高斯分布背景模型原理

高斯分布背景模型原理
高斯分布背景模型原理

高斯分布背景模型原理

背景差分法的关键是背景图像的描述模型即背景模型,它是背景差分法分割运动前景的基础。背景模型主要有单模态和多模态两种,前者在每个背景像素点上的颜色分布比较集中,可以用单分布概率模型来描述,后者的分布则比较分散,需要用多分布概率模型来共同描述。在许多应用场景,如水面的波纹、摇摆的树枝,飘扬的红旗、监视器屏幕等,像素点的值都呈现出多模态特性。最常用的描述场景背景点颜色分布的概率密度模型(概率密度分布)是高斯分布(正态分布)。

1 单高斯分布背景模型

单高斯分布背景模型适用于单模态背景情形, 它为每个图象点的颜色建立了用单个高斯分布表示的模型),(,t t x N σμ其中下标t 表示时间。设图象点的当前颜色度量为t X ,若(,,)t t t p N X T μσ≤ (这里p T 为概

率阈值) , 则该点被判定为前景点, 否则为背景点(这时又称t X 与),(,t t x N σμ相匹配)。

在常见的一维情形中, 以t σ表示均方差, 则常根据/t t d σ的取值设置前景检测阈值:若/t t d T σ>,则该点被判定为前景点, 否则为背景点。

单高斯分布背景模型的更新即指各图象点高斯分布参数的更新。引入表示更新快慢的常数——更新率α, 则该点高斯分布参数的更新可表示为

1(1)t t t d μαμα+=-?+? (1)

21(1)t t t

d σασα+=-?+? (2) 单高斯背景模型能处理有微小变化与慢慢变化的简单场景,当较复杂场景背景变化很大或发生突变,或者背景像素值为多峰分布(如微小重复运动)时,背景像素值的变化较快,并不是由一个相对稳定的单峰分布渐渐过度到另一个单峰分布,这时单高斯背景模型就无能为力,不能准确地描述背景了。]1[

2 混合高斯分布背景模型

与单高斯背景模型不同,混合高斯背景模型对每个像素点用多个高斯模型混合表示。设用来描述每个像素的高斯分布共K 个(K 通常取 3—5个),象素uv Z 的概率函数:

,,,1()(,,)K u v j u v u v j u v j u v j P Z N Z ωμ

==∑∑ 其中,j uv ω是第j 个高斯分布的权值,

221)(2

1)2(1),,(μσπσσμ--=z e z N

背景建模和更新过程(仅针对单个像素):

1.初始化:第一个高斯分布用第一帧图像该点的像素值作为均值或前N 帧图像该点的像素值的平均值作为均值,并对该高斯分布的权值取较大值(比其它几个高斯分布大)。其余的高斯分布的均值均为0,权重相等,所有高斯函数的方差取相等的较大值。

2.权值归一化

3.选取背景

由于噪声的影响或前景物体的存在,某些像素值并不能代表背景,因此由这些像素值构造的高斯分布应该去掉。

定义各个高斯分布的优先级:,,,/ju v ju v ju v P ωσ

=

前景和噪声不会在同一位置太长时间,这样,前景和噪声对应的高斯模型的权值和优先级都比较小,因此可以将K 个高斯分布按优先级由高到低排列,用如下策略选取前B 个分布作为背景模型: B 的定义: ,1m i n ()K

j i u v

j B M ω==>∑ 其中M 为预设的阈值。(如果M 较小,则为单高斯模型)

4.参数更新

多高斯分布模型的参数更新较为复杂,它不仅要更新高斯函数的参数,还要更新各分布的权重,并根据权重把各分布排序。在获得新的像素值以后,将当前帧的像素值与混合高斯模型中k 个高斯分布分别匹配,若新获取像素值与其中某个高斯分布满足下式,则认为该像素值与高斯分布匹配。即对每个输入像素值t uv z ,,如果满足式1

,1,,--≤-t uv t uv t uv a z σμ(其中1,-t uv μ为第j 个高斯函数的均值,a 为用户自定义的参数,在实际应用系统中一般取值2.5,1,-t uv σ为第j 个高斯函数在t-1时刻的标准差),则t uv z ,和该高斯函数匹配。 与t uv z ,匹配的高斯分布的参数按如下公式更新:

,,,,1(1)j u v t j u v t ωαωα-=-?+,

,,,,1,,(1)j u v t j u v t j u v t Z

μβμβ-=-+ 222,,,,1,,,,(1)()

j u v t j u v t j u v t j u v t Z σβσβμ-=-+- ,,,,,,(,,)j u v t j u v t j u v t

N Z βαμσ= 其中α是用户自定义的学习率,且10≤≤α,α的大小决定着背景更新的速度,α越大,更新速度越快,α越小,更新速度越慢。β是参数学习率。]2[

如果没有高斯分布与t uv z ,匹配,则权值最小的高斯分布将被新的高斯分布所更新,新分布的均值为t uv z ,,初始化一个较大的方差和较小的权值。余下的高斯分布保持相同的均值和方差,但它们的

权值会衰减,即按下式处理:,,,,1

(1)j u v t j u v t ωαω-=-? 5.检测:将待测图像的每一个像素点与和该高斯函数匹配。该像素点对应的混合高斯模型的各个模型分别进行比较,若有,j u v z a μσ-<

