激光雷达在汽车产业的应用意义

激光雷达在汽车产业的应用意义
激光雷达在汽车产业的应用意义

意义:

为保障汽车驾驶时的舒适性和安全性,世界各国对汽车防撞技术的研究和发展投入了大量的人力、物力和财力。据统计,危险境况时,如果能给驾驶员半秒钟的预处理时间,则可分别减少追尾事故的30%,路面相关事故的50%,迎面撞车事故的60%,所以现代汽车安装各类雷达系统以保障行车安全。

激光雷达与其它测距方法的优缺点:

汽车凭借一定的装备测量前方障碍物的距离,迅速反馈给汽车,以在危急的情况下,通过报警或自动进行某项预设定操作如紧急制动等,来避免由于驾驶员疲劳、疏忽、误判断所造成的交通事故。目前运用在汽车上的测距方法主要有超声波短距离测距,毫米波雷达长距离测距,激光测距,摄像系统测距等几种方法。

超声波测距:

它利用超声探测原理,在司机倒车时,能正确的从数码显示器上了解汽车尾部与障碍物之间的距离。当测距显示小于报警距离时,还能准确报警,及时提醒司机刹车。

优点:超声波测距原理简单,成本低、制作方便;

缺点:其在高速行驶的汽车上的应用有一定局限性,这是因为超声波的传输速度受天气影响较大,不同的天气条件下传播速度不一样;另一方面是对于远距离的障碍物,由于反射波过于微弱,使得灵敏度下降。故超声波测距一般应用在短距离测距,最佳距离为4~5米,一般应用在汽车倒车防撞系统上。

雷达测距:

为了更好的适应道路交通状况,解决盲区视野问题,在日本和美国开展了大量的工作。如应用毫米波雷达CCD摄像检测交通状况,根据危险程度改变直观信号的音调、颜色和位置,并在显示器中显示。实现高度智能化,极大的改善车辆的安全性。

雷达是利用目标对电磁波反射来发现目标并测定其位置的。

优点:

(1)是探测性能稳定。它不易受对象表面形状和颜色的影响,也不受大气流的影响;

(2)是环境适应性能好。雨、雪、雾等对之干扰小。作为车载雷达,目前适用的主要有脉冲多普勒雷达、双频CW雷达和FM雷达三种。应用雷达测距,需要防止电磁波干扰,雷达彼此之间的电磁波和其他通信设施的电磁波对其测距性能都有影响。毫米波雷达主要应用于防撞,以避免高速公路上发生追尾碰撞;

缺点:应用雷达测距,需要防止电磁波干扰,雷达彼此之间的电磁波和其他通信设施的电磁波对其测距性能都有影响。

激光雷达测距:

可以对车前的路面状况进行电子扫描,还可以对周围及后面司机看不到的地方进行扫描。将收集的信息通过各个响应部位的传感器汇集到电脑中去,在车内电视荧幕中显示出来,扩大了司机对路面观察,并能对超速或有障碍的路面发出警报,引起司机注意。

优点:测量时间短、量程大、精度高;

缺点:由于激光雷达测距仪器工作环境处于高速运动的车体中,振动大,对其稳定性、可靠性提出了较高的要求,其体积也受到了一定的限制,同时还要考虑省电、低价、对人眼安全等因素;

摄像系统测距:

CCD摄像机是一种用来模拟人眼的光电探测器。它具有尺寸小、质量轻、功耗小、噪声低、动态范围大、光计量准确、其线扫描输出的光电信号有利于后续信号处理等优良特性,在汽车行业也得到了广泛的应用。利用面阵CCD,可获得被测视野的二维图像,但无法确定与被测物体之间的距离。只使用一个CCD摄像机的系统称为单目摄像系统,在汽车上常用于倒车后视系统,辅助驾驶员获得后视死角信息,以避免倒车撞物。为获得目标三维信息,模拟人的双目视觉原理,利用间隔固定的两台摄像机同时对同一景物成象,通过对这两幅图像进行计算机分析处理,即可确定视野中每个物体的三维坐标,这一系统称为双目摄像系统。

优点:尺寸小、质量轻、功耗小、噪声低、动态范围大、光计量准确、其线扫描输出的光电信号有利于后续信号处理;

缺点:目前价格较高,同时由于受软件和硬件的制约,成象速度较慢;

总结:

随着科技的进一步发展,汽车雷达系统中车辆测距技术的种类必将越来越多,其应用也不仅是单一的测距方式,而是多种测距方式的混合,集某几种装置于一体,互相取长补短,进一步提高系统测量的精度和可靠性。随着计算机软硬件技术的发展,成象式测距技术将一步步走向成熟,并代表这种技术的发展方向,在现代汽车驾驶技术中将得到广泛运用,以保证行车的安全性。

自动驾驶行业分析之全球篇

2018年自动驾驶行业分析 之全球篇 撰写时间:2018年6月

目录

第1章概述 自动驾驶驾驶的概念与定义 自动驾驶的定义 目前的自动驾驶可分为两类。一类是目前非常火爆的无人驾驶,更强调的是车的自主驾驶以实现舒适的驾驶体验或人力成本的节省,典型的例子为百度和Google的无人车;一类是ADAS(全称为Advanced Driver Assistance System,即高级辅助驾驶系统),发展历史已久,早在1970年就已进入车厂布局中。两者都是利用安装在车上的各式各样传感器收集数据,并结合地图数据进行系统计算,从而实现对行车路线的规划并控制车辆到达预定目标。随着人们对安全、舒适的驾驶体验的不断追求,自动驾驶成为汽车的新方向。 图表1:ADAS与无人驾驶的区别 不过,ADAS也可以视作无人驾驶汽车的前提,随着ADAS实现的功能越来越多,渐进式可实现无人驾驶。 自动驾驶分级

关于汽车智能化的分级,业界统一采用SAE International的标准,即国际汽车工程师协会制定的标准。 SAE的标准把自动驾驶分为了L0~L5,其中L0指的是人工驾驶。标准具体规定如下: 图表2:自动驾驶分级 数据来源:SAE 目前市场上L3级别的自动驾驶汽车已经准备上路,汽车供应链正在投入下一个阶段L4级别自动驾驶汽车的研发。 自动驾驶产业链 产业链结构图 自动驾驶产业链相对较长,主要分为上中下游。上游主要为原材料,包括锂、钴、铜以及半导体等;中游为各种软硬件产品,包括传感器、自动驾驶平台等;下游为整车集成,以及车队管理系统,车载娱乐、车内办公等附加服务。

