。根据需要,打印或者保存红外光谱图。 5.关机 (1)先关闭OMNIC软件,再关闭仪器电源,盖上仪器防尘罩。 (2)在记录本上记录使用情况。 6.清洗压片模具和玛瑙研钵 KBr对钢制模具的平滑表面会产生极强的腐蚀性,因此模具用后应立即用水冲洗,再用去离子水冲洗三遍,用脱脂棉蘸取乙醇或丙酮擦洗各个部分,然后用电吹风吹干,保存在干燥箱内备用。玛瑙研钵的清洗与模具相同。

傅里叶变换红外光谱仪解析

仪器分析综述 系别:生物科学与技术系 班级:09食品2 姓名:欧阳凡学号:091304251 傅里叶变换红外光谱仪 前言 随着计算方法和计算技术的发展,20世纪70年代出现新一代的红外光谱测量技术及仪器--傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR ,简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 正文 傅里叶变换红外光谱仪分光光度计由光学检测系统、计算机书籍处理系统、计算机接口、电子线路系统组成。 光源发出的光被分束器(类似半透半反镜)分为两束,一束经反射到达动镜,另一束经透射到达定镜。两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,最终得到透过率或吸光度随波数或波长的红外吸收光谱图。 光学检测系统由迈克逊干涉仪、光源、检测器组成、迈克逊干涉仪内有两个相垂直的平面反射镜M1、M2和一个与两镜成45度角的分束器,M1可沿镜轴方向前后移动。自光源发出的红外光经准直镜M3反射后变为平行光束,照在分束器上

后变成两束光。其中一束被反射到可动镜头M1后又被M1反射回分束器,并在分束器上再次分城反射光和透射光,透射光部分照在举聚光镜M4上,然后到到达探测器,另一束光透过分束器,射在固定镜M2上,并被M2反射回分束器,在分束器上再次发生反射和透射,反射部分照在聚光镜M4上,最后也到达探测器。因而这两束到达探测器的光油了光程差,成了相干光,移动可动镜M1可改变两束光程差。在连续改变光程差的同时,记录下中央干涉条纹的光强变化,及得到干涉图。如果在复合的相干光路中放有样品,就得到样品的干涉图。需要通过计算机进行傅里叶变换后才能得到红外光谱图。 主要特点 1、信噪比高 傅里叶变换红外光谱仪所用的光学元件少,没有光栅或棱镜分光器,降低了光的损耗,而且通过干涉进一步增加了光的信号,因此到达检测器的辐射强度大,信噪比高。 2、重现性好 傅里叶变换红外光谱仪采用的傅里叶变换对光的信号进行处理,避免了电机驱动光栅分光时带来的误差,所以重现性比较好。 3、扫描速度快 傅里叶变换红外光谱仪是按照全波段进行数据采集的,得到的光谱是对多次数据采集平均后的结果,而且完成一次完整的数据采集只需要一至数秒,而色散型仪器则需要在任一瞬间只测试很窄的频率范围,一次完整的数据采集需要十分钟至二十分钟。 FTIR 的吸收强度和表示方法 红外吸收光谱分析对于同一类型的化学键,偶极矩的变化与结构的对称性有关。例如C =