(a 为一常数),则该点属于背景,否则属于前景。

参考文献

【1】基于混合高斯的背景建模与阴影抑制算法研究

【2】中国科学院模式识别实验室ppt

混合高斯模型的简要介绍

混合高斯模型跟高斯变量之和看起来有一点像, 注意不要把它们弄混淆了. 混合高斯模型给出的概率密度函数实际上是几个高斯概率密度函数的加权和: 计算均值和方差的公式不仅适用于几个(多维)高斯分布混合的情况, 还适用于非高斯分布的情况. 高斯变量之和就没什么好说的了, 几个高斯变量之和是一个新的高斯变量. 原理: 高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。 对图像背景建立高斯模型的原理及过程:图像灰度直方图反映的是图像中某个灰度值出现的频次,也可以认为是图像灰度概率密度的估计。如果图像所包含的目标区域和背景区域相比比较大,且背景区域和目标区域在灰度上有一定的差异,那么该图像的灰度直方图呈现双峰-谷形状,其中一个峰对应于目标,另一个峰对应于背景的中心灰度。对于复杂的图像,尤其是医学图像,一般是多峰的。通过将直方图的多峰特性看作是多个高斯分布的叠加,可以解决图像的分割问题。 在智能监控系统中,对于运动目标的检测是中心内容,而在运动目标检测提取中,背景目标对于目标的识别和跟踪至关重要。而建模正是背景目标提取的一个重要环节。 我们首先要提起背景和前景的概念,前景是指在假设背景为静止的情况下,任何有意义的运动物体即为前景。建模的基本思想是从当前帧中提取前景,其目的是使背景更接近当前视频帧的背景。即利用当前帧和视频序列中的当前背景帧进行加权平均来更新背景,但是由于光照突变以及其他外界环境的影响,一般的建模后的背景并非十分干净清晰,而高斯混合模型是是建模最为成功的方法之一。 混合高斯模型使用K(基本为3到5个)个高斯模型来表征图像中各个像素点的特征,在新一帧图像获得后更新混合高斯模型, 用当前图像中的每个像素点与混合高斯模型匹配,如果成功则判定该点为背景点, 否则为前景点。通观整个高斯模型,主要是有方差和均值两个参数决定,对均值和方差的学习,采取不同的学习机制,将直接影响到模型的稳定性、精确性和收敛性。由于我们是对运动目标的背景提取建模,因此需要对高斯模型中方差和均值两个参数实时更新。为提高模型的学习能力,改进方法对均值和方差的更新采用不同的学习率;为提高在繁忙的场景下,大而慢的运动目标的检测效果,引入权值均值的概念,建立背景图像并实时更新,然后结合权值、权值均值和背景图像对像素点进行前景和背景的分类。 到这里为止,混合高斯模型的建模基本完成,我在归纳一下其中的流程,首先初始化预先定义的几个高斯模型,对高斯模型中的参数进行初始化,并求出之后将要用到的参数。其次,对于每一帧中的每一个像素进行处理,看其是否匹配某个模型,若匹配,则将其归入该模型中,并对该模型根据新的像素值进行更新,若不匹配,则以该像素建立一个高斯模型,初始化参数,代理原有模型中最不可能的模型。最后选择前面几个最有可能的模型作为背景模型,为背景目标提取做铺垫。 目前,运动物体检测的问题主要分为两类,摄像机固定和摄像机运动。对于摄像机运动的运动物体检测问题,比较著名的解决方案是光流法,通过求解偏微分方程求的图像序列的光流场,从而预测摄像机的运动状态。对于摄像机固定的情形,当然也可以用光流法,但是由于光流法的复杂性,往往难以实时的计算,所以我采用高斯背景模型。因为,在摄像机固定的情况下,背景的变化是缓慢的,而且大都是光照,风等等的影响,通过对背景建模,对一幅给定图像分离前景和背景,一般来说,前景就是运动物体,从而达到运动物体检测的目的。 单分布高斯背景模型单分布高斯背景模型认为,对一个背景图像,特定像素亮度的分布满足高斯分布,即对背景图像B,(x,y)点的亮度满足: IB (x,y) ~ N(u,d)

高斯分布背景模型原理

高斯分布背景模型原理 背景差分法的关键是背景图像的描述模型即背景模型,它是背景差分法分割运动前景的基础。背景模型主要有单模态和多模态两种,前者在每个背景像素点上的颜色分布比较集中,可以用单分布概率模型来描述,后者的分布则比较分散,需要用多分布概率模型来共同描述。在许多应用场景,如水面的波纹、摇摆的树枝,飘扬的红旗、监视器屏幕等,像素点的值都呈现出多模态特性。最常用的描述场景背景点颜色分布的概率密度模型(概率密度分布)是高斯分布(正态分布)。 1 单高斯分布背景模型 单高斯分布背景模型适用于单模态背景情形, 它为每个图象点的颜色建立了用单个高斯分布表示的模型) ,(,t t x N σμ其中下标t 表示时间。设图象点的当前颜色度量为t X ,若(,,)ttt p N X T μσ ≤ (这里p T 为概率阈值) , 则该点被判定为前景点, 否则为背景点(这时又称t X 与) ,(,t t x N σμ相匹配)。 在常见的一维情形中, 以t σ表示均方差, 则常根据/t t d σ的取值 设置前景检测阈值:若/t t d T σ>,则该点被判定为前景点, 否则为背 景点。 单高斯分布背景模型的更新即指各图象点高斯分布参数的更新。引入表示更新快慢的常数——更新率α, 则该点高斯分布参数的更新可表示为 1(1)t t t d μαμα+=-?+? (1)