2018年激光雷达产业态势咨询报告

2018年1月出版

正文目录 1、激光雷达(Li DAR)--竞争激烈的前沿科技产品,2018 年是量产车使用激光雷 达元年 (4) 1.1、2018 新款奥迪A8 将搭载激光雷达,实现L3 级自动辅助驾驶 (4) 1.2、谷歌兄弟公司Waymo 即将推出无司机的士服务,搭载激光雷达 (5) 1.3、百度宣布和金龙合作的无人车2018 年7 月量产 (5) 1.4 、Velodyne 2017 年11 月推出VLS-128TM,设立高性能激光雷达行业标杆6 1.5、Innovusion 300 线激光雷达发布,分辨率可以和相机比拟 (7) 1.6、业界首款能够量产的3D 固态激光雷达芯片Leddar Core LCA2 将在CES 2018 展出 (8) 2、激光雷达是高级别自动驾驶(L4 和L5)必须装置 (9) 2.1、无人驾驶技术逐渐成熟,将成为汽车产业业绩爆发点 (9) 2.2、无人驾驶技术需要不同种类传感器互相配合 (10) 2.3、激光雷达是无人驾驶必需设备 (15) 2.4、激光雷达应用痛点—价格和体积问题将很快得到解决 (16) 3、激光雷达硬件竞争——价格、体积和芯片 (17) 3.1、Velodyne 作为行业龙头,其机械旋转式激光雷达是无人车研发测试首选 (18) 3.2、Velodyne 混合固态式激光雷达,降低成本同时提高设备可靠性 (20) 3.3、Quanergy 固态激光雷达横空出世,产品体积和价格有望大大缩小 (22) 3.4、Leddar Tech 公司提出全新固态激光雷达概念----闪烁式(flash)激光雷达 . 23 3.5、Ibeo 的SCALA 激光雷达实现量产,可以满足自动辅助驾驶(ADAS)需求 (25) 3.6、光电探测器等核心器件,助力激光雷达应用 (25) 图表目录 图表 1:2018 新款奥迪 A8 众多传感器帮助实现 L3 (4) 图表 2:美国汽车工程师协会(SAE)自动驾驶分级 (4) 图表 3:Waymo 公司在美国凤凰城推出的无司机出租车 (5) 图表 4:百度无人车 (6) 图表 5:Velodyne 公司全新高性能激光雷达 VLS-128 (6) 图表 6:Innovusion 公司 300 线激光雷达 (7) 图表 7:Innovusion 公司激光雷达的高清晰成像 (7) 图表 8:Leddar CORE 集成电路逻辑 (8) 图表 9:完全自动驾驶汽车销量预计将在 2035 年爆发 (10) 图表 10:安装在汽车上的激光雷达对周围物体进行 3D 测绘 (11) 图表 11:激光雷达的优点、缺点统计 (11) 图表 12:毫米波雷达的优点、缺点统计 (12) 图表 13:近距离物体探测——激光雷达和毫米波雷达对比 (12) 图表 14:超声波声纳的优点、缺点统计 (13) 图表 15:超声波声纳在泊车中用于探测近距离物体 (13) 图表 16:相机图像识别的优点、缺点统计 (14)

激光雷达介绍

激光雷达介绍 激光雷达激光器的扫描方式 目前市场上的脉冲式激光器有四种扫描方式: 1. 振荡(或叫钟摆)式(Oscillating Mirror)。 2. 旋转棱镜式(Rotating Polygon)。 3. 章动(或Palmer)式(Nutating Mirror,or Palmer Scan)。 4. 光纤扫描式(Fiber Switch)。 钟摆式扫描方式 原理:光直接入射到反射平面镜上,每一个钟摆周期在地面上生成一个周期性的线性图案,Zig-Zag型,或称之为之字型。 生产厂家:Optech和莱卡公司。

钟摆式扫描时,反射镜面需要在一秒内振荡数百次,同时要不断地、循环地从一端开始进行启动,加速、达到钟摆的最低点后,减速,直到速度为零,到达钟摆的另一端。因此它的扫描方向是左右两个方向的。 优点: ● 对于扫描视窗角(FOV),扫描速度有许多种选择,使得地面的覆盖宽度和激光点密度的选择有较多的机会。 ● 大的光窗数值孔径。 ● 较高的接收信号比。 缺点: ● 由于在一个周期内,不断地经历了加速、减速等步骤,因此,所输出的激光点的密度是不均匀的。这种不均匀性在扫描角度很小(如±20)时,因为过程短,并不显著;当扫描角逐渐增大>±40时,不均匀性会越来越显著。 ● 由于反射镜的加速/减速,造成了激光点的排列一般是在钟摆的两端密,中间疏。而中间的数据是更受关心的,更关注的。由于在钟摆的两端,镜面的摆动速度较低或停止,并扫描两次,因此所得的数据精度差需要剔除,约占总数据的10%。如扫描角为只选取±200。 ● 由于不断地变化速度,造成了机械的磨损,使得IMU的配置发生了漂移,因此每一次飞行前都需要进行?boresight?检校飞行。 ● 消耗更多的功率。

激光雷达测距原理与其应用

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1雷达与激光雷达系统 (2) 2激光雷达测距方程研究 (3) 2.1测距方程公式 (3) 2.2发射器特性 (4) 2.3大气传输 (5) 2.4激光目标截面 (5) 2.5接收器特性 (6) 2.6噪声中信号探测 (6) 3伪随机m序列在激光测距雷达中的应用 (7) 3.1测距原理 (7) 3.2 m序列相关积累增益 (8) 3.3 m序列测距精度 (8) 4脉冲激光测距机测距误差的理论分析 (9) 4.1脉冲激光测距机原理 (9) 4.2 测距误差简要分析 (10) 5激光雷达在移动机器人等其它方面中的应用 (10) 6结束语 (11) 致谢 (12) 参考文献 (12)