傅里叶红外光谱仪111

傅里叶红外光谱仪 编辑本段1.原理部分 1.1 傅里叶变换红外光谱仪的测试原理 傅里叶变换红外光谱仪由迈克耳逊干涉仪和数据处理系统组合而成, 它的工作原理就是迈克耳逊干涉仪的原理。迈克耳逊干涉仪的光路如图所示,图中已调到M2 与M1 垂直。Σ是面光源(由被单色光或白光照亮的一块毛玻璃充当),面上每一点都向各个方向射出光线,又称扩展光源,图中只画出由S 点射出光线中的一条来说明光路。这条光线进入分束板G1 后,在半透膜上被分成两条光线,反射光线①和透射光线②,分别射向M1 和M2 又被反射回来。反射后,光线①再次进入G1 并穿出,光线②再次穿过补偿板G2 并被G1 上的半透膜反射,最后两条光线平行射向探测器的透镜E,会聚于焦平面上的一点,探测器也可以是观测者的眼睛。由于光线①和光线②是用分振幅法获得的相干光,故可产生干涉。光路中加补偿板G2 的作用是使分束后的光线①和光线②都以相等的光程分别通过G1、G2 两次,补偿了只有G1 而产生的附加光程差。M2′是M2 被G1 上半透膜反射所成的虚象,在观测者看来好象M2 位于M2′的位置并与M1 平行,在它们之间形成了一个空气薄膜。移动M1 即可改变空气膜的厚度,当M1 接近M2′时厚度减小,直至二者重合时厚度为零,继续同向移动,M1 还可穿越M2′的另一测形成空气膜。最后通过观测干涉条纹的分布情况就可以获得我们所要的信息。如果是傅里叶变换红外光谱仪,那还要加上对干涉信息的数据处理系统而最终获得我们的数据图表。 1.2 紫外可见分光光度计定量分析法的依据 比耳(Beer)确定了吸光度与溶液浓度及液层厚度之间的关系,建立了光吸收的基本定律。 1.2.1. 朗伯定律 当溶液浓度一定时,入射光强度与透射光强度之比的对数,即透光率倒数的对数与液层厚度成正比。人们定义:溶液对单色光的吸收程度为吸光度。公式表示为A=Lg(I0/It) 1.2.2 比耳定律 当一束单色光通过液层厚度一定的均匀溶液时,溶液中的吸光物质的浓度增大dC,则透射光强度将减弱 dI,-dI 与入射光光强度I 与dc 的积成正比。 ∴?dI ∝I·dc-dI/I=k3·dc

傅立叶红外光谱仪测试样品的方法及注意事项-红外压片模具

傅立叶红外光谱仪测试样品的方法及注意事项 要获得一张高质量红外光谱图,除了仪器本身的因素外,还必须有合适的样品制备方法。 一、红外光谱法对试样的要求 红外光谱的试样可以是液体、固体或气体,一般应要求: 1. 试样应该是单一组份的纯物质,纯度应>98%或符合商业规格,才便于与纯物质的标准光谱进行对照。多组份试样应在测定前尽量预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱相互重叠,难于判断。 2. 试样中不应含有游离水。水本身有红外吸收,会严重干扰样品谱,而且会侵蚀吸收池的盐窗。 3. 试样的浓度和测试厚度应选择适当,以使光谱图中的大多数吸收峰的透射比处于10%~80%范围内。 二、制样的方法 1. 气体样品 气态样品可在玻璃气槽内进行测定,它的两端粘有红外透光的NaCl或KBr窗片。先将气槽抽真空,再将试样注入。 2. 液体和溶液试样 (1)液体池法 沸点较低,挥发性较大的试样,可注入封闭液体池中,液层厚度一般为0.01~1mm。 (2)液膜法 沸点较高的试样,直接滴在两片盐片之间,形成液膜。对于一些吸收很强的液体,当用调整厚度的方法仍然得不到满意的谱图时,可用适当的溶剂配成稀溶液进行测定。一些固体也可以溶液的形式进行测定。常用的红外光谱溶剂应在所测光谱区内本身没有强烈的吸收,不侵蚀盐窗,对试样没有强烈的溶剂化效应等。 3. 固体试样

(1)压片法 将1~2mg试样与200mg纯KBr研细均匀,置于模具中,用(5~10)′107Pa压力在油压机上压成透明薄片,即可用于测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。 (2)石蜡糊法 将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调成糊状,夹在盐片中测定。 (3)薄膜法 主要用于高分子化合物的测定。可将它们直接加热熔融后涂制或压制成膜。也可将试样溶解在低沸点的易挥发溶剂中,涂在盐片上,待溶剂挥发后成膜测定。当样品量特别少或样品面积特别小时,采用光束聚光器,并配有微量液体池、微量固体池和微量气体池,采用全反射系统或用带有卤化碱透镜的反射系统进行测量。 仪器操作 1. 样品准备(固体样品) 取样品约0.5mg在红外灯下充分研磨,再加入干燥KBr粉末约50mg,继续研磨至混合均匀。 2. 模具准备 将干燥器中保存的简易模具取出,确认模具洁净。若其表面不洁净,可用棉花沾少许无水乙醇轻轻擦拭(绝对不可用力,以免模具表面被划伤),然后在红外灯下干燥。 3. 制片方法 将试样与纯KBr混合粉末置于模具中,用(5~10)′107Pa压力在油压机上压成透明薄片,即可用于测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。 样品测试过程中的注意事项

相关文档
最新文档