21(1)t t t d σασα+=-?+? (2) 单高斯背景模型能处理有微小变化与慢慢变化的简单场景,当较复杂场景背景变化很大或发生突变,或者背景像素值为多峰分布(如微小重复运动)时,背景像素值的变化较快,并不是由一个相对稳定的单峰分布渐渐过度到另一个单峰分布,这时单高斯背景模型就无能为力,不能准确地描述背景了。]1[ 2 混合高斯分布背景模型 与单高斯背景模型不同,混合高斯背景模型对每个像素点用多个高斯模型混合表示。设用来描述每个像素的高斯分布共K 个(K 通常取 3—5个),象素uv Z 的概率函数: ,,,1()(,,)K u v j u v u v j u v j u v j P Z N Z ωμ ==∑∑ 其中,j uv ω是第j 个高斯分布的权值, 背景建模和更新过程(仅针对单个像素): 1.初始化:第一个高斯分布用第一帧图像该点的像素值作为均值或前N 帧图像该点的像素值的平均值作为均值,并对该高斯分布的权值取较大值(比其它几个高斯分布大)。其余的高斯分布的均值均为0,权重相等,所有高斯函数的方差取相等的较大值。 2.权值归一化 3.选取背景

混合高斯模型算法原理

混合高斯模型算法原理 混合高斯模型是一种经典的背景建模算法,用于背景相对稳定情况下的运动目标检测。它由单高斯模型发展而来,对于多模态的背景有一定的鲁棒性,如:树叶晃动、水纹波动等。在介绍混合高斯模型前,首先介绍单高斯模型。 1. 单高斯背景模型: 单高斯模型将图像中每一个像素点的颜色值看成是一个随机过程,并假设该点的像素值出现的概率服从高斯分布。该算法的基本原理就是对每一个像素位置建立一个高斯模型,模型中保存该处像素的均值和方差。如,可设),(y x 处像素的均值为),(y x u ,方差为),(2y x σ,标准差为),(y x σ。由于随着视频图像序列的输入,模型参数不断更新,所以不同时刻模型参数有不同的值,故可将模型参数表示为三个变量t y x ,,的函数:均值),,(t y x u 、方差),,(2t y x σ、标准差),,(t y x σ。用单高斯模型进行运动检测的基本过程包括:模型的初始化、更新参数并检测两个步骤。 1)模型初始化 模型的初始化即对每个像素位置上对应的高斯模型参数进行初始化,初始化采用如下公式完成: ?? ???===init std y x init std y x y x I y x u _)0,,(_)0,,()0,,()0,,(22σσ (1) 其中,)0,,(y x I 表示视频图像序列中的第一张图像),(y x 位置处的像素值,init std _为一个自己设的常数,如可设20_=init std 。 2)更新参数并检测 每读入一张新的图片,判断新图片中对应点像素是否在高斯模型描述的范围中,如是,则判断该点处为背景,否则,判断该点处为前景。假设前景检测的结 果图为out put ,其中在t 时刻),(y x 位置处的像素值表示为),,(t y x output ,),,(t y x output 的计算公式如下: ???-?<--=otherwise t y x t y x u t y x I t y x output ,1)1,,()1,,(),,(,0),,(σλ (2) 其中,λ是自己设的一个常数,如可设5.2=λ。以上公式表示的含义是:若新的图片中相应位置的像素值与对应模型中像素的均值的距离小于标准差的λ倍,则该点为背景,否则为前景。 模型的更新采用如下公式: ?? ???=-?+-?-=?+-?-=),,(),,()],,(),,(I [)1,,()1(),,(),,()1,,()1(),,(2222t y x t y x t y x u t y x t y x t y x t y x u t y x u t y x u σσασασαα (3) 其中,参数α表示更新率,也是自己设的一个常数,该常数的存在可以使得模型在背景的缓慢变化时具有一定的鲁棒性,如光照的缓慢变亮或变暗等。

高斯烟羽模型

模型假设: 1、 坐标系 高斯模型的坐标系如图2.1所示,原点为排放点(若为高架源,原点为排放点在地面的投影),x 轴正向为风速方向,y 轴在水平面上垂直于x 轴,正向在x 轴的左侧,z 轴垂直于水平面xoy ,向上为正向。在此坐标系下烟流中心线或烟流中心线在xoy 面的投影与x 轴重合。 2、模型假设 (1)污染物的浓度在y 、z 轴上的分布是高斯分布(正态分布)的; (2)污染源的源强是连续且均匀的,初始时刻云团内部的浓度、温度呈均匀分布; (3)扩散过程中不考虑云团内部温度的变化,忽略热传递、热对流及热辐射; (4)泄漏气体是理想气体,遵守理想气体状态方程; (5)在水平方向,大气扩散系数呈各向同性; (6)取x 轴为平均风速方向,整个扩散过程中风速的大小、方向保持不变,不随地点、时间变化而变化; (7)地面对泄漏气体起全反射作用,不发生吸收或吸附作用; (8)整个过程中,泄漏气体不发生沉降、分解,不发生任何化学反应等。 3、模型公式推导 由正态分布假设可以导出下风向任意一点X (x,y,z )处泄漏气体浓度的函数为: 2 2)(),,(bz ay e e x A z y x X --= (1) 由概率统计理论可以写出方差的表达式为:

???? ?????==????∞∞∞∞00220022Xdz Xdz z Xdy Xdy y z y σσ (2) 由假设可以写出源强的积分公式: ??∞∞-∞∞-=uXdydz Q (3) 式中:y σ、z σ为泄漏气体在y 、z 方向分布的标准差,单位为 m ;X (x,y,z )为任一点处泄漏气体的浓度,单位为 kg/m 3;u 为平均风速,单位为 m/s ;Q 为源强(即泄漏速度),单位为 kg/s ; 将(1)式代入(2)式,积分可得: ??? ????==2221 21z y b a σσ (4) 将(1)式和(4)式代入(3)式,积分可得: z y u Q x A σσπ2=)( (5) 再将(4)式和(5)式代入(1)式,可得: ???????????? ??+-=222222exp 2,,z y z y z y u Q z y x X σσσσπ)( (6) 上式为无界空间连续点源扩散的高斯模型公式,然而在实际中,由于地面的存在,烟羽的扩散是有界的。根据假设可以把地面看做一镜面,对泄漏气体起全反射作用,并采用像源法处理,原理如图2.2所示。可以把任一点p 处的浓度看做两部分的贡献之和:一部分是不存在地面时所造成的泄漏物浓度;一部分是由于地面反射作用增加的泄漏物浓度。该处的泄漏物浓度即相当于不存在地面时由位于(0,0,H )的实源和位于(0,0,-H )的像源在P 点处所造成的泄漏物浓度之和。

混合高斯背景建模与更新

计算机学院专业实习报告专业名称计算机科学与技术 实习题目基于多摄像机协同的运动对象分割与三维重建系统之背景建模与运动前景分割 姓名李林 班级10010804 学号2008302499 实习时间 指导教师杨涛Northwestern Polytechnical University

2010年7月14日 目录 摘要 (1) 第一章基本原理 (2) 1.1高斯模型原理 (2) 1.2 混合高斯背景建模与更新 (3) 1.2.1 背景训练 (4) 1.2.2 模板匹配 (4) 1.2.3背景更新 (5) 第二章运动物体提取 (6) 2.1目标提取概述 (6) 2.2 提取过程 (6) 2.2.1 参数设置 (6) 2.2.2 模型建立 (7) 2.2.3 背景学习 (7) 2.2.4 模板匹配与背景更新 (9) 第3章其他增强效果算法 (10) 3.1阴影的检测和去除 (10) 3.1.1 阴影简介 (10) 3.1.2 阴影检测法 (11) 3.1.2 阴影去除 (13) 3.2形态学滤波 (14) 3.2.1 图像腐蚀与膨胀 (15) 3.2.2 开运算和闭运算 (16) 第四章最终成品 (18) 4.1 成品说明 (18) 4.1.1性能说明 (18) 4.1.2成品样式 (19) 4.1.3使用说明 (19) 第五章实习心得 (19)

摘要 背景建模与运动前景分割是指从视频或者连续的图像序列中将运动的区域分割出来,本次实行所需的运动物体提取只是用来为后面的形成3维图形提供图像数据,日常生活中视频监控系统已广泛应用于各大公共场所,如公司,机场,酒店等都备有监控系统。但对于大多数监控系统来说,都需要监控者保持对监控录像的观测。如何实现视频监控系统的自动监控,是近年来比较关注的问题。自动视频监控技术其主要内容之一就是能监视某一特定场景中的新目标的出现,首先检测视频序列图像中是否有变化,如图像变化,说明有新目标出现,则把这个目标从视频图像序列中分割提取出来,为下一步的目标识别和跟踪提取数据提供基础。因此,一个视频监控系统的好坏,运动目标能否良好的提取是非常关键的。 目前运动目标的提取已经取得很多成果,并且不断有新技术、新方法出现。但是,在实际应用中,由于自然环境复杂,目标机动性高,使得提取与跟踪时干扰因素多,提取不准确且匹配效率不高。要提高跟踪的精度需要对复杂环境下的目标提取和跟踪进行研究,但到目前为止,仍没有一种普遍适用、比较完善的方法,因此对这两方面作进一步研究仍有很大空间。 针对本次实习的特殊场景,经分析决定采用混合高斯模型对运动图像进行提取,弥补单高斯模型不能适应背景微变化的这一缺陷,例如光照明暗、阴影等变化。利用混合高斯模型对输入的视频进行学习,之后再对运动物体进行前景提取,形成二值图像,运动物体置为白色,背景值为黑色,由于在提取过程中会存在这一些噪声点,所以最后运用腐蚀与膨胀运算对图像进行去噪处理。最终设计完形成的图像预计效果为能基本提取出运动物体,可能遇到较为复杂的背景会存在一定的噪声。 目前,从现有的测试数据来看程序能基本提取出运动物体,基本达到了预定的效果,在设计之中起初运用了帧间差分法,测试数据背景较为简单时能基本提取前景,但换成了光照发生变化的背景后运动物体的提取有明显难以改善的噪声,之后考虑更改算法,现有的算法中,光流法效果较为明显,但其算法较为复杂,不适合本次实习的开发,其次较为合适的还有单高斯模型,但其由于在变化的场景中表现

视频背景建模调研报告

视频背景建模调研 报告

视频背景建模调研报告 一、背景与重要意义 运动目标检测是计算机视觉领域的一个重要研究方向,是各种后续高级处理,如目标分类、行为理解等的基础,在安全监控、智能交通等领域都有着广泛的应用。而在计算机视觉以及智能视频监控等领域,背景建模是一项关键技术,是实现运动目标检测及跟踪的基础。因此,对于视频背景建模的研究有着重要的意义。 背景建模是序列图像分析的基础性工作,是当今国内外学者研究的热点问题。建模的结果将对视频图像的运动检测、运动目标分类、跟踪及行为理解等后续处理产生重要影响。可是由于实际应用环境的不同和背景的多样性,难以建立良好的背景样本。因此,在实际应用中需要经过不同的算法来优化设计方案,才能得到较好的成果。 二、国内外研究现状( ~ ): 期刊论文 1.杨敏 杨敏( 1969 - ) ,男,安徽泾县人。南京邮电大学自动化学院副教授。主要研究方向为计算机视觉和图像理解。