激光雷达测距原理与其应用 摘要:本文简单介绍激光雷达系统组成,激光雷达系统与普通雷达系统性能的对比,着重阐述激光雷达测距方程的研究。针对激光远程测距中的微弱信号检测,介绍一种基于m序列的激光测距方法,给出了基于高速数字信号处理器的激光测距雷达数字信号处理系统的实现方案,并理论分析了脉冲激光测距机的测距误差。了解并学习激光雷达在移动机器人等其它方面中的应用。 关键词:激光雷达;发射器和接收器特性; 伪随机序列; 脉冲激光;测距误差 Applications and Principles of laser radar ranging Student majoring in Optical Information Science and Technology Ren xiaonan Tutor Shang lianju Abstract:This paper briefly describes the composition of laser radar systems, laser radar system and radar system performance comparison of normal, focusing on the laser radar range equation. Laser Ranging for remote signal detection, presents a introduction of a sequence based on laser ranging method m, gives the high-speed digital signal processor-based laser ranging radar digital signal processing system implementations, and theoretical analysis of the pulse Laser rangefinder range error.We understand and learn application of Laser radar in the mobile robot and other aspects. Key words:Laser radar; Transmitter and receiver characteristics;Pseudo-random sequence;Pulsed laser;Ranging error. 引言:激光雷达是传统雷达技术与现代激光技术相结合的产物,激光具有亮度 高、单色性好、射束窄等优点,成为光雷达的理想光源,因而它是目前激光应用主要的研究领域之一。激光雷达是一项正在迅速发展的高新技术,激光雷达技术从最简单的激光测距技术开始,逐步发展了激光跟踪、激光测速、激光扫描成像、激光多普勒成像等技术,使激光雷达成为一类具有多种功能的系统。利用激光作为遥感设备可追溯到30多年以前,从20世纪60年代到70年代,人们进行了多项试验,结果都显示了利用激光进行遥感的巨大潜力,其中包括激光测月和卫星激光测距。激光雷达测量技术是一门新兴技术,在地球科学和行星科学领域有着广泛的应用.LiDAR(LightLaser Detection and Ranging)是激光探测及测距系统的简称,通常指机载对地激光测距技术,对地激光测距的主要目标是获取地质、地形、地貌以及土地利用状况等地表信息。相对于其他遥感技术,LIDAR的相关研究是一个非常新的领域,不论是在提高LIDAR数据精度及质量方面还是在丰富LIDAR数据应用技术方面的研究都相当活跃。随着LIDAR传感器的不断进步,地表采点密度的逐步提高,单束激光可收回波数目的增多,LIDAR数据将提供更为丰富的地表和地物信息。激光测距可分为星载(卫星搭载)、机载(飞机搭载)、车载(汽车搭载)以及定位(定点测量)四大类,目前激光测距仪已投入使用,激光雷达正处在试验阶段,某些激光雷达已付诸实用.本文对激光雷达的测距原理、发射器和接收器特性、束宽、大气传输以及目标截面、外差效率进行分析, 提出基于伪随机序列的激光测距技术 ,可将激光

车载激光雷达测距测速原理

车载激光雷达测距测速原理 陈雷1,岳迎春2,郑义3,陈丽丽3 1黑龙江大学物理科学与技术学院,哈尔滨 (150080) 2湖南农业大学国家油料作物改良中心,长沙 (410128) 3黑龙江大学后勤服务集团,哈尔滨(150080) E-mail:lei_chen86@https://www.360docs.net/doc/866511925.html, 摘要:本文在分析了激光雷达测距、测速原理的基础上,推导了连续激光脉冲数字测距、多普勒频移测速的方法,给出车载激光雷达基本原理图,为车载激光雷达系统测距测速提供了基本方法。 关键词:激光雷达,测距,测速 1.引言 “激光雷达”(Light Detection and Range,Lidar)是一种利用电磁波探测目标的位置的电子设备。其功能包含搜索和发现目标;测量其距离、速度、位置等运动参数;测量目标反射率,散射截面和形状等特征参数。激光雷达同传统的雷达一样,都由发射、接收和后置信号处理三部分和使此三部分协调工作的机构组成。但传统的雷达是以微波和毫米波段的电磁波作为载波的雷达。激光雷达以激光作为载波,激光是光波波段电磁辐射,波长比微波和毫米波短得多。具有以下优点[1]: (1)全天候工作,不受白天和黑夜的光照条件的限制。 (2)激光束发散角小,能量集中,有更好的分辨率和灵敏度。 (3)可以获得幅度、频率和相位等信息,且多普勒频移大,可以探测从低速到高速的目标。 (4)抗干扰能力强,隐蔽性好;激光不受无线电波干扰,能穿透等离子鞘,低仰角工作时,对地面的多路径效应不敏感。 (5)激光雷达的波长短,可以在分子量级上对目标探测且探测系统的结构尺寸可做的很小。当然激光雷达也有如下缺点: (1)激光受大气及气象影响大。 (2)激光束窄,难以搜索和捕获目标。 激光雷达以自己独特的优点,已经被广泛的应用于大气、海洋、陆地和其它目标的遥感探测中[14,15]。汽车激光雷达防撞系统就是基于激光雷达的优点,同时利用先进的数字技术克服其缺点而设计的。下面将简单介绍激光雷达测距、测速的原理,并在此基础上研究讨论汽车激光防撞雷达测距、测速的方法。 2. 目标距离的测量原理 汽车激光雷达防撞系统中发射机发射的是一串重复周期一定的激光窄脉冲,是典型的非相干测距雷达,对它的要求是测距精度高,测距精度与测程的远近无关;系统体积小、重量轻,测量迅速,可以数字显示;操作简单,培训容易,有通讯接口,可以连成测量网络,或与其他设备连机进行数字信息处理和传输。 2.1测距原理 激光雷达工作时,发射机向空间发射一串重复周期一定的高频窄脉冲。如果在电磁波传播的

