泛函条件极值

泛函条件极值
泛函条件极值

§6.3 泛函的条件极值

一、泛函条件极值问题的提出(等周问题)

求在连接A 、B 长度为L 的所有曲线中与直线AB

所围成面积最大的曲线?

AB 弧长:dx y L b

a ∫+=2'1 (1) 曲线AB 与直线AB 所围成面积:()∫=b

a dx x y S (2) 边界条件:()()0,0==

b y a y (3)

在满足约束条件(1)和边界条件(3)的情况下,寻找满足由方程(2)的构成泛函问题的极小曲线函数。

二、一般泛函条件极值的E-L 方程

其中[][]()()2120,,,y b y y a y b a C y y y D ==∈=。 设()x y 是所求泛函的极值函数,取任意光滑函数()[]b a C x ,2

0∈η ()()()x x y x y εη+=1,()()0,0==b a ηη

从而构成一元函数

()[]()∫++=+=b

a dx y y x F y J '',,εηεηεηε? ()L dx y y x G b

a =++∫'',,εηεη 利用拉格朗日乘子法,定义新的泛函

()()()[]∫+++++=Φb

a dx y y x G y y x F '',,'',,,εηεηλεηεηλε (4) 其中,λ为常数。

泛函()λε,Φ取极值,即需()

0,0=Φ=εελεd d

()

()0'''',''''''''''0=???????+?=??++??+=+++=+++=Φ∫∫∫∫∫∫∫∫∫∫=b a y y y y b a y b a y b a

y b

a y

b a y b a y b a y b a y b a y b a y b

a

y y y y dx G dx d G F dx d F dx G dx d G dx G dx F dx d F dx F dx G dx G dx F dx F dx G G F F d d ηλληληληληηηηληληηηληληηε

λεε

由变分引理得

0''=??

????++?y y y y G dx d G F dx d F λ, λ为常数,限制条件0'≠+y y G dx

d G 。 例题:泛函[]()∫=

b a dx x y y J ,约束条件dx y L b

a ∫+=2'1,且()()0,0==

b y a y ,求泛函

的极值函数。 ()2'1,y G x y F +==Q

代入公式(5)可得

0'1'0012=???

????

?++??+y y dx d λλ 整理得 1'1'2=???

???

??+y y dx d λ 左右两边对x 积分 c x y y ?=+2'

1'

λ,整理得 ()()2

2'c x c x y ???±

=λ,积分得 ()()()d c x d dx c x c x y b a +??±=+???±=∫2222λλ,即

()()222λ=?+?d y c x , c 、d 为常数。

试求下列性能泛函达到极值的必要条件

10-1 试求下列性能泛函达到极值的必要条件 dt t x x g x J f t t ),,()(0 ?? = 给定边界条件为:f f f t x t x x t x ,)(,)(00==自由. 10-2 已知状态初值和终值为: 1,4)(,100>==f t t x t 但自由,,试求试下列性能泛函达到极值的极值曲线 )(t x * dt t x t x x J f t t ? ? +=0 )](2 1)(2[)( 10-3 试利用变分公式 0)]([ =+?? =εεσε σx x J J 求泛函 dt x x x F x J f t t ),,()(0 ? ???= 的变分,并写出欧拉方程。 10-4 求通过x(0)=1,x(1)=2,使下列性能指标为极值的曲线 dt x x J f t t )1()(20 +=? ? 10-5 设x=x(t),10≤≤t ,求从x(0)=0到x(1)=1间的最短曲线.Unknown 求性能指标 dt x x J )1()(210 +=? ? 在边界条件x(0)=0,x(1)自由情况下的极值曲线. 10-6 已知性能指标函数为 dt t tx t x x J )]()([)(21 0+=? 试求:(1)J δ的表达式; (2)当t x t t x 1.0,)(2==δ和t x 2.0=δ时的变分1J δ和2J δ的值. 10-7 试求下列性能指标的变分J δ dt x x t x J f t t )()(22 20 ?++ =? 10-8 试求泛函 dt x x x J )()(222 -=? ?π 在满足边界条件x(0)=1,2)2 (=π x 的极值曲线. 10-9 设泛函