[1]杨敏, 安振英. 基于低秩矩阵恢复的视频背景建模[J]. 南京邮电大学学报: 自然科学版, , 33(2): 86-89. [2] 杨敏,安振英. 基于低秩矩阵恢复的视频背景建模 [J]. 南京邮电大学学报(自然科学版). (02) 2.李峰:中国科学技术大学自动化系 [1] 李峰. 智能视频监控系统中的行人运动分析研究 [D]. 中国科学技术大学. 3.龚大墉:重庆理工大学,信号与信息处理,,硕士 [1] 龚大墉. 数字视觉视频运动目标检测及其交通信息获取应用研究 [D]. 重庆理工大学. 4.刘亚利:北方工业大学,控制理论与控制工程,,硕士 [1] 刘亚利. 背景建模技术的研究与实现 [D]. 北方工业大学. 5.孙吉花:国防科学技术大学,控制科学与工程,,硕士 [1]孙吉花,刘肖琳.一种新的基于统计的背景减除方法 [J]. 计算机工程与应用. (22) 6.孙猛:北京交通大学电子信息工程学院 [1] 孙猛,袁小龙,王丽红. 基于FPGA的混合高斯背景建模实现 [J]. 电子技术应用. (09) 7.代科学:国防科技大学信息系统与管理学院系统工程系 [1] 代科学, 李国辉, 涂丹, 等. 监控视频运动目标检测减背景技术的研究现状和展望[J]. 中国图象图形学报, , 11(7): 919-927. 8.林洪文:国防科技大学管理科学与工程系多媒体实验室

混合高斯背景建模matlab代码

clear all % source = aviread('C:\Video\Source\traffic\san_fran_traffic_30sec_QVGA'); source = mmreader('SampleVideo.avi'); frameQYT=get(source,'NumberOfFrames'); % ----------------------- frame size variables ----------------------- fr = read(source,1); % 读取第一帧作为背景 fr_bw = rgb2gray(fr); % 将背景转换为灰度图像 fr_size = size(fr); %取帧大小 width = fr_size(2); height = fr_size(1); fg = zeros(height, width); bg_bw = zeros(height, width); % --------------------- mog variables ----------------------------------- C = 4; % 组成混合高斯的单高斯数目(一般3-5) M = 0; % 组成背景的数目 D = 2.5; % 阈值(一般2.5个标准差) alpha = 0.01; % learning rate 学习率决定更新速度(between 0 and 1) (from paper 0.01) thresh = 0.75; % foreground threshold 前景阈值(0.25 or 0.75 in paper) sd_init = 6; % initial standard deviation 初始化标准差(for new components) var = 36 in paper w = zeros(height,width,C); % initialize weights array 初始化权值数组 mean = zeros(height,width,C); % pixel means 像素均值 sd = zeros(height,width,C); % pixel standard deviations 像素标准差 u_diff = zeros(height,width,C); % difference of each pixel from mean 与均值的差p = alpha/(1/C); % initial p variable 参数学习率(used to update mean and sd) rank = zeros(1,C); % rank of components (w/sd) % ------initialize component means and weights 初始化均值和权值---------- pixel_depth = 8; % 8-bit resolution 像素深度为8位 pixel_range = 2^pixel_depth -1; % pixel range 像素范围2的7次方0—255(# of possible values) for i=1:height for j=1:width for k=1:C mean(i,j,k) = rand*pixel_range; % means random (0-255之间的随机数) w(i,j,k) = 1/C; % weights uniformly dist sd(i,j,k) = sd_init; % initialize to sd_init end end

混合高斯模型(Mixtures of Gaussians)和EM算法

混合高斯模型(Mixtures of Gaussians)和EM算法 这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation)。 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示。与 k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项 式分布,,其中,有k个值{1,…,k} 可以选取。而且我们认为在给定后,满足多值高斯分布,即。由 此可以得到联合分布。 整个模型简单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个, 然后根据所对应的k个多值高斯分布中的一个生成样例,。整个过程称作混合高斯模型。 注意的是这里的仍然是隐含随机变量。模型中还有三个变量和。最大似然估计为 。对数化后如下: 这个式子的最大值是不能通过前面使用的求导数为0的方法解决的,因为求的结果不是 close form。但是假设我们知道了每个样例的,那么上式可以简化为: 这时候我们再来对和进行求导得到:

就是样本类别中的比率。是类别为j的样本特征均值,是类别为j的样例的特征的协方差矩阵。 实际上,当知道后,最大似然估计就近似于高斯判别分析模型(Gaussian discriminant analysis model)了。所不同的是GDA中类别y是伯努利分布,而这里的z是多项式分布,还有这里的每个样例都有不同的协方差矩阵,而GDA中认为只有一个。 之前我们是假设给定了,实际上是不知道的。那么怎么办呢?考虑之前提到的EM 的思想,第一步是猜测隐含类别变量z,第二步是更新其他参数,以获得最大的最大似然估计。用到这里就是:

高斯光束的matlab仿真

题目:根据高斯光束数学模型,模拟仿真高斯光束在谐振腔中某一位置处的归一化强度分布并给出其二维、三维强度分布仿真图;用Matlab读取实际激光光斑照片中所记录的强度数据(读取照片中光斑的一个直径所记录的强度数据即可,Matlab读取照片数据命令为imread),用该数据画出图片中激光光斑的强度二维分布图,与之前数学模型仿真图对比。(如同时考虑高斯光束光斑有效截面半径和等相位面特点,仿真高斯光束光强、光斑有效截面半径以及等相位面同时随传播距离z的变化并给出整体仿真图可酌情加分。) 原始光斑如图1所示,用imread命令读入matlab后直接用imshow命令读取即可, CCD采集的高斯光束光强分布 图1 CCD采集的高斯光束强度分布 读入的数据是一个224 X 244的矩阵,矩阵中的数值代表光强分布。用读入的数据取中间一行(122行)画出强度分布如图2所示。

50 100150200 020406080100120140160180实验测量高斯曲线 图2 实验测量高斯曲线 用理论上的高斯曲线公式画出理论高斯曲线如图3所示。 -40 -30-20-10010203040 00.2 0.4 0.6 0.8 1 理论高斯曲线 图3 理论高斯曲线

M文件如下: A=imread('D:\documents\作业\激光原理与应用\高斯.bmp'); A1=A(:,122); x1=1:1:224; x2=-100:1:100; a2=exp(-x2.^2/10); figure imshow(A); axis off title('\fontsize{12}CCD采集的高斯光束光强分布'); figure plot(x2,a2,'linewidth',1,'color','b'); axis([-40 40 0 1.2]) title('\fontsize{12}实验测量高斯曲线') figure plot(x1,A1,'linewidth',1,'color','r') title('\fontsize{12}理论高斯曲线') axis([50 200 0 180]) 画三维强度分布。取图片矩阵的中间层,用mesh命令画出三维图如图4所示。 图4 三维强度分布 由于读入的图片有一行白边,需要手动去除掉,否则三维图会有一边整体竖起来,影响观察。最终的M文件如下。 A=imread('D:\documents\作业\激光原理与应用\高斯.bmp'); [high, width, color] = size(A); x=1:width; y=1:high-1; mesh(x', y', double(A(2:224,:,1))); grid on xlabel('x'),ylabel('y'),zlabel('z'); title('三维强度分布');

混和高斯模型的推导和实现

基于GMM 的运动目标检测方法研究 一、GMM 数学公式推导 1、预备知识: (1)设离散型随机变量X 的分布率为: {} 2,1,P ===k p a X k k 则称()∑= k k k p a X E 为X 的数学期望或均值 (2)设连续型随机变量X 的概率密度函数(PDF )为f(x) 其数学期望定义为:()()dx x xf X E ? +∞ ∞ -= (3)()()()[] 2 X E X E X D -=称为随机变量x 的方差,()X D 称为X 的标准差 (4)正态分布:() 2,~σμN X 概率密度函数为:()()??????? ?--= 22221 σμσ πx e x p (5)设(x,y)为二维随机变量,()[]()[]{}Y E Y X E X E --若存在,则 称其为X 和Y 的协方差,记为cov(x,y) ()()[]()[]{}()XY E Y E Y X E X E Y X =--=,cov 2、单高斯模型:SGM (也就是多维正态分布) 其概率密度函数PDF 定义如下: ()() ()()μμπμ--- -= x C x n T e C C x N 12 1 21 ,; 其中,x 是维数为n 的样本向量(列向量),μ是期望,C 是协方差矩阵,|C|表示C 的行列式,1-C 表示C 的逆矩阵,()T x μ-表示()μ-x 的转置。 3、混合高斯模型:GMM 设想有 m 个类:m 321????,,,, ,每类均服从正态分布。 各分布的中心点(均值)分别为:m 321μμμμ,,,,

方差分别为:m 321σσσσ,,,, 每一类在所有的类中所占的比例为 ()()()()m P P P P ????,,,,321 其中()11=∑=m i i P ?。 同时,已知 个观察点: 。其中,用大写P 表示概率,用小写p 表 示概率密度。 则依此构想,可得概率密度函数为: ()()()()()()()() ()()()μμπ??σμ?σμ?σμ--- =-∑ =?++?+?=x C x m i d i m m m T e C P P N P N P N x p 12 1 12221112,,, 其中d 是维数,|·|是行列式 但是在利用GMM 进行目标检测时,这些模型的参数可能已知,也可能不知道,当参数已知时,可以直接利用GMM 进行目标检测,在未知的情况下,需要对参数进行估计。对参数估计时,还要考虑样本分类是否已知。 (1)样本已知: 最大似然估计: 可以直接采用MLE (最大似然估计)进行参数估计: 未知量为集合:()()()m P P C C ??μμλ,,1m 1m 1 ,,,,,,= 将衡量概率密度函数优劣的标准写出:()()∏==n k k x P x p 1||λλ 即为: ()() () ()()i k T i k x C x n k m i d i e C P x p μμπ?λ--- ==-∏∑ =12 1 11 | |2| 只要定出该标准的最大值位置,就可以求出最优的待定参数。为了 求出这个最