激光雷达项目可行性研究报告

激光雷达项目可行性研究报告 核心提示:激光雷达项目投资环境分析,激光雷达项目背景和发展概况,激光雷达项目建设的必要性,激光雷达行业竞争格局分析,激光雷达行业财务指标分析参考,激光雷达行业市场分析与建设规模,激光雷达项目建设条件与选址方案,激光雷达项目不确定性及风险分析,激光雷达行业发展趋势分析 提供国家发改委甲级资质 专业编制写: 激光雷达项目建议书 激光雷达项目申请报告 激光雷达项目环评报告 激光雷达项目商业计划书 激光雷达项目资金申请报告 激光雷达项目节能评估报告 激光雷达项目规划设计咨询 激光雷达项目可行性研究报告 【主要用途】发改委立项,政府批地,融资,贷款,申请国家补助资金等【关键词】激光雷达项目可行性研究报告、申请报告 【交付方式】特快专递、E-mail 【交付时间】2-3个工作日 【报告格式】Word格式;PDF格式 【报告价格】此报告为委托项目报告,具体价格根据具体的要求协商,欢迎进入公司网站,了解详情,工程师会给您满意的答复。 【报告说明】 本报告是针对行业投资可行性研究咨询服务的专项研究报告,此报告为个性化定制服务报告,我们将根据不同类型及不同行业的项目提出的具体要求,修订报告目录,并在此目录的基础上重新完善行业数据及分析内容,为企业项目立项、上马、融资提供全程指引服务。 可行性研究报告是在制定某一建设或科研项目之前,对该项目实施的可能

性、有效性、技术方案及技术政策进行具体、深入、细致的技术论证和经济评价,以求确定一个在技术上合理、经济上合算的最优方案和最佳时机而写的书面报告。可行性研究报告主要内容是要求以全面、系统的分析为主要方法,经济效益为核心,围绕影响项目的各种因素,运用大量的数据资料论证拟建项目是否可行。对整个可行性研究提出综合分析评价,指出优缺点和建议。为了结论的需要,往往还需要加上一些附件,如试验数据、论证材料、计算图表、附图等,以增强可行性报告的说服力。 可行性研究是确定建设项目前具有决定性意义的工作,是在投资决策之前,对拟建项目进行全面技术经济分析论证的科学方法,在投资管理中,可行性研究是指对拟建项目有关的自然、社会、经济、技术等进行调研、分析比较以及预测建成后的社会经济效益。在此基础上,综合论证项目建设的必要性,财务的盈利性,经济上的合理性,技术上的先进性和适应性以及建设条件的可能性和可行性,从而为投资决策提供科学依据。 投资可行性报告咨询服务分为政府审批核准用可行性研究报告和融资用可 行性研究报告。审批核准用的可行性研究报告侧重关注项目的社会经济效益和影响;融资用报告侧重关注项目在经济上是否可行。具体概括为:政府立项审批,产业扶持,银行贷款,融资投资、投资建设、境外投资、上市融资、中外合作,股份合作、组建公司、征用土地、申请高新技术企业等各类可行性报告。 报告通过对项目的市场需求、资源供应、建设规模、工艺路线、设备选型、环境影响、资金筹措、盈利能力等方面的研究调查,在行业专家研究经验的基础上对项目经济效益及社会效益进行科学预测,从而为客户提供全面的、客观的、可靠的项目投资价值评估及项目建设进程等咨询意见。 可行性研究报告大纲(具体可根据客户要求进行调整) 为客户提供国家发委甲级资质 第一章激光雷达项目总论 第一节激光雷达项目背景 一、激光雷达项目名称 二、激光雷达项目承办单位 三、激光雷达项目主管部门 四、激光雷达项目拟建地区、地点 五、承担可行性研究工作的单位和法人代表 六、激光雷达项目可行性研究报告编制依据

激光雷达应用

光电传感技术与应用 课程作业 学院 专业 姓名 学号

课程论文题目激光雷达技术 评审意见 演示文稿张数14 评审意见

激光雷达 林无穷 江南大学理学院光电信息科学与工程系江苏无锡 214122 摘要:本文介绍了激光雷达技术的原理、发展与历程,还有它在当今时代的多方面应用。我们把工作在红外和可见光波段的,以激光为工作光束的雷达称为激光雷达,它由激光发射机、光学接收机、转台和信息处理系统等组成。它在地形检测,导航,测距,追踪以及军事方面有着显著作用。 关键词:激光,雷达,环境检测 引言 激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统。从工作原理上讲,与微波雷达没有根本的区别:向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数,从而对飞机、导弹等目标进行探测、跟踪和识别。 激光雷达是激光技术与现代光电探测技术结合的先进探测方式。由发射系统、接收系统、信息处理等部分组成。发射系统是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器以及光学扩束单元等组成;接收系统采用望远镜和各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等组合。 原理 激光雷达探测大气的基本原理即是上述几种激光与大气相互作用的机制。激光器产生的激光束经光束准直(有的情况下需要扩束)后发射到大气中,激光在大气中传输遇到空气分子、气溶胶等成分便会发生散射、吸收等作用。散射中的小部分能量——后向散射光落入接收望远镜视场被接收。被接收到的后向散射光传输到光电探测器(通常为PMT)被转换成电信号(一般为电流信号),实现光-

激光雷达市场调研及产品分析

激光雷达调研分析 XXX公司 20xx年x月x日

目录 一、概念原理 (1) 1、雷达介绍 (1) 2、激光的原理 (1) 二、雷达种类 (2) 1、优缺点对比 (2) 2、主要厂家 (4) 三、参考链接 (1)

一、概念原理 1、雷达介绍 光学雷达是一种光学遥感技术,它通过向目标照射一束光,通常是一束脉冲激光来测量目标的距离等参数。 激光雷达对物体距离的测量与通常所说的雷达类似,都是通过测量发送和接受到的脉冲信号的时间间隔来计算物体的距离。因此,由于原理上的相似性,尽管雷达的准确定义是使用微波或无线电波等波长较长的电磁波进行检测测距的设备,激光雷达这一术语仍然被广泛使用。 激光发出具有高方向性的光束,即组成的光波在一条直线上传播,不会扩散。普通的光源发出的光波会朝各个方向扩散。激光束内的光波都是相同颜色的(此性质叫单色性)。普通的光(比如荧光灯管发出的光)一般来说是几种颜色的光混合后表现为白色。当激光束内的光波传播时,它们以完全同步的波峰和波谷发生振荡,这种特性叫做相干性。当两个激光束相互重叠时,每个光束的波峰和波谷只会相互加强,产生一个干涉图。 2、激光的原理 原子(分子)从外部吸收能量后,从下准位(低能级状态)跃迁至上准位(高能级状态)。这种状态被称为受激状态。 受激状态是一种不稳定的状态,将会很快返回至低能级状态。这一行为被称为“跃迁”。 此时会辐射出相当于跃迁能量的光。这种现象被称为自发发射。辐射出的光碰撞到同样处于受激状态的其他原子,也会激励其发生相同的跃迁。这种受到诱导而辐射出的光称为受激发射。