泛函和泛函的极值

泛函和泛函的极值 泛函是指某一个量,它的值依赖于其它一个或者几个函数。 变分法的基本问题是求解泛函的极值。 作为变分法的简单例题。考察x,y 平面上连接两个定点的所有曲线中,求满足边界条件的任意曲线y(x)中最短曲线。 设P 1(x 1,y 1)和P 2(x 2,y 2)为平面上给定的两点,y (x )为连接两点的任意曲线。于是,这一曲线的长度为 连接P 1,P 2两点的曲线有无数条,每一条曲线都有一个L 值与其对应。满足边界条件的y (x )称为容许函数,问题是要从这些曲线,容许函数中找出使得曲线长度L 最小的一条。 根据上式,L [y ]依赖于y (x ),而y (x )是x 的函数,因此称y (x )为自变函数;L [y ]是倚赖于自变函数的函数,称为泛函。 求解最短程线问题,即在满足边界条件 在x =x 1时, y (x )=y 1 y'(x 1)= y'1 在x =x 2时, y (x )=y 2 y'(x 1)= y'1 的函数y (x )中,求使得泛函L [y ]为极值的特定函数。因此 y (x )称为容许函数。 上述问题应用变分法可以概括为求解泛函 在边界条件 y (x 1)=y 1, y (x 2)=y 2的极小值问题。

假设函数y(x)是使得泛函L[y]为最小的特定函数(真实的)。变分法有兴趣研究的是邻近于y(x)的任意容许函数引起泛函L []的改变。设 其中ε 为小参数,而η (x)为边界值为零的任意函数。当x固定时,容许函数 与y(x)的差 δ y称为泛函自变函数的变分,即 类似地,容许函数的斜率与y(x)斜率的差δ y', 称为泛函自变函数斜率的变分,即 应该注意δ y与函数y(x)的微分d y之间的差别,d y是自变量x的改变量d x 引起的y(x)的无穷小增量。而变分δ y是y(x)的任意一个微小的改变量。设泛函增量

第二章-泛函极值及变分法(补充内容)

第二章 泛函极值及变分法(补充内容) 2.1 变分的基本概念 2.1.1 泛函和变分 泛函是一种广义的函数,是指对于某一类函数{y (x )}中的每一个函数y (x ),变量J 有一值与之对应,或者说数J 对应于函数y (x )的关系成立,则我们称变量J 是函数y (x )的泛函,记为J [y (x )]。 例1:如果表示两固定端点A (x A ,y A ),B (x B ,y B )间的曲线长度J (图2.1.1),则由微积分相关知识容易得到: dx dx dy J B A x x ? += 2)/(1 (2.1.1) 显然,对于不同的曲线y (x ),对应于不同的长度J ,即J 是函数y (x )的函数,J =J [y (x )]。 图2.1.1 两点间任一曲线的长度 例2:历史上著名的变分问题之一——最速降线问题,如果2.1.2所示。设在不同铅垂线上的两点P 1与P 2连接成某一曲线,质点P 在重力作用下沿曲线由点P 1自由滑落到点P 2,这里不考虑摩擦作用影响,希望得到质点沿什么样的曲线滑落所需时间最短。 图2.1.2 最速降线问题 选取一个表示曲线的函数y (x ),设质点从P 1到P 2沿曲线y =y (x )运动,则其运动速度为:

ds v dt == 其中,S 表示曲线的弧长,t 表示时间,于是: dt = 设重力加速度为g ,则gy v 2=。 因为P 1和P 2点的横坐标分别为x 1到x 2,那么质点从P 1到P 2所用时间便为: 1 [()]x x J y x =? 2 1 1/2 211[()]2[()()]x x y x dx g y x y x ??'+=??-?? ? (2.1.2) 则最速降线问题对应于泛函J [y (x )]取最小值。 回顾函数的微分: 对于函数的微分有两种定义: 一种是通常的定义,即函数的增量: ),()()()(x x x x A x y x x y y ?+?=-?+=?ρ (2.1.3) 其中A (x )与?x 无关,且有?x →0时ρ(x ,?x )→0,于是就称函数y (x )是可微的,其 线性部分称为函数的微分()()dy A x x y x x '=?=?,函数的微分就是函数增量的主部。 函数微分的另外一种定义: 通过引入一小参数ε,对)(x x y ?+ε关于ε求导数,并令ε→0的途径得到,即: dy x x y x x x y d x x dy =?'=??+'=?+→→)()() (00 εεεε ε (2.1.4) 上式说明)(x x y ?+ε在ε=0处关于ε的导数就是函数y (x )在x 处的微分。相应地,在泛函J [y (x )]中,变量函数y (x )的增量在其很小时称为变分,用δy (x )或δy 表示,