目标检测中背景建模方法

目标检测中背景建模方法 2012-11-19 10:29 5451人阅读评论(0) 收藏举报 分类:运动检测(7) 背景建模或前景检测的算法主要有: 1. Single Gaussian (单高斯模型) Real-time tracking of the human body(人体的实时跟踪) 2. 混合高斯模型(Mixture of Gaussian Model) An improved adaptive background mixture model for real-time tracking with shadow detection (一种改进的自适应背景混合模型与阴影实时跟踪检测) 3. 滑动高斯平均(Running Gaussian average)---Single Gaussian Real-time tracking of the human body 对于单高斯和混合高斯估计大家都熟悉,这里不再累述(混合高斯在现有的背景建模算法中应该算是比较好的,很多新的算法或改进的算法都是基于它的一些原理的不同变体,但混合高斯算法的缺点是计算量相对比较大,速度偏慢,对光照敏感); 4. 码本(CodeBook) Real-time foreground–background segmentation using codebook model Real-time foreground-background segmentation using a modified(改进的)codebook model 对与Codebook算法,曾经做过实验,效果还可以,后来也有多种变体,没有进一步的进行研究,但算法对光照也敏感; 5. 自组织背景检测( SOBS-Self-organization background subtraction) A self-Organizing approach to background subtraction for+visual surveillance(背景减法的自组织方法+视觉监视) 对于自组织背景建模算法即SOBS算法,该算法对光照有一定的鲁棒性,但MAP的模型比输入图片大,计算量比较大,但是可以通过并行处理来解决算法的速度问题,可以进行尝试; 6. 样本一致性背景建模算法(SACON) sample consensus A consensus-based method for tracking A consensus-based method for tracking-Modelling background scenario(背景场景)and foreground appearance SACON-Background subtraction based on a robust consensus method SACON算法是基于统计的知识,代码实现过,并做过实验,效果还可以,但没有进一步的分析; 7. VIBE算法 ViBeA Universal Background Subtraction(一个通用的背景差方法) VIBE算法是B哥的一个大作,网上有现成的算法可用,但已申请了专利,用于做研究还是可以的,该算法速度非常快,计算量比较小,而且对噪声有一定的鲁棒性,检测效果不错;VIBE算法的详细版解释https://www.360docs.net/doc/865229943.html,/stellar0/article/details/8777283

基于混合高斯建模方法的运动目标检测方法研究与实现毕业论文

摘要 运动目标检测是计算机视觉研究领域的基础,它是从图像序列中去除静止的背景区域,将运动区域的前景检测并提取出来,如何有效地把感兴趣的目标如人、物等前景目标从复杂场景中分割出来,并对目标行为做出相应的检测,是计算机视觉研究的热点和难点。 本文对视频图像读取、图像灰度化等处理过程做了简单的阐述,并分别对均值滤波、中值滤波和高斯滤波这三种不同的滤波方法进行比较,分析各种方法的优缺点,同时提出使用高斯滤波方法。最后利用搭建在Visual C++6. 0上的OpenCV软件进行设计,使用混合高斯背景的建模方法实现对运动目标的检测。矚慫润厲钐瘗睞枥庑赖。 在背景的各种建模方法中,混合高斯背景模型以其简便、灵活、高效的特点成为该领域的经典方法,能够很好消除背景的微小扰动对运动目标检测所产生的影响,比较准确地检测出复杂环境下的运动目标,具有较好的鲁棒性和实时性。聞創沟燴鐺險爱氇谴净。 关键词:运动目标检测;OpenCV;混合高斯背景模型

ABSTRACT Moving target detection is the foundation of computer vision research field, which is still to remove the background from an image sequence region, the prospect of a motion area detected and extracted, how effectively the target of interest, such as human, material and other foreground objects from a complex scene carved out, and make the appropriate test target behavior, is hot and difficult computer vision research.残骛楼諍锩瀨濟溆塹籟。 In this paper, the video image reading, image processing such as Gray did a brief explanation, and respectively, mean filter, median filter and Gaussian filter three different methods to compare the advantages and disadvantages of each method, At the same time proposed to use a Gaussian filter. Finally, build in Visual C ++ 6. OpenCV software 0 of design, using a mixed Gaussian background modeling methods to achieve the detection of moving targets.酽锕极額閉镇桧猪訣锥。 In the background of the various modeling methods, Gaussian mixture background model with its simple, flexible and efficient characteristics of a classical method in the field, can be a good influence to eliminate background small perturbations generated by the moving target detection, more accurate moving objects detected in complex environments, robust and real-time.彈贸摄尔霁毙攬砖卤庑。 Key Words: Moving Object Detection; OpenCV; The background model謀荞抟箧飆鐸怼类蒋薔。

数学建模高斯扩散模型培训资料

数学建模高斯扩散模 型

§4-2高斯扩散模式 ū —平均风速; Q—源强是指污染物排放速率。与空气中污染物质的浓度成正比,它是研究空气污染问题的基础数据。通常: (ⅰ)瞬时点源的源强以一次释放的总量表示; (ⅱ)连续点源以单位时间的释放量表示; (ⅲ)连续线源以单位时间单位长度的排放量表示; (ⅳ)连续面源以单位时间单位面积的排放量表示。 δy—侧向扩散参数,污染物在y方向分布的标准偏差,是距离y的函数,m; δz—竖向扩散参数,污染物在z方向分布的标准偏差,是距离z的函数,m; 未知量—浓度c、待定函数A(x)、待定系数a、b; 式①、②、③、④组成一方程组,四个方程式有四个未知数,故方程式可解。 二、高斯扩散模式 (一)连续点源的扩散 连续点源一般指排放大量污染物的烟囱、放散管、通风口等。排放口安置在地面的称为地面点源,处于高空位置的称为高架点源。 1. 大空间点源扩散 高斯扩散公式的建立有如下假设:①风的平均流场稳定,风速均匀,风向平直;②污染物的浓度在y、z轴方向符合正态分布;③污染物在输送扩散中质量守恒; ④污染源的源强均匀、连续。 图5-9所示为点源的高斯扩散模式示意图。有效源位于坐标原点o处,平均风向与x轴平行,并与x轴正向同向。假设点源在没有任何障碍物的自由空间扩散,不考虑下垫面的存在。大气中的扩散是具有y与z两个坐标方向的二维正态分布,当两坐