所有的激光振荡管都由以下三个元件组成: 二、雷达种类 激光雷达主要有三种技术流派: 混合固态技术(Solid State Hybrid),以Velodyne产品为代表。IBEO也是使用该技术,但线束少于Velodyne。混合固态是目前应用于车载领域主要技术类型; 微机电技术(Mechanical Mechanism),以创业公司Quanergy为代表; 机械技术(Mechanical Mechanism),以传统公司Leica, Riegl等公司为代表,主要应用于高端工业领域 1、优缺点对比 相控:不同于机械扫描雷达的通过天线转动来实现电磁波定向发送,相控阵雷达通过信号单元发射不同相位的电磁波相互耦合实现不同方向的传播。简单的说,机械扫描雷达会动,相控阵雷达不会。

车载激光雷达标定的方法与制作流程

一种车载激光雷达标定的方法,属于汽车自动驾驶领域。汽车自动驾驶技术中涉及的多传感器之间的融合技术不足。一种车载激光雷达标定的方法,设置一块标定板,配合安装在车辆上的激光雷达提取标定板的四个角点的步骤;测量四个角点在车体坐标系的物理坐标,结合由激光雷达提取的四个角点计算得到旋转平移矩阵的步骤;对两个激光雷达数据之间的进行坐标转换,拼接多台激光雷达,对激光雷达的标定的步骤。本技术具有精确将自动驾驶车辆之间的多传感器融合的优点。 权利要求书 1.一种车载激光雷达标定的方法,其特征是:所述方法包括: 在自动驾驶车辆前设置一块标定板,配合安装在车辆上的激光雷达提取标定板的四个角点的步骤; 测量四个角点在车体坐标系的物理坐标,结合由激光雷达提取的四个角点计算得到旋转平移矩阵的步骤; 对两个激光雷达数据之间的进行坐标转换,拼接多台激光雷达,实现对激光雷达的标定的步骤。 2.根据权利要求1所述一种车载激光雷达标定的方法,其特征在于:所述的提取标定板的四个角点是指提取激光雷达数据中标定板的四个角点,具体包括以下步骤:

步骤一一、获取点云数据: 将标定板设置于激光雷达前方6~10m的距离处,标定板的板面垂直于地面,用于承接激光雷达的发射信号;所述的标定板为一块2米×2米的正方形木板; 之后,在6~10m的距离之间选取4个距离值分别测量角点数据,得到4组角点数据;所述的角点数据是指在车体坐标系下的XYZ三维数据; 步骤一二、切割标定板所在的点云区域: 首先,将激光雷达向前的方向定义为X轴,将获取的点云数据记录的每个点的三维坐标表示为p(x, y, z); 然后,通过下式计算每个点偏离X轴的角度α和距离激光雷达的距离d; 最后,设定距离X轴的最大角度和最小角度,以及距离激光雷达前方的最大距离和最小距离,在此范围内计算包含标定板在内的点,并对该区域进行筛选,将筛选出的符合条件的点存入新的指针中; 步骤一三、提取标定板: 在切割后的区域内,利用PCL中的RANSAC算法,使用平面参数模型并设置迭代阀值提取标定板的平面; 之后,在提取标定板后,使用参数化方程将标定板投影到其所在平面上;参数化方程为:AX+BY+CZ+D=0,式中,A、B、C表示系数,D为常数,来自RANSAC提取平面后的参

激光雷达原理、关键技术及应用的深度解析

激光雷达原理、关键技术及应用的深度解析 “雷达”是一种利用电磁波探测目标位置的电子设备.电磁波其功能包括搜索目标和发现目标;测量其距离,速度,角位置等运动参数;测量目标反射率,散射截面和形状等 特征参数。 传统的雷达是微波和毫米波波段的电磁波为载波的雷达。激光雷达以激光作为载波.可以用 振幅、频率、相位和振幅来搭载信息,作为信息载体。 激光雷达利用激光光波来完成上述任务。可以采用非相干的能量接收方式,这主要是一脉冲计数为基础的测距雷达。还可以采用相干接收方式接收信号,通过后置信号处理实现探测。激光雷达和微波雷达并无本质区别,在原理框图上也十分类似,见下图激光雷达是工作在光频波段的雷达。与微波雷达的原理相似,它利用光频波段的电磁波先向目标发射探测信号,然后将其接收到的同波信号与发射信号相比较,从而获得目标的位置(距离、方位和高度)、运动状态(速度、姿态)等信息,实现对目标的探测、跟踪和识别。激光雷达由发射,接收和后置信号处理三部分和使此三部分协调工作的机构组成。激光光速发散角小,能量集中,探测灵敏度和分辨率高。多普勒频移大,可以探测从低速到高速的目标。天线和系统的尺寸可以作得很小。利用不同分子对特定波长得激光吸收、散射或荧光特性,可以探测不同的物质成分,这是激光雷达独有的特性。 激光雷达的种类目前,激光雷达的种类很多,但是按照现代的激光雷达的概念,常分为以下几种: 按激光波段分:有紫外激光雷达、可见激光雷达和红外激光雷达。 按激光介质分:有气体激光雷达、固体激光雷达、半导体激光雷达和二极管激光泵浦固体激光雷达等。 按激光发射波形分:有脉冲激光雷达、连续波激光雷达和混合型激光雷达等。按显示方式分:有模拟或数字显示激光雷达和成像激光雷达。 按运载平台分:有地基固定式激光雷达、车载激光雷达、机载激光雷达、船载激光雷达、