泛函条件极值

§6.3 泛函的条件极值 一、泛函条件极值问题的提出(等周问题) 求在连接A 、B 长度为L 的所有曲线中与直线AB 所围成面积最大的曲线? AB 弧长:dx y L b a ∫+=2'1 (1) 曲线AB 与直线AB 所围成面积:()∫=b a dx x y S (2) 边界条件:()()0,0== b y a y (3) 在满足约束条件(1)和边界条件(3)的情况下,寻找满足由方程(2)的构成泛函问题的极小曲线函数。 二、一般泛函条件极值的E-L 方程 其中[][]()()2120,,,y b y y a y b a C y y y D ==∈=。 设()x y 是所求泛函的极值函数,取任意光滑函数()[]b a C x ,2 0∈η ()()()x x y x y εη+=1,()()0,0==b a ηη 从而构成一元函数 ()[]()∫++=+=b a dx y y x F y J '',,εηεηεηε? ()L dx y y x G b a =++∫'',,εηεη 利用拉格朗日乘子法,定义新的泛函 ()()()[]∫+++++=Φb a dx y y x G y y x F '',,'',,,εηεηλεηεηλε (4) 其中,λ为常数。 泛函()λε,Φ取极值,即需() 0,0=Φ=εελεd d () ()0'''',''''''''''0=???????+?=??++??+=+++=+++=Φ∫∫∫∫∫∫∫∫∫∫=b a y y y y b a y b a y b a y b a y b a y b a y b a y b a y b a y b a y b a y y y y dx G dx d G F dx d F dx G dx d G dx G dx F dx d F dx F dx G dx G dx F dx F dx G G F F d d ηλληληληληηηηληληηηληληηε λεε

泛函的极值word版

第2章 泛函的极值 在讨论泛函的极值以前, 我们先来回顾一下函数的极值问题。 2.1函数的极值性质 2.1.1 函数的连续性 任意一个多元函数12(),(,,...,)T n n f x x x R =∈x x , 0>?ε, 如果0)(>=?εδδ, 当0δ-

第2章泛函的极值

第2章 泛函的极值 在讨论泛函的极值以前, 我们先来回顾一下函数的极值问题。 2.1函数的极值性质 2.1.1 函数的连续性 任意一个多元函数12(),(,,...,)T n n f x x x R =∈x x , 0>?ε, 如果0)(>=?εδδ, 当 0δ-

泛函和变分

第1章 泛函和变分 1.1引言 以前我们在微积分中遇到的都是类似下面的函数极值问题: 一个足够光滑的连续函数 12(,,...,)n y f x x x =,其在区域n R Ω?内任何一点12(,,...,)T n x x x =x 都可以作以下的 Taylor 展开 2 12 1 2()()()()(|| ||)(),,...,T T T T n f f f f o f f f f x x x +?=+?+??+??????= ? ?????x x x x x x D x x x x ?? (1.1.1) 22221121222 212...()...n n n n f f f x x x x x f f f f x x x x x ??????? ?????? ?? ?=???????????????? D x 函数在某一点有极值的必要条件是 12 ,, 0 n f f f f x x x ?? ???== ??????? 但是,我们这们课程中要讨论的则是另一类极值问题—泛函的极值问题(泛函简单地讲, 就是函数的函数,详细见后面)。 例1.1 一个简单的变分问题: 最短线问题 图1.1最短线问题 假设经过,A B 两点距离最短的曲线方程为 *()y y x = (1.1.2) 另有一任意的连续可导函数()x ηη=,()x η满足两端固定的边界条件 01()()0x x ηη== (1.1.3) 显然()()y y x x αη=+依旧是过固定两点,A B 的连续曲线,其对应的长度为

1 2()1('')d x x L y x ααη=++? (1.1.4) 当0α=,()y y x =时()L α取到极小值,也就是说 0d () |0d L ααα == (1.1.5) 把(1.1.4)代入(1.1.5), 展开后有 ()() 10 1 1 1 000110 000 222233 222 d ()('|d |d 1('') '''d |d 1'1'1'''''''''d d 1'1'1'0 x x x x x x x x x x x x L y x y y y y x x y y y y y y y y x x y y y αααααηηηη===++'?? ?==- ?+++?? ???=--=- ?+ ?++??=????? (1.1.6) 由于(1.1.6) 对于任意的()x ηη=都成立,根据变分引理(见2.2.2节), 我们可以得到 ( ) 3 2 '' 01'y y =+ (1.1.7) 意味着 12y C x C =+ (1.1.9) 因此, 在平面上过固定两点距离最近的光滑曲线是直线。 下面我们来看几类比较典型的变分问题。 例1.2 最速降线问题 图1.2最速降线问题 我们在该铅直平面上取一直角坐标系,以A 为坐标原点,水平为x 轴,向下为y 轴。曲线的方程为()y y x =, A 点坐标00(,)(0,0)x y =, B 点坐标11(,)x y 。曲线上任意一点P 时的速度为 d 2d s v gy t = = (1.1.10)

相关文档
最新文档