标方向的随机变量独立时,分布密度为每个坐标方向的一维正态分布密度函数的乘积。由正态分布的假设条件②,参照正态分布函数的基本形式式(5-15),取μ=0,则在点源下风向任一点的浓度分布函数为: (5-16)式中 C—空间点(x,y,z)的污染物的浓度,mg/m3; A(x)—待定函数; σy、σz—分别为水平、垂直方向的标准差,即y、x方向的扩散参数,m。 由守恒和连续假设条件③和④,在任一垂直于x轴的烟流截面上有: (5-17) 式中 q—源强,即单位时间内排放的污染物,μg/s; u—平均风速,m/s。 将式(5-16)代入式(5-17), 由风速稳定假设条件①,A与y、z无关,考虑到③和④,积分可得待定函数A(x): (5-18) 将式(5-18)代入式(5-16),得大空间连续点源的高斯扩散模式 (5-19) 式中,扩散系数σy、σz与大气稳定度和水平距离x有关,并随x的增大而增加。当y=0,z=0时,A(x)=C(x,0,0),即A(x)为x轴上的浓度,也是垂直于x轴截面上污染物的最大浓度点C max。当x→∞,σy及σz→∞,则C→0,表明污染物以在大气中得以完全扩散。 2.高架点源扩散

高斯烟羽模型

高斯烟羽模型 Prepared on 22 November 2020

模型假设: 1、坐标系 高斯模型的坐标系如图所示,原点为排放点(若为高架源,原点为排放点在地面的投影),x轴正向为风速方向,y轴在水平面上垂直于x轴,正向在x轴的左侧,z 轴垂直于水平面xoy,向上为正向。在此坐标系下烟流中心线或烟流中心线在xoy面的投影与x轴重合。 2、模型假设 (1)污染物的浓度在y、z轴上的分布是高斯分布(正态分布)的; (2)污染源的源强是连续且均匀的,初始时刻云团内部的浓度、温度呈均匀分布; (3)扩散过程中不考虑云团内部温度的变化,忽略热传递、热对流及热辐射; (4)泄漏气体是理想气体,遵守理想气体状态方程; (5)在水平方向,大气扩散系数呈各向同性; (6)取x轴为平均风速方向,整个扩散过程中风速的大小、方向保持不变,不随地点、时间变化而变化; (7)地面对泄漏气体起全反射作用,不发生吸收或吸附作用; (8)整个过程中,泄漏气体不发生沉降、分解,不发生任何化学反应等。 3、模型公式推导 由正态分布假设可以导出下风向任意一点X(x,y,z)处泄漏气体浓度的函数为:

2 2 )(),,(bz ay e e x A z y x X --= (1) 由概率统计理论可以写出方差的表达式为: ???? ????? ==? ? ? ?∞ ∞∞ ∞ 220 22Xdz Xdz z Xdy Xdy y z y σσ (2) 由假设可以写出源强的积分公式: ? ? ∞ ∞ -∞ ∞-=uXdydz Q (3) 式中:y σ、z σ为泄漏气体在y 、z 方向分布的标准差,单位为 m ;X (x,y,z )为任一点处泄漏气体的浓度,单位为 kg/m 3;u 为平均风速,单位为 m/s ;Q 为源强(即泄漏速度),单位为 kg/s ; 将(1)式代入(2)式,积分可得: ??? ??? ? ==2 221 21z y b a σσ (4) 将(1)式和(4)式代入(3)式,积分可得: z y u Q x A σσπ2= )( (5) 再将(4)式和(5)式代入(1)式,可得:

常见的目标检测中的背景建模方法漫谈

常见的目标检测中的背景建模方法漫谈 最近一直在做前景检测方面的研究,刚开始主要是做一些工程性的应用,为了解决工程方面的问题,下了不少功夫,也看了不少最近国内外的文章。一直想做个总结,拖着拖着,终究却写成这篇极不成功的总结。 背景建模或前景检测的算法主要有: 1. Single Gaussian (单高斯模型) Real-time tracking of the human body 2. 混合高斯模型(Mixture of Gaussian Model) An improved adaptive background mixture model for real-time tracking with shadow detection 3. 滑动高斯平均(Running Gaussian average)---Single Gaussian Real-time tracking of the human body 4. 码本 (CodeBook) Real-time foreground–background segmentation using codebook model Real-time foreground-background segmentation using a modified codebook model 5. 自组织背景检测( SOBS-Self-organization background subtraction) A self-Organizing approach to background subtraction for+visual surveillance 6. 样本一致性背景建模算法 (SACON) A consensus-based method for tracking A consensus-based method for tracking-Modelling background scenario and foreground appearance SACON-Background subtraction based on a robust consensus method 7. VIBE算法 vibe ViBe-A Universal Background Subtraction 8. 基于颜色信息的背景建模方法(Color) A statistical approach for real-time robust background subtraction and shadow detection 9. 统计平均法

相关文档
最新文档