激光雷达的选择

激光雷达的选择 刘燕京博士 激光雷达主要部件包括:二维激光扫描仪,GPS,IMU 二维激光扫描仪:二维激光扫描仪是激光雷达的核心部分。 二维激光扫描仪的激光特点 用于激光雷达的二维激光扫描仪的激光器所输出的激光波形有两种:一种是脉冲式的,另一种是连续波(continuous wave, CW)。脉冲式的激光器一般是半导体激光器,或用半导体激光器泵浦的Nd-YAG (neodymium-doped yttrium aluminium garnet, Nd:Y3Al5O12)激光器。他们的特点是输出的功率大,峰值功率可达到几MW。Optech和莱卡公司使用的是Nd-YAG激光器,波长为1064 nm,安全等级为IV级;而Riegl和TopSys 使用的是波长为1550nm的半导体激光器,安全等级为I级。安全等级为I级的激光器即使在面对面使用是也不会对人眼和动物的眼睛造成伤害。 脉冲式激光雷达的测距分辨率⊿H由公式 ⊿H=C·t P/2 给出。C是光速,t P是光的一个脉冲周期时间。 一个脉冲光在一个周期时间里所通过的距离:脉冲宽度Lp=2⊿H。 如果t P=1ns, Lp=300mm; 如果t P=1ns, Lp=3m。

脉冲宽度越短,测距的分辨率越高 一般:t rise=1ns。 激光器的峰值输出功率E p一般是2000W,那么每发射一个脉冲光所需要的能量E为E=E p·t P=2000W·10ns=20μj 因而,如果激光器的发射频率f为10,000赫兹,所需要的激光器的发射功率为 P=E·f=0.2W。如果f为100,000赫兹,所需要的激光器的发射功率为2W。 目前市场上的二维激光器的距离测量精度在1000米的距离时为2厘米—5厘米。 光的色散 我们都知道,光会产生色散现象。我们平时经常会看到,汽车的大灯随着光照距离的增加,其射出的光斑越来越大,这就是色散。 激光是目前所有已经知道的光中发散度最小的。通常我们用弧度来表示光的色散γ。如果我们以激光器的光窗的孔径为D,激光的波长为λ,光的色散大小的极限值与光衍射相关。当超过它的极限时,光斑会出现模糊。因而, γ≧2.44λ/D 也就是说,如果激光器的发射光窗不变,光的色散随着光的波长的增加而增大;如果光的波长不变,光的色散随着光窗的增加而减小。 例如:如果光的波长为1060nm, 光窗的直径为100mm,那么,光的色散为0.26mrad。 如果光的波长为1550nm, 光窗的直径为100mm,那么,光的色散为0.38mrad。 通常,激光器的发射和接收光窗的直径D为5-15厘米。 打到地面的光斑的直径D L由上图推出 D L=D+2h(tanγ/2)= 2h(tanγ/2)= 2hγ/2= hγ 我们以0.3mrad来举例说明它的意义。 当测量距离为100米时,光斑的直径为30mm;当测量距离为1,000米时,光斑的直径为300mm。 一般讲,光斑越小,激光的空间分辨率越小。 连续波激光器一般用于卫星遥感或高空遥感。 目前市场上常用激光雷达的激光器及其最大发射频率。 目前市场上的激光雷达的激光发射的最大频率范围为10,000赫兹—240,000赫兹。均为Riegl公司所生产。Optech公司和莱卡公司的激光器的最大发射频率分别是160,000赫兹和150,000赫兹。TopSys的是125,000赫兹。在上个月在北京召开的的2008 ISPRS 会议上,徕卡公司推出了新的ALS60系统,其激光器的最大发射频率为200,000赫兹。另外,根据内部消息,Riegl公司也将在9月底的2008 INTERGEO会议上推出新的激光雷达系统。 莱卡和Optech公司采用的是大功率的波长为1064纳米的安全等级为IV级(I级是最安全的,II级以上越来越不安全)的Nd-YAG激光器。当低空飞行时,就必须增大激光的光斑,并且采用强度衰减器来降低输出激光的强度。

(完整版)关于车载激光雷达的知识清单

关于车载激光雷达的知识清单 ?2017年6月28日 ? ?国际电子商情 本篇知识清单分享给你,助你快速了解车载激光雷达产业。 在无人驾驶架构中,传感层被比作为汽车的“眼睛”,包括车载摄像头等视觉系传感器和车载毫米波雷达、车载激光雷达和车载超声波雷达等雷达系传感器。其中激光雷达已经被大部分人认为是实现自动驾驶的必要基础,毕竟传统雷达无法识别物体细节,而摄像头在暗光或逆光条件下识别效率明显降低。 也正得益于无人驾驶汽车市场规模的爆发,预计2030年全球激光雷达市场可达到360亿美元的规模,将成为新的蓝海。本篇知识清单分享给你,助你快速了解车载激光雷达产业。 内容导读: 1.车载激光雷达的技术原理 2.激光雷达在自动驾驶应用中有何优缺点? 3.车载激光雷达有哪些应用? 4.如何降低自激光雷达的成本? 5.国内外最全激光雷达企业介绍 一、车载激光雷达的技术原理 激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统,最初是军事用途。其工作原理是向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数,从而对飞机、导弹等目标进行探测、跟踪和识别。 这里详细介绍一下车载激光雷达的工作原理及实现方式。第一种是较为传统的扫描式激光雷达,这种设备被架在汽车的车顶上,能够用多束激光脉冲绕轴旋转360°对周围环境进行距离检测,并结合软件绘制3D图,从而为自动驾驶汽车提供足够多的环境信息。 这种激光雷达最初是在11年前的Darpa无人车挑战赛上,由美国Velodyne公司开发并被参赛团队使用(当时采用的是64线的激光雷达方案)。由于那时的成本

全球3D激光雷达市场现状及国内外企业布局情况

全球3D激光雷达市场现状及国内外企业布局情况

目录 1.传感器领域的明日皇冠-3D激光雷达 (4) 1.1.激光雷达是一种感知外界环境的传感器 (4) 1.2.激光雷达已从最初的军工延伸至移动机器人等民用领域 (4) 1.3.激光雷达的民用应用维度也从一维上升到三维 (5) 2.激光雷达将在服务机器人领域率先大规模推广 (6) 2.1.激光雷达已经成为移动机器人的“眼睛” (6) 2.2.服务机器人用激光雷达将率先进入爆发式增长 (8) 3.无人驾驶兴起将引爆3D激光雷达下游需求 (9) 3.1.无人驾驶技术蔚然成风,商业化应用成大趋势 (9) 3.2.3D激光雷达是无人驾驶的核心技术路线 (11) 3.3.全球无人驾驶用3D激光雷达市场需求将在2030年爆发 (12) 3.4.同步定位与地图构建等核心软件能力至关重要 (13) 3.4.1.算法是激光雷达的核心与灵魂 (13) 3.4.2.基础点云数据处理软件可实现可视化输出 (13) 3.4.3.以SLAMWARE为例,认知同步定位与地图构建的重要性 15 3.5.技术更新和规模化将解除3D激光雷达成本过高瓶颈 (17) 4.欧美企业提前布局,内资企业奋起直追 (18) 4.1.海外激光雷达市场起步较早,欧美企业引领行业发展 (18) 4.1.1.Leica:老牌空间测量领导者 (18) 4.1.2.行业标杆Velodyne:手握核心专利,提供原始数据 (19) 4.1.3.Ibeo:提供包括硬件和软件在内的成套解决方案 (20) 4.1.4.Quanergy:新晋创业公司推廉价激光雷达 (21) 4.2.国产激光雷达厂商率先在中低端市场获得突破 (22) 4.2.1.华达科捷:依托激光技术进军3D 激光雷达 (22) 4.2.2.镭神智能:扬帆起航布局激光雷达行业 (23) 4.2.3.数字绿土:兼顾软件与硬件,背靠国内放眼国际 (23) 4.2.4.思岚科技:机器人定位导航解决方案及相关核心传感器龙头 25 5.3D激光雷达相关标的梳理 (27) 5.1.巨星科技(002444):设立欧镭激光,布局车用3D激光雷达 27 5.2.大族激光(002008):激光行业龙头,激光雷达预研工作进展顺 利27 6.风险因素 (28)

2021年激光雷达发射模组产业化项目可行性研究报告

2021年激光雷达发射模组产业化项目可行性研究报告 2021年2月

目录 一、项目概况 (3) 二、项目与公司现有主要业务、核心技术之间的关系 (3) 三、项目投资概算和建设规模 (4) 四、项目实施进度安排 (5) 五、项目效益分析 (5) 六、项目环境保护情况 (6) 1、废水 (6) 2、固废 (6) 3、废气 (6) 4、噪声 (7)

一、项目概况 本项目主要产品为激光雷达发射模组,产品技术可达国际同类产品领先水平。通过本项目的实施,公司将建设激光雷达发射模组生产基地,以更好地满足市场对车载激光雷达发射模组的需求,并为公司提供良好的投资回报和经济效益。项目规划建筑面积约12,000.00平方米,计划利用公司现有厂区空置土地,通过投资新建厂房及仓库等基础设施,引进一系列国内外先进生产及检测设备,并配备相应的生产和技术人员,实现对公司激光雷达发射模组产品的产业化生产,打造激光雷达发射模组生产基地。 二、项目与公司现有主要业务、核心技术之间的关系 在新一代智能汽车中,光电技术扮演着至关重要的角色:基于激光与光学技术的汽车激光雷达(LiDAR)正被逐步应用于辅助驾驶与无人驾驶技术领域;基于近红外VCSEL激光光源的智能舱内驾驶员 监控系统(DMS)将逐步取代传统LED光源,为AI预警系统提供更 丰富准确的舱内驾驶员行为信息以做出更准确的判断;基于激光显示的增强现实抬头显示系统(AR HUD)可将辅助驾驶信息和导航信息即时投射在前挡风玻璃上。这些光电技术在新一代智能汽车中的应用,既给整体汽车应用行业带来全新的机遇和挑战,也给炬光科技带来了新兴市场机会,成为公司未来十年的重要增长领域。 本项目的主要产品为激光雷达发射模组,实施本项目是在智能汽

激光雷达在汽车产业的应用意义

意义: 为保障汽车驾驶时的舒适性和安全性,世界各国对汽车防撞技术的研究和发展投入了大量的人力、物力和财力。据统计,危险境况时,如果能给驾驶员半秒钟的预处理时间,则可分别减少追尾事故的30%,路面相关事故的50%,迎面撞车事故的60%,所以现代汽车安装各类雷达系统以保障行车安全。 激光雷达与其它测距方法的优缺点: 汽车凭借一定的装备测量前方障碍物的距离,迅速反馈给汽车,以在危急的情况下,通过报警或自动进行某项预设定操作如紧急制动等,来避免由于驾驶员疲劳、疏忽、误判断所造成的交通事故。目前运用在汽车上的测距方法主要有超声波短距离测距,毫米波雷达长距离测距,激光测距,摄像系统测距等几种方法。 超声波测距: 它利用超声探测原理,在司机倒车时,能正确的从数码显示器上了解汽车尾部与障碍物之间的距离。当测距显示小于报警距离时,还能准确报警,及时提醒司机刹车。 优点:超声波测距原理简单,成本低、制作方便; 缺点:其在高速行驶的汽车上的应用有一定局限性,这是因为超声波的传输速度受天气影响较大,不同的天气条件下传播速度不一样;另一方面是对于远距离的障碍物,由于反射波过于微弱,使得灵敏度下降。故超声波测距一般应用在短距离测距,最佳距离为4~5米,一般应用在汽车倒车防撞系统上。 雷达测距: 为了更好的适应道路交通状况,解决盲区视野问题,在日本和美国开展了大量的工作。如应用毫米波雷达CCD摄像检测交通状况,根据危险程度改变直观信号的音调、颜色和位置,并在显示器中显示。实现高度智能化,极大的改善车辆的安全性。 雷达是利用目标对电磁波反射来发现目标并测定其位置的。 优点: (1)是探测性能稳定。它不易受对象表面形状和颜色的影响,也不受大气流的影响; (2)是环境适应性能好。雨、雪、雾等对之干扰小。作为车载雷达,目前适用的主要有脉冲多普勒雷达、双频CW雷达和FM雷达三种。应用雷达测距,需要防止电磁波干扰,雷达彼此之间的电磁波和其他通信设施的电磁波对其测距性能都有影响。毫米波雷达主要应用于防撞,以避免高速公路上发生追尾碰撞; 缺点:应用雷达测距,需要防止电磁波干扰,雷达彼此之间的电磁波和其他通信设施的电磁波对其测距性能都有影响。

激光雷达在机器人中的应用

激光雷达在ALV中的应用 关键词:激光雷达智能车辆移动机器人定位障碍检测laser range finder Extended Kalman Filter(EKF). 结构:1:概述 2:激光雷达的分类 3:激光雷达测量时间的技术 4:激光雷达在ALV中的用途 5:举例LMS291-s05型号的激光雷达的特点和参数 6:激光雷达用于智能车定位 6.1 定位原理 6.2定位常用方法 7:激光雷达用于ALV的障碍检测 7.1ALV的安全性要求 7.2 激光雷达检测故障时要到的“漏报”和“虚警”现象 7.3 雷达安装位置的考虑 8:总结 资料来源:Google 百度知网、南理工图书馆学位论文、期刊、会议《未知环境中移动机器人导航控制理论与方法》蔡自兴 1:概述 无论是室外环境下行驶的陆地自主车还是室内环境下运动的各种移动机器人(Autonomous Land Vehicle),都离不开距离探测。而在有源测距仪中,激光测距雷达的精度相对较高,方向性较好,而且基本不受环境可见光变化的影响,因此无论在室内还是室外环境下的移动机器人的导航研究中都得到了广泛应用。激光测距雷达可以直接获取距离数据,为机器人的导航提供了便捷有效的环境描述。 2:激光雷达的分类 根据扫描机构的不同,激光测距雷达有2D和3D两种。它们大部分都是靠一个旋转的反射镜将激光发射出去并通过测量发射光和从物体表面反射光之间的时间差来测距。3D激光测距雷达的反射镜还附加一定范围内俯仰以达到面扫描的效果。它们都是直接测距方法。同3D激光测距雷达相比,2D激光测距雷达只在一 个平面上扫描,结构简单,测距速度快、系统稳定可靠。目前2D激光测距雷达

昂贵的价格仍是车载激光雷达最大的发展障碍

昂贵的价格仍是车载激光雷达最大的发展障碍 激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统。从工作原理上讲,与微波雷达没有根本的区别:向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数,从而对飞机、导弹等目标进行探测、跟踪和识别。 但本文并不讲什么飞机导弹,本文主要介绍的是在汽车上的激光雷达,俗称车载激光雷达,而车载激光雷达又称车载三维激光扫描仪,是一种移动型三维激光扫描系统,是目前城市建模的最有效的工具之一。 什么是三维激光扫描仪?三维激光扫描仪是利用激光的传播速度快,直线型好的特点将激光发射出去,并接收返回的信息来描述被测量物理的表面形态的。由于被测物体的反射率不同接收到的返回信息也有强弱之分。所谓的三维既是利用扫描仪的水平转动来覆盖一整片区域。这个过程很类似民间的360度全景摄影。区别就是我们得到的底片不是图像而是成千上万个点组成的表面形态,在测量术语中叫做点云。请见右图的船体,看似是一副图片,其实是由无数个激光点组成的。不同的颜色就是激光返回不同的反射率的表现。 车载/船载激光雷达不论是车载还是船载甚至是机载的激光雷达,其原理都是将三维激光扫描仪加上POS系统装载车上。目的就是为了能在更长,更远的范围内建立DTM模型。GPS的的应用目的就是为了让车子知道自己在任何时刻的位置,以方便拟合。。 在任何移动测量的系统中,做为赋予点云和影像的地理坐标的来源导航系统,都是其关键的部件。导航系统一般都会使用GPS和惯导单元。但是,地面上复杂的状况,例如:树木。建筑物和立交桥等往往会阻断GPS信号。因此,一套先进的导航系统必须包括其他辅助的传感器和完善的数据处理方法,以使得在GPS丢失信号的同时其航线的精度也能够得到保障。 车载激光雷达的应用道路和高速公路方面的应用 1.公路测量,维护和勘察?

激光雷达行业研究报告

汽车产业链系列研究报告(一) ——激光雷达二零一八年四月 刘海涛

目录 一、行业概况 二、技术分析三、市场概况 四、企业概况

什么是智能设备 定义:具有感知、分析、推理、决策、控制功能的设备,是先进制造技术、信息技术和智能技术集成和深度融合。 环境感知系统计算处理系统控制执行系统

智能设备发展阶段 人的参与度有人→辅助→半自动→全自动环境复杂度封闭环境→结构化环境→非结构化环境任务复杂度单一简单任务→单一复杂任务→多任务数据处理 知识输入型专家系统→神经网络&机器学习 目前阶段 道路是结构化程度很高的非结构化环境

环境感知系统 环境感知系统智能传感器系统中唯一非人工输入视觉传感器位置传感器速度传感器 力觉传感器 触觉传感器 直观视觉:摄像头、高速相机 环境模式视觉(深度):3D激光雷达、双目摄像头激光测距、2D激光雷达、毫米波、超声波、GPS 惯性导航、陀螺仪、GPS…… 压力传感器…… 光学、电容、电阻、划觉 ……激光雷达凭借其探测距离远、精确度高的特点成为自动驾驶环境感知系统是最不可或缺的一个,但又因为其环境适应能力差等缺点注定了不能是唯一的一个。

三种传感器性能对比 激光雷达毫米波雷达摄像头 探测距离10106 可靠度825 行人判别8210 夜间模式10101 恶劣天气5103 细节分辨6110 ●激光雷达是三种环境感知传感器中综合性能最好 的一种,这也就决定了它是自动驾驶汽车等机器 人环境感知系统中不可或缺的一部分。 ●激光雷达在天气适应性和细节分辨上有明显短板, 因此绝不会是环境感知系统中唯一的传感器。

相关文档
最新文档